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Summary

Generative network models (i.e. models that aim to uncover the underlying mecha-
nisms that drive network formation) have played a prominent role in the literature
of networked systems, and many hypotheses on how networks grow and evolve have
been proposed. Recently, structural optimisation has been suggested as one of the
main drivers underlying network formation processes. Indeed, many networks are
designed or required to perform one or more specific tasks as efficiently as possible.
How optimally a network will perform a set of pre-specified tasks will depend, at least
partially, on its large-scale structure. Consequently, these optimality requirements
should result in selective pressures driving the network toward particular large-scale
topologies. The general prescription behind this family of models is to define a cost
function over a network ensemble; by minimising the cost function, one can evaluate
whether particular topologies characterise the ensemble and compare these topolo-
gies with those observed in real-world networks. However, real-world networks rarely
emerge as the result of a single generating mechanism but are more likely to be the
end product of several co-existing processes and limitations, such as dynamical rules,
exogenous constraints, and optimality requirements. This conflation of generating
processes makes it difficult to assess and quantify to what extent optimality might
have played a role in the formation of any given network. In this thesis, we develop
a framework to construct null models of optimised networks that allow us to iso-
late the effects of optimisation on network structure from other external artefacts.
Furthermore, our framework can accommodate an arbitrary number of optimisation
criteria, allowing us to study more realistic scenarios in which a network is simulta-
neously subject to multiple selective pressures. We apply the proposed framework
to study networks driven to optimise for modularity and robustness against random
failures. We first analyse the case in which the criteria are imposed separately and
uncover the topologies most likely to emerge as a result of optimisation. We then
combine the two criteria and study the effects of joint optimisation on the network
structure. We uncover a rich phase diagram of optimised networks, characterised
by a series of phase transitions at which the optimal topologies change according
to the desired degree of optimality. We also identify regions of the parameter space
where synergistic and antagonistic effects are present, such that optimising for one
criterion can help or hinder optimising for the other.
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Chapter 1

Introduction

Many complex systems share the unifying property that they can be modelled as net-
works. Examples include biological systems [1–3], the Internet [4], social interaction
networks [5, 6], and power grids [6, 7]. With the aim of exploiting this universality,
a great deal of research has been devoted both to the empirical study of complex
networks and to the development of general network models that are valid across
different domains.

Of particular interest is the study of the large-scale topological structures that
real-world networks exhibit, as they are known to be closely related to the network
function [8, 9]. For example, many real-world networks possess nodes of remarkably
high degree, also called hubs, which have been shown to have profound effects on the
resilience of a network to the failure of its components [10], or the spread of a disease
across a network [11]. Similarly, the small-world effect, i.e. the observation that the
average geodesic distance between node pairs in a network is remarkably short,
has been linked to efficient communication [12] and has been observed in networks
as varied as the collaboration of Hollywood actors [6] and the human brain [13].
Another topological feature of great interest is the presence of communities, groups
of nodes that tend to be more connected amongst each other than the rest of the
network. These clusters of nodes can provide valuable information on the underlying
organisation of the network and the interactions between its components.

Given the overwhelming importance that network structure plays in shaping the
behaviour of networks and the processes occurring on them, it is no surprise that a
wealth of mathematical methods and models aimed at extracting and replicating the
large-scale structure of networks has been developed. However, many of these meth-
ods fail to address the underlying processes driving the network structure. This has
prompted the development of models of network formation, i.e. models which aim
to capture the mechanisms behind network formation rather than only reproducing
the desired large-scale properties. The earliest and by far the most studied class of
network formation models are the so-called preferential attachment models. Prefer-
ential attachment models are growing network models in which nodes (or edges) are
added to a network in subsequent time steps and connect to the existing vertices
according to some pre-specified scheme. The main idea is that most real-world net-
works are not static but rather grow over time. Thus, one hopes to reproduce the
structural characteristics commonly observed in real-world networks by capturing
the mechanisms with which new nodes are incorporated into the network. The most
prominent preferential attachment model is without a doubt the Barabási-Albert
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CHAPTER 1. INTRODUCTION

model (BA model) introduced by Laszlo Barábasi and Réka Albert in [14]. The
model is centred around two basic assumptions:

Network growth: Networks grow over time. The authors then argue that it is
unrealistic to attempt to model them via static models in which the number
of nodes N is held fixed.

Preferential attachment: New nodes do not randomly connect to the network,
which would be highly unrealistic. Instead, there must be an underlying mech-
anism guiding the growth of the network. Barabási and Albert propose a
scheme by which new nodes preferentially connect to nodes that already pos-
sess a high degree.

The BA model can reproduce some of the large-scale properties commonly observed
in real-world networks. Most notably, the highly heterogeneous degree distributions
that many real-world networks display. However, it fails to account for others,
such as the presence of a community structure. An enormous number of extensions
to the BA model have subsequently been proposed to circumvent this, and other
issues (such as extending the model to directed networks, including node removal,
considering the possibility of internal links, and extending the model beyond power-
law distributions with exponent γ = 3) [15–21]. However, the key ingredients of
all these models remain the same, network growth and a preferential attachment
scheme.

Other models of network formation exist. Vertex copying models [22, 23] are a
popular example of models which can generate both power-law degree distributions
and communities and have been widely employed to model biological networks [24–
26]. Recently, significant interest has been devoted to another class of network
formation models based on structural optimisation.

Many networks evolve or are designed to accomplish one or more specific tasks.
We might, for example, want to optimise the flow of traffic over a transportation
or communication network. Similarly, a gene regulatory network needs to be ro-
bust against random errors in gene expression. How optimal the performance of
these networks is will depend, amongst other things, on their large-scale topological
structure. This results in a selective pressure toward particular network structures,
depending on the desired fitness.
The general mechanism behind optimisation-based models is then the following.
Given a set of pre-specified characteristics we want our networks to satisfy, we can
associate a cost function to the networks generated by the model. By minimising
the cost function, we can then examine if some particular topology characterises the
resulting networks.

Some of the earliest work employing optimal network models as means to un-
derstand the observed network structure arose from the study of allometric scaling
in biology [27] and the study of river networks [28, 29], where results based on op-
timisation criteria proved to be in spectacular accord with real-world observations.
In the context of brain networks, Cherniak investigated whether neural networks
optimise the placement of their components to minimise the length of interconnec-
tions between them and found supporting evidence for this hypothesis [30]. These
results prompted efforts by researchers to investigate whether some of the large-scale
properties commonly observed in real-world networks might arise as the outcome of
particular optimisation processes. Mathis and Gopal [31] used a Metropolis-based
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optimisation procedure to show that in physical networks (i.e. networks whose nodes
are separated by a Euclidean distance), the small-world phenomenon can arise as a
tradeoff between maximal connectivity and minimal wiring.
Furthermore, unlike previous models of small-world networks, the authors uncov-
ered that small-worldness arises in optimised networks via the formation of hubs,
resulting in networks with seemingly power-law degree distributions, also known as
scale-free networks. Networks obtained this way were also shown to be more “opti-
mal” than the ones obtained by previous models, as they displayed shorter average
path lengths and required less wiring.

Mathis and Gopal’s work provided the first evidence of competitive minimisation
as a possible formation mechanism of small-world networks. Further corroboration
came from Valverde et al. [32] who provided empirical evidence of the emergence of
both small-worldness and scale-freeness in networks arising from local optimisation
principles and whose design makes no explicit assumptions regarding preferential
attachment or small-worldness. In a widely celebrated paper, Ferrer-i-Cancho and
Solé [33], examined the emerging topologies in a network driven to optimise both
the average path length between nodes and the link density. The authors uncovered
a series of phase transitions where the network topology can vary from a random
tree with exponential degree distribution to a scale-free network characterised by
high degree hubs to a quasi star-graph topology, where all nodes in the network
are connected to a single central node with few if any, other connections permitted.
Similar conclusions were reached by Colizza et al. [34] who studied networks driven
to minimise the path length between their components while also avoiding highly
congested nodes (i.e. large-degree nodes). The authors showed that the interplay
between the two objectives could give rise to a wide range of optimal topologies
depending on the values of the model parameters.

More broadly, optimal networks have been applied to study a wide variety of
problems, such as efficiency in transportation networks [35], minimising the search
cost over a network [36], optimal traffic networks [37], and network robustness [38–
40].

The emergence of properties commonly observed in real-world networks solely
from optimisation principles makes the critical suggestion that, for a large class of
networks, growth mechanisms might not be exclusively responsible for the observed
structures of real-world networks. Instead, the observed topologies are likely to be
the end product of an interplay between growth mechanisms and selective pressures.
In [33], the authors provide some evidence that metabolic networks might indeed
arise as an outcome of both mechanisms of network formation (optimisation and
preferential attachment).

Understanding the evolutionary forces shaping the structure of complex systems
can help us better elucidate the interplay between network structure and function
and prove crucial for designing networks aimed at optimising one or more prede-
fined tasks or properties. Furthermore, identifying structures that optimise specific
external criteria may help us understand how networks evolve when these external
conditions are changed, providing possible insights into the processes driving network
resilience and failure. However, as mentioned above, selective pressures generally
combine with other kinds of dynamical rules, exogenous constraints, and historical
artefacts. Furthermore, a given system may be subject to multiple selective pres-
sures simultaneously, e.g. it may need to run efficiently while being simultaneously
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robust to errors or damage. Since we seldom observe any given formation process
in detail, we are forced to disentangle these different driving forces from each other
based only on the structural patterns they produce.

In this thesis, we contribute to this disentangling effort by constructing null
models of optimised networks. These models correspond to ensembles of networks
that possess some pre-specified characteristics but which are otherwise maximally
random. By investigating the emerging structural features in these models, we can
understand the inherent effect a particular kind of fitness criterion has on the net-
work’s structure without the interference of any other kind of constraint. Moreover,
we can also combine multiple fitness criteria to determine how they interact in de-
termining the preferred network structure. This gives us a controlled platform to
delineate the effects of different kinds of selective pressures on network structure in
a principled manner.

In the following, we will employ this approach to investigate two central proper-
ties of networked systems, namely the robustness of a network against the random
failure of its components [41], and its modularity [42], characterised by the existence
of groups of nodes that are more connected among themselves than with the rest
of the network. Robustness to failure is believed to play a key role in infrastruc-
ture [43] as well as technological networks such as the Internet [44], but also on
biological systems [45]. Modularity, on the other hand, has been associated with the
adaptability of biological networks [46] and is a necessary ingredient for the schedul-
ing of interdependent processes with minimal amount of communication [47]. By
enforcing these two optimisation criteria both in isolation and simultaneously, we
analyse which large-scale network structures are most likely to emerge as a result of
their interaction. Our main result is the identification of a series of phase transitions
at which the optimal structure of the network changes in response to the varying
selective pressures. We also identify regions in the parameter space where the inter-
play between the selective pressures gives rise to synergistic effects, i.e. one kind of
fitness pressure contributes to the second, such that it becomes easier to optimise
for both at once, as well as antagonistic effects, where both optimisations compete
against each other.

The thesis is organised as follows. Chapter 2 briefly presents some basic net-
work theory concepts and introduces the necessary background and tools essential
for developing our framework in later chapters. In particular, we focus on models
of network structure (i.e. models whose aim is to replicate the observed structure
of a network as closely as possible) and present the concepts of network ensembles
and random graph models. In addition, we also introduce the fundamental concept
of entropy and show how it can be used as a guideline in the construction of net-
work models. Finally, we conclude the chapter by providing the basic theoretical
underpinnings that allow us to place our chosen fitness criteria (modularity and
robustness against random failures) on solid quantitative grounds.

Chapter 3 introduces our modelling framework and frames the optimisation of
the fitness criteria as an entropy maximisation problem.

In Chapter 4, we apply the formalism developed in Chapter 3 to networks driven
to optimise for either modularity or robustness against random edge removals. We
consider the two fitness criteria independently and analyse the large-scale structures
that are most likely to emerge as a result of the network being placed under varying
degrees of selective pressure.
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Chapter 5 considers the more realistic scenario in which networks are subject to
both selective pressures simultaneously and investigates the effects of the interplay
between the two selective pressures on the emerging network topologies.

Finally, in Chapter 6, we draw our conclusions and present possible future re-
search outlooks.

5



CHAPTER 1. INTRODUCTION

6



Chapter 2

Background

2.1 Fundamentals of network theory

In its simplest form, a network is composed by a set of elements, called nodes or
vertices, connected amongst each other through edges, Fig. 2.1.

Figure 2.1: An example of a simple network made up of N = 6 nodes and E = 7
edges.

Mathematically speaking, given a set of nodes V and edges E, a network can
be defined as an ordered pair G = (V,E). The great advantage of networks is that
they can model a wide array of complex systems. For example, in the case of the
Internet, the network’s nodes represent computers, and the edges the physical links
between them. For a power grid, the nodes would represent power stations, and
the edges would represent the transmission lines of the network. These are two
examples of “physical” networks, but networks can also be used to capture more
abstract relationships. For example, in a social network, nodes represent people,
and the edges can represent friendships or other types of interactions. If we take
some time to look around, we soon realise that networks are ubiquitous, ranging
from biological to technological and social networks. As such, it is of great interest
to study and analyse networked systems.

Different types of networks exist depending on the nature of the interaction
we are attempting to model as a network. For example, a network such as the
Internet, where nodes are computers and edges are the physical links between them,
can be modelled as a simple network such as the one in Fig. 2.1. In a simple
network, edges have no directionality; they either exist or do not. However, if we
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consider the World Wide Web, where nodes represent web pages and edges are the
hyperlinks between them, we can see a directionality in how the network is wired.
The fact that some page A has a hyperlink pointing to some other page B does
not automatically imply that page B points back to page A. A similar picture holds
in friendship networks, where the concept of friendship might not be reciprocated
amongst individuals. These types of systems are bettered described by what is
known as a directed network, i.e. one in which links have a directionality, Fig. 2.2.

Figure 2.2: An example of a directed network

Other types of networks are also possible, for example, weighted networks in
which the edges are assigned a weight which typically models some distinctive feature
of the interaction, such as the strength of the interaction or the capacity of the tie
between two nodes. An example of this could be the amount of traffic that flows
along the edges in a transportation network [48]. Other kinds of networks are so-
called multigraphs, in which multiple edges between nodes are possible, and nodes
are also allowed to have self-edges, Fig 2.3.

Figure 2.3: An example of a multigraph displaying both multiple edges and self-
loops.

If we label the nodes of a network so as to make them distinguishable, then the
network can be fully specified by its adjacency matrix A. For a simple network, the
adjacency matrix is a matrix whose elements Aij are

Aij =

{
1 if node i and node j are connected by an edge,

0 otherwise.
(2.1)

8
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Figure 2.4

For example, if we take the simple graph introduced previously and label it as in
Fig. 2.4, the corresponding adjacency matrix would be given by

A =


0 0 0 0 1 1
0 0 0 0 0 1
0 0 0 1 0 1
0 0 1 0 1 1
1 0 0 1 0 0
1 1 1 1 0 0

 (2.2)

Different label orderings will give rise to different adjacency matrices, but they all
have some common characteristics. First of all, for a simple network, the absence
of self edges means that the diagonal terms of the adjacency matrix will always be
equal to zero. Also, as a simple network is undirected, the adjacency matrix will be
a symmetric matrix with respect to the diagonal. Finally, it is easy to see that the
total number of edges in the network E is equal to

E =
1

2

∑
ij

Aij. (2.3)

The adjacency matrix can be easily generalised to the case of multigraphs. In
this case, the entries of the adjacency matrix correspond to the total number of edges
between two nodes, with the small caveat that self-edges have to be counted twice.
For example, Fig. 2.5 shows the adjacency matrix of the multigraph in Fig. 2.3 with
the same labelling used above.

For directed networks, the convention is to define the adjacency matrix as

Aij =

{
1 if there is an edge running from node j to node i,

0 otherwise.
(2.4)

Fig. 2.6 shows a directed network with its corresponding adjacency matrix Notice
that, for a directed network, the adjacency matrix need not be symmetric, as there
is no guarantee that the connections between the elements of the network will be
reciprocated. There are many other interesting properties of the adjacency matrix
which are beyond the scope of this thesis; we refer the interested reader to [49].
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1

2

34

5

6
A =



0 0 0 0 1 2
0 2 0 0 0 1
0 0 0 1 0 1
0 0 1 0 3 1
1 0 0 3 0 0
2 1 1 1 0 0



Figure 2.5: An example of a multigraph and its corresponding adjacency matrix.

1

2

34

5

6
A =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 1 1
1 0 0 0 0 0
1 1 1 0 0 0



Figure 2.6: An example of a directed network and its corresponding adjacency
matrix. Notice that the adjacency matrix is no longer symmetric.

The degree

We now briefly touch upon another important aspect in graph theory, the concept
of degree. The degree of a node in the network refers to the number of edges that
connect to it. Given a particular node i in a network with N nodes, we can express
its degree via the adjacency matrix as

ki =
N∑
j=1

Aij. (2.5)

The average degree of the network is then given by

〈k〉 =
1

N

∑
i

ki. (2.6)

If we look at Eq. (2.3), we see that

2E =
∑
ij

Aij =
∑
i

ki. (2.7)

By substituting this expression into Eq. (2.6), we see that the average degree of the
network is given by the simple relationship

〈k〉 =
2E

N
. (2.8)
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For directed networks, things are slightly different, and one has to define both
an in-degree and an out-degree. However, since directed networks are not the focus
of this thesis, we will not delve further into the argument.

The degree distribution

The degree distribution p(k) of a network indicates the fraction of nodes in the
network that have degree k. More specifically, let

N(k) =
N∑
i=1

δk,ki (2.9)

be the number of nodes in the network with degree k, where δx,y is the Kronecker
delta (defined so that δx,y = 1 if x = y and 0 otherwise). The degree distribution is
then defined as

p(k) =
N(k)

N
, (2.10)

and corresponds to the probability that a node chosen uniformly at random from
the network has degree k.

Let us consider the network in Fig. 2.4 of N = 6 nodes and E = 7 edges. We
have one node of degree one, three nodes of degree two, one node of degree three,
and one node of degree four. The degree distribution is then given by

p0 = 0 p1 =
1

6
p2 =

1

2
p3 =

1

6
p4 =

1

6
p5 = 0 . (2.11)

Where we have indicated p(k = c) as pc. The distribution only goes up to k = 5
because, in a simple network, the maximum degree a node can achieve is N − 1,
corresponding to the case in which it connects to every other node in the network.

The degree distribution is a crucial aspect of a network as it gives us precious
information on the network’s connectivity. One of the most notable discoveries
in network science is that many real-world networks possess highly heterogeneous
degree distributions. This is the case with the Internet [4], the World Wide Web
[10], the network of citations amongst scientific papers [50], and metabolic networks
[51] amongst others. Specifically, many of these networks are said to be scale-free,
meaning that their degree distribution p(k) can be approximated by a power law for
large values of k, i.e.

p(k) ' Ck−α for k � 1 (2.12)

The crucial aspect of power-law distributions is that they decay relatively slowly.
While for a Poisson or Gaussian distribution, one expects most of the nodes to
have degrees close to the average of the distribution, see Fig. 2.7a, a power-law
distribution tells a different story. In a power-law distribution, most nodes possess a
low degree, but a small fraction of nodes can have extremely high degrees Fig. 2.7b.
These highly connected nodes are commonly referred to as hubs. Hubs have profound
effects on the way a networked system functions. They have been linked to small-
world effects and can facilitate the transmission of information along the network,
be it packages of information over the World Wide Web or the spread of disease
along a social network. Perhaps one of the most fundamental consequences of hubs
is the effect they have on a network’s robustness.
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Figure 2.7: A Poisson distribution (a) and a power law distribution (b). While the
Poisson distribution decays rapidly and most of the density is concentrated around
the mean, in a power-law distribution there is a finite probability of observing high
degree nodes. The power-law distribution has been plotted in log-log space for
clarity.

The robustness of a network represents the network’s ability to keep functioning
when a fraction of its components malfunctions or are removed. Network robustness
is a problem of great interest, especially given past breakdowns that have occurred
in real-world networks, such as outages in power-grids [43, 52]. Understanding the
resilience of networked systems to random failures or malicious attacks is then of
fundamental importance when designing a new network or optimising existing ones
[38, 39]. Furthermore, understanding network robustness can give us insights into
the resilience observed in many biological [53] and technological networks. We shall
give a more extensive summary of network resilience in Section 4.2.

Community structure

Another commonly observed feature in complex networks is the presence of commu-
nities. In the context of networks, a community can be generally understood as a
subset of the network whose nodes are more densely connected amongst each other
than with the rest of the network. The general idea being that nodes that fall within
the same community are somehow alike or play a similar role in the network, see
Fig. 2.8.

Strictly speaking, identifying a network’s functional communities as sets of more
densely connected nodes is not always correct. For example, in food webs — net-
works that encode an ecosystem’s trophic levels —, it is generally accepted that
predators tend to eat prey more than they eat other predators. Similarly, in an eco-
nomic network, buyers might connect more to sellers than to other buyers. Never-
theless, many real-world networks do exhibit this kind of assortative mixing pattern
described above. Examples include biological networks [46, 54] and communities on
the World Wide Web [55].

Understanding the community structure of a network can provide us with infor-
mation on its functional units and can be relevant for processes taking place on the
network. Furthermore, different communities can often display varying topologies
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Figure 2.8: Example of a network displaying a division into three communities.

and structural features, allowing us to gain information on the isolated functional
modules themselves. Consequently, a significant amount of effort has gone into iden-
tifying the communities that naturally divide a network. Sometimes, information
on the community structure is available in the form of metadata. Often, however,
researchers are faced with the task of identifying communities solely from the pat-
tern of connections within the network, a problem commonly known as community
detection.

Community detection is one of the most vastly studied problems in the net-
work literature and is beyond the scope of this work. An excellent review can be
found in [56]. In Section 4.1, however, we will analyse in greater detail modularity,
a commonly used metric to assess the goodness of a partition of a network into
communities.

2.2 Network models

In the previous section, we have introduced some of the basic properties of networked
systems. Many more exist, which we have not covered. Given a network, we can
then measure these and other properties to gain information on the system which the
network describes. An obvious next step consists in constructing network models.
Although many different models exist, we limit ourselves to studying models of
network structure. These are models whose goal is to replicate the structure of
observed networks as closely as possible. One can then utilise these models to
generate a large number of networks with similar properties as the observed one
and gain statistical insights into the attributes of specific networks, or to generate
synthetic networks that can then be used as a substrate for other simulations, such
as processes occurring on the network.

In particular, we will be interested in random graph models, i.e. models of net-
works that display some fixed attributes but which are otherwise maximally random.
In the remainder of this section, we introduce three random graph models that will
be used later.
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2.2.1 The Erdős-Rényi model

The most classic example of a random graph is one in which we consider a network
with a fixed number of nodes, N , and edges, L to be randomly distributed amongst
the nodes. In mathematics, this is commonly known as the G(N,L) model and was
famously studied by Erdős and Rényi in a series of papers [57–61].

Newtork ensembles

It is straightforward to notice that, given N nodes and L edges to be randomly
distributed amongst them, many different network realisations that satisfy the con-
straints of the G(N,L) model are possible. Thus, a more precise definition of the
G(N,L) model would be to say that the model network is obtained by sampling
uniformly at random from all the networks with exactly N nodes and L edges. In-
deed, random graph models are generally not defined in terms of a single network;
they instead define an ensemble of networks—a probability distribution over the
set of all networks that satisfy the constraints imposed by the model. Formally, a
network ensemble is defined as a tuple G = (G,Ω, P (G)), where G is any possible
network G = (V,E) belonging to the set of networks Ω, and P (G) is the probability
associated to the network within the ensemble. Thus, in the G(N,L) model, Ω is
the set of all networks with exactly N nodes and L edges, and P (G) = 1/Ω is the
uniform distribution.

Ensemble models have been extensively used in network science [8, 62–65], on
the one hand, they lend themselves well to analytic calculations, but, perhaps more
importantly, they are apt at answering the questions one is generally interested
in. Usually, we are interested in the typical behaviour of a network rather than
the behaviour of one particular network. For example, knowing how a disease can
spread over a typical social network can prove more valuable than knowing how
it spreads over a specific instance of a social network. Ensemble models provide
an elegant way to achieve this. Indeed, given a set of graph observables {xi}, the
typical properties can usually be adequately approximated by the ensemble average
of the observables.

〈xi〉 =
∑
G

xi(G)P (G). (2.13)

The G(N,p) ensemble

Although the G(N,L) ensemble is straightforward to define, some of its properties
are complicated to evaluate analytically. Furthermore, the number of links rarely
stays fixed in real-world networks. A much more widely studied model is the G(N, p)
model. In the G(N, p) model, rather than fixing the number of edges in the network,
we fix the probability that an edge exists between any two nodes in the network.
This model was first introduced by Solomonoff and Rapoport [66] and later, in-
dependently, by Gilbert [67]. However, an overwhelming contribution to the model
came once more from Erdős and Rényi [57–59], to the extent that the G(N, p) model
is also commonly referred to as the Erdős-Rényi random graph (ER random graph).
In what follows, we quickly review some of its properties.
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Since in the G(N, p) model we fix the probability p of observing an edge between
any vertex pair, the probability of any particular network with L links is

P (G) = pL(1− p)(N
2 )−L. (2.14)

And, seeing as there are
((N

2 )
L

)
possible ways of distributing L edges amongst N

nodes, the total probability of observing a network with L edges is given by a
binomial distribution

P (L) =

((N
2

)
L

)
pL(1− p)(N

2 )−L. (2.15)

The expected number of edges is then given by

〈L〉 =

(N
2 )∑

L=0

LP (L) =

(
N

2

)
p. (2.16)

Eq. (2.16) then tells us that

p =
2〈L〉

N(N − 1)
. (2.17)

Recalling that the average degree of a network is given by 〈k〉 = 2L/N , the proba-
bility p of an edge existing between two nodes can be written as

p =
2〈L〉

N(N − 1)
=
〈k〉

N − 1
' 〈k〉

N
. (2.18)

We arrive at the same result if we directly compute the average degree of the random
graph,

〈k〉 =

(N
2 )∑

L=0

2L

N
P (L)

=
2

N

(N
2 )∑

L=0

L

((N
2

)
L

)
pm(1− p)(n

2)−L

=
2

N

(
N

2

)
p

=
2

N
· N(N − 1)

2
p = (N − 1)p.

(2.19)

And, by inverting the last equation, we re-obtain Eq. (2.18).
As a final note, let us compute the degree distribution of the G(N, p) ensemble.

If a node i has degree k, it connects to exactly k out of the remaining N − 1 nodes
in the network. For a given set of k nodes, this happens with probability

pk(1− p)N−1−k. (2.20)

And, seeing as there are
(
N−1
k

)
ways of choosing the k vertices, the degree distribution

of the G(N, p) ensemble is also given by a binomial distribution

p(ki = k) =

(
N − 1

k

)
pk(1− p)N−1−k. (2.21)
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As real-world networks can contain millions if not billions of nodes, we are generally
interested in studying the properties of networks in the limit of N →∞, also known
as the thermodynamic limit in the physics nomenclature. In this limit, the binomial
coefficient can be approximated as follows(

N − 1

k

)
=

(N − 1)!

(N − 1− k)!k!
' (N − 1)k +O

(
(N − 1)k−1

)
k!

' (N − 1)k

k!
. (2.22)

Another common characteristic of real-world networks is that they tend to be
sparse, that is, the number of edges in the network is small compared to the max-
imum possible number of edges that can exist. More formally, we will say that a
network is sparse if the number of edges E is of the same order of magnitude as the
total number of nodes N in the network

E = O(N) (2.23)

It is then easy to see that, for sparse networks,

〈k〉 =
2E

N
= O(1). (2.24)

Under these conditions, the probability p given in Eq. (2.18) becomes vanishingly
small for N →∞ and we can write

ln(1− p)N−1−k = (N − 1− k) ln

(
1− 〈k〉

N − 1

)
' −(N − 1− k)

〈k〉
N − 1

+O
(
N−2

)
' −〈k〉

(2.25)

where we have expanded the logarithm as a Taylor series. By exponentiating both
sides, we are left with

(1− p)N−1−k ' e−〈k〉. (2.26)

Substituting everything back into Eq. (2.21), we have that

p(ki = k) =
(N − 1)k

k!
pke−〈k〉 =

(N − 1)k

k!

〈k〉k
(N − 1)k

e−〈k〉 =
〈k〉ke−〈k〉

k!
. (2.27)

Therefore, at the thermodynamic limit, the degree distribution of the G(N, p) en-
semble is given by a Poisson distribution. For this reason, the G(N, p) model is
often referred to as the Poisson random graph.

The G(N, p) model has numerous other properties which we will not cover here
[49] and its relative simplicity and analytical tractability have provided considerable
insights into the structure of complex networks. However, the Poisson random graph
also has significant drawbacks when used as a model for real-world networks, the
most notable of which is highlighted by Eq. (2.27). Eq. (2.27) tells us that, for large
networks, the G(N, p) ensemble has a Poisson degree distribution. However, as we
have seen previously, most real-world networks do not. Indeed, many of them appear
to have scale-free degree distributions. We next introduce a generalised random
graph model which allows to model networks with arbitrary degree distributions.
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2.2.2 The configuration model

The configuration model is a random graph model in which we fix the degree sequence
of the nodes. That is, we fix the degree ki of each node i in the network.1 A random
network can then be generated according to the following procedure:

1. Assign ki stubs to each node i of the network (the stubs represent the vertex
degrees).

2. Select stub pairs uniformly at random and connect them, repeating the pro-
cedure until there are no more stubs left to connect, see Fig. 2.9.

Figure 2.9: Example of the configuration model. Each node is assigned a series of
stubs which are then randomly connected amongst each other.

This procedure generates a random network with a pre-specified degree sequence.
The configuration model can then be defined as the ensemble of all possible match-
ings of a specified degree sequence, where each matching has the same probability
of appearing. Notice that, since we consider all possible matchings between the
stubs, the configuration model generates multigraphs rather than simple graphs, as
nothing forbids joining two stubs belonging to nodes that already share an edge.
Consequently, both self-edges and multi-edges may be present in the resulting net-
work. Most real-world networks are not multigraphs, so the presence of self and
multi-edges might seem like a significant drawback of our model. However, it can be
shown that the density of self-edges and multi-edges goes to zero as N →∞, making
the configuration model a suitable model for large networks [49]. Furthermore, the
procedure described above is still viable for generating simple graphs; one simply has
to discard any realisation in which multiple edges occur and repeat the procedure
from the start. As we shall see, this still allows a uniform sampling of all simple
graphs, as these are generated by the configuration model with equal probability.

1In many respects, the configuration model is similar to the G(N,L) model seen before, as, by
fixing the degree sequence, we are de facto fixing the number of edges in the network. Indeed,∑

i ki = 2E.
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It is easy to notice that, for the configuration model to generate a simple network,
the degree sequence must be such that

∑
i ki be even, as we cannot have disconnected

stubs left over. More precisely, the degree sequence has to be graphical. A degree
sequence d = {k1, k2, ..., kn} is said to be graphical if there exists a simple graph G
for which d is the degree sequence. The Erdős-Gallai theorem [68] gives a quick way
to verify if a degree sequence is graphical.

Theorem 2.2.1 (Erdős-Gallai). A non increasing sequence k1 ≥ . . . ≥ kn is graph-
ical if and only if

• ∑i ki is even;

• For all m ∈ {1, . . . , n}
m∑
i=1

ki ≤ m(m− 1) +
n∑

i=m+1

min{m, ki} (2.28)

Another consequence of the presence of self-loops and multi-edges is that, while
all stub pairings appear with equal probability, networks do not. The reason behind
this is that different permutations of the stubs can correspond to the same network,
Fig. 2.10.
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Figure 2.10: (a) Two sample networks with degree sequence {2, 2, 1, 1}. (b) All
the possible stub permutations which give rise to the networks in (a). In this par-
ticular case, both the networks shown in (a) can emerge from four different stub
permutations.

For a simple network, every possible pairing of the stubs can be obtained by
permuting the stubs and, since node i has degree ki, the number of permutations
at node i is ki!. Therefore, the number of matchings corresponding to a given
network is N({ki}) =

∏
i ki!. Since the degrees of the nodes remain unchanged,

it follows that all simple graphs have the same probability of appearing in the
configuration model. Thus, if we have Ω({ki}) different matchings, each occurring
with the same probability, the probability of observing any given network is given
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by N/Ω. However, things change if we include self-loops and multi-edges in the
picture. Self-loops and multi-edges can give rise to stub matchings which remain
unchanged under permutation of the stubs, Fig. 2.11. In general, for multi-edges,
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Figure 2.11: Three possible stub permutations which do not change the matching
of the stubs. For the graph in (b), stub a is still connected to stub b even if we
permute the labels (with respect to (a)). Similarly, in (c), stub c is still paired with
stub e and stub d is still paired with stub f. Thus, the matchings are the same for
all three networks irrespective of the permutations.

any permutation of the stubs will not produce a new matching as long as we also
permute the stubs on the opposing vertex. Recalling that Aij corresponds to the
number of edges between two nodes in a multigraph, then the number of possible
matchings is reduced by a factor of Aij!. There is a further factor of two for self-
edges, as permuting the two ends of a self-edge does not generate a new matching.
Therefore, the number of matchings corresponding to a particular network in the
configuration model is given by

N =

∏
i ki!∏

i<j Aij!
∏

iAii!!
(2.29)

where n!! = n(n − 2)(n − 4) . . . 2. The total probability of observing a network is
once more N/Ω. We observe that the denominator of Eq. (2.29) depends on the
structure of the network, so different networks will appear with different probabil-
ities. However, these differences should be small for large networks, as the density
of self-loops and multi-edges tends to zero in the large N limit.

Computing the probability of observing an edge between two nodes is pretty
straightforward. Consider a stub on node i. It can connect to any other stub in the
network with equal probability. Since node j has kj stubs, the probability that our
selected stub will connect to a stub in node j is given by

kj
2E − 1

, (2.30)

and, seeing as there are ki stubs on node i, the total probability that i connects to
j is given by

pij =
kikj

2E − 1
. (2.31)

Eq. (2.31) is actually the expression for the average number of edges between nodes
i and j (seeing as we are simply summing over the independent probabilities for the
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stubs of node i to connect to the stubs of node j). However, as previously mentioned,
the density of multi-edges and self-loops goes to zero as N →∞. In this limit, the
number of edges between nodes i and j is either 0 or 1, and the average number of
edges coincides with the probability of observing an edge. Further disregarding the
−1 at the denominator, we can write

pij =
kikj
2E

. (2.32)

Notice, however, that for Eq. (2.32) to correctly represent a probability measure,
the degrees of our network cannot take arbitrarily large values, as we must ensure
that pij < 1. Let then kmax be the maximum degree in our network. It follows that

pij =
kikj
2E
≤ k2

max

2E
≤ 1 =⇒ kmax ≤ KS =

√
2E, (2.33)

where KS is commonly known as the structural cut-off of the network. It can
be shown that if Eq. (2.33) is not satisfied when generating simple graphs via the
configuration model, the resulting networks will exhibit some degree of structural
disassortativity, whereby low degree nodes will preferentially attach to high degree
ones, introducing correlations between the degrees of the network. Alternatively, if
we do not wish to introduce any correlation between the vertex degrees, we must
allow for multi-edges and self-edges in the network, in which case Eq. (2.32) no longer
represents the probability that node i is connected to j. Therefore, for Eq. (2.32) to
hold, the degrees of the network must be upper bounded by the structural cut-off,

ki � KS =
√

2E. (2.34)

The excess degree distribution

We look at one last interesting property exhibited by the configuration model. Sup-
pose we randomly select a node in the network and follow one of its edges to the
opposite vertex; what is the probability that the vertex reached this way has degree
k? Following a similar argument as before, we know that, excluding the stub we
have randomly selected, there are 2E − 1 stubs in the network. k of these stubs
attach to any specific vertex of degree k. Therefore, our selected stub has a proba-
bility k/(2E − 1) of leading to a particular vertex of degree k. Since there are Npk
vertices of degree k in the network, the probability that our randomly selected edge
ends up on a node of degree k is given by

k

2E − 1
·Npk '

Nk

2E
pk =

kpk
〈k〉 (2.35)

This fraction depends on kpk rather than pk, and this property has intriguing conse-
quences. Let us evaluate the average degree of the neighbours of a randomly selected
node. This is nothing else than k multiplied by the probability that the node we
reach by following an edge has degree k, summed over all values of k,

∑
k

k
kpk
〈k〉 =

〈k2〉
〈k〉 (2.36)
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So the average degree of a neighbour is different from the average degree of a node
in the network, 〈k〉—generally, it is larger.

〈k2〉
〈k〉 − 〈k〉 =

〈k2〉 − 〈k〉2
〈k〉 =

〈(k − 〈k〉)2〉
〈k〉 (2.37)

Since both the numerator and the denominator of Eq. (2.37) are strictly non-negative
(unless all nodes in the network have degree zero), Eq. (2.37) implies that

〈k2〉
〈k〉 − 〈k〉 > 0 =⇒ 〈k

2〉
〈k〉 > 〈k〉 (2.38)

This intriguing phenomenon is colloquially known as “your friends have more friends
than you do”. It is important to stress that this is a property of the configuration
model. Generally, in real-world networks, the degrees of connected vertices are
correlated. The probability of reaching a node of degree k is not simply proportional
to kpk but depends on the starting node. Remarkably, however, this basic property
appears to also hold in many real-world networks [69].

Eq. (2.35) allows us to introduce a quantity which will be of use later, the excess
degree distirbution. Many times, we are interested in how many vertices a neighbour
node has other than the one we followed to get to it. This is known as the excess
degree, and its distribution can be easily computed via Eq. (2.35) by simply setting
k to k + 1,

qk =
(k + 1)pk+1

〈k〉 . (2.39)

Indeed, if a node has an excess degree k, it must necessarily have degree k + 1.

2.2.3 Stochastic block models

Stochastic block models are generative models for groups or communities in net-
works falling under the category of random graph models. Stochastic block models
were first introduced in the context of social sciences [70] as a way of combining the
properties of deterministic block models (models which map actors in a social net-
work to one of B groups) such as [71] and stochastic models. The rationale is that
stochastic models would allow for a framework capable of accounting for variability
in the data. The original work of Holland et al assumed the partitioning of the
nodes to be known a priori through additional knowledge of properties of the actors
comprising the network. However, in most cases relating to real-world networks,
such partitions are not known beforehand. To circumvent this problem, Wasserman
and Anderson developed techniques that allow to perform what is known as a pos-
teriori blockmodelling, i.e. fitting an SBM to real-world network data to infer an
optimal partition [72].

As the field of network science evolved, SBMs found widespread use also out-
side the context of social sciences [70, 72–74], particularly in community detection
problems [56, 75–77], where the aim is to uncover groups of nodes which are densely
connected amongst each other. More generally, SBMs can be used to infer generic
mesoscale network topologies [65, 78]. This is a significant advantage over most
other community detection methods that generally operate under the assumption of
assortative mixing patterns or focus on recovering only one kind of topology. An-
other fundamental characteristic that makes SBMs highly attractive models is their
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generative nature. SBMs can recover the underlying partitioning of the nodes and
infer the interactions between the elements of the various groups. This information
provides us with a putative model of network formation, which we can then use to
generate synthetic networks.

In its most simple formulation, a stochastic block model divides N nodes into B
groups (typically with B � N), where each node is assigned a label bi ∈ {1, . . . , B}
specifying its group membership. Undirected edges are then placed amongst the
vertex pairs with probabilities pbibj which depend solely on the group memberships
of the nodes. As mentioned above, the number of groups is generally unknown and
must be inferred from the data. However, for our purposes, we shall assume this
number to be known a priori.

The matrix prs governing the probabilities of an edge between a node in group r
and one in group s is known as the affinity matrix, and, by appropriately choosing
the values of the prs, a wide array of different network topologies can be generated,
see Fig. 2.12.
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Figure 2.12: Three different structures generated via a SBM. The top panels show the affinity
matrix, prs, whose elements correspond to the probability of observing an edge between blocks
r and s. The bottom panels display examples of networks generated using the corresponding
affinity matrices. (a) A random graph, characterised by having all identical elements in its affinity
matrix (i.e. all groups are equally probable to be connected) (b) A cluster structure, where the
corresponding affinity matrix is characterised by having higher values along its diagonal (i.e. a
higher probability of connections amongst nodes belonging to the same group). (c) A disassortative
structure, in which nodes from one group preferentially attach to nodes of other groups. This
structure is characterised by having higher off-diagonal elements.

Since edges are independently placed amongst vertex pairs with probabilities prs,
the probabilities pij of observing an edge between node i and node j are independent
Bernoulli random variables with Bernoulli parameters prs. The total probability of
observing a specific graph A in the ensemble is then given by

P (A|b,p) =
∏
i<j

p
Aij

bi,bj
(1− pbi,bj)1−Aij , (2.40)
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where Aij = 1 if an edge exists between nodes (i, j) or Aij = 0 otherwise. Notice
that for the case B = 1, where we only have one group, we recover the G(N, p)
ensemble studied in Section 2.2.1, and Eq. (2.40) coincides with Eq. (2.14).

The advantage of working with the stochastic block model is that we now have
to consider only the degrees of freedom associated with the individual groups, and
the adjacency matrix can be summarised by a smaller but not necessarily symmetric
B×B matrix. This grouping of nodes into blocks is a natural form of dimensionality
reduction. Since we cannot consider all possible pairwise interactions in the network,
we reduce ourselves to analysing the interactions amongst B � N objects. Although
this might appear as a very crude approximation, we note that it can be made ever
more refined by increasing the number of blocks B, allowing us to model increasingly
realistic scenarios. In fact, setting B = N means that the probability of each node
can be individually controlled.

The SBM, as introduced here, generates simple graphs according to the proba-
bilities encoded in the affinity matrix, but can easily be generalised to account for
multi-edges [65, 79]. Extensions to directed networks have also been considered [65,
78].

Despite their usefulness and popularity, SBMs also present some limitations.
The statistical indistinguishability of the nodes means that once the group division
is known, edges are assigned amongst vertex pairs in an Erdős-Rényi random fash-
ion. Consequently, SBMs cannot reproduce some local features commonly observed
in real-world networks, such as cliques and other motifs. In particular, for the classic
version of the stochastic block model presented here, this statistical indistinguisha-
bility can have disastrous consequences, as all nodes in each group will be assigned
on average the same number of edges. This is unrealistic with respect to real-world
networks, which generally display highly heterogeneous degree distributions, and
can lead to severely incorrect partitions when the SBM is used to infer the commu-
nity structure. To obviate this problem, Karrer and Newman provide an important
generalisation which they name degree corrected stochastic block model (DC-SBM)
[75], in which an additional parameter is associated with each node, controlling its
expected degree. The DC-SBM has the advantage of generating networks with arbi-
trary degree distributions and performs considerably better than the standard SBM
when used as a tool for community detection. Additional variants of the SBM have
been proposed to capture further variability of the network structure. Examples in-
clude overlapping and mixed membership models [80–82], hierarchical block models
[78, 83], weighted networks [84, 85], and networks whose nodes are annotated with
metadata [86–88]. More generally, SBMs provide a general framework that can be
applied to many problems arising in network science.

2.2.4 Maximum entropy network ensembles

The previous sections introduced examples of random graph models that generate
networks with some pre-specified characteristics but which are otherwise random.
In all cases, networks were generated by fixing the values of the quantities of interest
and then sampling uniformly from the ensemble of networks with the desired values.
While the choice of a uniform distribution over the ensemble is intuitive, we did not
motivate its choice when introducing the models. When working with these kinds
of models, a crucial aspect is characterising the probability distribution P (G) over
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the ensemble. Indeed, the number of constraints we impose on the ensemble by
fixing the properties of interest is generally far smaller than the number of networks
in it. This leads to a heavily underdetermined system in which many different
combinations of the degrees of freedom of the probability distribution can result in
the same prescribed values of the constraints. We are then faced with having to pick
a particular distribution P (G) out of all the ones that satisfy the constraints.

Intuitively, we would like to pick the arrangement we are most likely to find,
given no additional information other than that carried by the imposed criteria.
Jaynes’ maximum entropy principle [89], states that this most likely arrangement
should coincide with that carrying the largest degeneracy, or maximum entropy.
Effectively, this amounts to selecting the distribution which is less biased given our
knowledge of the constraints.

To give a better understanding of why this is so, we briefly go over an example
introduced in [89] and first attributed to Wallis. Suppose we are given N balls
that are to be distributed amongst K urns such that ni balls are placed in the i-th
urn and

∑
i ni = N . (To put this into context, we can think of N as the number

of networks sampled from a particular ensemble and K as the number of distinct
configurations for each network’s degrees of freedom. nk then represents the number
of networks that are in configuration k). Given a certain arrangement {ni} of balls
in the urns, the number of different ways that this arrangement can be obtained is
given by the multinomial coefficient

Ω =
N !

n1!n2! . . . nK !
(2.41)

For N → ∞, we can use Stirling’s approximation of the factorial, m! ' mme−m on
each term in Ω,

Ω ' NNe−N

nn1
1 · · ·nnK

K e−(n+1+···+nK)
=

NN

nn1
1 · · ·nnK

K

= eln(NN )−ln(n
n1
1 ···n

nK
K ) = eN lnN−∑K

i=1 ni lnni

= eN[−
∑K

i=1
ni
N

(lnni−lnN)] = e−N
∑K

i=1
ni
N

ln
ni
N

= eNΣ,

(2.42)

where Σ is the entropy of the arrangement {ni}. Note that since
∑K

i=1 ni = N , then
ni/N ∈ [0, 1]. This, in turn, means that the entropy is always greater than or equal
to zero, with the equality holding only if ni = N and nj = 0 ∀j 6= i.
What Eq. (2.42) is telling us is that, for large N , some arrangements can be realised
in a vast number of ways (exponential in N) and will have larger entropies, while
others have very small degeneracies. For example, the case in which all balls end
up in a single urn can be realised in only Ω = 1 way and will have entropy Σ = 0.
The entropy is then really a measure of the microscopic multiplicity underlying a
macroscopic state of the system.

The terms ni/N can be interpreted as the probability that a ball sampled uni-
formly at random comes from urn i. Under this interpretation, the entropy can be
written as

Σ = −
K∑
i=1

pi ln pi, (2.43)
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and the constraint that
∑K

i=1 ni = N simply corresponds to the condition that our

probabilities be correctly normalised,
∑K

i=1 pi = 1.
It is intuitive that if we randomly distribute the balls amongst the urns, then

one would expect the final arrangement, {ni} (or the most likely distribution of
probabilities {pi}) to correspond to one of high degeneracy rather than one with a
small multiplicity. In fact, the most likely distribution {p∗i } should coincide with
the one that maximises the entropy given the constraint that

∑
i pi = 1.

This is the gist of the maximum entropy principle. If one is to infer a distribution
{pi} given some constraints, then amongst all possible {pi} compatible with the
constraints, one should select the distribution that maximises Eq. (2.43).

Proposition 2.2.1. Consider a random variable x, which can take M distinct values
from a set Ω. If the only constraint considered is the normalisation of probabilities,
the uniform distribution maximises the entropy, and the maximum entropy is given
by

Σ = lnM. (2.44)

Proof. We can maximise the entropy over all normalised distributions by resorting
to the method of Lagrange multipliers. Given the functional

F = Σ− γ
(∑
x∈Ω

p(x)− 1

)
= −

∑
x∈Ω

p(x) ln p(x)− γ
(∑
x∈Ω

p(x)− 1

)
, (2.45)

the corresponding saddle-point equations are

∂F
∂p(x)

= − ln p(x)− 1− γ = 0 (2.46)

∂F
∂γ

=
∑
x∈Ω

p(x)− 1 = 0, (2.47)

where the partial derivative with respect to the Lagrange multiplier γ is simply the
normalisation condition. From Eq. (2.46)

p(x) = e−(1+γ), (2.48)

and, since the cardinality of Ω is |Ω| = M , from Eq. (2.47) we have that∑
x∈Ω

p(x) = Me−(1+γ) = 1 =⇒ p(x) =
1

M
. (2.49)

By substituting the expression obtained in Eq. (2.49) in our expression for the
entropy, Eq. (2.43), we have that

Σ = −
∑
x∈Ω

p(x) ln p(x) = −
∑
x∈Ω

1

M
ln

1

M
=
∑
x∈Ω

1

M
lnM = lnM. (2.50)

Where we have made use of the fact that |Ω| = M .

This is the case when the normalisation of probabilities is the only constraint.
However, additional constraints can give rise to different maximum entropy distri-
butions reflecting the additional information that the constraints introduce into the
inference problem.
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An important consideration is that, since maximum entropy distributions cor-
respond to the ones with the highest degeneracy, they are the most unbiased dis-
tributions given the constraints. Indeed, any other distribution, having a lower
degeneracy, would automatically exclude some valid configurations of the micro-
scopic degrees of freedom. Thus, in essence, the maximum entropy principle (MEP)
tells us that the least biased ensemble that satisfies a set of constraints is the one
that maximises the entropy given the constraints.

Canonical and Microcanonical ensembles

We now turn to how we can leverage the maximum entropy principle to construct
network models, and, following the work developed in [63, 64, 90, 91], we introduce
the concept of canonical and microcanonical ensembles.

The general idea is that one would like to fix the probability P (G) of the network
ensemble by using the maximum entropy principle with a given set of constraints.
So what are the possible constraints we can consider? Let {xi} be a set of network
measures whose value we wish to fix. Then the general prescription is to consider
two principal classes of constraints [90]. Hard constraints are constraints that are
strictly satisfied by every network in the ensemble

xi(G) = ci for i = 1, 2, . . . ,M, (2.51)

where M is the cardinality of {xi}. Examples of hard constraints are fixing the
number of links L in the network or fixing the network’s degree sequence. Soft
constraints, on the other hand, are constraints that are satisfied on average over the
ensemble of networks.∑

G∈Ω

xi(G)P (G) = ci for i = 1, 2, . . . ,M. (2.52)

For example, we can fix the average number of edges in a network or the mean
degree of a node.

Given these two classes of constraints, we can now define the canonical and
microcanonical ensembles as follows:

• The canonical ensemble is the maximum entropy ensemble which satisfies a
set of soft constraints ∑

G∈Ω

xi(G)P (G) = ci.

• The microcanonical ensemble is the maximum entropy ensemble which satisfies
a set of hard constraints

xi(G) = ci.

Let us study some of their properties.

The canonical ensemble: For the canonical ensemble, we wish to maximise the
entropy given in Eq. (2.43) subject to the constraints∑

G∈Ω

xi(G)P (G) = ci, (2.53)
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and the condition that P (G) be properly normalised∑
G∈Ω

P (G) = 1. (2.54)

This can be achieved by resorting once more to the method of Lagrange multipliers.
The Lagrangian is now given by

L = −
∑
G∈Ω

P (G) lnP (G)−
M∑
i=1

βi

(∑
G∈Ω

xi(G)P (G)− ci
)
− γ

(∑
G∈Ω

P (G)− 1

)
,

(2.55)
and the corresponding saddle point equations are

∂L
∂P (G)

= − lnP (G)− 1−
M∑
i=1

βixi(G)− γ = 0,

∂L
∂βi

=
∑
G∈Ω

xi(G)P (G)− ci = 0,

∂L
∂γ

=
∑
G∈Ω

P (G)− 1 = 0.

(2.56)

(2.57)

(2.58)

From Eq. (2.56), we have

lnP (G) = −
M∑
i=1

βixi(G)− 1− γ (2.59)

=⇒ P (G) = e−1−γe−
∑M

i=1 βixi(G) =
e−H(G)

Z
, (2.60)

where Z = e−1−γ is known as the partition function and H(G) =
∑M

i=1= βixi(G) is
the graph Hamiltonian. The value of Z can be determined from the normalisation
condition ∑

G∈Ω

P (G) =
∑
G∈Ω

e−H(G)

Z
= 1 =⇒ Z =

∑
G∈Ω

e−H(G) (2.61)

while the Lagrange multipliers are obtained by substituting Eq. (2.60) into Eq. (2.53)

ci =
∑
G∈Ω

xi(G)
e−H(G)

Z
=

1

Z

∑
G∈Ω

xi(G)e−
∑M

i=1 βixi(G)

= − 1

Z

∂

∂βi

∑
G∈Ω

e−
∑M

i=1 βixi(G) = − 1

Z

∂Z

∂βi
= −∂ lnZ

∂βi
.

(2.62)

lnZ is sometimes written as F ≡ lnZ and called the free energy of the system.
Because of the exponential form of Eq. (2.60), canonical network ensembles are
often referred to as exponential random graphs.

Once the distribution over the ensemble, P (G), is known, we can use it to eval-
uate the expected value of any graph property y(G)

〈y〉 =
∑
G∈Ω

y(G)P (G) =
1

Z

∑
G∈Ω

y(G)eH(G). (2.63)
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While very elegant, the exponential random graph model can be tricky to imple-
ment from a technical standpoint. In particular, evaluating the sum in the partition
function can be difficult and is often impossible to do so analytically. In these cases,
one usually has to resort to numerical methods to evaluate Z. In [62], Park and
Newman give an excellent overview of a series of techniques that can be employed to
obtain exact or approximate analytical solutions in the exponential random graph
model.

The microcanonical ensemble: The microcanonical network ensemble is the
maximum entropy ensemble given a set of hard constraints xi(G) = ci, i ∈ [1,M ].
Therefore, we have that P (G) > 0 if and only if xi(G) = ci. The entropy of the
ensemble can then be written as

Σ = −
∑

G∈Ω|{xi(G)=ci}i=1,2,...,M

P (G) lnP (G) (2.64)

where the sum runs only over those networks that exactly satisfy the constraints.
The cardinality of Ω will then be given by

ZMC =
∑
G∈Ω

M∏
i=1

δ (xi(G), ci) . (2.65)

We have previously seen that the maximum entropy distribution over a set of possible
outcomes with fixed cardinality is the uniform distribution. The probability P (G)
of observing a particular network is then

P (G) =
1

ZMC

M∏
i=1

δ (xi(G), ci) (2.66)

Substituting this into our previous expression for the entropy we have that

Σ = −
∑

G∈Ω|{xi(G)=ci}i=1,2,...,M

1

ZMC

ln

(
1

ZMC

)
= lnZMC . (2.67)

The microcanonical entropy is thus equal to the logarithm of the number of networks
in the ensemble.

An example: the G(N,p) ensemble Maximum entropy ensembles provide a
general framework to model networks subject to a wide array of constraints, in-
cluding the random graph and the configuration model as special cases. Consider,
for example, the case in which we want to fix the average number of links in the
network, 〈L〉. Our constraint is then given by

∑
G∈Ω

(∑
i<j

Aij

)
P (G) = 〈L〉. (2.68)

According to the general theory of exponential random graphs, the maximum en-
tropy distribution will be given by

P (A) =
1

Z
e−β

∑
i<j Aij , (2.69)
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where we have made use of the fact that, seeing as a network is fully specified by its
adjacency matrix, P (A) = P (G). We can evaluate the partition function as

Z =
∑
{A}

e−β
∑

i<j Aij =
∏
i<j

∑
Aij={0,1}

e−βAij =
∏
i<j

(
1 + e−β

)
=
(
1 + e−β

)(N
2 )
. (2.70)

Given Z, we can now evaluate the probability pij of a link existing between nodes
i and j. pij will be given by the average of the corresponding element Aij in the
adjacency matrix,

pij = 〈Aij〉 =
1

Z

∑
{A}

Aije
−β∑

r<s Ars

=
1

Z
e−β

∏
r<s|(r,s) 6=(i,j)

∑
Ars={0,1}

e−βArs

=
e−β

Z

(
1 + e−β

)(N
2 )−1

=
e−β

1 + e−β
,

(2.71)

which is the same for any pair (i, j). The expected number of edges is then given by

〈L〉 =
∑
{A}

(∑
i<j

Aij

)
P (A) =

∑
i<j

∑
{A}

AijP (A)

 =
∑
i<j

pij =

(
N

2

)
p, (2.72)

and the probability p of an edge existing between two edges can then be expressed
as

p =
2〈L〉

N(N − 1)
' 〈k〉

N
. (2.73)

This is the same probability we observed in Eq. (2.18) when studying the G(N, p)
model. Indeed, the G(N, p) model is a particular case of the random graph model.
Similarly, both the G(N,L) ensemble and the configuration model can be obtained
from the microcanonical ensemble by fixing respectively the number total number
of edges and the degree sequence respectively.

2.3 Modelling the optimisation criteria

The previous section has introduced some of the most fundamental network mod-
els that can be employed to generate synthetic networks. The resulting networks
can then be analysed and their properties and characteristics better studied and
compared to what is observed in real-world networks.

As mentioned in the Introduction, our principal goal is to develop null models
for optimal networks. That is, networks subject to one or more selective pressures
driving them to optimise for some pre-specified characteristics. As such, a crucial
step in our formulation is the choice of the network properties and features we wish
to select for. While a vast collection of diverse properties characterising complex
networks exists, we focus our attention on two key attributes commonly observed
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in real-world networks: their robustness against the random failures of their com-
ponents and the emergence of assortative mixing patterns amongst the network
elements. In the following section, we introduce the main concepts and modelling
techniques used to analyse these properties.

2.3.1 Percolation and robustness against random failures

The robustness (or resilience) of a network generally refers to the network’s ability
to keep functioning when a certain fraction of its components fails or malfunctions
and is a characteristic of fundamental importance in the context of network design.
Indeed, as failures are bound to occur, one would like to have an accurate picture
of how this affects the network’s ability to operate correctly and what fraction of
the network is still functioning. Furthermore, network resilience is a commonly ob-
served property in numerous real-world networks across a wide array of diverse fields
ranging from technological networks to biological ones. As a consequence, network
robustness has been an extensively studied topic over the years. Although various
methods for quantifying a network’s robustness exist, in this section, we review how
this problem can be elegantly framed as a percolation process.

By percolation we denote the process of removing a certain fraction of nodes or
edges from the network. The former case is known in the literature as site perco-
lation, the latter as bond percolation. Intuitively, this process provides us with a
qualitative basis to understand a network’s robustness. Indeed, the functionality of
a network depends on its connectivity. If a network is completely disconnected, it
cannot achieve its desired function, whatever that may be. For example, consider
the network in Fig. 2.13. Panel (a) displays the original network, in which no nodes
have been removed. As we begin to remove nodes, panel (b), the network shrinks,
but the remaining nodes are still connected. If we continue to remove nodes from
the network, we eventually reach a point at which the network splits into smaller

(a) (b) (c)

Figure 2.13: Toy network depicting the topology of the network as an increasing
number of nodes is removed from the network. Gray nodes represent those nodes
which have been removed from the network, along with their corresponding edges.
Panel (a) represents the initial network with no nodes removed. In panel (b) we have
removed a certain number of nodes, but the remaining nodes are still connected.
Panel (c) represents the case in which so many nodes have been removed that the
network splits into smaller disconnected components.
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components, and its functionality is compromised, panel (c). This connection be-
tween a network’s ability to function and its long-range connectivity is elegantly
captured by percolation theory.

Percolation processes are typically parametrised by an occupation probability φ,
representing the probability that a node (edge) has not been removed from the
network. By varying φ, one can observe an abrupt transition in which the net-
work topology shifts from being characterised by small disconnected components to
forming a giant connected component (GCC) spanning most of the network. See
Fig. 2.14. The critical value φ = φc at which this transition takes place is known as
the percolation threshold.

(a) (b) (c)

Figure 2.14: Emergence of a giant connected component in a random graph subject to a bond
percolation process.

A common measure of a network’s robustness is then given by the fraction of
nodes that are part of the giant connected component. While the presence of a
giant component is an indicator that the network is at least partially performing
its intended function, the size of the giant component indicates the fraction of the
network that is still functional.

Following [49], we review the theory of percolation on a configuration model net-
work in which the nodes are randomly removed.

Consider a particular vertex v that has not been removed from the network. For
it to be part of the giant connected component, it must necessarily connect to it
via one of its neighbours. Let then u be the average probability that a node in
the network is not connected to the giant component via one of its neighbours. If
the node in question has degree k, then the total probability that it is not part of
the giant component is given by uk. Averaging over the degree distribution pk, we
obtain the average probability that a node is not connected to the giant component
via one of its neighbours

∞∑
k=0

pku
k := f0(u), (2.74)

where f0(z) =
∑

k pkz
k is the generating function of the degree distribution. The

average probability that a node is part of the GCC is then simply given by

P (v ∈ GCC) = 1− f0(u) (2.75)
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Eq. (2.75), however, assumes that the node in question has not been removed from
the network, which happens with probability φ. Therefore, the fraction of nodes in
the giant connected component is then given by

S = φ[1− f0(u)]. (2.76)

We must now compute the average probability u that a node is not connected
to the giant component via one of its neighbours. There are two possible way for
this to occur:

1. The neighbour in question has been removed from the network, which happens
with probability 1− φ.

2. The neighbour in question is present in the network, but it is not connected
to the GCC via one of its neighbours.

If the selected neighbour has degree k, then the probability that it is not connected to
the GCC is given by uk. Adding these terms together, we have that the probability
u that a node is not connected to the giant component via a specific neighbour is
given by

1− φ+ φuk. (2.77)

When averaging Eq. (2.77) on the degree distribution of the selected neighbour, we
must consider the fact that, since the neighbour is reached following an edge, k will
be distributed according to the excess degree distribution introduced previously.

qk =
(k + 1)pk+1

〈k〉 (2.78)

The average probability for a node not to connect to the giant component is then
given by

u =
∞∑
k=0

qk
(
1− φ+ φuk

)
= 1− φ+ φ

∞∑
k=0

qku
k

= 1− φ+ φf1(u), (2.79)

where f1(z) :=
∑

k qkz
k is the generating function of the excess degree distribution,

which can also be obtained from the degree generating function f0(z) as

f1(z) =
f ′0(z)

f ′0(1)
. (2.80)

Solving for Eq. (2.76) and Eq. (2.79) allows us to fully characterise the giant
connected component. Unfortunately, Eq. (2.79) is generally not solvable in closed
form. However, using graphical arguments, it is possible to show that it has only
two solutions [49]: a trivial solution at u = 1 for which S = 0, and a non-trivial
solution, whose existence depends on the value of the occupation probability φ. For
small values of φ, the trivial solution remains the only solution, and there is no
giant connected component. However, as φ grows, we reach a critical point φ = φc
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Figure 2.15: Plots of S as a function of the dilution probability φ for different values
of 〈k〉. The vertical dashed lines indicate the positions of the percolation transitions.

at which the non-trivial solution appears, and we observe the formation of a giant
connected component. This critical value φc is precisely the percolation transition.

Specifically, it can be shown that the condition at which the non-trivial solution
first appears corresponds to the point at which Eq. (2.79) is tangent to the line
y = u. [

d

du
(1− φ+ φf1(u))

]
u=1

= 1 =⇒ φc =
1

f ′1(1)
. (2.81)

Performing the derivative of f1(u), we have that

f ′1(1) =
〈k2〉 − 〈k〉
〈k〉 , (2.82)

and the critical value of φ corresponding to the percolation transition is given by

φc =
1

f ′1(1)
=

〈k〉
〈k2〉 − 〈k〉 . (2.83)

Let us consider the case in which a Poisson degree distribution characterises our
network,

pk =
λke−λ

k!
. (2.84)

In this case,
〈k〉 = λ ;

〈
k2
〉

= λ(λ− 1), (2.85)

and φc is given by

φc =
λ

λ2 + λ− λ =
1

λ
=

1

〈k〉 . (2.86)

Fig. 2.15 depicts the onset of the percolation transition for Poisson random graphs
with different average degrees, 〈k〉.

We conclude this section with a few remarks regarding bond percolation. In the
case of bond percolation, the occupation probability φ corresponds to the fractions
of edges rather than nodes that have been removed from the network. By repeating
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the same procedure as for the site percolation case, one can show that the average
probability for a node not to be connected to the giant component and the perco-
lation threshold are still given by Eq. (2.79) and Eq. (2.83) respectively. However,
the relation characterising the fraction of nodes belonging to the giant connected
component is slightly different and is given by

S = 1− f0(u). (2.87)

Eq. (2.87) differs from Eq. (2.76) by a factor of φ. This is because, in a bond
percolation process, nodes are not being removed from the network.

2.3.2 Assortative mixing and modularity

A commonly observed characteristic across many complex networks is the tendency
for a network’s elements to form ties according to some notion of similarity amongst
the components. A notable example of this is the formation of social interactions in
a social network. People belonging to the same age group, for example, will tend to
interact more amongst each other than with people of other age groups. Similarly,
people are generally more prone to engage with people who share a common belief
or political view rather than an opposing one. More generally, humans often tend
to form bonds based on a wide range of characteristics such as race, age, political
views, education level and many more. This kind of connectivity pattern, where
nodes perceived as similar in some sense tend to be more tightly knit together,
is known as assortative mixing or homophily. Homophily is in no way limited to
human interactions, and instances of assortative mixing have also been observed in
citation networks (where papers tend to preferentially cite papers belonging to the
same research area) and food webs [42], to name a few.

Assortative mixing patterns can play an important role in the network function.
For example, they can lead to the emergence of communities in networks [92] (i.e.
groups of nodes that are more densely connected amongst each other than with
the rest of the network), which can have profound implications on the dynamics
of the network. A disease or rumour is more likely to spread amongst a group of
nodes if these are tightly knit together. Groups or communities have also been
associated with occupying functional roles in a network, thus providing a source of
specialisation, where separated tasks performed by different communities can then
be integrated at a system-wide level. Furthermore, this type of mixing pattern
has proven to be beneficial for the stability [93] and adaptability [46] in biological
networks.

Given the prevalence and importance that homophily can have on networked
systems, one would like to develop tools that allow us to capture and quantify as-
sortative mixing patterns in complex networks. In what follows, we introduce one
of the most popular instruments for this purpose: the modularity function.

Suppose we are given a network whose nodes have been classified into distinct
groups according to some labels bi ∈ [1, B], where B is the total number of groups.
The main idea behind modularity is then to compare the number of edges that fall
between nodes belonging to the same group with what would be expected by chance
given a pre-specified null model. The choice of the null model is, in principle,
arbitrary. However, not all choices are equally good. A G(N, p) ensemble, for

34



CHAPTER 2. BACKGROUND 2.3. OPTIMISATION CRITERIA

(a) (b) (c)

Figure 2.16: Examples of networks displaying different degrees of modularity. (a) A random
graph, with no cluster structure present. (b) A network with a moderate amount of modularity.
An emerging cluster structure is visible. (c) A network with a high value of modularity and clear
cluster structure.

example, would generate networks with Poisson degree distributions, which are very
different from the degree distributions commonly observed in real-world networks,
making our comparison questionable. A more reasonable choice for the null model
is to use the configuration model.

Given the labelling of the nodes, the number of edges within a group can then
be calculated as

1

2

∑
ij

Aijδbibj , (2.88)

where δxy is the Kronecker delta.
To evaluate the number of intra-group edges expected by chance, consider a node

i of degree ki. As seen previously, the probability that one of its stubs connects to
some node j will be given by kj/2E (as exactly kj stubs out of the total 2E connect
to node j). Seeing as node i has ki stubs attached to it, the expected number of
edges between nodes i and j will be given by kikj/2E, and the expected number of
edges between nodes belonging to the same community is

1

2

∑
ij

kikj
2E

δbibj . (2.89)

The difference between the number of edges within a group and what we expect to
observe by chance is then

1

2

∑
ij

(
Aij −

kikj
2E

)
δbibj . (2.90)

If instead of considering the exact number of edges, we consider the fraction of edges,
we obtain the modularity function:

Q =
1

2E

∑
ij

(
Aij −

kikj
2E

)
δbibj . (2.91)

High values of Q indicate an abundance of intra-group edges with respect to what
is expected by chance and correspond to network topologies that are highly clus-
tered, see Fig. 2.16. On the other hand, negative modularity values correspond to a
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scarcity of intra-group edges with respect to what is expected by chance and indicate
disassortative topologies. We also note that Q is always less than 1.

Modularity can then be interpreted as an elegant measure of the degree of ho-
mophily in a network.
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Chapter 3

Null models of optimised modular
networks

This chapter describes the framework, first introduced in [40], which we adopt to
develop null models of optimised modular networks.

3.1 The model

As mentioned in Chapter 1, we wish to construct null models of optimised networks,
corresponding to network ensembles that possess some pre-specified fitness level but
which are otherwise maximally random. We approach this problem via generative
models. This means that instead of describing individual networks, we are interested
in formulating network ensembles, such that the probability of observing a given
network is associated with its particular fitness value, given a predefined fitness
criterion.
Attempting to consider the ensemble of all possible graphs which satisfy a set of
given criteria is typically a gargantuan task, as the degrees of freedom needed to
describe the network is generally much larger than the number of criteria we impose.
In order to reduce the number of free parameters to a tractable amount, we constrain
ourselves to networks that exhibit modular structure, i.e. the nodes are divided into
groups, which share a similar role in the network structure. More specifically, we
consider networks that are generated from the previously introduced stochastic block
model [70, 72, 75].

In the stochastic block model, N nodes are divided into B groups, such that
each node i is given a group membership label bi ∈ {1, . . . , B}, and an edge between
a node in group r and another in group s exists with probability prs. This yields a
network ensemble where a network A occurs with probability

P (A|b,p) =
∏
i<j

p
Aij

bi,bj
(1− pbi,bj)1−Aij , (3.1)

where Aij = 1 if an edge exists between nodes (i, j), or Aij = 0 otherwise. Although
this is just one of a large set of possible network ensembles, as we saw in Section 2.2,
the SBM is capable of capturing arbitrary mixing patterns between groups by ap-
propriate choices of the matrix p, and if the number of groups is increased, it can
account for arbitrarily elaborate network structures [94]. Although this does not
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give us the full breadth of all possible network structures — in particular, we can-
not describe the details of the network structure at a local level, e.g. by stipulating
desired propensities of observing triangles or other small subgraphs — as we will
see, this is a sufficiently flexible framework to express the kind of null models we
have in mind.

For a given arbitrary fitness function R(A), which maps a network to a scalar
fitness value, the average fitness over the SBM ensemble is then given by

R(b,p) =
∑
A

R(A)P (A|b,p). (3.2)

Based on such a function, we could, in principle, proceed by finding the SBM pa-
rameters b and p such that the mean fitness R(b,p) is maximised, and in this way,
uncover how a fitness criterion favours specific patterns of network structures. How-
ever, this optimisation problem is ill-defined in the general case, as many parameter
choices yield the same optimal fitness value. Therefore, we formulate our question
differently. Instead of optimising the mean fitness R(b,p), we impose its value as a
pre-determined parameter, and we select the SBM parameters that yield the most
random network ensemble and therefore is the most agnostic about the unimportant
properties of the network structure. More formally, this means we employ the max-
imum entropy principle [95] introduced in Section 2.2, such that for any imposed
fitness value R(b,p) = R∗, the choice of the model parameters b and p from all
those that fulfil this constraint is the one that maximises the ensemble entropy [90],

Σ(b,p) = −
∑
A

P (A|b,p) lnP (A|b,p). (3.3)

In this way, if we specify a set of fitness functions {Ri(b,p)} and their imposed set
of values {R∗i }, we are interested in the following constrained optimisation problem

b̂, p̂ = argmax
b,p

Σ(b,p), subject to Ri(b,p) = R∗i ∀i. (3.4)

The SBM parameters obtained in this way can be interpreted as null models of
networks, which contain only the most essential ingredients to achieve the pre-
specified values of fitness, and otherwise are maximally random. The imposed fitness
values themselves can be increased arbitrarily to achieve any level of optimised
structures, as we will show.

We can compute the entropy of the SBM ensemble by substituting Eq. (3.1) into
Eq. (3.3), which yields [65]

Σ(b,p) =
∑
r<s

nrnsHb(prs) +
∑
r

nr(nr − 1)

2
Hb(prr), (3.5)

where nr =
∑

i δbi,r is the number of nodes in group r, and Hb(x) = −x lnx− (1−
x) ln(1− x) is the binary entropy function. This can be further simplified if we take
into account that most networks in the real world are sparse with prs = O(1/N), so
that using Hb(x) = −x lnx+ x+O(x2), and taking the limit N � 1 we obtain

Σ(b,p) = −1

2

∑
rs

nrns (prs ln prs − prs) . (3.6)
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For some choices of fitness functions, arbitrarily high fitness values can be obtained
simply by increasing the network density. In order to differentiate between the
effect of increased density and favored mixing patterns, we will take the average
degree 〈k〉 =

∑
rs nrnsprs/N as an external parameter not subject to optimization.

With this in mind, it will be useful for our calculations to use the following re-
parametrisation over intensive variables,

ωr =
nr
N
, mrs =

nrnsprs
N〈k〉 . (3.7)

Note that the above implies the normalisation
∑

r ωr = 1 and
∑

rsmrs = 1. Given
this choice, the ensemble entropy can be written as

Σ(ω,m) = −〈k〉N
2

∑
rs

mrs ln
mrs

ωrωs
+
〈k〉N

2
(3.8)

Note that we no longer reference the actual partition b itself, but rather the fraction
of nodes ωr that belong to a given group r, since these are the relevant macroscopic
quantities as N � 1.

Based on the above model parametrisation, we can perform the constrained
optimisation of Eq. (3.4) by employing the method of Lagrange multipliers, which
involves finding the saddle points of the Lagrangian function

Λ(ω,m,β) = Σ(ω,m) +
∑
i

βi [Ri(ω,m)−R∗i ] , (3.9)

where βi are the Lagrange multipliers that enforce each constraint. This means we
need to find ω, m, and β such that the gradient of Λ is zero, i.e. ∂Λ(ω,m,β)/∂ωr =
∂Λ(ω,m,β)/∂mrs = ∂Λ(ω,m,β)/∂βi = 0. Note that the last derivative yields
simply the equation Ri(ω,m) = R∗i , which means that the problem of fixing R∗i and
finding ω,m,β is equivalent to first taking β as fixed parameters and minimising
the function

F(ω,m) = −
∑
i

βiRi(ω,m)− Σ(ω,m), (3.10)

with respect to ω and m alone and then varying β until we obtain Ri(ω,m) = R∗i .
The above formulation puts us in a standard setting in equilibrium statistical

physics, as the function F(ω,m) can be interpreted as the free energy of the net-
work ensemble where the sum −∑i βiRi(ω,m) plays the role of the mean energy.
Following this analogy, the values of βi play the role of inverse temperatures, or
perhaps more appropriately to our setting, selective pressures, which if increased
cause the corresponding energy functions to decrease (and thus the fitness values to
increase), and thus settling on a particular balance between energy and entropy.

To summarise, our protocol to generate null network models is as follows:

1. We establish a set of fitness functions {Ri(ω,m)}.

2. Given a choice of selective pressures {βi} we find the parameters ω,m which
minimize the free energy F(ω,m) of Eq. (3.10).

3. We vary the values {βi} to investigate the trade-off between competing fitness
functions as well as entropy.
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The constrained optimisation of step 2 is the most central part of our approach.
Although it is straightforward to compute the gradient of the entropy Σ(ω,m)
analytically, in the general case this will not be possible for arbitrary fitness functions
Ri(ω,m), and even when it is, setting the gradient of F(ω,m) to zero usually
yields an implicit system of nonlinear equations that cannot be solved in closed
form. Therefore, in the following, we will proceed by performing the minimisation
numerically, via the L-BFGS-B conjugate gradient descent algorithm [96], using
automatic differentiation [97] whenever the gradient cannot be obtained in closed
form. As a final implementation note, the used algorithms require us to convert step
2 into an unbounded optimisation problem, which we do via a simple exchange of
variables given by

ωr =
eµr∑
s eµs

, mrs =
eνrs∑
tu eνtu

, (3.11)

with µr ∈ [−∞,∞] and νrs ∈ [−∞,∞], which keep both ωr an mrs bounded in the
range [0, 1], and enforces normalisation.

3.2 Discussion

In this chapter, we have introduced the general framework we will employ throughout
this thesis to generate null models of optimised networks. Although we have focussed
on the standard stochastic block model, as it will be the principal focus of this
thesis, it is important to stress that the presented framework is very general and, in
principle, any network ensemble or additional constraint can be incorporated.

In what follows, we will apply this framework to analyse the topologies most
likely to emerge in networks driven to optimise modularity and robustness against
random failures. In the following chapter, we will consider the two criteria sepa-
rately; then, in Chapter 5, we will study networks subject to both selective pressures
simultaneously.
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Chapter 4

Optimisation of criteria in
isolation

This chapter applies our methodology to the fitness criteria introduced previously
—namely, modularity and the robustness of a network to random failures of its
components. These characteristics are properties of great interest in real-world
networks across many different domains. For example, network resilience plays a
key role in understanding the possible collapse of ecosystems in response to external
perturbations [98] or in developing strategies to stem the spread of disease [49]. At
the same time, modularity is often a desirable design feature, favouring flexibility
and re-usability of components in technological and industrial settings and is also a
commonly observed property in many naturally arising systems. As such, analysing
what topological features are more likely to emerge when networked systems are
driven to optimise for these characteristics is a problem of great interest.

In what follows, we consider the case in which networks are subject to a single
selective pressure at a time, as this enables us to obtain a blueprint of the most fun-
damental structural characteristics selected by each fitness criterion. By analysing
these network structures, we can then determine the topological features central in
driving an increase (or decrease) of the chosen criterion.

Using the modularity function and the fraction of nodes in the giant connected
component as our model’s fitness functions and minimising the corresponding free
energy, we uncover a series of optimal network topologies and structural transitions
that emerge in response to the varying selective pressures.

4.1 Modularity

As mentioned previously, some networks tend to cluster into groups of nodes that
are more connected amongst themselves than the rest of the network. This feature
is of great importance in a wide array of settings. For example, in technological
systems, modules are often associated with tasks that can be executed in parallel.
One such example is parallel processing, which is of fundamental importance in sci-
entific computing applications. However, for these tasks to be executed properly,
it is essential to minimise the communication between modules so as to reduce the
overhead introduced by the communication time [47]. Communication networks are
another example where the design of highly modular structures is common practice,
as this allows for a clearer understanding of a network’s functional, logical, and
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physical components, thus facilitating the design of the overall network and opti-
mising its performance [99]. Furthermore, modularity (and its optimisation) is not
limited to technological or artificial networks. In the context of biological networks,
for example, genes and proteins involved in similar biological functions have been
shown to cluster in the same network neighbourhood [100], which has recently led
to applications in network medicine [101]. Moreover, modularity has shown to be
beneficial for the adaptability [46, 54] and stability [93] of biological systems, leading
some authors to argue that natural selection itself drives the origin of modularity
either by direct or indirect effects [46, 102]. In view of this, it is highly interesting
to analyse what large-scale structures are more likely to emerge in networks driven
to optimise their modular structure, as these could prove helpful in the design of
optimal networks, the development of efficient algorithms, and gaining insights into
the processes driving the emergence of modular structures.

The most typical way to quantify this kind of assortativity pattern is via the
modularity function introduced in Section 4.1. We then begin this section by ex-
pressing the modularity function in the context of stochastic block models, which we
shall later employ as a fitness criterion in our formalism. By minimising the corre-
sponding free energy, we are able to identify a smooth transition from a completely
random graph topology to a highly modular structure composed of symmetric clus-
ters whose nodes prevalently connect to other nodes within the same cluster.

4.1.1 Modularity in the stochastic block model formalism

Let us recall the definition of modularity,

Q =
1

2E

∑
ij

(
Aij −

kikj
2E

)
δbibj . (4.1)

Since the only contributions to the sum come from vertices belonging to the same
cluster, we can group these terms and rewrite the summation as a sum over the
groups.

Q =
B∑
r=1

[
err
2E
−
( er

2E

)2
]
, (4.2)

where B is the total number of partitions, err corresponds to twice the number
of edges in group r, and er is the total number of half-edges incident on group
r (which coincides with the sum of the degrees of the nodes in r). Considering
the parametrisation introduced in Eq. (3.7), the modularity function can then be
expressed as

Q =
B∑
r=1

mrr −m2
r, (4.3)

where mr =
∑

smrs is the total fraction of edges incident on group r. Note that for
completely assortative SBMs with mrs = δrs/B, we have Q(m) = 1 − 1/B, so we
achieve maximal modularity Q(m)→ 1 for an infinite number of perfectly isolated
groups.

Before continuing with our maximisation of Q, it is important to stress that here,
we are interested in maximising the expected modularity conditioned on a known
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partition, i.e.,

max
b,p

∑
A

Q(A, b)P (A|p, b) (4.4)

This is different from maximising the modularity conditioned on a specific network
with respect to an unknown partition, i.e.,

max
b,p

∑
A

P (A|p, b) max
b′

Q(A, b′), (4.5)

as is usually the case in the context of community detection [56]. This is because
here, we consider the node types responsible for the value of Q to be an intrinsic
property of the system, based on which the modularity is being optimised. For
example, these node types could correspond to the assembly of distinct items in a
production line or different types of metabolites in a metabolic network, and the
system’s overall fitness would be improved if there were fewer interdependencies
between these subsets of nodes. This means that alternative partitions of the gener-
ated networks with a higher modularity value but unrelated to these intrinsic types
would be irrelevant for the system’s fitness.

We can include the modularity as a fitness criterion into our framework by mak-
ing R(ω,m) = Q(m) and coupling with its selective pressure βQ, and proceeding
to minimize the free energy

F(ω,m) = −βQQ(m)− Σ(ω,m). (4.6)

4.1.2 Results

The B = 2 case

We begin our analysis by considering the simple case in which only two groups are
allowed (B = 2).

The minimisation of the free energy function was carried out via the SciPy im-
plementation of the L-BFGS-B conjugate gradient descent method [96, 103, 104],
where the gradients have been evaluated via automatic differentiation1. As optimis-
ers rarely work ”out of the box”, both a calibration of the L-BFGS-B parameters
and the introduction of a rescaled free energy were necessary to ensure the consistent
and correct identification of the free energy minima.

The L-BFGS-B algorithm pertains to a general class of optimisation methods
known as quasi-Newton methods. These approaches aim to circumvent the generally
expensive computation and inversion of the Hessian matrix used in the classical
Newton’s method by directly developing approximations of the Hessian inverse. In
broad terms, the L-BFGS-B algorithm works by starting from an initial estimate of
the optimum and then iteratively improving this estimate using the approximation of
the Hessian inverse to guide the trajectory through the variable space. The norm of
the projected gradient is typically used as a termination criterion, and the algorithm
stops if the norm of the projected gradient is sufficiently small. However, another
crucial stopping criterion often used in determining the algorithm’s termination

1Although the gradient for the modularity function (and thus the free energy) can be computed
analytically, this will generally not be the case when considering other fitness functions. In the
sake of generality, we proceed to use automatic differentiation even when considering modularity.
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is the relative difference of function values at successive iteration steps, typically
controlled by an ftol parameter such that the algorithm terminates whenever the
following condition is met.

f t − f t+1

max{f t, f t+1, 1} < ftol, (4.7)

Eq. (4.7) prevents the algorithm from drastically slowing down when the dynamics
remains trapped in valleys with small gradients (but not small enough to guarantee
termination). In our case, running the optimisation procedure with ftol values
that are too large can lead to the optimisation procedure being terminated in states
which still exhibit large gradient values, see Fig. 4.1. These high gradient states

0.0
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10−3 10−1 101 103 105
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−0.005

0.000
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‖∇
f
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Figure 4.1: The modularity, Q(m), (top) and the L1 norm of the corresponding
gradient (bottom) as a function of the selective pressure βQ. The figure has been
obtained by randomly initialising a network with B = 2 groups and average degree
〈k〉 = 5 at each value of the selective pressure βQ, and subsequently minimising the
free energy via the L-BFGS-B conjugate gradient algorithm. As can be seen, results
obtained this way can result in the optimiser finding high gradient states which do
not correspond to the free energy minima.

occur predominantly for high values of the selective pressure, where the modularity
function plateaus around its theoretical maximum, and even significant parameter
changes lead to minor improvements of the objective function. However, simply
reducing the value of ftol is still not sufficient to ensure correct minimisation, as
large βQ values can introduce considerable numerical instabilities. To circumvent
this problem, we also introduce a rescaled free energy defined as

f → f

max{βQ, 1}
, (4.8)

and use it as our objective function to be fed to the L-BFGS-B optimiser.
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To determine an optimal choice of the ftol parameter for the rescaled free
energy, we can repeat the minimisation procedure leading to Fig. 4.1 for different
choices of the ftol parameters and keep track of the maximum values attained by
the L1 norm of the gradient. Fig. 4.2 displays the behaviour of this maximum as a
function of ftol. A simple elbow method suggests that a value of ftol of 1× 10−16

is sufficient to guarantee a good convergence of the L-BFGS-B algorithm. With
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10−4

‖∇
f
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Figure 4.2: Maximum of the L1 norm of the gradient of the free energy as a function
of the ftol parameter discussed in the text. The norm decreases as the ftol

parameter is lowered until, at a values between 10−15 and 10−16 (roughly coinciding
with the machine precision limit), the curve shows a sharp elbow.

these precautions, the optimisation procedure correctly identifies the free energy
minima for the B = 2 case, see Fig. 4.3. As the selective pressure increases, the
network structure transitions from a random graph topology at low beta values
(corresponding to zero modularity) to ever-increasing modular structures until, for
large enough selective pressures, the modularity attains its maximum theoretical
value and the network topology is described by two symmetric and disconnected
modular structures.

Increasing the number of groups

As we have seen, the maximum value that the modularity function can attain is
directly linked to the number of groups we use to model the network. Increasing the
number of groups the network has access to allows for the possibility that a larger
number of them will be populated as the selective pressure is increased. Populating
a large number of groups has a high entropic cost. Therefore, for low values of the
selective pressure, one would expect to recover the two-block structures observed
in Fig. 4.3. As the selective pressure increases, the drive to maximise modularity
should lead to the network gradually occupying a larger number of groups. Fig. 4.4
appears to confirm this hypothesis. However, the minimisation procedure can lead
to the network getting stuck in states corresponding to local minima of the free
energy around values of the selective pressure where the optimal number of groups
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Figure 4.3: The modularity, Q(m), (top) and the L1 norm of the corresponding
gradient (bottom) as a function of the selective pressure βQ for a network with
B = 2 groups. The optimised network structures are shown schematically in the
insets, where each square corresponds to one of the groups of our model, with size
proportional to ωr and edge thickness between them proportional to mrs. As the
selective pressure increases, the networks smoothly splits into two identical cluster
structures. We note that differently from Fig. 4.1, the L1 norm of the gradient is
always O(10−8).
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Figure 4.4: Modularity Q as a function of the selective pressure βQ, for different
choices of the allowed number of groups B. The kinks observed along some of the
curves correspond to the local minima states of the system discussed in the text.

46



CHAPTER 4. CRITERIA IN ISOLATION 4.1. MODULARITY

required to describe the network changes from B to B+1. These local minima states
appear as kinks in our modularity curves, as the occupation of a lower number of
groups leads to a drop in modularity, see Fig. 4.5 This problem can be readily
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Figure 4.5: Modularity Q as a function of the selective pressure βQ for a network
with B = 8 groups and average degree 〈k〉 = 5. The insets show the affinity matrices
mrs for three specific states. As can be seen, the intermediate state (marked in red)
only presents seven occupied groups and thus has a lower modularity value with
respect to the neighbouring states which have all eight available groups occupied.

resolved by changing the procedure used to minimise the free energy. Specifically,
we resort to an adiabatic pass of our algorithm. We begin by minimising the free
energy at some low value of the selective pressure, where we know our algorithm
to consistently return the correct result. This optimised state is then used as the
initial condition from which to perform the minimisation at the subsequent value
of beta. The newly minimised state is then used as the next starting point and
the procedure is repeated along the entire range of βQ values. Proceeding this way,
we can correctly follow the states to high values of the selective pressure. Fig. 4.6
displays the behaviour of Q as a function of the selective pressures for different
choices of the allowed number of groups B. As the selective pressure increases, the
network splits smoothly and progressively into fully symmetric groups of equal size
with a larger number of connections inside each group. For low values of βQ, the
results obtained with different numbers of groups coincide, and then they diverge for
higher values. This is because, as expected, the actual number of groups populated
starts off small and progressively increases for larger values of βQ.
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Figure 4.6: (a) Modularity Q as a function of the selective pressure βQ for different
choices of the allowed number of groups B. (b) Network samples from the ensemble
with average degree 〈k〉 = 5 at different values of the βQ. As the selective pres-
sure increases, the network splits into a growing number of groups of increasing
modularity.
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4.2 Robustness against random failures

In this section, we consider robustness against random failure as a fitness criterion.
As mentioned in Section 2.3.1, robustness is a characteristic of fundamental impor-
tance in networked systems. Indeed, if a networked system is to function in the
first place, then being connected is bound to be one of its fundamental characteris-
tics. As we increasingly live and rely on an interconnected society, when networks
fail, this can have catastrophic consequences. The disruption of the airline network
caused by the 2010 eruptions of the Eyjafjallajökull volcano in Iceland [105] had
an estimated financial cost of approximately £1.1 billion according to The Interna-
tional Air Transport Association (IATA). Similarly, power outages like the one in
Italy in 2003 [106] can significantly impact both the economy and the well-being
of individuals. More generally, failures of real-world networks can have widespread
consequences on human health [107], the economy [108], and the environment [109],
amongst others. Understanding how the network topology affects the robustness
of networked systems (and how to optimise their robustness) is then a problem of
utmost importance, with possible applications ranging from designing robust in-
frastructures to controlling the spread of epidemics or avoiding mass extinctions in
ecological networks.

As introduced in Section 2.3.1, we model the robustness against random failures
as a percolation process. Specifically, we examine a bond percolation process and
consider the case in which a fraction 1 − φ of edges are randomly removed from
the network and measure the fraction S of nodes that remain connected, forming
a giant connected component [110]. In many respects, this is similar to the work
carried out by Peixoto and Bornholdt in [40], which considered site percolation.
There are, however, a few key differences. In [40], the authors consider a slightly
different ensemble in which the degree distrbutions of the groups are fixed to be
modified Poisson distributions such that nodes of degree zero are forbidden. The
rationale behind this choice is that since nodes of degree zero are never part of
the giant connected component, their contribution to the robustness properties of
the network can be neglected. However, this could potentially lead to artificial
constraints in the emerging topologies, as all nodes are forced to have at least one
connection. Moreover, this might also not always be the desired behaviour. In the
case of an epidemic, for example, disconnecting the network might be the desired
outcome. In what follows, we consider the standard stochastic block model and
allow for nodes of degree zero.

The fitness criterion considered by the authors in [40] is also slightly different
from the one used here. Specifically, in [40], the authors consider a measure of
robustness, previously introduced in [39], which corresponds to the fraction of nodes
in the giant component, averaged over all possible φ values.

R = 2

∫ 1

0

S(φ)dφ, (4.9)

where the factor 2 ensures that R ∈ [0, 1]. With respect to other common measures
of robustness, such as the critical value φc at which the network collapses, both
S and R have the distinct advantage of also considering the size of the connected
component, yielding information not only on whether the network is functioning

49



4.2. NETWORK ROBUSTNESS CHAPTER 4. CRITERIA IN ISOLATION

but also what fraction of it is functioning. However, The two measures are slightly
different, as R collapses all the information from φ into a single value.

While R provides a comprehensive measure of robustness which considers all
possible degrees of failure, it might lack specificity for more distinct scenarios. For
example, it is a well-known fact that about 3% of routers on the Internet are non-
functional at any given time [49]. It might then be preferable to study the resilience
properties of the network for a small range of φ values rather than over all possi-
ble types of failure. In general, it would appear improbable for a sudden massive
random failure of an entire network to take place, and these critical system failures
are typically the end product of dynamic processes such as cascading failures. In
this respect, R appears to be more suited for designing optimal networks against
malicious attacks in which the extent of the damage is unknown a priori. On the
other hand, S appears to be better suited to analyse the resilience properties of net-
works at specific levels of degradation. Moreover, utilising S allows us to explicitly
model the effects that the dilution probability has on the robustness properties of
the network rather than considering a summary statistic (for example, topologies
which are more robust on average might not be so for specific values of φ). This
allows us to have a more nuanced view of how robustness develops at different levels
of damage.

We then use the fraction of nodes in the giant component as the fitness function
of our model and analyse the topologies that are most likely to emerge when the
network is subject to a varying range of selective pressures. We consider these
effects for a wide range of occupation probabilities φ, obtaining a phase diagram
of the robustness against random failures in the (βS, φ) plane (where βS is the
selective pressure driving to optimise for robustness), which allows us to gain a more
comprehensive view of the combined effects that selective pressures and occupation
probabilities have on a network’s robustness. Our main result is the identification of
three principal topologies describing the network structure whose emergence depends
on the values of φ and βS. Furthermore, we distinguish the region around the
percolation threshold, φc, as the one where more significant gains in robustness can
be made with respect to a random graph topology.

4.2.1 Bond percolation in the stochastic block model

Closely following [40], we begin by extending the formalism of bond percolation to
stochastic block model ensembles.

Let ur be the average probability that a node in group r is not connected to
the giant component via a specific one of its edges, and let φrk be the occupation
probability of an edge in group r, i.e. the fraction of edges emanating from a
node of degree k in group r which have not been removed from the network. In
what follows, we shall consider the case in which all edges are removed uniformly
at random irrespective of the group assignment or the degrees of the nodes they
connect. We therefore have

φrk = φ, ∀ k, r. (4.10)

Consider now a node in group r, and let us evaluate the probability that our
selected node is not connected to the giant component via a specific one of its edges
leading to some group s. This can occur in one of two ways.
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1. The selected edge is unoccupied (i.e. it has been removed from the network),
which happens with probability 1− φ.

2. The edge is occupied (i.e. it has not been removed from the network), but
the vertex at the other end is not connected to the giant component via one
of its edges. If the vertex at the other end has k extra neighbours, then the
probability of it not belonging to the giant component will be given by uks .

The total probability that a node in group r does not connect to the giant component
via a specific edge leading to some group s is then given by

ur = 1− φ+ φuks . (4.11)

Since the vertex in group s is reached by following an edge, k will be distributed
according to the excess degree distribution of group s,

qsk =
psk+1(k + 1)

κs
(4.12)

where psk is the degree distribution of group s and

κr =
∑
`

er`
nr

= 〈k〉mr

ωr
(4.13)

is the average degree of the nodes in group s. Averaging over k, we have the following
expression,

1− φ+ φ
∞∑
k=0

qsku
k
s = 1− φ+ φf s1 (us), (4.14)

where f s1 (z) is the generating function for the excess degree distribution of group s.
Eq. (4.14) is valid for one specific edge leading to some group s. Since the fraction of
edges running from group r to group s is given by mrs, the probability of randomly
selecting one such edge will be given by mrs/mr. Summing over all possible values
of s, we arrive at the following self-consistent equation for ur:

ur = 1− φ+ φ
∑
s

mrs

mr

f s1 (us). (4.15)

To evaluate the fraction of nodes S which belong to the giant connected com-
ponent, we note that the probability that a node of degree k in group r does not
belong to the giant component is simply ukr , and the average of such probability over
group r will be ∑

k

prku
k
r = f r0 (ur). (4.16)

Therefore, the fraction of nodes in group r which are connected to the giant com-
ponent is given by

Sr = 1− f r0 (ur) (4.17)

and the total fraction of nodes in the giant component can be obtained by averaging
over the group sizes,

S =
∑
r

ωrSr = 1−
∑
r

ωrf
r
0 (ur), (4.18)
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where f r0 (z) =
∑

k p
r
kz

k is the generating function for the degree distribution of
group r.

The case of site percolation has been studied in [40], and it is straightforward to
show that the equations governing site percolation are similar to the ones observed
in Section 2.3.1.

ur = 1− φ+ φ
∑
s

mrs

mr

f s1 (us), (4.19)

S = φ

[
1−

∑
r

ωrf
r
0 (ur)

]
, (4.20)

where the self-consistent equation for ur is the same for both bond and site perco-
lation, but Eq. (4.20) is now multiplied by the occupation probability φ.

In what follows, we limit ourselves to considering the classical stochastic block
model. Although generally not representative of most real-world networks, the stan-
dard SBM allows us to study the simplest scenario and gain insight into the most
fundamental consequences that optimising for random failures can have on the net-
work structure without the contribution of additional details.

For the standard SBM, the degree distributions prk are Poisson distributions with
mean κr = 〈k〉mr/ωr. Substituting into the expression for f r0 (z), we have that

f r0 (z) =
∞∑
k=0

e−κrκkr
k!

zk = e−κr
∞∑
k=0

(κrz)k

k!
= eκr(z−1). (4.21)

Recalling that f r1 (z) can be obtained in terms of f r0 (z) as f r1 (z) = f r
′

0 (z)/f r
′

0 (1), we
have that, in our case

f r0 (z) = f r1 (z) = eκr(z−1). (4.22)

Even though we possess exact analytical expressions for f r0 (z) and f r1 (z), Eq. (4.15)
cannot be solved in closed form, and we must resort to solving it numerically. We
do so by repeated iteration, starting at some ur < 1 and iterating Eq. (4.15) until
some desired convergence criterion is met. Once the ur are known, the fraction S of
nodes belonging to the giant component can be obtained via Eq. (4.18).

For any given SBM, the behaviour of S as a function of the fraction φ of edges
that are not removed is that we have S = 0 for φ ∈ [0, φ∗], where φ∗ is a critical
value, so that for φ > φ∗ we have a positive fraction of connected nodes S > 0 that
increases continuously [40].

If we now consider the fitness function R(ω,m) = S(ω,m), our resulting free
energy becomes

F(ω,m) = −βSS(ω,m)− Σ(ω,m). (4.23)

By minimising the above function, we find null network models that are robust
against random failures, with the robustness increasing for higher βS values.

4.2.2 Implementation details and parameter setting

We once more work with a rescaled free energy, which is now defined as

f ∗ =
f

max{βS, 1}
, (4.24)
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Figure 4.7: Plots of S as a function of the dilution probability φ for different values
of 〈k〉, βS = 0, and B = 4. The dashed black lines mark the positions of the
percolation transitions, φc, for ER random graphs with corresponding values of 〈k〉.

and the gradient computations are performed again via the L-BFGS-B algorithm,
using automatic differentiation to compute the gradient of S and with the ftol

parameter set to 1× 10−16 as in the modularity case seen previously.
The computation of the self-consistent equation Eq. (4.15) is potentially prob-

lematic, as repeated iterations can introduce numerical artefacts in the gradient
computation. However, preliminary tests conducted by fixing the number of itera-
tions to some niter and then gradually increasing niter show that the self-consistent
equations can be safely run until convergence, where we consider the equations con-
verged when u

(t+1)
r − u(t)

r < ε, where u
(t)
r is the value of the probability of not being

connected to the giant component at time-step t, and ε is an external parameter
fixed to ε = 1× 10−8.

Finally, the optimisation procedure has been performed by taking subsequent
adiabatic passes to avoid the system getting stuck in local minima. A first pass
from low to high values of the selective pressures, followed by an additional pass
from high to low values of βS.

4.2.3 Results

We begin by studying the case in which there is no selective pressure driving to
optimise robustness, βS = 0, as we expect this to yield random graph topologies.
Fig. 4.7 shows that our framework is indeed capable of correctly capturing the
percolation transition observed in random graphs in the absence of any selective
pressure driving to optimise robustness.

In Fig. 4.8 we show the properties of the obtained models for 〈k〉 = 5 and
B = 2 groups. As βS increases, the network ensemble undergoes two abrupt tran-
sitions, where the structure first changes from fully random (I) to a core-periphery
(CP) structure (II), and finally to an asymmetric bipartite structure (III). The
core-periphery structure corresponds to a smaller and denser set of “core” nodes
connected among themselves and a larger and sparser set of “periphery” nodes that
connect mostly to the core nodes and not among themselves. The asymmetric bi-
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Figure 4.8: Relative size of the giant component S as a function of the selective
pressure for robustness to damage βS for different values of the edge dilution prob-
ability φ. The dashed vertical lines indicate the value βS = β∗ at which we observe
a transition from a random structure to a core-periphery one. The solid vertical
lines indicate the value βS = β̃ at which the network structure transitions from a
core-periphery to a bipartite pattern. The optimized network structures are shown
schematically in the insets, where each group corresponds to one of the groups of
our model. Samples from the ensemble depicting the three structures are also shown
in Figure (a).
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(a) (b) (c)

−−−−−−−−−−−−−−→
βS

Figure 4.9: Ensemble samples depicting the typical evolution of the core-periphery
structure as a function of the selective pressure βS. (a) When the core-periphery
structure first appears, it is composed of a small high-degree core. (b) As βS in-
creases, the size of the core group becomes larger, (c) before eventually transitioning
to a bipartite structure.

partite structure is similar to the core-periphery pattern, but the “core” nodes no
longer preferentially connect to themselves. Instead, they predominantly connect to
the periphery nodes, although they remain a smaller and denser set. An illustration
of these structures can be seen in Fig. 4.9, where we show network samples from
the obtained ensembles. In Figs. 4.10 and 4.11, we also show the size and density
of the two groups as a function of the selective pressure, for different values of the
edge dilution probability φ.

It is easy to understand why a core-periphery structure increases the robustness
to random edge removal: the core group corresponds to a denser subgraph, which
remains connected with a large probability after the removal of a given fraction of
edges, and the peripheral nodes benefit directly from this by connecting directly to
the core, rather than among themselves. What is perhaps more surprising is the
eventual onset of the bipartite structure, at which point the core group becomes so
dense that its nodes tend to remain in the giant component even if they are not
connected preferentially among themselves, which would incur a high entropic cost
for no significant additional benefit, but instead, connect mostly to periphery nodes.
The latter group tends to remain connected since its nodes tend to receive multiple
connections to the denser core nodes. (Similar structures to the core-periphery one
encountered here were also seen in similar setups where the robustness was integrated
over all possible dilution values φ [40, 111] as well different ones based on dynamical
robustness against noise [112], but the onset of the bipartite structures were not
seen in these other cases.)

In most cases, the results tend to change predictably with different values of
the edge dilution probability φ. However, a qualitative change in behaviour is seen
when we cross the φ = φc value, where φc = 1/〈k〉 is the critical percolation value
for a fully random graph. For φ > φc, a fully random graph has a nonzero giant
component even for βS = 0, and thus the progression to core-periphery and bipartite
structures proceeds as discussed above. However, for φ < φc, a fully random graph
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Figure 4.10: Fraction of nodes and average degree of the core groups as a function
of the selective pressure βS. Panels on the left display curves for values of φ ≤ φc.
Panels on the right display curves for values of φ > φc. The black dashed line in the
plots for κr indicates the average degree of the network, which has been externally
fixed to 〈k〉 = 5.

gets completely disconnected. Therefore the response of the structural changes to
increasing βS is not continuous but happens more abruptly, with the onset of a core-
group that is typically much denser. We also observe an interesting behaviour for
sufficiently large values of φ. The core group spans almost the entire network at its
onset, with an average degree coinciding with the whole network. The mechanism
driving the network structure as βS increases appears to be slightly different in this
case, as it is the smaller set of “periphery” nodes that end up forming the smaller
group of the eventual bipartite structure.

For φ = φc, we also observe a different behaviour, where the onset of the core-
periphery structure ceases to be abrupt, and the change happens continuously. This
seems to indicate that an infinitesimal optimisation of networks that lie on the
critical percolation threshold has an infinitesimal entropic cost (a similar behaviour
had been observed previously in the context of Boolean networks optimised against
stochastic fluctuations [112]).

A more detailed overview of the combined effect of βS and φ can be seen in
Fig. 4.12, which shows both the value of S(βS, φ), but also the relative improvement
∆S(βS, φ) = S(βS, φ)− S(0, φ) with respect to a fully random graph. Indeed most
of the improvement happens around the critical value φ = φc.

Changing the value of the imposed averaged degree 〈k〉 only shifts the position
of the transitions, which remain qualitatively the same.
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Figure 4.11: Fraction of nodes and average degree of the periphery groups as a
function of the selective pressure βS. Panels on the left display curves for values of
φ ≤ φc. Panels on the right display curves for values of φ > φc. The black dashed
line in the plots for κr indicates the average degree of the network, which has been
externally fixed to 〈k〉 = 5.

Increasing the number of groups

As a final note, we analyse the effects of increasing the number of groups on the
system. Differently from modularity, whose value directly depends on the chosen
number of groups, percolation properties are a network characteristic that we are
modelling via a stochastic block model. As such, we would like to make no stipula-
tions a priori regarding the number of partitions in the network. Therefore, when
increasing the number of groups, we must account for the possibility that some of the
generated partitions be topologically indistinguishable, i.e. with edges distributed
randomly over two or more groups. A simple strategy to recover the correct number
of groups required to describe the system is then the following

1. We propose “merge moves” amongst the various groups, where we attempt to
merge group pairs.

2. We accept the proposed merging if it leaves the free energy unchanged.

In the case of robustness against random failures, we observe that increasing the
number of groups B has no effect on the results obtained. Indeed, for any value
B > 2, we find it possible to merge two or more groups without changing the en-
semble properties until only two groups remain. The structures identified above are
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Figure 4.12: (a) Value of the fraction of nodes S which are part of the giant connected
component as a function of the selective pressure βS and dilution probability φ for
networks with average degree 〈k〉 = 5. (b) Variation in S with respect to the case
where no selective pressure is applied as a function of the selective pressure βS and
dilution probability φ.

then to be considered the only ones to emerge when the selective pressure against
random removal of edges is the only driving mechanism.

4.3 Discussion

In this chapter, we have applied our methodology to analyse the network topologies
most likely to emerge when networks are driven to optimise either their modularity
or their robustness against random deletions of their components. For modularity,
a proliferation of symmetric clusters with an increasing number of internal edges
has been identified as the most robust. On the other hand, a study of the resilience
properties of networks driven to maximise their robustness against random failures
of their connections has revealed three optimal structures depending on the value
of the selective pressure. For low selective pressures, where there is little incentive
to optimise robustness, a random or quasi-random topology describes the system.
As the selective pressure increases, we have observed a series of transitions first
to a core-periphery structure, described by a small and densely connected ”core”
group of nodes and a ”periphery” group whose nodes predominantly attach to the
core nodes, and subsequently to an asymmetric bipartite structure, similar to a
CP topology, but in which the core nodes no longer connect to each other. In the
last two scenarios, increased robustness against random failures is predominantly
guaranteed by the presence of a small group of nodes vehiculating most of the
network’s connectivity. As deletions are random, the probability of removing one of
these highly connected nodes is small, and the network’s structure remains intact.
Furthermore, we have shown that the observed structures are the only ones that
can emerge if a selective pressure driving for increased robustness against random
failure is the only driving mechanism of network formation —effectively providing
a blueprint of robust topologies against random deletions.
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While the results provided in this chapter help us to better understand how fit-
ness towards a particular objective shapes network topology, they fail to address the
more realistic scenario in which networks are subject to multiple selective pressures
simultaneously. Modularity and robustness against random failures present them-
selves as ideal candidates for consideration in a combined scenario as they select
for seemingly contrasting network topologies. Therefore, while they are individu-
ally characterised by well-defined structures, the interplay between the two selective
pressures could potentially give rise to unforeseen effects. In the next chapter, we
apply our framework to study networks subject to concurrent selective pressures
driving to optimise both modularity and robustness against random failures.
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Chapter 5

Multiple optimisation criteria

5.1 Introduction

The previous chapters have delineated the effects that selecting for specific charac-
teristics can have on the emerging network topology. However, we limited ourselves
to considering the effects of one single selective pressure at a time. While this allows
us to gain valuable insight into the fundamental characteristics driving an increase
in modularity or robustness against random failures, it overlooks the possible effects
that can arise due to the interplay between selective pressures.

This chapter analyses the effects on network topology induced by different fit-
ness criteria when these are applied simultaneously. Specifically, we once again focus
on modularity and robustness against random failures. Modularity and robustness
against edge removal appear to select for contrasting network topologies (a cluster
structure in the case of modularity, core-periphery/bipartite structures for robust-
ness against edge removal), and thus present themselves as attractive candidates
for a study of the effects of competing selective pressures on network structure.
However, far from being merely a question of convenience, analysing networks sub-
ject to optimise both their modularity and their robustness to random failure could
potentially have interesting applications. For example, in the case of power grids,
splitting the network into self-sufficient modules has been investigated as a possible
mitigation strategy to prevent the propagation of cascading failures [113], linking
the concepts of modularity and robustness. It is important to note that this is
a different concept of robustness from the one considered in this Thesis. Indeed,
cascading failures are a dynamic process where the failure of a node (or edge) can
change the balance of flows on the network, leading to critical overloads, which re-
sult in a cascade of failures. By contrast, our approach is static, meaning that we
remove nodes (or edges) without needing to redistribute any quantity transported
by the network. Generally speaking, static robustness is more apt for describing the
resilience of networks where no quantity is transported on the network, such as the
ties in a social network. That being said, this form of static robustness is still essen-
tial for networks such as power grids, as networks that can be easily disconnected
might be more robust to cascading failures yet still be unable to accomplish their
intended function after the failure of even a small fraction of nodes. It is then inter-
esting to analyse what structures emerge as a result of attempting to optimise for
both criteria, as these structures could be beneficial in constructing robust networks
against both forms of failures.
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We begin by providing a brief introduction and some notes regarding the im-
plementation details of our methodology and proceed to present our results. Our
main finding is the identification of a series of phase transitions where the network
topology is characterised by different entanglements of the previously encountered
structures. Furthermore, we observe regions of the phase space where the interplay
between the selective pressures can give rise to synergistic or antagonistic effects,
i.e. selecting for one kind of fitness criterion can aid or hinder optimising for the
other. Finally, we conclude with some considerations on the effects that increasing
the number of available groups has on the emerging topologies.

5.2 Implementation details

We consider the situation where we seek to optimise modularity and robustness
against random edge removal. In principle, this would amount to a free energy
given by

F(ω,m) = −βSS(ω,m)− βQQ(m)− Σ(ω,m). (5.1)

However, this would mean that the same division of the network used to compute
modularity would also be used to obtain the robustness to edge removal. However,
in general, there is no reason to impose that these quantities are related, i.e., the
network structure that is responsible for increased robustness to edge removal may
be unrelated to the patterns that cause increased modularity. Because of this, we
want to be more general and allow the modularity of the network to refer to a division
that is not necessarily related to the one used to obtain the robustness to damage.
We do so by assuming that the partition used for the computation of robustness is a
subdivision of the one used to obtain modularity, such that each of its BQ groups can
be further divided into one, two, or more groups, totalling BS ≥ BQ groups. This
assumption is made without loss of generality since any two independent partitions
into B1 and B2 groups can always be equivalently decomposed into one with at
most B1×B2 groups, which is itself a subdivision of a smaller one with min(B1, B2)
groups1. Based on this, we have the free energy given by

F(ω,m, c) = −βSS(ω,m)− βQQ[m′(m, c)]− Σ(ω,m), (5.2)

where c = (c1, . . . , cBS
) is a hierarchical grouping of the BS groups, with cr ∈ [1, BQ]

being the group membership of the group r used to compute the giant component
S. The modularity is therefore computed with the condensed matrix

m′tu(m, c) =
∑
rs

mrsδr,ctδs,cu . (5.3)

We stress that for our calculations, the identity of the group memberships are irrele-
vant, as we concern ourselves only with the resulting network structures. Therefore,

1Note that we consider the case BS ≥ BQ, but not the opposite, BQ ≥ BS . Indeed, considering
BQ to be a subdivision of BS could potentially introduce artificial constraints into our model. As
mentioned in Section 4.1, when introducing modularity, we are looking to maximise Q conditioned
on a known partition. S, on the other hand, is not; i.e. in principle, we do not care how the
network is divided as long as the overall robustness is achieved. Allowing BQ to be a subdivision
of BS would then result in a constraint on BS , as group structures with less than the number of
occupied BQ partitions would not be possible. We would essentially be conditioning both Q and
S on the partition used to model modularity.
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we select BQ = q and BS = ql, where each of the q groups used to compute Q are
subdivided into exactly l groups. Again, this comes without a loss of generality, as
we do not make any provisions about how large each group is or even if they are oc-
cupied at all. Therefore this scheme is purely conventional and does not impose any
inherent symmetry or network structure on its own. By choosing q and l sufficiently
large, we can obtain any kind of modular structure used to compute either S or Q
independently. For our calculations, we have used mostly q = l = 2, which have
proved sufficient to capture most of the structures seen, but we have investigated
higher values as well, as we discuss later.

5.3 Results

We minimized Eq. (5.2) for an ensemble of networks with 〈k〉 = 5, and edge dilution
probability φ = 0.21. Fig. 5.1 shows the relative changes of the optimization criteria
as a function of the selective pressures βS and βQ, where ∆S(βS, βQ) and ∆Q(βS, βQ)
are defined as

∆S(βS, βQ) = S(βS, βQ)− S(βS, 0), (5.4)

∆Q(βS, βQ) = Q(βS, βQ)−Q(0, βQ), (5.5)

and represent the relative variations in S and Q induced by the interplay between
the selective pressures with respect to the case in which we optimised for each
constraint in isolation. As the selective pressures are changed, we observe various
structural phases, representing diverse combinations of the modular, core-periphery
and bipartite structures encountered previously. The transitions between the vari-
ous structures can be either smooth or abrupt. In the latter case, we can distinguish
three types of transitions. The first type of transition is linked to abrupt changes
in the network structure and can be identified by sudden jumps in the group pa-
rameters. The second kind of transition occurs when the number of groups required
to describe the system changes, but no significant jumps in the group parameters
are observed. Finally, the third type of transition is a mixed transition, where a
change in the number of groups required to describe the system is accompanied by
an abrupt change of the group parameters. Furthermore, we also observe synergistic
and antagonistic effects, whereby selecting for one fitness criterion can help (or hin-
der) optimising for the other. We will discuss these effects in more detail depending
on the region where they occur in the phase diagram.

5.3.1 Regions in the phase diagram

The low βS and low βQ regimes: For low values of βS, we can recover the
behaviour observed when selecting for modularity in isolation by varying βQ, and
the network structure varies from a random graph, [see Fig. 5.1(a)], to increas-
ingly separated and modular structures [5.1(c) and 5.1(d)]. Conversely, we note
that the behaviour observed when selecting for robustness against random failures
in isolation is not recovered for low βQ. By increasing βS at some fixed low βQ,
the network initially follows the expected behaviour and transitions from a random
graph [Fig. 5.1(a)] to a core-periphery structure [Fig. 5.1(e)]. However, for high βS,
the network structure is now described by a four-group structure composed of two
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identical and interconnected core-periphery or bipartite structures [Figs. 5.1(f) and
5.1(g)]. This symmetric effect can be understood in terms of modularity. As βS
increases, the selective pressure against random edge removal pushes the network
towards increasingly stronger bipartite structures. Since those structures have edges
running predominantly between different groups, they would yield negative modu-
larity values. Therefore, by splitting both “core” and “periphery” groups into two
random subgroups used for the computation of modularity, the network can escape
the negative values with negligible entropic cost. Note that, in principle, one could
recover a modularity of zero and keep a two-group structure by simply keeping one
of the two BQ groups empty. However, as we can see from Fig. 4.6, modularity is
a monotonically increasing function of βQ, meaning it will only be zero exactly at
βQ = 0. Maintaining a four-group structure where both BQ groups are populated
allows the network to attain infinitesimally positive modularity values for βQ > 0.

The high βS and high βQ regimes: If we increase βQ at some fixed high value of
βS, we once again observe that the optimisation of modularity causes the symmetric
structures observed above to become less interconnected until two separate and
identical structures coexist [i.e. Figs. 5.1(g), 5.1(h), and 5.1(i)]. This symmetric
pattern effect can be understood as a direct consequence of both optimisation criteria
competing with each other: since forming a single mixed core-periphery/bipartite
structure would yield low modularity, the overall structure is mirrored to preserve
high fitness values according to both criteria.

More interesting effects occur if we consider the impact that increasing βS has
at some fixed high value of βQ. In this scenario, we once again observe symmetric
structures [see Figs. 5.1(k) and 5.1(i)]. However, we also see the presence of re-
gions where an asymmetric three-group pattern describes the network structure [see
Figs. 5.1(j) and 5.1(l)]. In these regions, we again observe either a core-periphery or
bipartite structure as a result of the selective pressure towards robustness against
random edge removal. The requirement to have a high fitness for modularity is in-
stead reflected by the presence of an accompanying and distinct modular structure.
This accompanying modular structure is always denser than a fully random graph.
It becomes increasingly dense as βS is increased, suggesting that the effects of the
selective pressure against random edge removal are not limited to the core-periphery
or bipartite structures.

Intermediate regimes: For intermediate values of βS and βQ, the network tran-
sitions smoothly and abruptly between the same structures described above. The
only difference is the presence of an “island” where a three-group pattern again de-
scribes the network structure [see Fig. 5.1(m)]. In this region, the structure is that
of a core-periphery pattern in which we now have two peripheries preferentially con-
necting to a dense set of core nodes. This structure remains substantially unchanged
if we vary βS. However, by increasing βQ, one of the two peripheries becomes pro-
gressively smaller and less connected to the core, and the overall network structure
closely resembles the one observed in Fig. 5.1(j).
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5.3.2 Synergistic and antagonistic effects

To better understand the synergistic and antagonistic effects seen in Fig. 5.1, it is
convenient to consider the relative variations over Q and S individually, as shown in
Fig. 5.2 and Fig. 5.3 respectively. Based on this, we consider each effect in isolation
as follows.

Modularity: Inspecting the diagram for ∆Q in Fig. 5.2, we can see that for
low values of βQ and βS, the network structure is essentially that of a fully random
graph. By increasing βS, we eventually encounter a synergistic region just above the
β∗ transition line that exists when βQ = 0 (see Fig. 4.8). This indicates that merely
transitioning to a core-periphery structure is enough to guarantee some degree of
improvement in modularity with respect to a random graph. This synergistic region
extends until moderate values of βQ, corresponding to the region in Fig. 4.6 in which
modularity shows a rapid increase. For high values of βQ the synergistic effects
vanish, as we now find ourselves in the region of Fig. 4.6 where the modularity
reaches its plateau value, and no structural transition can provide an additional
benefit with respect to the case in which we optimise for modularity in isolation.

What is perhaps more interesting is the small synergistic region in ∆Q around
the β̃ transition line. In this region of the phase space, the network structure is
described by a bipartite pattern and a separate modular division. It would appear
that the emergence of a bipartite structure — driven by the selective pressure to-
wards robustness against edge removal — forces more edges to be distributed within
their own groups than would be the case had we selected for modularity alone, thus
providing an increased fitness.

Robustness against random failures: In the ∆S phase space, we observe two
principal regions in which synergistic (antagonistic) effects are present, labelled A
and B in Fig. 5.3. In region A, the network structure is described by a core-
periphery pattern accompanied by an isolated cluster which is always denser than
a fully random graph. This structure is initially able to provide greater robustness
against random failures than the corresponding two-group core-periphery structures
we observed in Fig. 4.10. However, it also has a higher entropic cost, which is
accounted by the selective pressure for modularity, and we observe a synergistic
interplay between the two selective pressures. This three-group structure displays
no significant changes as βS increases, and, eventually, the evolution of the core-
periphery structures observed in Fig. 4.10 can provide greater robustness. At this
point, the selective pressure for modularity reverses its role by pinning the less
optimal three-group structure in place, and we observe an antagonistic interplay
between the two selective pressures. Increasing βS even further, we eventually reach
the point where it is more beneficial for the network to pay a further cost in entropy
and split into two symmetric structures in exchange for larger mutual fitness.

A similar picture occurs in region B, where the network structure is charac-
terised by a bipartite pattern and an accompanying cluster which is always denser
than a fully random graph. The onset of region B happens for values of βS ≤ β̃,
and the added bipartitness initially provides an increased fitness against random
edge removal. However, the role of the selective pressure for modularity once again
reverses as soon as βS > β̃ and we cross the bipartite transition line observed when
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optimising for robustness against random edge removal in isolation.
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Figure 5.2: Change in modularity, Q, with respect to the case βS = 0 as a func-
tion of the selective pressures βS and βQ. The dashed and solid black lines indicate
respectively the values of βS at which abrupt transitions to core-periphery and bi-
partite structures are observed when optimizing for robustness against random edge
removal in isolation. Schematics of the optimized structures are shown around the
margins, where each group corresponds to one of the BS groups in our model and
the color of each group indicates its BQ membership. The results are obtained for
an ensemble of networks with 〈k〉 = 5 and edge dilution probability φ = 0.21.
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Figure 5.3: Change in the size of the largest component, S, with respect to the
case βQ = 0 as a function of the selective pressures βS and βQ. The dashed and
solid black lines indicate respectively the values of βS at which abrupt transitions to
core-periphery and bipartite structures are observed when optimizing for robustness
against random edge removal in isolation. Schematics of the optimized structures
are shown around the margins, where each group corresponds to one of the BS

groups in our model and the color of each group indicates its BQ membership. The
results are obtained for an ensemble of networks with 〈k〉 = 5 and edge dilution
probability φ = 0.21.
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5.4 Increasing the number of groups

As mentioned at the beginning of the chapter, it would, in principle, be possible
to model any kind of modular structure by choosing high enough values of q and
l. However, the free energy computation grows quadratically with BS, making it
computationally expensive to increase the number of groups used to model the
network. Nevertheless, we have investigated regions of the phase diagram, allowing
us to probe in more detail how the allowed number of groups affects the results. Our
findings indicate that increasing the number of groups available can exacerbate the
synergistic and antagonistic effects observed previously but does not alter the regions
in which these occur. However, increasing the number of groups can potentially
give rise to different entanglements of the core-periphery, bipartite, and modular
structures observed above. In what follows, we present our results for network
ensembles with 〈k〉 = 5 and edge dilution probability φ = 0.21.

The total number of groups used to model the networks can be increased by
increasing either l or q, where changing the former corresponds to varying the num-
ber of groups BS used to model robustness, while the latter controls the number of
groups used to model modularity.2 Increasing l without varying q appears not to af-
fect the emerging topologies. The additional groups can always be merged back into
the original q = l = 2 structures, and the overall observables of the system remain
unvaried, see Fig. 5.4. This behaviour is to be expected. As discussed in Section 4.2,
a total of two groups is sufficient to capture the three topologies that characterise the
resilience properties of the network. The three and four group structures observed
in Fig. 5.1, where the core-periphery and bipartite topologies are either mirrored or
accompanied by an additional modular structure, arise as a response to the need
to guarantee a pre-determined degree of modularity. For whatever choice of q we
impose, we would therefore expect l = 2 to be sufficient to capture the structural
properties responsible for robustness against random failures.

On the other hand, increasing q will directly impact the number of groups used
to model the modularity. As the value of modularity directly depends on the num-
ber of occupied groups, increasing q allows the system to potentially increase its
modularity (thereby decreasing its free energy), by occupying a larger number of
groups. However, occupying a large number of groups also has a high entropic cost,
and one would therefore expect a balance between fitness and entropy to be reached
based on the imposed values of the selective pressures.

Let us consider again the network shown in Fig. 5.4 and this time fix l = 2 and
vary the value of q. Fig. 5.5 shows the behaviour of the observables of the system
as a function of q. As expected, we observe an increase in modularity alongside a
decrease in entropy as q is increased. However, we also observe a sharp drop in S
followed by a gradual increase to a plateau value.

To gain a clearer understanding of this behaviour, we can analyse the topology
of the networks at different values of q. Fig. 5.6 shows schematics of the network
topologies alongside some network samples for the cases q = 2, 3, 4, and 5. The
sharp drop in the fraction of nodes belonging to the giant connected component can
be explained by observing the transition in topology from Fig. 5.6(a) to Fig. 5.6(b).
While both structures are characterised by having three groups, in Fig. 5.6(b) the

2Note that varying q will also influence the partitions used to model the percolation properties
of the network in view of the relationship BS = ql.
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Figure 5.4: Schematic depicting the network structure at βS = βQ = 9 in the q = 2,
l = 2 case (a). Sample from the ensemble (b). Free energy (c) and fraction of nodes
that belong to the giant connected component (d) as a function of l. As the number
of BS groups increases, there is no observed effect on the network properties and the
additional groups can always be merged back into the three block structure shown
in (a). Further tests, conducted on other points of the phase space, also display the
same behaviour.

network loses its core-periphery component in favour of an additional modularity
group, and three modular structures now describe the topology, resulting in a loss of
robustness. Notice, however, that the modular structures are no longer symmetric,
with one of the groups typically much larger than the others and characterised by a
lower average degree. As q increases, the number of occupied groups increases, but
the network topology remains characterised by a modular structure. The free energy
presents a minimum at q = 4, indicating that a total of four groups is required to
adequately describe the network. Above q = 5, it becomes virtually impossible for
the optimiser to select states in which all groups are occupied as the entropic cost
is too large. Consequently, we observe the presence of numerous empty groups, and
the resulting structures are equivalent to those observed in the q = 4 or the q = 5
cases. Finally, we note that, although in principle higher values of S can be obtained
by mirroring the core-periphery structure observed in Fig. 5.6(a), the entropic cost
of this is too high, and the network prefers to split into separate modules.

In conclusion, while increasing the number of groups used to model the per-
colation properties of the system does appear not affect the emerging topologies,
increasing the number of groups used to model modularity can lead to different
entanglements of the previously observed core-periphery, bipartite, and modular
structures.
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Figure 5.5: Free energy (a), entropy (b), modularity (c), and the fraction of nodes
belonging to the giant connected component (d) as a function of q for a network
sample at βS = βQ = 9 and l = 2.

While computational constraints prevent us from systematically exploring the
entire phase space, we can nevertheless gain a broader perspective of the effects that
increasing the allowed number of groups has on the network topologies by studying
the emerging structures along some pre-specified slices of the phase space. As an
example, we consider the two slices at fixed βS shown in Fig. 5.7, and for each of
them, we fix q = 8 and l = 2. Fig. 5.8 and Fig. 5.9 show a comparison of the
modularity as a function of βQ for both the q = l = 2 case studied above, and this
new case with q = 8 and l = 2.

For slice A, we can see that the two curves coincide for low to moderate values
of βQ, with the network structure transitioning from a two-group core-periphery
structure to a three-group core-periphery, with two peripheries connecting to a dense
core group [see Fig. 5.1(m)]. For higher values of βQ, the curves diverge, as the higher
value of q in the q = 8, l = 2 case allows the network to populate more groups, thus
increasing its modularity. The number of populated groups increases with βQ, and
the network topology is described by interconnected modular structures that become
progressively disconnected from each other as the selective pressure is raised. Again,
in contrast to what we observed when we optimised for modularity in isolation, we
note that these new modular structures are not symmetric, with some groups being
denser than a random graph and others less so.

For slice B, we find ourselves in a region of the parameter space where the
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Figure 5.6: Network topologies at βS = βQ = 9 for l = 2 and varying values of q. A
core-periphery accompanied by a modular structure corresponding to the case q = 2
(a), and modular structures corresponding to q = 3 (b), q = 4 (c), and q = 5 (d)
respectively.

network topology is described by two symmetric core-periphery structures, which
get progressively disconnected as βQ is raised. Once again, the two curves coincide
for low to moderate values of βQ, but, as βQ increases, the access to a higher number
of BQ groups in the q = 8, l = 2 case allows for more groups to be populated. We
observe different entanglements of core-periphery structures accompanied by isolated
clusters, and, for high enough βQ, we once again observe a mirroring effect in which
eight symmetric core-periphery structures describe the network topology.

Synergistic effects The variations in Q and S observed in Fig. 5.5 suggest that
increasing the number of groups might alter the synergistic/antagonistic effects en-
countered previously. However, preliminary results suggest that, while increasing
the number of groups used to model the network can exacerbate the synergis-
tic/antagonistic effects, it does not alter the regions in which these are observed.

As an example, consider slice A in Fig. 5.7. In the q = l = 2 case, slice A selects
a region of the phase space displaying synergistic effects on S for high βQ values
and negligible effects on modularity (see Fig. 5.10). The variation in modularity,
∆Q, and robustness against random edge removal, ∆S, along the slice for both the
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Figure 5.7: Total number of groups required to describe the system as a function
of the selective pressures βS and βQ for the q = l = 2 case. The solid black lines
indicate the slices A (at βS ' 1.2) and B (at βS ' 17.5) discussed in the text.

original q = l = 2 case and the case in which q = 8 and l = 2 are shown in Fig. 5.11
and Fig. 5.12 respectively.

For modularity, we observe that for large βQ values, where Q has reached its
plateau value and the drive to optimise modularity is dominant, the selective pres-
sure driving for robustness plays no effect and ∆Q = 0. A similar picture holds
for low βQ values, where a two-group core-periphery structure characterises the net-
work topology in both the q = l = 2 and the q = 8, l = 2 cases. As the selective
pressure driving for modularity increases, we observe slight deviations between the
two curves, with the q = 8, l = 2 curve providing a marginally increased synergistic
effect. In this region, the network topologies are characterised by a three-group
structure in both the q = l = 2 and the q = 8, l = 2 cases. However, access to a
third modularity group in the q = 8, l = 2 case slightly increases the synergistic
effects. Overall, the two curves coincide throughout most of the range of βQ values
considered, the only notable exception being the presence of rapid oscillations in
the q = 8, l = 2 case around the values of βQ where both the modularity and the
number of groups required to describe the network present a sharp increase. We
suspect these oscillations to be the result of numerical artefacts arising during the
free energy minimisation procedure.

The variation in the fraction of nodes S that belong to the giant connected
component follows a similar pattern, where the two curves coincide in the region
where a two or three-group structure is sufficient to adequately describe the network,
but diverge as βQ is increased. In particular, the access to a larger number of groups
exacerbates the synergistic behaviour observed for high betas, and the interplay
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Figure 5.8: Modularity as a function of the selective pressure βQ for slice A. The
bottom curve displays the behaviour observed in the q = l = 2 case, while the top
curve represents the q = 8, l = 2 case. Changes in colour indicate a change in the
number of groups required to describe the system. Schematics of the optimized
structures are shown in the insets, where each group corresponds to one of the
BS groups in our model and the colour of each group indicates its BQ membership.
Samples from the ensemble with average degree 〈k〉 = 5 and edge dilution probability
φ = 0.21 are also shown.

between the two selective pressures proves even more beneficial.

From the definition of ∆S given in Eq. (5.4), we observe that ∆S measures the
difference in the fraction of nodes that belong to the giant connected component
between any state of the slice and the “first” state of the slice (where by first
we intend the state at βQ = 0), which we shall term the reference state. This
leads to a series of interesting considerations. While structures such as the one in
Fig. 5.12(c) (which we observe at high βQ in the q = l = 2 case) do provide increased
robustness when compared to the two-group core-periphery of our reference state
[see Fig. 5.12(a)], the peak of the synergistic effects occurs at βQ ' 5, where the
network topology is characterised by an asymmetric modular structure comprised of
two interconnected modules of different sizes, see Fig. 5.12(b). The reason that this
modular structure can provide greater robustness than the core-periphery structure
of the reference state can be understood by looking at Fig. 4.10. When βQ = 0 and
we are optimising solely for the robustness against random edge removal, the size
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Figure 5.9: Modularity as a function of the selective pressure βQ for slice B. The
bottom curve displays the behaviour observed in the q = l = 2 case, while the top
curve represents the q = 8, l = 2 case. Changes in colour indicate a change in the
number of groups required to describe the system. Schematics of the optimized
structures are shown in the insets, where each group corresponds to one of the
BS groups in our model and the colour of each group indicates its BQ membership.
Samples from the ensemble with average degree 〈k〉 = 5 and edge dilution probability
φ = 0.21 are also shown.

of the core group at βS ' 1.2 is infinitesimal. While this infinitesimal core does
improve robustness over a completely random graph, the improvement is small, and
two asymmetric interconnected modular structures can guarantee greater resilience.
In the q = l = 2 case, as βQ increases, the network structure becomes increasingly
modular with fewer and fewer inter-group connections, and the robustness against
random edge removal decreases until, eventually, we reach a point at which it is more
beneficial for the network to split into three groups and replicate the core-periphery
structure observed at βQ = 0 [see Fig. 5.12(c)]. This behaviour helps shed some
light on the asymmetric nature of the modular structures that arise as the result
of the interplay between the two selective pressures. If we compare the fraction of
nodes belonging to the giant connected component in our reference state with that of
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Figure 5.10: Position of slice A in the ∆S (a) and ∆Q phase space (b). Slice
A crosses a strongly synergistic region in the ∆S phase space for high βQ while
presenting only minimal effects in ∆Q.

perfectly symmetric modular structures such as the ones observed in Section 4.1, we
can see that Sref > SβS=0 for any βQ value, as shown in Fig. 5.13. The asymmetric
nature of the groups then plays a fundamental role in guaranteeing a certain degree of
robustness against random edge removal. By breaking the symmetry of the modules,
the network is able to mimic, to a certain degree, a core-periphery structure, with
the smaller and more densely connected groups playing the role of cores. In turn,
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Figure 5.11: Variation in modularity ∆Q as a function of the selective pressure βQ
along slice A shown in Fig. 5.7 for both the case q = l = 2 and the case q = 8, l = 2.

10−3 10−1 101 103 105

βQ

0.00

0.01

0.02

0.03

0.04

∆
S

q = 2

q = 8

(a)

(b)

(c)

(d)

Figure 5.12: Variation in the fraction of nodes that belong to the giant connected
component ∆S as a function of the selective pressure βQ along slice A shown in
Fig. 5.7 for both the case q = l = 2 and the case q = 8, l = 2. Samples from the
network ensemble at different values of βQ are shown in the insets.

this ensures a higher degree of robustness against random edge removal.

For the q = 8, l = 2 case, things are slightly different. While the initial peak in
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Figure 5.13: Fraction of nodes that belong to the giant connected component as a
function of βQ for states which are under no selective pressure to optimise against
random edge removal (i.e. βS = 0). The black dashed line indicates the fraction
of nodes that belong to giant connected component for the reference state (βS '
1.2, βQ = 0) discussed in the text. Notice that, as the nodes within each group are
randomly distributed, there is no difference in robustness between a random graph
and two weakly connected modular structures each of which randomly distributed.

∆S is also reached at βQ ' 5, the ability to access more modularity groups in the
q = 8, l = 2 case allows the network to retain an asymmetric modular structure as
the selective pressure increases by simply splitting into a larger number of groups.
While the groups do become increasingly disconnected as βQ increases, the presence
of multiple weakly connected asymmetric modules is sufficient to guarantee a higher
degree of robustness than our reference state. Indeed, even if the edges connecting
two arbitrary groups are completely removed, these can still remain connected via
paths traversing the other modules of the network.

Once more, we observe oscillations around the region in which the number of
groups required to adequately describe the network rapidly increases.

Although we could not systematically probe the entire phase space due to com-
putational constraints, further tests on single states display the same behaviour.
Both the synergistic and antagonistic effects are amplified, but the regions in which
these effects occur remain unchanged.

5.5 Discussion

This chapter has implemented the formalism introduced in Chapter 3 to study the
more realistic scenario in which networks are driven to optimise for multiple fit-
ness criteria simultaneously. Specifically, we have analysed the effects of interacting
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selective pressures on the emerging network topologies.
We have focused on network ensembles characterised by pre-specified values of

both modularity and robustness against random edge removal. By minimising the
corresponding free energy, we have uncovered a rich phase space in which the net-
work topology can transition between different entanglements of the previously en-
countered core-periphery, bipartite, and random graph structures depending on the
values of the selective pressures. In particular, we have observed both symmetric
structures characterised by a ”mirroring” phenomenon where two separate core-
periphery or bipartite structures are present, as well as asymmetric network topolo-
gies in which a core-periphery or bipartite structure is accompanied by an additional
modular structure which accounts for the need to optimise modularity. Furthermore,
we have identified regions of the phase space where synergistic or antagonistic effects
can occur, such that optimising for one criterion aids or hinders optimising for the
other.

As a final note, we have shown that if the maximum number of groups that can be
potentially used to partition the network is increased, then different entanglements
of the previous network topologies can arise. Namely, we observe the proliferation
of asymmetric modular structures characterised by smaller and denser modules that
are weakly connected to larger and sparser ones. This particular kind of topology
guarantees high modularity values while also allowing for improved robustness with
respect to the case in which no drive to optimise for modularity is present.
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Chapter 6

Conclusions and future outlooks

6.1 Conclusions

In order to efficiently achieve their intended function, many real-world networks
are often required to exhibit a certain degree of optimality with respect to one or
more specific criteria. As the degree of efficiency of a particular network will de-
pend, amongst other things, on its large-scale structure, this need for optimality
naturally results in selective pressures driving the network towards particular net-
work structures. The focus of this thesis has been to develop tools that allow for
a principled analysis of the effects that various selective pressures can have on the
emerging topologies. Specifically, we have introduced a framework that allows us
to generate null models of optimal networks, which can incorporate the effects that
selective pressures towards some predefined set of criteria can have on the struc-
tural properties of the network. This framework allows us to study these effects
in an isolated manner, without additional interferences that might arise from other
exogenous constraints or dynamical rules that contribute to the network formation
process. Crucially, our framework can accommodate an arbitrary number of criteria,
which allows us to analyse more realistic scenarios in which networked systems are
subject to multiple interacting selective pressures.

We have applied this framework to analyse the emerging structures in systems
subject to the joint optimisation for modularity and robustness against random
removal of edges, which we analysed both in isolation and in combination. In the
case of modularity alone, we showed that by increasing the selective pressure, we
observe network structures that progressively split into an increasing number of
symmetric groups whose nodes predominantly connect amongst themselves. In the
case of robustness against random failures, we instead identify two phase transitions
in which the network structure transitions first to a core-periphery pattern and then
into an asymmetric bipartite one. The core-periphery structure is characterised
by a smaller and denser set of “core” nodes that connect preferentially amongst
themselves and a larger “periphery” whose nodes mostly connect to the core nodes.
This structure allows for higher robustness as the random removal of any edge is
unlikely to disconnect the core, and peripheral nodes remain connected via the core
itself. Increasing the selective pressure further, the core group eventually becomes
so dense that its nodes no longer require to preferentially connect amongst each
other to ensure a high level of robustness. They instead connect predominantly to
the periphery, and we observe an asymmetric bipartite structure.
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By combining both fitness criteria, we observed different combinations of the
above structures, where the core-periphery and bipartite structures can either ap-
pear in duplicate (i.e. we observe two symmetric core-periphery or bipartite struc-
tures) or accompanied by an additional cluster which ensures high modularity values.
Notably, we observed regions of the parameter space where the interplay between
the selective pressures can have synergistic or antagonistic effects, and optimising
for a specific characteristic can facilitate or hinder optimising for the other.

Our results show how the interaction between different selective pressures can be
combined in simple network models, offering a platform to investigate the effects that
different fitness criteria can have on the emerging network structures. Understanding
these effects can help us better elucidate the interplay between network structure and
function and prove crucial for designing networks aimed at optimising one or more
predefined tasks or properties. Furthermore, identifying structures that optimise
specific external criteria may help us understand how networks evolve when these
external conditions are changed, providing possible insights into network resilience
and failure processes.

6.2 Future outlooks

The introduced framework is flexible enough to allow for a wide range of extensions
and modifications. In what follows, we present some of the possible extensions that
can be explored.

6.2.1 Different optimisation criteria

The consideration of different sets of optimisation criteria naturally emerges as the
most immediate modification. Although the choice of the criteria is arbitrary, the
most direct extensions related to the work carried out throughout this thesis are

Node percolation:

As we have seen in Section 2.3.1, the formalism describing edge percolation can
easily be extended to account for the removal of nodes instead (node percolation).
Comparing the structures that emerge as a result of edge and node percolation is
interesting in its own right, as it is not assured that the observed behaviour should
remain the same.

Targeted attacks:

Throughout this thesis, we have analysed the most likely large-scale structures that
emerge when a network is driven to optimise its robustness against random edge
removals, but different ”attack” protocols can be considered. One example is to
consider a non-uniform removal of nodes (or edges), i.e. a percolation process in
which not all nodes (or edges) have the same probability of being removed from the
network. Effectively, this amounts to considering the case of targeted (as opposed to
random) attacks on a network. Generally, this is achieved by considering occupation
probabilities for each node that depend on some pre-specified characteristic. The
degree of a node, for example, is a commonly studied choice, in which the occupation
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probability φk depends on the degree, k, of the node, but other choices are possible.
One could consider different occupation probabilities for nodes belonging to different
groups in the network or a combination of both node degree and group membership.
By varying our choice of the occupation probability, a host of complex removal
patterns may be examined.

The optimal structures that emerge when considering a non-uniform removal of
edges are known to be different than what is obtained by considering a uniform
removal [40]. However, real-world networks are often under pressure to optimise (or
at the very least look for the best compromise in robustness) both against random
failures and targeted attacks. Our framework can readily capture the interplay be-
tween these two criteria, providing a basis to further study the emerging topologies.

More generally, it would be interesting to apply the formalism developed in this
report to different sets of evolutionary constraints to determine what structures
dominate the Pareto front (thus providing the best trade-off between the various
selective pressures) and evaluate whether any recurring structures occur across dif-
ferent criteria.

6.2.2 Arbitrary degree distributions and other SBM vari-
ants

The framework presented in this thesis is centred around the stochastic block model.
While the SBM allows us to gain valuable insights into how optimisation processes
can drive network formation, it also presents some limitations. As mentioned in
Section 2.2.3, one of the most significant drawbacks of the traditional stochastic
block model lies in its inability to capture heterogeneous degree distributions such
as those commonly observed in real-world networks. To circumvent this problem,
Karrer and Newman introduced the degree-corrected stochastic block model (DC-
SBM) [75], which can, in principle, account for any arbitrary degree distribution of
the nodes. In what follows, we briefly outline how this extension can be incorporated
into our modelling framework and analyse some of its advantages and limitations.

Poisson stochastic block models

Section 2.2.3 introduced the standard stochastic block model as a generative network
model for simple graphs. We have seen that networks are generated so that each
entry of the adjacency matrix, Aij, follows a Bernoulli distribution. For ease of
calculation, it is often convenient to introduce a multi-graph version of the stochastic
block model in which, rather than placing a single edge between any pair of nodes,
we place a Poisson-distributed number of edges with mean λrs depending only on
the group membership of the nodes. The probability of observing a network in the
ensemble is then given by

P (A|λ, b) =
∏
i<j

λ
Aij

bibj
e−λbibj

Aij!
×
∏
i

(
1
2
λbibj

)Aii/2 e−
1
2
λbibi

(Aii/2)!
, (6.1)

where, as before, the diagonal entries of the adjacency matrix, Aii, are equal to twice
the number of self-edges from node i to itself. In principle, the Poisson SBM allows
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both self and multiple edges to exist between nodes, which is unrealistic with respect
to most real-world networks. However, in the sparse regime we are interested in, this
model can be shown to differ only negligibly from the original Bernoulli model [79,
114]. Intuitively, this is clear, as in the sparse regime prs = λrs = O(N−1) with
N � 1, the probability of having a multi-edge is small. Consequently, multi-edges
can be neglected (a similar picture holds for self-edges). There is then little difference
in the networks generated by the two models in the sparse limit.

The degree-corrected stochastic block model

The Poisson SBM introduced above suffers the same problematics as its Bernoulli
counterpart. Namely, all nodes within the same group will have the same degree
distribution. Moreover, as the degrees of the nodes correspond to sums of inde-
pendent Poisson variables, the degree distributions of the groups will be Poisson.
Consequently, the SBM will tend to avoid placing nodes of very different degrees
within the same group.

The DC-SBM circumvents this limitation by incorporating degree heterogeneity
within the generating mechanism. To achieve this, each node is assigned an addi-
tional parameter, θi, which controls its expected degree independently of the node’s
group membership. The DC-SBM then generates networks with probability

P (A|λ,θ, b) =
∏
i<j

(θiθjλbibj)
Aije−θiθjλbibj

Aij!
×
∏
i

(
1
2
θ2
i λbibi

)Aii/2 e−
1
2
θ2i λbibi

(Aii/2)!
. (6.2)

By varying the parameters theta, we can achieve (in expectation) any desired degree
sequence. Note that by setting θi = 1, ∀ i, we recover the Poisson SBM introduced
above.

θi and λbibj appear multiplied in Eq. (6.2); this means that they can be arbi-
trarily rescaled provided their product remains unchanged. Correct identification
of the parameters then requires a constraint. A common choice is to require that∑

i θiδbi,r = 1, where δx,y is the Kronecker delta. With this choice, the parame-
ters acquire a straightforward interpretation, where λrs corresponds to the expected
number of edges between groups r and s, and θi is the probability that an edge
connecting to the group to which node i belongs lands on node i.

Given Eq. (6.2), we can evaluate the entropy of the DC-SBM, which, in the
sparse regime and with our previously introduced parametrisation, is given by

Σ(κ,m, b) =
∑
κ

Nκκ lnκ− N〈k〉
2

∑
rs

mrs ln

(
mrs

mrms

)
, (6.3)

where Nκ is the number of nodes with expected degree κ and we have disregarded
constant terms. By incorporating this entropy into our framework, we can capture
the role that connectivity plays in optimising pre-specified characteristics.

Note that the model described above for the degree-corrected SBM imposes the
degree sequence in expectation. This is standard in many settings in network science.
As we mentioned in Section 2.2.1, we are often interested in the typical behaviour of
networks rather than the behaviour of one particular instance. Fixing the expected
value of the degree sequence then allows us to generate networks where the actual
degrees of nodes can vary, only their mean value being set. However, in our context,
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where we aim to characterise the role that network connectivity plays in optimising
specific characteristics, it might be more beneficial to consider the imposed degree
sequence as fixed rather than defined only on expectation. This can be achieved by
fixing both the degree ki of each node as well the number ers of edges between groups
r and s. Then, for each edge required to fall between r and s, one picks two stubs at
random (one from group r and one from group s) and connects them. This model
defines a network ensemble consisting of all possible configurations satisfying a given
degree sequence where the number of edges between groups has been fixed and is
a direct extension of the configuration model. This ensemble has been extensively
studied by Peixoto [65, 78, 83, 115] and is known as the microcanonical stochastic
block model.

The parameters of the microcanonical SBM are the partition b = {bi} of nodes
into B groups, the degree sequence k = {ki}, and the matrix of edge counts between
groups e = {ers}, where ers is the number of edges between groups r and s. Given
these parameters, the probability of observing a particular network can be calculated
as follows. Let Ω(e) be the number of configurations (pairings) that respect the
edge constraints ers. As with the configuration model, many of these pairings will
correspond to the same network. Let then Ξ(A) be the number of configurations
corresponding to a particular graph A. The probability of observing A given the
model parameters is then simply the ratio between Ξ(A) and Ω(e),

P (A|k, e, b) =
Ξ(A)

Ω(e)
. (6.4)

Let us compute Ξ(A) and Ω(e). Since our model allows for multiple and self-
edges, then for a given adjacency matrix A, the number of matchings Ξ(A) com-
patible with it is the same as in the configuration model introduced previously,

Ξ(A) =

∏
i ki!∏

i<j Aij!
∏

iAii!!
. (6.5)

For Ω(e), the computation is similar to the one for Ξ(A). Indeed, the number of
configurations that respect the constraints ers will be the same as Ξ(A), but with
the matrix of edge counts taking the place of the adjacency matrix and the groups
playing the role of nodes,

Ω(e) =

∏
r er!∏

r<s ers!
∏

r err!!
. (6.6)

We then have,

P (A|k, e, b) =

∏
r<s ers!

∏
r err!!

∏
i ki!∏

r er!
∏

i<j Aij!
∏

iAii!!
. (6.7)

Taking the logarithm of Eq. (6.7), we can compute the entropy of the model [65] as

Σ(k, e, b) = −E − 1

2

∑
rs

ers ln
ers
eres
−
∑
k

Nk ln k!. (6.8)

If we allow each group in the network to have its own degree distribution prk, rep-
resenting the probability of observing a node of degree k in group r, then Eq. (6.8)
can be further re-written as

Σ(e,p, b) = −E − 1

2

∑
rs

ers ln
ers
eres
−
∑
r

nr
∑
k

prk ln k!−
∑
r

nr
∑
k

prk ln prk, (6.9)
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where nr is the number of nodes in group r, and we have now included the entropy
of the degree distributions of the individual groups. With our parametrisation and
disregarding constant terms the entropy becomes

Σ(ω,m,p) = −〈k〉N
2

∑
rs

mrs ln
mrs

mrms

−
∑
r

ωr
∑
k

prk ln k!−
∑
r

ωr
∑
k

prk ln prk.

(6.10)
Using Eq. (6.10) as our ensemble entropy, the free energy can be written as

F(ω,m,p) = −
∑
i

βiRi(ω,m,p)− Σ(ω,m,p). (6.11)

which we can then proceed to minimise as before.1

Incorporating the degree distribution of the network directly as a model pa-
rameter allows us to explore the role that network connectivity plays in optimising
specific criteria. However, while including the degree distributions of the groups into
our modelling framework is straightforward, doing so introduces additional compli-
cations. Namely, we must ensure that the constraint

∑
k kp

r
k = (mr/ωr)〈k〉 holds

at all times. This requirement cannot be easily converted to an unconstrained opti-
misation problem, and constrained optimisation techniques would probably need to
be employed. Another issue that must be addressed is how to compute the infinite
summations over the degrees k, as in most cases, it will not be possible to solve them
analytically. A possible solution could be to impose a cut-off value kmaxr representing
the maximum allowed degree of nodes in group r. The underlying idea is that, for
large enough kmaxr , our framework should prove flexible enough to capture a rich
collection of degree distributions. Note, however, that the inclusion of these kB ad-
ditional parameters used to model the group degree distributions would, invariably,
slow down the optimisation procedure. As we have pointed out before and shall see
in the following section, speed is one of the key limitations of our framework, and
further work to improve its efficiency would be advisable.

Further extensions centred around other variants of the SBM are also possible
and would allow us to capture further variability in the network structure. Ex-
amples include mixed-membership models, weighted and directed networks, triadic
closure, and networks annotated with metadata. However, it is important to note
that while all of these extensions could potentially allow us to model increasingly
complex scenarios and analyse the role played by different network characteristics
in optimising a set of pre-specified features, there is a large class of descriptors for
which the model presented in this Thesis is sufficient. Modularity is a prime ex-
ample. As Q is a function solely of the block parameters (specifically the affinity
matrix m), no other network characteristic such as degree distribution or triadic
closure will alter the results. Robustness (as measured by the fraction of nodes,
S, in the giant connected component) is in some ways similar. Although not as
straightforward as modularity, and although it is true that the degree distributions

1The use of the microcanonical SBM over the canonical one is an important modelling choice
as, in general, the two ensembles are known not to be equivalent, meaning that they will generate
different networks with different probabilities even in the sparse limit with N � 1. We refer the
reader to [65, 78] for a more in-depth discussion on the equivalence of these two ensembles.

86



CHAPTER 6. CONCLUSIONS 6.2. FUTURE OUTLOOKS

of the groups could play a role in determining the overall robustness of the network,
there are not many other extensions that could significantly come into play. For
example, considering triadic closure would be pointless, as any edge used to close a
triangle would simply be connecting nodes which are already connected. Further-
more, even in the case of the degree corrected SBM, there could still be vast swaths
of the phase space in which the degree distribution remains a Poisson. To see why
this is so, we can explicitly write down the minimisation procedure. Our problem
amounts to minimising Eq. (4.23), subject to the following constraints,

∑
r

ωr = 1, (6.12a)∑
rs

mrs = 1, (6.12b)∑
k

pr(k) = 1, (6.12c)∑
k

kpr(k) =
mr

ωr
〈k〉, (6.12d)

where Eqs. (6.12a) - (6.12c) enforce a correct normalisation of the parameters, and
Eq. (6.12d) ensures that the average degree of the single groups is well defined. We
can then construct the following Lagrangian

Λ(ω,m,p) = −βR +
〈k〉
2

∑
rs

mrs ln
mrs

mrms

+
∑
r

ωr
∑
k

prk ln k!

+
∑
r

ωr
∑
k

prk ln prk −
∑
r

ξr

(∑
k

prk − 1

)

−
∑
r

µr

(∑
k

kprk −
mr

ωr
〈k〉
)
− γ

(∑
r

ωr − 1

)
− η

(∑
rs

mrs − 1

)
.

(6.13)

The corresponding saddle point equations with respect to the degree distributions
and group sizes are given by

∇prk
Λ = −β∇prk

R + ωr ln k! + ωr [ln prk + 1]− ξr − µrk = 0,

∇ωrΛ = −β∇ωrR +
∑
k

prk ln k! +
∑
k

prk ln prk −
µrmr

ω2
r

〈k〉 − γ = 0,

(6.14)

(6.15)

while for the edge parameters, we obtain two equations, one for the diagonal terms
of the affinity matrix and one for the off-diagonal entries.

∇mrrΛ = −β∇mrrR +
〈k〉
2

(
ln
mrr

m2
r

− 1

)
+ 〈k〉µr

ωr
− η = 0

∇mrsΛ = −β∇mrsR + 〈k〉
(

ln
mrs

mrms

− 1

)
+ 〈k〉

(
µr
ωr

+
µs
ωs

)
− 2η = 0

(6.16)

(6.17)

Eqs. (6.14) - (6.17) give us a set of coupled non-linear differential equations that
we can attempt to solve for the model’s parameters. While no general closed-form
solution to these equations exists, they can be solved analytically for β = 0, resulting,
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as expected, in a random graph structure. Specifically, for any partitioning of the
network into B groups of arbitrary sizes ωi, i ∈ [1, B], the free energy minimisation
leads to an affinity matrix such that the connections between groups are given by
mrs = ωrωs. This leads to groups with Poisson degree distributions and average
degree κr = 〈k〉, ∀r. 

ωr =
1

B
,

mrs =
1

B2
,

pr(k) =
e−〈k〉〈k〉k

k!
.

(6.18)

This result suggests that, at least for small to moderate values of the selective
pressure, the degree distributions of the emerging topologies might still be Poisson,
as deviating significantly from a Poisson distribution might incur in high entropic
costs.

Although this is merely a hypothesis, which would have to be verified, it does
appear to be in line with previous findings. For example, in [40], Peixoto and Born-
holdt, analysing the resilience of interdependent networks to random failures and
intentional attacks, found a simple core-periphery topology, similar to the ones ob-
served in this Thesis, to be optimal against random failures. No other features often
observed in real-world systems, such as scale-free distributions, emerged as a result
of needing to optimise robustness. Similarly, in [39], Schneider et al. found that
a highly assortative “onionlike” topology, in which nodes of similar degree connect
preferentially amongst each other, emerged as the most robust large-scale structure
against targeted attacks. This “onionlike” topology is qualitatively equivalent to
a stochastic block model, as nodes with the same degree are statistically indistin-
guishable.

Finally, it is worth mentioning that even this simple model based around the
traditional SBM is already surprisingly complicated and worth understanding better.

6.2.3 Speed and computational complexity

One of our proposed framework’s main limitations is its speed, as seen in Sec-
tion 5.4 when attempting to increase the number of groups. In what follows, we
briefly overview what makes our approach slow and give a few ideas on how this
issue might be tackled to improve computational efficiency.

In general, the standard way of evaluating the computational complexity of an algo-
rithm is via asymptotic or Big-O notation [116]. While useful in compiled languages
such as C, it might be somewhat misleading in our setting. Our code makes heavy
use of the NumPy library [117] and, as a result, is a mix of interpreted Python and
compiled code. This can raise issues, as interpreted code can be orders of magni-
tude slower than its compiled counterpart, meaning that two operations with the
same Big-O complexity can have drastically different running times. Nevertheless,
even disregarding these implementation differences, Big-O complexity is sufficient
to understand what makes our code slow.

The principal issue slowing down the code is that the free energy computation is
O(B2) (or O(B2

S) in the case of multiple fitness criteria), making it highly inefficient
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Figure 6.1: Average running times as a function of the system size for the entropy, Σ,
modularity, Q, fraction of nodes in the GCC, S, and the free energy, f . Averages and
standard deviations are computed over five different network realisations. Regression
lines are drawn as a visual guide.

as the number of groups is increased. However, this is only part of the picture, as
Big-O notation discards constant terms, which can have significant effects in practice
when running code. Moreover, in our particular case, these effects are compounded
by the fact that interpreted code is generally slower than compiled code. To better
understand what is slowing down our code, we can consider separately the times
required to evaluate the modularity, Q, the fraction of nodes in the giant compo-
nent, S, and the entropy, Σ, as a function of the number of groups BS

2. Although
all three quantities can be shown to be O(B2), they can have significantly different
running times, as can be seen in Fig. 6.1.
It is straightforward to understand why S is dominating the times required to com-
pute the free energy. As we saw in Section 4.2.2, in order to compute S, we must
solve Eq. (4.15) by repeated iterations. Eq. (4.15) requires us to compute a sum
over all groups s and to do so once for each group r. It follows that each iteration
has a computational cost of O(B2

S), meaning that the total complexity involved in
solving Eq. (4.15) is O(niter ·B2

S), where niter is the number of iterations required for
Eq. (4.15) to converge. Formally, niter is a constant and, as such, can be neglected
from our Big-O calculations. However, from a practical standpoint, niter can grow to
be quite large (around 250 iterations for some values of βS) and significantly impact
the running times.

2In keeping with the main text, we increase BS by keeping l fixed to two and increasing q so
that, as BS grows, so does BQ
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To make matters worse, we cannot, in general, compute the gradient of F ana-
lytically and must resort to numerical optimisation techniques to perform the min-
imisation. In our particular case, we have used the L-BFGS-B algorithm, whose
complexity can be shown to scale as O(mn) per iteration [118], where n is the input
size and m is a user-defined constant 3. Note that this is the cost per iteration,
not per function evaluation (which can be evaluated multiple times per iteration).
It is clear then that as the number of groups used to model the network increases,
the evaluation and minimisation of the free energy function can become desperately
slow.

Despite these difficulties, some steps can be taken to improve the situation.
Utilising automatic differentiation is already a good step, as it allows us to avoid
potentially costly computations to estimate the gradients during the minimisation
process (forward finite differences, for example, would require O(n) function evalua-
tions per gradient estimation). Another potentially computationally efficient step to
take is the implementation of just-in-time compilation, which allows to pre-compile
part of the interpreted Python code at runtime and can speed up code almost to the
levels of C or FORTRAN. However, the biggest hurdle in computational cost still
boils down to evaluating and minimising the free energy function. Improving the
evaluation of the free energy is, to a certain extent, ill-defined, as the free energy
will depend on the evaluation of the chosen fitness criteria, which are arbitrary. The
procedure would still benefit from an algorithm capable of evaluating the entropy
faster than O(B2). However, as seen in Fig. 6.1, the entropy computation is negli-
gible with respect to other quantities of interest, at least along a wide range of B
values.

Exploring alternative minimisation procedures is another option. While the L-
BFGS-B is a state-of-the-art optimisation technique with a time complexity per
iteration which scales linearly with the input size, it has recently been argued that
it might not be best suited for black-box optimisation problems in which informa-
tion about the gradients is absent. As gradient information is unavailable, it would
have to be estimated by potentially costly methods such as finite differences. Fur-
thermore, L-BFGS computes an approximation of the Hessian inverse starting from
m previously-stored gradients. In the case of a large-scale black-box function, the
information provided by only m gradients might be small, and the gradient estima-
tions imprecise. In turn, this can scale up the runtimes in the number of function
evaluations by a factor of n [119]. As such, it might be worth exploring whether
derivative-free algorithms might perform better. Other approaches to reduce the
computational complexity of the optimisation process are also possible. For exam-
ple, O-LBFGS [120, 121] presents an online generalisation of L-BFGS similar to
stochastic gradient descent, which reduces the computational complexity by evalu-
ating, at each iteration, the error and gradients on a random subset of the dataset.

3As mentioned in Section 4.1.2, L-BFGS-B is a quasi-Newton method that works by approxi-
mating the Hessian inverse to guide the search through the phase space. However, computing and
storing an n × n matrix (as in the original BFGS algorithm) can be computationally expensive.
The L-BFGS and L-BFGS-B algorithms circumvent this limitation by only storing the last m
computed gradients and positions and then constructing the Hessian inverse approximation from
these quantities. The constant m determines how many gradients to store in memory. See [118]
for more information on the L-BFGS and L-BFGS-B algorithms.
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6.2.4 Network inference

As mentioned briefly in Section 2.2.3, stochastic block models have found widespread
use as means to infer modular structures in empirical networks [79]. One of the fun-
damental reasons for their use in this context is their generative nature, which allows
for principled inferential approaches based around Bayesian techniques. The frame-
work presented in this Thesis shares the same parametrisation as these models. As
such, we expect that the two approaches can eventually be combined, allowing us to
identify the dominant driving mechanisms of network formation directly from net-
work data. Furthermore, framing the presented model in an inference setting would
open up opportunities in areas as diverse as making predictions that generalise from
past observations, identify errors and omissions in data, and provide possibilities
for architectural improvements. However, extending the framework to an inferential
setting can present some challenges. In what follows, we briefly introduce the prob-
lem of inferring modular structures in networks and highlight the main challenges
that must be addressed if one is to extend our modelling framework to an inferential
setting.

Network inference

Network inference, or a posteriori blockmodelling, is the task of fitting block models
to network data in an attempt to uncover the large-scale structure characterising the
network. More specifically, the inferential task consists of finding the most likely
partition, b, that gave rise to an observed network A. This can be achieved by
resorting to Bayes’ rule,

P (b|A) =
P (A|b)P (b)

P (A)
, (6.19)

where P (A|b) =
∫
dξP (A|ξ, b)P (ξ|b) is the marginal likelihood integrated over

the remaining model parameters, P (A) is known as the evidence and acts as a
normalisation constant, and P (ξ|b) and P (b) are known as prior distributions and
encode our beliefs about the block partition before we have observed any data. By
maximising this posterior distribution, we can find the most likely partition given
the observed network.

Prior selection is particularly important in Bayesian inference, as they affect
the shape of the posterior and, therefore, the results of the inferential procedure.
Ideally, one would choose the priors based on previous observations. However, this
is typically not possible for networks as they are often singletons (i.e. they are
unique objects rather than coming from a population). A common approach is to
be maximally agnostic about the possible partitions and take the prior P (b) as a
constant, meaning that all possible partitionings are, a priori, equally likely. With
this choice of priors, we have that the posterior is proportional to the likelihood,
so that maximising the posterior is equivalent to maximising the likelihood with
respect to the model parameters,

b̂ = argmax
b

P (A|b). (6.20)

This approach is known as maximum likelihood estimation (MLE). In most practical
situations, it is easier to maximise the logarithm of the likelihood, logP (A|b), known
as the log-likelihood. Note that, since the logarithm is a monotonically increasing
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function of its argument, the log-likelihood leaves the position of the maximum
unchanged.

The first challenge we are faced with when attempting to extend our framework
to an inferential setting is that we do not have a clear expression P (A|p, b,β)
for our likelihood. Indeed, our framework does not specify a particular generating
mechanism (throughout this work we have used the stochastic block model, but,
in principle, any generating mechanism can be used so long as we can compute its
entropy), rather, it employs the maximum entropy principle to generate null models
for optimised network structures. It is then not immediately clear how to formulate
a likelihood. However, if we consider the log-likelihood of the stochastic block model,
we can observe that it has an interesting information-theoretic interpretation. For
simplicity, let us work with the Poisson SBM introduced in Section 6.2.2, which
generates networks with probability

P (A|λ, b) =
∏
i<j

λ
Aij

bibj
e−λbibj

Aij!
×
∏
i

(
1
2
λbibj

)Aii/2 e−
1
2
λbibi

(Aii/2)!
. (6.21)

We can write its log-likelihood as

logP (A|λ, b) =
∑
i<j

Aij log λbibj − λbibj − logAij!

+
∑
i

Aii
2

log
λbibj

2
− λbibj

2
− log

(
Aii
2

)
!

(6.22)

Ignoring terms which do not depend on the parameters of the model, we have

logP (A|λ, b) =
∑
i<j

(
Aij log λbibj − λbibj

)
+
∑
i

(
Aii
2

log
λbibj

2
− λbibj

2

)
=

1

2

∑
ij

(
Aij log λbibj − λbibj

)
=

1

2

∑
ijrs

Aij log λrsδbirδbjs −
1

2

∑
ijrs

λrsδbirδbjs

=
1

2

∑
rs

(ers log λrs − nrnsλrs) , (6.23)

where ers is the number of edges between groups r and s, nr and ns correspond to
the number of nodes in groups r and s respectively, and we have once more made
use of the Kronecker delta.
Maximising Eq. (6.23) with respect to the parameters λrs is straightforward, and
gives us our maximum likelihood estimate of the parameters λrs,

λ̂rs =
ers
nrns

. (6.24)

Substituting Eq. (6.24) back into Eq. (6.23) and ignoring constant terms, we have
that, at this maximum

logP (A|λ̂, b) =
1

2

∑
rs

ers log
ers
nrns

. (6.25)
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Eq. (6.25) cannot be maximised analytically with respect to the group mem-
berships of the nodes, and one must resort to numerical techniques. However, we
can notice that it has an interesting property. By adding and dividing by constant
terms, Eq. (6.25) can be re-written as

logP (A|b) =
∑
rs

ers
2E

log

(
ers/2E

nrns/N2

)
, (6.26)

where we have discarded irrelevant constant terms.
Suppose that we are given some fixed assignment of the nodes into groups. Then

ers/2E is the probability, pK(r, s), that a randomly chosen edge in the network
connects two nodes in groups r and s respectively. nrns/N

2, on the other hand,
corresponds to the same probability in a network with the same group membership
of the nodes, but with the edges now being placed entirely at random (pER(r, s)).
The log-likelihood can then be written as

logP (A|b) =
∑
rs

pK(r, s) log
pK(r, s)

pER(r, s)
. (6.27)

Eq. (6.27) is equal to the Kullback-Leibler divergence [122] (KL divergence) between
the probability distributions pK and pER, and measures the expected excess surprise
from using pER as a model when the actual distribution is pK . 4 Therefore, the most
likely group assignments for the SBM are those which are most surprising compared
to the Erdős–Rényi random graph.

Similarly, the log-likelihood for the DC-SBM can be written as

logP (A|b) =
∑
rs

ers
2E

log
ers/2E

(er/2E)(es/2E)
=
∑
rs

pK(r, s) log
pK(r, s)

pdeg(r, s)
(6.28)

where er is the total number of half-edges incident on group r and pdeg = (er/2E)(es/2E)
corresponds to the probability that a randomly chosen edge connects two nodes in
groups r and s respectively in a network with the same group assignment as the
original one, but in which all stubs have been randomly rewired according to the
configuration model. Therefore, the most likely group assignments for the DC-SBM
are those which are most surprising with respect to the given expected degree se-
quence.

In a similar spirit, we might wish to construct a quantity that measures the
distance of the distribution of edge placements being inferred from that of our null
model obtained via the framework presented in this Thesis. Therefore, given a
network and a set of corresponding graph observables {Ri} to be used as our fitness
criteria, which take on values {R∗i }, one possible way of proceeding is the following:

1. Using our framework, determine the values of the parameters λ∗ and b∗ which
maximise the entropy subject to the constraints Ri(λ, b) = R∗i .

2. Define a probability distribution

pevo =
e∗rs
2E

(6.29)

4 In information theory, surprise, or surprisal, is a measure of the information content contained
in a particular outcome. In this sense, the KL divergence can be thought as measuring the extra
number of bits required to encode samples from pK when pER is erroneously used as a distribution.
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representing the probability that a randomly chosen edge in our null model
connects a node in group r to one in group s.

3. Maximise the KL divergence

DKL(pK ‖ pevo) =
∑
rs

pK(r, s) log
pK(r, s)

pevo(r, s)
. (6.30)

Where, as before, pK(r, s) = ers/2E. This corresponds to selecting the most likely
group assignments as those most surprising with respect to our “evolutionary” null
model.

However, the approach outlined above has a number of serious drawbacks. To
begin with, the procedure does not correspond to a maximum likelihood estima-
tion. We still have not written down an actual likelihood, and Eq. (6.30) does
not correspond to the log-likelihood of the SBM. This is problematic, as we lose
the principled probabilistic approach rooted in statistical inference and are merely
proposing an ad-hoc metric to infer the partitions. Secondly, this approach assumes
that the number of groups in the network is known a priori, which is generally never
the case in community detection problems. It is important to note that this second
point is common to all community detection methods based on MLE. Indeed, it is a
well-known fact that, if the number of groups is not known beforehand, the optimal
value of the likelihood function is a strictly increasing function of B [115]. There-
fore, maximising the log-likelihood will lead to the trivial partition B = N . This
limitation is generally overcome by resorting to minimum description length meth-
ods (MDL) [79, 115, 123], where the description length is defined as the logarithm
(generally taken base 2) of the joint distribution of the network and the model.

L(A, b) = − log2 P (A, b)

= − log2 P (A|b)− log2 P (b). (6.31)

The description length describes the number of bits needed to encode the network
along with the model parameters. Given L(A, b), Eq. (6.19) can then be re-written
as

P (b|A) =
2−L(A,b)

P (A)
. (6.32)

Since the evidence does not depend on the group partition, maximising the posterior
is equivalent to minimising the description length. Therefore, the network partition
that maximises the posterior corresponds to the choice of model parameters that
most compresses the data.

It is easy to see why Eq (6.31) prevents the overfitting behaviour exhibited by
the likelihood. The first term in Eq. (6.31) encodes the number of bits required to
describe the network if the model parameters are known. The second term encodes
the number of bits required to describe the model (via its parameters). As the
complexity of the model increases (by increasing the number of groups), it will
constrain itself better to the data, and − log2 P (A|b) will decrease. However, as
the complexity of the model increases, more bits will be required to describe it,
and − log2 P (b) will increase. The second term then acts as a penalty, preventing
models from becoming overly complex, and the optimal choice corresponds to a
balance between the two terms.
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A fundamental aspect for this framework to function correctly lies in the choice
of the priors. A common choice is to use non-informative priors, which are maximum
entropy distributions that are maximally agnostic about the model before observ-
ing any data and do not bias the posterior. However, a naive implementation of
uninformative priors can lead to erroneous results [79]. A more principled approach
is to take a non-parametric standpoint, where priors are themselves sampled from
hyperprior distributions [79, 124]. Then, by considering a hierarchy of priors and
hyperpriors of the kind P (b|ξ, B)P (ξ|B)P (B), where ξ are additional model pa-
rameters, it is possible to infer the number of groups B along with the partitioning
b of the network.

However, this procedure could be further complicated in our case, as to determine
the parameters λ∗ and b∗ of our evolutionary null model, the number of groups
needs to be known beforehand. This is not ideal, as we would like to infer both
quantities (the model parameters and the number of groups) directly from the data.
Therefore, even if we can construct a generative model with a log-likelihood similar
to Eq. (6.30), additional work would be required to formulate appropriate priors
for the model. Furthermore, as our framework requires numerically minimising the
free energy to determine the null model parameters, the task of formulating the
priors could potentially prove to be a challenging one. However, as mentioned at
the beginning of the chapter, extending our framework to an inferential setting
could potentially open the doors to numerous applications and further work in this
direction is desirable.
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