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Summary

The main focus of this thesis is a branching particle system with selection, called the

N -particle branching random walk (N -BRW), which was �rst proposed by Brunet and

Derrida. The N -BRW is a discrete time stochastic process, which can be viewed as a toy

model of an evolving population a�ected by natural selection. In the N -BRW we have N

particles located on the real line at all times. At each time step, each of the N particles

has two o�spring, which have a random displacement from the location of their parent

according to some �xed jump distribution. Then among the 2N o�spring particles, only

the N rightmost particles survive to form the next generation.

The most interesting questions about the N -BRW concern the following properties.

First, the speed at which the particle cloud is moving to the right on the real line; second,

the shape of the particle cloud; and �nally the genealogy or family tree structure of the

population.

The study of the N -BRW and related branching particle systems with selection has been

of great interest in recent years. Existing results and conjectures show that the long-term

behaviour of the N -BRW heavily depends on the jump distribution.

For the N -BRW with `light-tailed' (roughly means exponentially decaying tails) jump

distribution, Brunet and Derrida made conjectures about the behaviours of the speed and

shape of the particle cloud, and about the genealogies of the population of particles. These

conjectures inspired several mathematical results in this area; for example, Bérard and

Gouéré proved the conjecture concerning the speed of the particle cloud.

For the N -BRW with `heavy-tailed' (meaning polynomially decaying tails) jump dis-

tribution, Bérard and Maillard described the behaviour of the speed and made predictions

about the genealogies and spatial distribution of the population. These results and con-

jectures all showed substantially di�erent behaviour from those in the case when the jump

distribution is `light-tailed'.

The �rst main result of this thesis proves the conjectures of Bérard and Maillard about

the `heavy-tailed' case of the N -BRW. We prove that at a typical large time the genealogy

of the population is given by a star-shaped coalescent, and that almost the whole population

is near the leftmost particle on the relevant space scale.

Furthermore, motivated by the fact that in the `light-tailed' and `heavy-tailed' cases the

N -BRW shows very di�erent behaviour, we studied an intermediate case, where the jump

distribution has stretched exponential tails. The second main result of this thesis describes

the behaviour of the speed of the particle cloud in the stretched exponential case, �lling a

gap between the `light-tailed' and `heavy-tailed' regimes.

Our third result is on the genealogy of the N -BRW when the jump distribution has

stretched exponential tails. We give a summary on the proof of this result rather than a

full proof. We also mention some of the remaining open questions about the genealogies in

this case, which we intend to study in the future.
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Chapter 1

Introduction

Branching processes are classical models in probability theory. The study of this area dates

back to the 1840's when Bienaymé investigated the extinction of noble family lines [7]. Since

then, an extensive literature has developed in this �eld, and applications range from popu-

lation modelling and population genetics, through epidemiology to nuclear chain reactions

(see several examples in [30]).

In classical branching processes, particles move around in space and branch into two or

more new particles, which continue moving independently of each other. In recent years, it

has been of great interest to include interaction between the particles to model phenomena

seen in real-world systems. In this thesis we focus on branching processes where the type

of interaction is modelling natural selection.

Questions investigated in the literature include the velocity and spatial distribution of

the cloud of particles, as well as the ancestral properties of a sample of particles. This

thesis contains new results concerning each of these problems.

In this introduction we describe the branching-selection particle system that we will

investigate, the N -particle branching random walk; we also outline the main results and

cover background on branching processes with selection.

1.1 Branching processes

The basic setting of branching processes is called the Bienaymé (or more commonly Galton-

Watson) process. This is a discrete time stochastic process on N0 := N∪{0}, which describes
the number of individuals in a population throughout a large number of generations. The

number of individuals in the (n + 1)th generation is given by the sum of the number of

children of every individual in the nth generation; each individual in the nth generation

has an independent and identically distributed (i.i.d.) number of children.

The important book of Athreya and Ney [1] explains several properties of Bienaymé

processes, starting from moments and survival probabilities to limit theorems in critical

and supercritical cases. The book also deals with other variants of branching processes,

such as continuous time and multitype branching processes.
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1.1. Branching processes

Furthermore, the book introduces branching processes with spatial components, for

example branching random walks, cascades and branching di�usions. In this thesis we will

focus on the spatial aspect, and the number of o�spring of each individual will be �xed

to be 2. We now introduce the process that we will call branching random walk (BRW)

throughout thesis.

The BRW model

To introduce the process we let X be a non-negative real-valued random variable. We will

refer to the distribution of X as the jump distribution. Then we de�ne the BRW as follows.

� Initially (at time 0) we have one particle at a position in R.

Then at each integer time step:

� Each particle is replaced by two o�spring.

� Each o�spring particle performs a jump from its parents' location, independently

from the other jumps, and with the same law as X.

Note that for each n, the nth generation consists of 2n particles. One could give a

more general de�nition, where the number of o�spring is random and follows a Bienaymé

process, and where the random variable X is not necessarily non-negative. However, in our

case the above de�nition will be more relevant.

In the area of branching random walks, questions about the limiting behaviour of the

rightmost position and of the rightmost trajectory have been studied in the literature. Zhan

Shi's lecture notes [43] contain several results in this area and discuss the role of certain

important martingales related to branching random walks.

In Section 1.4.1 we will discuss some of the existing results by Kingman [31], Ham-

mersley [29], Biggins [8], Durrett [21], and Gantert [27] on the limiting behaviour of the

rightmost particle in cases of jump distributions with di�erent tails. These results will be

interesting to compare with the behaviours we observe in the next model we introduce now,

the N -particle branching random walk (N -BRW).

The N -BRW is the main focus of this thesis. In this model we introduce the selection

rule, which keeps the population size constant, which is unlike the exponentially growing

population of the BRW model.

1.1.1 The N-BRW model

The N -BRW is a branching process with selection, with N particles located on the real line

at all times. Let us introduce the notation [N ] := {1, 2, . . . , N}. Let X1(n) ≤ · · · ≤ XN (n)

denote the ordered positions of the N particles at time n ∈ N0. The positions X1(n) will be

referred to as leftmost and XN (n) as rightmost particles at time n. Similarly to the BRW,

7



1.1. Branching processes

we let X be a non-negative real-valued random variable, whose probability distribution is

called the jump distribution.

In the process, the N particles start from some initial con�guration X1(0), . . . ,XN (0).

Then, at each time step a branching and a selection step is performed, which are de�ned

as follows:

Branching:

� Each particle is replaced by two o�spring.

� Each of the 2N o�spring particles performs a jump from its parents' location, inde-

pendently from the other jumps, and with the same law as X.

Selection:

� From the 2N o�spring particles only the N rightmost particles survive to form the

next generation. (We say that the N leftmost particles are `killed'.)

We give a formal de�nition of the N -BRW in Chapter 2.

The N -BRW model, together with other similar branching processes with selection,

was proposed by Brunet and Derrida in the physics literature [14, 15]. Based on their

further work with Mueller and Munier [11, 12] they conjecture that there is a class of

models which shows similar scaling properties in velocity, spatial distribution and genealogy,

independently of the details of the models.

Here, by genealogy we refer to the family tree structure of a uniform sample of particles

from the population. One of the reasons why Brunet and Derrida proposed this model is

that it is a toy model for an evolving population under natural selection. One can think of

the locations of the particles as representing the �tness levels of individuals in a population,

and the selection rule says that only the �ttest half of the o�spring individuals survive and

have descendants in future generations. Considering the toy model aspect of the N -BRW

it is particularly interesting to study the genealogies in this process.

The N -BRW with `light-tailed ' jump distribution is conjectured to be in the class of

models described by Brunet and Derrida, where by light-tailed we mean that the jump

distribution has some exponential moments. Bérard and Gouéré investigated the limiting

behaviour of the velocity of the particle cloud in the N -BRW, and proved one of the

conjectures of Brunet and Derrida rigorously in the light-tailed case [2].

Later on, Bérard and Maillard described the behaviour of the speed and the limiting

process of the N -BRW when the jump distribution has regularly varying tails (we call this

case `heavy-tailed ') [3]. Furthermore, they predicted the long-term behaviour of the spatial

distribution and the genealogy of the population in this regularly varying tails regime.

We give a detailed summary of the works [2] and [3] in Sections 1.4.2 and 1.4.3. The re-

sults of these two articles show that the N -BRW exhibits substantially di�erent behaviours

under light-tailed and heavy-tailed conditions. Inspired by earlier works, in this thesis we

investigate the N -BRW with di�erent jump distributions. We prove the conjectures that

8



1.2. Genealogy and spatial distribution for polynomial-tailed jump distributions

appeared in [3], and we study an intermediate case between light-tailed and heavy-tailed,

in which the jump distribution has stretched exponential tails.

1.2 Genealogy and spatial distribution for polynomial-tailed

jump distributions

In Chapter 2 we investigate the N -BRW with a jump distribution with regularly varying

tails. The precise statement of our result involves heavy notation which we are not going

to introduce in this section. Instead, we state the result informally, and for now, we also

assume a speci�c jump distribution instead of a general one with regularly varying tails.

We will introduce regularly varying functions in Chapter 2.

Assume that we have an N -BRW with jump distribution given by

P (X > x) = min(1, x−α) for all x ≥ 0, (1.2.1)

and for some α > 0.

1.2.1 Scaling

Before stating our main result, we mention a simple consequence of the selection rule, which

motivates the scaling in our result. As is illustrated in Figure 1-1, if a particle performs an

extremely large jump and ends up far ahead of every other particle, then its descendants

will have a large advantage compared to the other particles' descendants, and they will have

a good chance of surviving in future generations. It is then possible that the number of

descendants of the particle which made the extremely large jump doubles at each time step

until dlog2Ne time after the jump, when these descendants take over the whole population.

This simple idea is the reason for the choice of our time scale, which will be denoted by

`N := dlog2Ne . (1.2.2)

Then our relevant space scale will be

aN := (2N`N )1/α, (1.2.3)

which is shown as the order of magnitude of the size of an extremely large jump in Figure 1-

1. With this choice of aN , for any positive constant c, the expected number of jumps which

are larger than caN during a time interval of length `N is of constant order, as N goes to

in�nity. The reason for this is that at each time step there are 2N jumps in the N -BRW;

thus, by (1.2.1), in `N time we expect

2N`NP (X > caN ) = c−α

9



1.2. Genealogy and spatial distribution for polynomial-tailed jump distributions

T

T + 1

T + 2

T + 3

caN = c(2N`N )1/α

`N

Figure 1-1: Big jump e�ect and scaling of the N -BRW: The black and green dots represent
particles. Particles are ordered horizontally from left to right. Time increases from bottom
to top. Each particle is connected with a line with two other particles from the next
generation: these are its children, displayed at the horizontal locations where they jumped
to. Particles circled and crossed with red are killed in the selection step. This example
shows the particle con�gurations of the N -BRW between times T−1 and T+3 with N = 8.
The bottommost green particle performed a big jump of order aN . The descendants of the
green particle are also displayed in green. These descendants take over the population in
`N time steps.

jumps of size larger than caN . Jumps of order aN will be referred to as big jumps in the N -

BRW with polynomial tails. We note that Figure 1-1 illustrates the scaling and a possible

e�ect of a big jump, but it does not describe the typical behaviour of the process. Below

we give the informal statement of the theorem we prove in Chapter 2.

1.2.2 The main result (in words)

Consider the N -BRW with jump distribution given by (1.2.1). Recall that X1(n) denotes

the leftmost position at time n. When we say `with high probability', we mean with

probability converging to 1 as N →∞. Our theorem says the following.

For all η > 0, M ∈ N and t ∈ N0 with t > 4`N , the N -BRW has the following properties

with high probability:

� Spatial distribution: At time t there are N − o(N) particles within distance ηaN

of the leftmost particle, i.e. in the interval [X1(t),X1(t) + ηaN ].

10



1.2. Genealogy and spatial distribution for polynomial-tailed jump distributions

� Genealogy: The genealogy of the population on an `N time scale is asymptotically

given by a star-shaped coalescent, and the time to coalescence is between `N and 2`N .

That is, there exists a time T ∈ [t−2`N , t− `N ] such that with high probability, if we

choose M particles uniformly at random at time t, then every one of these particles

descends from the rightmost particle at time T . Furthermore, with high probability no

two particles in the sample of size M have a common ancestor after time T + εN`N ,

where εN is any sequence satisfying εN → 0 and εN`N →∞, as N →∞.

The genealogy result is illustrated in Figure 1-2. We call the coalescent star-shaped,

because looking on an `N time scale all coalescences of the lineages of the particles appear

to happen at the same time.

T

T + εN`N

t

o(`N )

t−
T
∈

[`
N
,2
`
N

]

Figure 1-2: Coalescence of the ancestral lineages of M = 6 particles sampled at time t. To
each particle in the sample we associate a vertical line, representing its ancestral line. Two
lines coalesce into one when the particles they are associated with have a common ancestor
for the �rst time going backwards from time t. The three dots in each line indicate that
the picture is not proportional: the time between t and T is of order `N , whereas the time
between all coalescences and T is o(`N ).

1.2.3 Tribe heuristics

In our proof we built on the idea of `tribes' which was described in the work of Bérard and

Maillard [3]. The message of the tribe heuristics is, that at a typical large time we should

think of the population as follows: On the aN space scale, N − o(N) particles are close to

the leftmost particle; we say that these particles belong to the big tribe. The rest of the

population is to the right of the big tribe in small tribes of size o(N). The number of small

tribes is of constant order, the distance between them is of order aN , and the distance

between particles within a tribe is o(aN ). We think of particles in a tribe (big or small) as

descendants of a single particle that made a big jump (see Section 1.2.1).

11
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We will see that the positions of the tribes do not change too much in `N time, but the

number of particles changes in each tribe. In particular the original big tribe will eventually

die out and one of the small tribes will grow to become the new big tribe. In order to start

a new tribe, a particle needs to make a big jump of order aN . If a particle performs a

big jump and becomes the rightmost particle or `leader', there is a good chance that its

descendants will take over the population (i.e. there will be N −o(N) of these descendants)

and become the new big tribe.

< ηaN

T

t− `N

T + `N

t

A

B

Figure 1-3: A particle that makes a big jump of order aN at time T is the common ancestor
of almost the whole population at time t. The vertical axis represents time, and the particles'

locations are depicted horizontally, increasing from left to right. The black dots represent particles.

Horizontal dotted lines in an ellipse show where the majority of the population (the big tribe) is.

The arrows represent jumps from the big tribe. At the top of the �gure we indicate that the every

particle in the big tribe is within distance ηaN for some small η > 0. The events labelled A and B

are described in the main text.

In Figure 1-3 we illustrate (with A) that a particle makes a big jump and becomes the

new leader at some time T ∈ [t−2`N , t− `N ]. With B we show a particle that also starts a

new tribe, but since this big jump happens signi�cantly after time t− `N , the tribe created
with that jump will still be a small tribe at time t. In contrast, the tribe started at A has

enough time to grow to a big tribe of size N − o(N) by time t. Once we have shown that

N−o(N) particles descend from a time-T particle with T ∈ [t−2`N , t−`N ], we will be able

to see that with high probability a sample of M particles are all from the big tribe, and

so they indeed have a common ancestor at time t. We will give a more detailed heuristic

12
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picture in Chapter 2.

By a path we mean a sequence of jumps between a particle and one of its descendants. A

key ingredient of the proof of our result will be a large deviation result on jumps restricted

to being smaller than aN multiplied by a small constant; the result says that paths without

big jumps move very little on the aN space scale. This will be the reason for tribes not

moving too much during a time interval of length roughly `N , in particular for the big tribe

staying close to the position of the original big jump it descends from.

The tribe heuristics will give us an idea of why the time to coalescence should be less

than 2`N in the genealogy, but to prove that the coalescent is in fact star shaped, we also

need to prove that there is no coalescence signi�cantly after the common ancestor makes

its big jump at time T . To do this, we will use concentration inequalities to prove that the

time-(T +εN`N ) descendants of the common ancestor have fairly similar numbers of time-t

descendants.

1.3 Stretched exponential case

1.3.1 Speed of the particle cloud

In Chapter 3 we describe the behaviour of the speed of the particle cloud in the case

when the jump distribution has stretched exponential tails. The motivation to investigate

this question comes from the fact that the behaviour of the speed is very di�erent in a

light-tailed and in a heavy-tailed setting (see Sections 1.4.2 and 1.4.3). Therefore, we were

interested in �lling the gap in between these two cases by looking at the intermediate jump

distribution with stretched exponential tails.

In order to state our theorem, we need a previous result of Bérard and Gouéré from

[2]. In that work the branching and selection steps of the process were the same as in the

N -BRW we de�ned earlier, but negative jumps were also allowed. It was shown that if

the jump distribution has some exponential moments, then for any �xed N the particle

cloud has a �nite deterministic asymptotic speed as time goes to in�nity. In this thesis

we assume that jumps are non-negative, and in that case we can state this result for any

(non-negative) jump distribution with �nite mean. We discuss the proof of this result in

Chapter 3.

Proposition 1.3.1. [2, Proposition 2] Consider an N -BRW with arbitrary initial con�gu-

ration and with a jump distribution given by the non-negative random variable X. Assume

that E [X] <∞. Then for any �xed N ∈ N, there exists vN ∈ R such that

lim
n→∞

X1(n)

n
= lim

n→∞

XN (n)

n
= vN , (1.3.1)

almost surely and in L1, where vN depends on the jump distribution.

Now we will state our result on the asymptotic behaviour of vN in the stretched expo-

13
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nential case of the N -BRW. We will assume the jump distribution

P (X > x) = e−x
β

for all x ≥ 0, (1.3.2)

for some �xed β ∈ (0, 1). In Chapter 3 we will consider a more general jump distribution,

where we replace xβ by a regularly varying function in the exponent. For any N ∈ N, let
vN denote the asymptotic speed given by (1.3.1) for the jump distribution in (1.3.2). For

two positive sequences aN and bN we say that aN ∼ bN as N → ∞, if aN/bN → 1 as

N →∞.

Theorem 1.3.2. Consider an N -BRW with arbitrary initial con�guration and with a jump

distribution given by (1.3.2). Then

vN ∼ (log 2)(logN)1/β−1 as N →∞.

The intuition behind this behaviour is the following. First, Theorem 1.3.2 says that the

particle cloud moves a distance (logN)1/β(1 + o(1)) in log2N time. Now notice that with

the jump distribution in (1.3.2), we have

P
(
X > (logN)1/β

)
= 1/N.

Since the number of jumps at each time step is 2N , we will be able to prove that for any

ε > 0, there will be a jump larger than (1 − ε)(logN)1/β at time 0 with high probability.

Then we can also prove that the population catches up with the particle that made this

jump in log2N time (because the number of descendants of this particle will double at each

time step until the whole population is to the right of the position the particle jumped

to). With this argument we will be able to show that the particle cloud moves at least a

distance larger than (1− ε)(logN)1/β in log2N time, and hence we have the lower bound

vN > (1− ε)(log 2)(logN)1/β−1.

It is not hard to see that the largest jump inA logN time is smaller than (1+ε)(logN)1/β

for any constant (independent of N) A > 0 with the jump distribution in (1.3.2). We prove

this property in Chapter 3, and then we show the other key step, which says that smaller

jumps will not increase the speed of the cloud.

We see this by proving a large deviation result for random walks with stretched exponen-

tial tailed jump distribution, but with jumps restricted to being less than (1+ε)(logN)1/β .

For this large deviation result we use ideas from work of Gantert [27]. The large deviation

result will allow us to conclude that no particle can get further than (1+ε)(log 2)A(logN)1/β

in A logN time. From there we will be able to conclude the upper bound

vN < (1 + ε)(logN)1/β.
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1.3.2 Genealogy

Our motivation to study the genealogy of the N -BRW in the stretched exponential case

came again from the fact that the polynomial and light-tailed cases behave very di�erently.

In Section 1.2 we discussed our result which said that the time to coalescence in the N -

BRW with polynomial tails is of order logN , and that the coalescent is star-shaped. In the

light-tailed case the conjecture is that the genealogy is given by the Bolthausen-Sznitman

coalescent and the time to coalescence is of order (logN)3 (see Section 1.4.4). We are now

interested in what happens in between these two cases.

In Chapter 4 we investigate the genealogy with the jump distribution given by (1.3.2),

for β ∈ (0, 1/2). Recall the notation `N = dlog2Ne. Our result says that for any large time

t, with at least probability of order (logN)−1/2, there exists a time k ∈ [t − 2`N , t − `N ],

such that a positive proportion of the time-t population descends from a time-k particle.

Chapter 4 provides a summary of the proof, in several cases omitting the details. The

chapter also aims to give an explanation of why the result cannot be improved with our

current method.

Now we state the main result of Chapter 4. For k ∈ N0, n ≥ k and i ∈ [N ], let Ni,k(n)

denote the set of time-n particles descended from the ith particle from the left at time k

(we introduce this notation formally in Chapter 2).

Theorem 1.3.3. Consider the N -BRW with a jump distribution given by (1.3.2) with

β ∈ (0, 1/2). There exist C > 0 and c > 0 such that for N su�ciently large, for all

t > 2`N ,

P (∃k ∈ [t− 2`N , t− `N ], i ∈ [N ] : |Ni,k(t)| ≥ cN) ≥ C

(logN)1/2
.

An initial guess for the behaviour in the stretched exponential case can be, that for

small values of β it is more similar to the behaviour in the heavy-tailed case, and for β

closer to 1, it is more similar to the light-tailed case. In the future we aim to study the case

when β ∈ [1/2, 1) and see whether there is a change of behaviour as we change the value

of β.

For β ∈ (0, 1/2), the behaviour of the genealogies is a more di�cult question than in

the polynomial tail case. One of the main reasons for this is the di�erence in the space

scaling. Recall that XN (k) and XN−1(k) denote the positions of the rightmost and second

rightmost particles at time k. In the polynomial case, for example in Figure 1-3, we have

a particle that takes the lead at some time T , and position XN (T ). We will prove in the

polynomial case that with high probability this particle will lead by a large distance, and

XN (T ) − XN−1(T ) will be of order aN (see (1.2.3)). This means that XN (T ) − XN−1(T )

will be of the same order as the size of the big jumps and the typical size of the diameter of

the particle cloud. Moreover, the number of jumps of this order in of order logN time can

be upper bounded by a constant with high probability. This means that not many particles

will overtake the descendants of the particle that has taken the lead.
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In contrast, in the stretched exponential case the size of the largest jump in of or-

der logN time is of size (1 + o(1))(logN)1/β , but the expected number of jumps of size

c(logN)1/β is 2N1−cβ even in a single time step, which is much larger than any constant

for c ∈ (0, 1) and N su�ciently large. As a result, we will need a more precise analysis in

the stretched exponential case than in the polynomial one.

In our proof we will investigate a time interval of length 2`N , so for simplicity, let us

�x t = 2`N . We will also �x a position y depending on the (arbitrary) initial con�guration

in such a way, that the expected number of time-2`N particles to the right of position y is

less than cN for some small constant c > 0.

By our speed result Theorem 1.3.2, we expect that the leftmost position of the cloud

moves a distance roughly 2(logN)1/β in 2`N time. We think of the typical diameter of the

particle cloud as roughly (logN)1/β , so we imagine that particles need to move a distance

between (logN)1/β and roughly 2(logN)1/β to survive at time 2`N . Now note that the

largest jump in 2`N time steps is of size about (logN)1/β . Using this, we can prove that

to reach position y at time 2`N , most particles need to make two `fairly big jumps' (we

will give a de�nition of these in Chapter 4), and at least one of the fairly big jumps should

be of order (logN)1/β . We then have to group the paths leading to the right of y by time

2`N , by their starting positions, and by the times and sizes of the fairly big jumps on the

path. Using this detailed analysis we give a lower bound on the probability that a single

particle, which makes a large �rst fairly big jump at a `good time' and from a `good starting

position', will have c′N time-2`N descendants for some constant c′ > 0. In Chapter 4 we

explain why we initially hoped that the above lower bound on the probability would be

a positive constant (independent of N), and why we eventually ended up with a factor of

(logN)−1/2.

1.4 Related literature

The works of Bérard and Maillard [3] and Bérard and Gouéré [2] gave the main inspiration

for this thesis. In Sections 1.4.2 and 1.4.3 we summarise the ideas of these two essential

articles, but before that we give some background on branching random walks below.

1.4.1 Propagation of branching random walks

Consider a BRW as de�ned in Section 1.1. Let us denote the rightmost particle position

in the BRW at time n by M(n) and recall the notation XN (n) in the N -BRW. Observe

that M(n) should typically be larger than XN (n) for any �xed N and large n. Indeed, take

for example a particle that is killed in the very �rst selection step in the N -BRW. If we

kept that particle, then its descendants could potentially go beyond the descendants of the

�rst N surviving particles later on, and they could lead to a larger value of the rightmost

position.

This idea becomes more apparent when one considers a coupling between the N -BRW
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and N independent BRWs. We will construct this coupling rigorously in Chapter 2, in a

similar way to how it was described in [2]. For now we give an illustration of the coupling in

Figure 1-4 and an informal de�nition below. Recall that X denotes the jump distribution.

We construct a particle system consisting of blue and red particles.

� Initially we have N blue particles with locations in R.

Then at each time step:

� Each particle is replaced by two o�spring.

� Each o�spring particle performs a jump from its parents' location, independently

from the other jumps, and with the same law as X.

� The N rightmost children of the blue particles are coloured blue.

� The other new o�spring particles are coloured red.

Figure 1-4: Coupling between the N -BRW and N independent BRWs with N = 2. The
blue particles form an N -BRW.

Now the blue and red particles together form N independent BRWs (each BRW starting

from an initial blue particle), and the blue particles form an N -BRW. Furthermore, most

importantly, the construction shows that a path of jumps from a particle to a descendant

in the N -BRW is a path in one of the BRWs. We will utilise this idea several times in our

arguments, and it also shows that the rightmost position inN independent BRWs dominates

the rightmost position of the N -BRW. (When we investigate M(n), we only have a single

BRW, but when N is �xed and n is large, this does not really make a di�erence.)

We now mention results on the behaviour of the rightmost position M(n) of the BRW.

First, when the jump distribution is light-tailed, i.e. has some exponential moments, then

the results of Hammersley [29], Kingman [31], and Biggins [8] prove that limn→∞M(n)/n

exists and determine the limit, which is given by the logarithmic moment-generating func-

tion. We will discuss this case further in Section 1.4.3.

If the jump distribution has polynomial (or regularly varying) tails, then Durrett [21]

proved that M(n) grows exponentially fast in n: there exists an exponentially growing

sequence sn such that M(n)/sn converges in law to a non-degenerate random variable.
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Assuming that the jump distribution is given by P (X > x) = min(1, x−α) for some

α > 0, one can give an easy lower bound on M(n) to see that the propagation should

indeed be exponentially fast. For a sequence sn and for large values of n we have

P (M(n+ 1) < sn) ≤ P (all jumps at time n are at most of size sn) = (1− s−αn )2n .

For the right-hand side to be a constant (independent of n) in (0, 1), we need sn to grow

as 2n/α, which suggests an exponentially growing lower bound on M(n).

In the case when the jump distribution has stretched exponential tails, by results of

Gantert [27], we see a superlinear, but polynomial propagation. Assuming that the jump

distribution is given by P (X > x) = e−x
β
for some β ∈ (0, 1), Gantert's result says that,

almost surely, limn→∞M(n)/n1/β = (log 2)1/β .

Similarly to the polynomial case, we can give a simple lower bound on M(n) to have

an intuition for this result. For a sequence rn and for large values of n we have

P (M(n+ 1) < rn) ≤ (1− e−r
β
n)2n ,

which will be a constant in (0, 1) if rn is roughly (n log 2)1/β .

Since the above result was proved in [27], Dyszewski, Gantert and Höfelsauer have also

described the second order behaviour of the rightmost particle [25] and proved a large

deviation principle for M(n)/n1/β [24].

Recall the result giving existence of an asymptotic speed for the N -BRW in Proposi-

tion 1.3.1. This statement implies that in the N -BRW, the propagation of the cloud of

particles is linear in time for the stretched exponential case (where P (X > x) = e−x
β
for

some β ∈ (0, 1)) and also for the polynomial case (where P (X > x) = min(1, x−α)) for

α > 1. Furthermore, in [3] Bérard and Maillard also proved that when α ∈ (0, 1), the

propagation is superlinear but at most polynomial in time. We therefore see that with

these jump distributions the propagation of the N -BRW is much slower than that of the

BRW.

In the case of a light-tailed jump distribution we do not see such a huge di�erence. The

speed of the rightmost particle in the BRW converges to a �nite limit in this case. By

Proposition 1.3.1, if the jump distribution has positive mean, for any �xed N , the N -BRW

also has a positive asymptotic speed as time goes to in�nity. In fact, the asymptotic speed

vN of the particle cloud in the N -BRW converges (slowly) to the speed of the rightmost

particle in the BRW as N goes to in�nity (See Section 1.4.3 for more details).
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1.4.2 The limiting process of N-particle branching random walk with

polynomial tails [3]

Consider the N -BRW with the initial condition that all particles start from the origin

(i.e. Xi(0) = 0 for all i ∈ [N ]) and with jump distribution given by

P (X > x) = min(1, x−α) for all x ≥ 0, (1.4.1)

for some α > 1. We use this jump distribution to discuss the main ideas of the work of

Bérard and Maillard [3], but we remark that the results of the paper are more general: it

describes the limiting process and the behaviour of the speed of the N -BRW when the tail

of the jump distribution is regularly varying with index α for any α > 0. We will make the

same more general assumptions on the jump distribution in Chapter 2.

The tribe heuristics (see also Section 1.2.3) suggest that typically we will see the follow-

ing phenomenon. There will be a big jump which takes the lead, and `N time later its tribe

(consisting of its descendants) becomes the new big tribe, which is close to the leftmost

particle position. So we expect the leftmost position to follow the same trajectory as the

rightmost, with a lag of `N generations. The rightmost position only changes signi�cantly

when big jumps happen, and then stays the same for a while, until another big jump takes

the lead. Therefore, we expect the rightmost trajectory to look like a step function (and

therefore the leftmost as well).

Stairs process

The �rst main result in [3] describes the limiting trajectories of the rightmost and leftmost

particles by the so-called stairs process, (R(t))t≥0. The second main result is about the

limiting behaviour of the speed of the particle cloud, which follows from the behaviour of

the stairs process.

In order to introduce R(t), we �rst explain what we mean by a space-time Poisson

point process on {(t, x) : t, x > 0}. Let µ be a σ-�nite non-zero measure on R+ such that

µ([a,+∞)) <∞ for all a > 0. We will call µ the stairs measure. Let ν denote the product

measure dt⊗µ on R+×R+; that is, ν is the unique measure such that ν([0, t]×B) = tµ(B)

for all t ≥ 0 and Borel sets B ⊆ R+.

Let Π ⊂ R+×R+ be a random set of points and letM(A) := |A∩Π| denote the number
of points from Π falling into A for any Borel set A ⊆ R+ × R+. Then M is a space-time

Poisson point process with intensity measure ν, if for any collection of disjoint Borel sets

(Ak, k ≥ 1) in R+ × R+ with ν(Ak) <∞ for all k,

(1) the random variables M(Ak), k ≥ 1 are independent, and

(2) M(Ak) has Poisson distribution with parameter ν(Ak) for all k ≥ 1.

Let us de�ne the process (ξt)t≥0 by letting ξt = x if (x, t) ∈ Π and ξt = 0 otherwise.

Now we are ready to de�ne the stairs process (R(t))t∈R with stairs measure µ. The process
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is constructed inductively. First, for t ≤ 0, we let R(t) = 0. Now take n ∈ N0, and suppose

that R(t) is de�ned for all t ≤ n. Then for t ∈ (n, n+ 1] we de�ne R(t) by

R(t) = max
s∈[0,1]

(R(t− 1− s) + ξt−s).

Looking at Figure 1-5, this de�nition is equivalent to the following. Suppose R(t) is

de�ned for all t ≤ n. Note that the graph of R(t− 1) (the dashed line in Figure 1-5) is the

graph of R(t) shifted by 1 to the right, and the values of (R(t − 1))t∈(n,n+1] are known if

R(t) is already de�ned for all t ≤ n.
Consider the points of Π whose time coordinates fall into the interval (n, n + 1]. The

x coordinate of each of these points is ξt for some t ∈ (n, n + 1]. Now shift these points

vertically by an amount given by the dashed line in Figure 1-5; that is, a point with time

coordinate t will be shifted along the (vertical) x axis by R(t−1). This is how we construct

the points in Figure 1-5. Then the function (R(t))t∈(n,n+1] is given by the record process

of the shifted points.

−1 1 2 30
t

x

R(t)
R(t− 1)
record points
other points

Figure 1-5: Graphical representation of the stairs process. This �gure is Figure 1 from [3].
We have a record point at (x, t) if (x, t) is a point in Π shifted by the dashed line (that is,
if R(t) = x = R(t− 1) + ξt) and if (x, t) is a record; that is, R(t) = x > R(s) for all s < t.
The other points are points of Π shifted by the dashed line which are not record points.

Results

Let Rα denote a stairs process with stairs measure µ = µα, where µα([x,∞)) = x−α.

Recall the de�nition of aN from (1.2.3). In the �rst main result of [3], Bérard and Maillard

consider the N -BRW with the scaling where time is sped up by a factor of log2N , and

space is shrunk by a factor of aN . Theorem 1.4.1 below says that the scaling limit of the

rightmost particle's trajectory is the process Rα (solid line in Figure 1-5) and that of the

20



1.4. Related literature

leftmost particle's trajectory is given by the Rα shifted by 1 to the right (dashed line in

Figure 1-5). The result is stated as a convergence in law in the J1 and SM1 topologies,

whose de�nitions can be found in Chapters 3 and 12 in [45].

Theorem 1.4.1. [3, Theorem 1.1] Consider the N -BRW with jump distribution given

by (1.4.1) and with initial con�guration Xi(0) = 0 for all i ∈ [N ]. Then, as N →∞,

(a−1
N XN (bt log2Nc))t≥0 =⇒ (Rα(t))t≥0, in the J1-topology,

(a−1
N XN (bt log2Nc), a−1

N X1(bt log2Nc))t≥0 =⇒ (Rα(t),Rα(t− 1))t≥0 in the SM1-topology.

The second main result of [3] describes the limiting behaviour of the speed of the

rightmost and leftmost particles, when we let �rst time and then the number of particles

N go to in�nity. This is considered to be the main result of the paper.

Theorem 1.4.2. [3, Theorem 1.2] Consider the N -BRW with jump distribution given

by (1.4.1) and with initial con�guration Xi(0) = 0 for all i ∈ [N ]. Then the limit

vN = lim
n→∞

XN (n)

n
= lim

n→∞

X1(n)

n

exists almost surely and in L1, and it satis�es

vN ∼ ρα
aN

log2N
,

where the limit ρα = limt→∞Rα(t)/t exists almost surely and in L1.

For the proofs of both theorems the most important idea is to couple the N -BRW

with the stairs process, and investigate the limiting behaviour of the stairs process. Then

the theorem follows by putting together the coupling results and the results on the stairs

process. Below we summarise the heuristic ideas from [3] which describe how one should

think of the stairs process in terms of the N -BRW.

Tribes and the stairs process

The heuristic argument in [3] says (and in Chapter 2 we prove) that at a typical time, on

the aN space scale, N − o(N) particles are very close to the leftmost particle forming a

big tribe, and the other particles are in small tribes of size o(N) further to the right of the

big tribe. Recall that new tribes are created when a particle makes a big jump of size at

least of order aN . The heuristics also suggest that the points of the Poisson point process

Π correspond to the big jumps of the N -BRW after rescaling. More precisely, the record

points (see Figure 1-5) correspond to particles which perform a big jump of order aN , and

whose descendants eventually take over the population. The other points correspond to big

jumps whose descendants die out before their tribe reaches size of order N . The dashed

line shows the leftmost trajectory and also the trajectory of the big tribe. We expect big
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jumps to come from the big tribe (since there are very few particles outside of the big

tribe), therefore the big jumps (i.e. points of the Poisson point process Π) are shifted by

the location of the big tribe (i.e. the dashed line). The solid line shows the rightmost

trajectory.

Note that we should indeed expect that on the aN space scale the location of the big

tribe at some time t is where the rightmost or `leader' particle was at time t− `N , since the
time-t leader has enough time to build a tribe of size roughly N by time t − `N , whereas
particles that break the record between times t− `N and t do not. We have illustrated this

idea in Figure 1-3.

We also remark that Theorem 1.4.1 justi�es the heuristics for the trajectories of the

leftmost and rightmost particles, but the other parts of the heuristic picture are not proven

in [3]. In Chapter 2 we prove that the descendants of a particle that takes the lead with a

big jump can indeed take over the population log2N time later, and that the location of the

big tribe at some time t is indeed close to the leftmost particle at time t, and also close to

the rightmost particle at time t− `N . We did not prove however, that the tribes of the big

jumps whose descendants take over the population correspond to the record points of the

Poisson point process introduced in [3]. One of the reasons is that, to prove our genealogy

result, we needed to precisely work out the details of the N -BRW in a time interval of

length 2`N , as opposed to comparing the whole process to the Poisson point process.

1.4.3 Brunet-Derrida behavior of branching-selection particle systems

on the line [2]

Bérard and Gouéré's paper describes the limiting behaviour of the speed of the particle

cloud when the jump distribution is light-tailed in the N -BRW. In this section we will

specify what we mean by a light-tailed jump distribution. The main result of [2] says that

vN , the asymptotic speed given by (1.3.1), converges to a �nite limit as N goes to in�nity

with a very slow rate of (logN)−2. The title of the paper refers to this slow convergence

rate, which was predicted by Brunet and Derrida, and which has appeared in other models

as well, suggesting that this is a universal behaviour. We will expand on this topic in

Section 1.4.4.

Consider an N -BRW as described in Section 1.1.1 but with the modi�cation that neg-

ative jumps are allowed, i.e. the jump distribution X is not necessarily non-negative. We

now describe the assumptions on the jump distribution in [2]. Let p denote the probability

measure that describes the jump distribution:

P (X > a) = p((a,∞)) for a ∈ R.

Furthermore, let Λ(t) denote the logarithmic moment-generating function of p,

Λ(t) := log

∫
R

exp(tx)dp(x).
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We make the following assumptions on p:

(A) The number σ := sup{t ≥ 0; Λ(−t) < +∞} is positive.

(B) The number ζ := sup{t ≥ 0; Λ(t) < +∞} is positive.

(C) There exists t∗ ∈ (0, ζ) such that t∗Λ′(t∗)− Λ(t∗) = log 2.

It can be checked that under these assumptions, both

χ(p) :=
π2

2
t∗Λ′′(t∗) and v(p) := Λ′(t∗) (1.4.2)

are well-de�ned and satisfy 0 < χ(p) <∞ and v(p) ∈ R. Cases when the above assumptions

are satis�ed include for example when p is the uniform distribution on [0, 1], when p is

the standard Gaussian distribution, and when p is Bernoulli with q ∈ (0, 1/2) and p =

qδ1 + (1 − q)δ0. Interestingly, for q ≥ 1/2, assumption (C) does not hold in the Bernoulli

case, and it is shown in [2] that the behaviour indeed changes for q ≥ 1/2: we see faster

convergence for vN than the Brunet-Derrida behaviour.

The �rst result in [2] says that a �nite deterministic asymptotic speed vN (p) as in (1.3.1)

exists, if the assumptions (A)-(B)-(C) hold (and the jump distribution is not necessarily

non-negative). The main result states the limit and convergence rate of vN (p) to the limit

v(p) as de�ned in (1.4.2).

Theorem 1.4.3. [2, Theorem 1] Assume that (A)-(B)-(C) hold. Then,

v(p)− vN (p) ∼ χ(p)(logN)−2 as N →∞.

The limiting speed v(p) coincides with the asymptotic speed of the rightmost particle of

a BRW without selection as time goes to in�nity. The intuition for the speed of the BRW

without selection comes from Cramér's large deviation theorem (see e.g. Theorem 2.2.3

in [18]). Let us use the informal notation ≈ to indicate that the two sides are close to

each other in some sense. Let Xi be i.i.d. random variables distributed as X, and let

Sn :=
∑n

i=1Xi. Then the message of Cramér's theorem is that for �xed x > E [X], for

large n,

P (Sn > xn) ≈ exp(−nΛ∗(x)),

where Λ∗(x) = supt∈R(tx− Λ(t)).

If we choose x in such a way that the expected number of paths arriving to the right

of position nx is about 1 at time n in the BRW, then x should be roughly the speed of

the rightmost particle in the BRW, and so we gain an intuition for the de�nition of v(p)

in (1.4.2). Consider x such that

2nP (Sn > nx) = 1. (1.4.3)
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Let t∗∗ := arg maxt∈R(tx−Λ(t)). Then t∗∗ satis�es Λ′(t∗∗) = x. Hence (1.4.3) and Cramér's

theorem imply

2n ≈ en(t∗∗Λ′(t∗∗)−Λ(t∗∗)).

That is, t∗∗ satis�es log 2 = t∗∗Λ′(t∗∗) − Λ(t∗∗), which is the equation in (C), and thus

t∗∗ = t∗. Therefore, the speed should be indeed x = Λ′(t∗∗) = Λ′(t∗), where t∗ satis�es (C),

i.e. the speed should be given by (1.4.2).

Ideas of the proof of Theorem 1.4.3

The coupling between the N -BRW and N independent BRWs is one of the most important

tools for proving that the speed of the rightmost particle in the N -BRW converges to the

same speed as the rightmost particle of a BRW. Furthermore, the proof focuses on paths

which move with a consistent speed rather than on single big jumps like in the previous

heavier tailed cases. The main concept in the proof of the (logN)−2 convergence rate is as

follows.

Assume we have a path which consists of i.i.d. jumps of size X1, . . . , Xn. We say that

the path is consistently above the line of slope v > 0 until time n ∈ N if we have Sk > kv

for all k ∈ [n]. Let us call such a path an (n, v)-good path.

An essential result that is used in the proof of [2] is an estimate for the probability

ρ(n, ε) of the existence of an (n, v(p) − ε)-good path in a BRW between times 0 and n,

where v(p) is the speed de�ned in (1.4.2). The result in [28] says that for all large n,

ρ(n, ε) ≈ e−
√
χ(p)/ε = e−

√
χ(p)
θ
n1/3

, (1.4.4)

if ε := θn−2/3 for some well-chosen θ > 0, and where χ(p) is de�ned in (1.4.2). We remark

here that this is not exactly the message of the main result of [28]; this statement follows

from their proof, and was cited as a key theorem in [2] (where the theorem was stated

rigorously).

Let AN
n denote the event that there exists an (n, v(p)− ε)-good path between times 0

and n in at least one of N independent BRWs. Then

P
(
AN
n

)
= 1− (1− ρ(n, ε))N ,

and using (1.4.4), this is of constant order in N if n = nN ∼
(

θ
χ(p)

)3/2
(logN)3 and so

ε = εN ∼ χ(p)(logN)−2.

The idea to connect these heuristics to the speed of the N -BRW is the following. If we

take ε̃N signi�cantly larger than εN above, then we expect that the number of (nN , v(p)−
ε̃N )-good paths in N independent BRWs will be large if N is large. Now using this fact and

the coupling from Section 1.4.1, it is shown in [2] that the trajectory of the leftmost position

(X1(n))n≥0 in the N -BRW will never stay consistently below the line of slope v(p) − ε̃N ,
which will imply that the average speed is larger than v(p)− ε̃N . (The proofs of these steps
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are far from straightforward.)

On the other hand, if we take ε̂N signi�cantly smaller than εN above, then we expect

that the number of (nN , ε̂N )-good paths in N independent BRWs will be small if N is large.

Then making use of the coupling again, it can be shown that a speed of v(p) − ε̂N is not

sustainable in the N -BRW.

1.4.4 Further related models

We end this section by discussing some other models, results and conjectures that are

closely related to the N -BRW. Several results in the area of branching processes are stated

in continuous time, for the branching Brownian motion (BBM) rather than for branching

random walks. The (one-dimensional) BBM is de�ned as follows (using the de�nition e.g.

from [43]):

� At time t = 0 there is a single particle at the origin, which starts to move as a

standard one-dimensional Brownian motion.

� The lifetime of the particle is random, and has exponential distribution with mean 1.

� When the particle dies, it produces two new particles (i.e. splits into two).

� The new particles move as independent Brownian motions, each having an exponen-

tially distributed lifetime with mean 1.

� The same splitting rule applies for the new particles as for the original particle.

� The system goes on inde�nitely.

The continuous time analogue of the N -BRW is called the N -particle branching Brow-

nian motion (N -BBM) proposed by Maillard [34]. The N -BBM is de�ned as a BBM, in

which each time the number of particles exceeds N , only the N rightmost particles survive

and the others are killed instantaneously.

In the following we review some of the conjectures and results on discrete and con-

tinuous time branching processes with selection. Brunet and Derrida [14, 15] introduced

a discrete time particle system with selection which is similar to the N -BRW but uses a

slightly di�erent selection mechanism. We will discuss some of the authors' solved and open

conjectures related to this and similar models. We also note that the behaviours described

below are conjectured to be universal and should not depend on the details of the speci�c

model.

Connection with the FKPP equation

The FKPP (Fisher, Kolmogorov, Petrovsky and Piscounov) equation was �rst introduced

to model the spread of favourable genes in a population [26, 33], and is given by

∂u

∂t
=
∂2u

∂x2
+ u(1− u),
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where u = u(x, t), x ∈ R and t ≥ 0. This reaction-di�usion equation, which admits

travelling wave solutions, is closely related to branching particle systems. The connection

originates from the duality relation by Skorohod [44] and McKean [36] between the solution

of the FKPP equation and the position of the rightmost particle of a BBM. Several results

on the FKPP equation and the BBM can be found in [13].

One of the conjectures of Brunet and Derrida is that the large-scale behaviour of the

branching-selection system in [15] is given by an analogue of the FKPP equation. In

particular, the authors argue that the fraction of particles to the right of a position x at

time t should behave like the solution of an FKPP type equation.

Since then, several rigorous results have been proved on the relation of particle systems

with selection and free boundary problems with travelling wave solutions, such as [23] and

[17, 5]. The result in [17] is about the N -BBM: it says that the empirical measure of the

N -BBM converges to the solution of a free boundary problem of FKPP type; then the

global existence of solutions to this free boundary problem is shown in [5]. The work [23]

is similarly about the convergence of the empirical measure, in this case for a branching

random walk with selection (slightly di�erent from the N -BRW that we are investigating).

Minimal velocity solution

Brunet and Derrida also had conjectures on the speed of the particle cloud in the branching-

selection system they examined in [14, 15]. They argue that the speed of the rightmost

particle should converge to an asymptotic speed vN as time increases, and then vN should

converge to a limit as N goes to in�nity. This limit is given by the solution of an analogue

of the FKPP equation with minimal velocity, and the rate of convergence is very slow,

(logN)−2. These conjectures have been proved in [2] as we have discussed in Section 1.4.3.

A similar result has been proved by Pain on the continuous time model called the L-BBM,

in which particles are killed when they are at distance L from the rightmost particle [39].

The original heuristic reasoning for the convergence rate of (logN)−2 in [14, 15] involved

considering the FKPP equation with cut-o�:

∂u

∂t
=
∂2u

∂x2
+ u(1− u)1{u≥1/N}.

The cut-o� accounts for the fact that the number of particles is �nite, and so a proportion

of particles cannot be in (0, 1/N) if the number of particles is N . The authors give a

heuristic argument which shows that the travelling wave solutions of the FKPP equation

with cut-o� are shifted from those of the FKPP equation by (logN)−2. A few years later,

this statement was proved rigorously [20]. Furthermore, there have been rigorous results

showing the (logN)−2 convergence rate for the FKPP equation with random noise as

well [38].
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Coalescent processes

The third type of conjecture made by Brunet and Derrida is about the genealogies of the

branching-selection system. The genealogies of a population can be described by coalescent

processes; stochastic processes whose state space is the set of partitions of N or [M ] for

some M ∈ N. The blocks of the partitions represent groups of particles with a common

ancestor. In a coalescent process, at a given time, a set of blocks merge into one block if

the particles in all the blocks have the same ancestor at that time.

For example, in Figure 1-2, if we label the ancestral lines by 1, 2, . . . , 6, then the state

of the coalescent process at time t is {{1}, {2}, {3}, {4}, {5}, {6}}, after the �rst merging

event it is {{1}, {2, 3}, {4}, {5}, {6}}, and by time T it is {{1, 2, 3, 4, 5, 6}}.
A classical example of a coalescent process is Kingman's coalescent [32], which is a

continuous time Markov chain on the set of partitions, in which the only allowed transitions

are that two of the present blocks merge into one, and this occurs independently at rate

one for each pair of blocks. Kingman's coalescent describes the genealogies of classical

models such as the Moran [37] and Wright-Fisher models (see e.g. [6]); and in general, for

models in which the population size is constant, particles typically have few o�spring, and

no selection is involved, Kingman's coalescent is expected to be a universal scaling limit

(see e.g. [6]).

A more general setting is necessary, if selection is included in the model. Kingman's

coalescent only allows two blocks to merge at a time. However, we have seen in our

genealogy result in Section 1.2.2, that on a logN scale all coalescences of the lineages

occurred very close to each other in time, thus in the limit as N → ∞ we saw multiple

ancestral lines merging at the same time.

The more general setting is the so-called Λ-coalescent [41], which allows multiple merg-

ers. The canonical example of a Λ-coalescent is the Bolthausen-Sznitman coalescent [10],

which is conjectured to appear as a universal scaling limit of population models with se-

lection. For the genealogy of the N -BRW with light-tailed jump distribution (and for

other similar branching-selection systems), the papers of Brunet, Derrida, Mueller and Mu-

nier [11, 12] arrived at the following conjecture (see also [34] by Maillard). If we pick two

particles at random in a generation, then the number of generations we need to go back to

�nd a common ancestor of the two particles is of order (logN)3. Furthermore, if we take

a uniform sample of k particles in a generation and trace back their ancestral lines, the

coalescence of their lineages is described by the Bolthausen-Sznitman coalescent, if time is

scaled by (logN)3. For the N -BRW and its continuous time analogue, the N -BBM, this

conjecture is still open.

There are, however, rigorous results in the literature on convergence to the Bolthausen-

Sznitman coalescent for models with di�erent branching or selection rules. The papers [11,

12] show this property for an exactly solvable model in which particles reproduce according

to a Poisson point process, and in the selection step the N rightmost o�spring of all indi-

viduals are kept. Cortines and Mallein proved a generalisation of this result with random
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selection [16].

J. Berestycki, N. Berestycki and Schweinsberg proved an important result on conver-

gence to the Bolthausen-Sznitman coalescent for the model called BBM with absorption [4],

where particles are killed when hitting a deterministic moving boundary, which is de�ned

in such a way that the process has approximately N particles at large times.

Furthermore, Schweinsberg [42] also proved convergence to the Bolthausen-Sznitman

coalescent for a model with �xed sized population, in which individuals gain bene�cial

mutations at a certain rate, which increases their �tness, and individuals with larger �tness

are more likely to reproduce.

1.5 Outline

Chapter 2 is the article [40] about the result discussed in Section 1.2, which is joint work

with Sarah Penington and Matthew Roberts. Chapters 3 and 4 are based on joint work

with Sarah Penington; in Chapter 3 we prove the result from Section 1.3.1, in Chapter 4

we give a summary of the proof of the result stated in Section 1.3.2, and discuss some

questions for the future.
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Chapter 2

Genealogy and spatial distribution of

the N-particle branching random

walk with polynomial tails

Inspired by work of J. Bérard and P. Maillard, we examine the long term behaviour of the

N -BRW in the case where the jump distribution has regularly varying tails and the number

of particles is large. We prove that at a typical large time the genealogy of the population

is given by a star-shaped coalescent, and that almost the whole population is near the

leftmost particle on the relevant space scale. This is joint work with Sarah Penington and

Matthew Roberts and appears in [40].

2.1 Introduction

2.1.1 The N-BRW model

We investigate a particle system called N -particle branching random walk (N -BRW). In

this discrete time stochastic process, at each time step, we have N particles located on

the real line. We say that the particles at the nth time step or at time n belong to the

nth generation. The locations of the particles change at every time step according to the

following rules. Every particle has two o�spring. The o�spring particles have random

independent displacements from their parents' locations, according to some prescribed dis-

placement distribution supported on the non-negative real numbers. Then from the 2N

o�spring particles, only the N particles with the rightmost positions survive to form the

next generation. That is, at each time step we have a branching step in which the 2N o�-

spring particles move, and we have a selection step, in which N out of the 2N o�spring are

killed. Ties are decided arbitrarily. We describe the process more formally in Section 2.2.1.

We will use the notation [N ] := {1, . . . , N} and N0 := N∪{0} throughout. A pair (i, n)

with i ∈ [N ] and n ∈ N0 will represent the ith particle from the left in generation n. We

also refer to the rightmost particle (N,n) as the leader at time n. Furthermore, we will
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denote the locations of the N particles in the nth generation by the ordered set of N real

numbers

X (n) = {X1(n) ≤ · · · ≤ XN (n)} , (2.1.1)

where Xi(n) is the location of particle (i, n). We sometimes call X (n) the particle cloud.

The long term behaviour of the N -BRW heavily depends on the tail of the displacement

distribution. Motivated by the work of Bérard and Maillard [3], we investigate the N -BRW

in the case where the displacement distribution is regularly varying, and N is large.

We say that a function f is regularly varying with index α ∈ R if for all y > 0,

f(xy)

f(x)
→ yα as x→∞. (2.1.2)

Let X be a random variable and let the function h be de�ned by

P(X > x) =
1

h(x)
for x ≥ 0. (2.1.3)

We assume throughout that P(X ≥ 0) = 1, that h is regularly varying with index α > 0,

and that the displacement distribution of the N -BRW is given by (2.1.3). These are the

same assumptions under which the results of [3] were proved. The reader may wish to think

of the particular regularly varying function given by h(x) = xα for x ≥ 1 and h(x) = 1 for

x ∈ [0, 1). We do not expect signi�cant change in the behaviour of the N -BRW if jumps of

negative size are allowed, but we do not prove this; we use the assumption that the jumps

are non-negative several times in our argument.

2.1.2 Time and space scales

Before explaining our main result, we describe the time and space scales we will be working

with. We de�ne

`N := dlog2Ne , (2.1.4)

for N ≥ 2; this is the time scale we will be using throughout. To avoid trivial cases we

always assume that N ≥ 2. The time scale `N is the time it takes for the descendants of

one particle to take over the whole population, if none are killed in selection steps.

For the space scale we choose

aN := h−1(2N`N ), (2.1.5)

where h is as in (2.1.3), and h−1 denotes the generalised inverse of h de�ned by

h−1(x) := inf {y ≥ 0 : h(y) > x} . (2.1.6)

It is worth thinking of the particular case h(x) = xα for x ≥ 1, for which we have aN =

(2N`N )1/α and h(aN ) = 2N`N .
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With the choice of aN in (2.1.5), for any positive constant c, the expected number of

jumps which are larger than caN in a time interval of length `N is of constant order, as

N goes to in�nity. The heuristic picture in [3] says that jumps of order aN govern the

speed, the spatial distribution, and the genealogy of the population for N large. Besides

the main result of [3] on the asymptotic speed of the particle cloud, it is conjectured that at

a typical time the majority of the population is close to the leftmost particle, and that the

genealogy of the population is given by a star-shaped coalescent. In this paper we prove

these conjectures.

2.1.3 The main result (in words)

Stating our main result precisely involves introducing some more notation and de�ning

some rather intricate events. We will do this in Section 2.2. In this section we instead aim

to explain the main message of the theorem. When we say `with high probability', we mean

with probability converging to 1 as N →∞.

For all η > 0, M ∈ N and t > 4`N , the N -BRW has the following properties with high

probability:

� Spatial distribution: At time t there are N − o(N) particles within distance ηaN

of the leftmost particle, i.e. in the interval [X1(t),X1(t) + ηaN ].

� Genealogy: The genealogy of the population on an `N time scale is asymptotically

given by a star-shaped coalescent, and the time to coalescence is between `N and 2`N .

That is, there exists a time T ∈ [t− 2`N , t− `N ] such that with high probability, if we

choose M particles uniformly at random at time t, then every one of these particles

descends from the rightmost particle at time T . Furthermore, with high probability no

two particles in the sample of size M have a common ancestor after time T + εN`N ,

where εN is any sequence satisfying εN → 0 and εN`N →∞, as N →∞.

The star-shaped genealogy might seem counter-intuitive because every particle has only

two descendants. Indeed, if we take a sample of M > 2 particles at time t, and look at

the lineages of these particles, they certainly cannot coalesce in one time step. Our result

says that all coalescences of the lineages of the sample occur within o(`N ) time. Therefore,

looking on an `N time scale the coalescence appears instantaneous.

2.1.4 Heuristic picture

We construct our heuristic picture based on the tribe heuristics for the N -BRW with reg-

ularly varying tails described in [3]. The tribe heuristics say that at a typical large time

there are N − o(N) particles close to the leftmost particle if we look on the aN space scale.

We call this set of particles the big tribe. Furthermore, there are small tribes of size o(N)

to the right of the big tribe. The number of such small tribes is O(1). While the position
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of the big tribe moves very little on the aN space scale, the number of particles in the small

tribes doubles at each time step. As a result, the big tribe eventually dies out, and one of

the small tribes grows to become the new big tribe and takes over the population.

To escape the big tribe and create a new tribe that takes over the population, a particle

must make a big jump of order aN . As we explained in Section 2.1.2, jumps of this size

occur on an `N time scale, and `N is the time needed for a new tribe to grow to a big tribe

of size N .

Take t > 4`N . Building on the tribe heuristics, we describe the following picture.

Assume that a particle becomes the leader with a big jump of order aN . We claim that this

particle will have of order N surviving descendants `N time after the big jump. Moreover,

the particle that makes the last such jump before time t1 := t − `N will be the common

ancestor of the majority of the population at time t. We denote the generation of this

ancestor particle by T , and assume that T ∈ [t1− `N , t1]. In Figure 2-1 we illustrate how a

new tribe is formed at time T , and how it grows to a big tribe by time t. We will prove the

main result described in Section 2.1.3 by showing that the picture in Figure 2-1 develops

with high probability.

We introduce the notation

ti := t− i`N , (2.1.7)

for t, i ∈ N. The message of Figure 2-1, which we will prove later, is that the following

occurs with high probability.

A: At time T ∈ [t2, t1], particle (N,T ) has taken a big jump of order aN and escaped the

big tribe. It now leads by a large distance, and its descendants will be the leaders at least

until time t1.

There are two main reasons for this. First, we de�ne T as the last time before time t1
when a big jump of order aN creates a new leader, so particles with big jumps in the time

interval [T, t1] cannot become leaders. Second, particles with smaller jumps not descending

from particle (N,T ) are unlikely to catch up with the leading tribe, because paths with

small jumps move very little on the aN space scale. This is an important property of

random walks with regularly varying tails, which we will state and prove in Lemma 2.4.3

and apply in Corollary 2.4.5.

B: After time t1, there might be particles which do not descend from particle (N,T ),

but which, by making a big jump of order aN , move beyond the tribe of particle (N,T ).

However, these particles have substantially less than `N time to produce descendants by

time t, and so each of them can only have o(N) descendants at time t. Particles which do

not descend from (N,T ) are unlikely to move beyond the tribe of particle (N,T ) without

making a big jump.

There will only be O(1) big jumps of order aN between times t1 and t, because jumps

of order aN happen with frequency of order 1/`N . Therefore, until time t, the total number

of particles to the right of the tribe of particle (N,T ) is at most o(N).
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< ηaN
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T + `N
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Figure 2-1: A particle that makes a big jump of order aN at time T is the common ancestor
of almost the whole population at time t. The vertical axis represents time, and the particles'

locations are depicted horizontally, increasing from left to right. The black dots represent particles.

Horizontal dotted lines in an ellipse or circle show where the majority of the population (the

big tribe) is. The arrows represent jumps from the big tribe. We use circles to zoom in on the

population. The particles circled in red are killed in the selection step. The events labelled A to D

are described in the main text.

C: The tribe of particle (N,T ) doubles in size at each step up to (almost) time T + `N .

Selection does not a�ect these particles signi�cantly, because the number of particles to the

right of this tribe is at most o(N) before time T + `N , as we explained in part B.

D: At time T +`N there are N particles to the right of the position of particle (N,T ). This

is an elementary property of the N -BRW, following from the non-negativity of the jump

sizes. The N particles are mainly in the tribe of particle (N,T ), and there may be o(N)

particles ahead of the tribe. From this point on, the N leftmost o�spring particles in the

tribe of particle (N,T ) do not survive.

Then, between times T + `N and t, the number of particles in the tribe of particle (N,T )

will remain N − o(N), where the o(N) part doubles at each time step but does not reach

order N by time t. Therefore, almost every particle at time t descends from particle (N,T ).

Furthermore, as the number of descendants of particle (N,T ) only reaches order N at
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(roughly) time T + `N , the descendants of particle (N,T ) are unlikely to make big jumps of

order aN before time T+`N . We will prove this property (and many others) in Lemma 2.4.6.

Only O(1) descendants of particle (N,T ) make big jumps of order aN between times T and

t, and these big jumps are likely to happen after time T +`N , and so signi�cantly after time

t1. Therefore, most time-t descendants of particle (N,T ) will not have an ancestor which

made a big jump between times T and t, thus they will not move far from their ancestor's

position XN (T ) on the aN space scale.

In order to prove our statements in Section 2.1.3 we also need to show that there is

at least one particle which becomes the new leader with a jump of order aN during the

time interval [t2, t1]. The existence of such a particle will imply that indeed there exists

T ∈ [t2, t1] as in Figure 2-1. We give a heuristic argument for this in Section 2.2.3, where

we also explain the idea for proving that if we take a sample of M particles at time t then

the coalescence of the ancestral lineages of these particles happens within a time window

of width o(`N ).

2.1.5 Optimality of our main result

In order to show that our main result is more or less optimal, we will prove two additional

results.

Spatial distribution: Our main theorem says that most particles in the population are

likely to be within distance ηaN of the leftmost at time t, for arbitrarily small η > 0 when

N and t are large. We will show that this is not true of all particles: the distance between

the leftmost and rightmost particles is typically of order aN , and is arbitrarily large on the

aN space scale with positive probability. Therefore our result that most particles are close

to the leftmost particle on the aN space scale gives meaningful information on the shape of

the particle cloud at a typical time. We state this formally in Proposition 2.2.2 and then

prove it in Section 2.6.

Genealogy: Our main theorem says that the generation T of the most recent common

ancestor of a sample from the population at time t is between times t2 and t1 with high

probability. We will prove that this is the strongest possible result in the sense that for

any subinterval of [t2, t1] with length of order `N there is a positive probability that T is

in that subinterval. This will be the main message of Proposition 2.2.1, which we prove in

Section 2.6.

We also mention here that the precise statement of our main result, Theorem 2.2.1,

implies that the distribution of the rescaled time to coalescence, (t − T )/`N , has no atom

at 1 or 2 in the limit N →∞.
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2.1.6 Related work

The N -BRW shows dramatically di�erent behaviours with di�erent jump distributions; this

includes the speed at which the particle cloud moves to the right, the spatial distribution

within the population, and the genealogy. Below we discuss existing results and conjectures

on these properties of the N -BRW. We start by summarising the results of Bérard and

Maillard, who studied the speed of the particle cloud when the displacement distribution

is heavy-tailed.

Heavy-tailed displacement distribution

Bérard and Maillard [3] introduced the stairs process, the record process of a shifted space-

time Poisson point process. They proved that it describes the scaling limit of the pair

of trajectories of the leftmost and rightmost particles' positions (X1(n),XN (n))n∈N0 when

the jump distribution has polynomial tails. The correct scaling is to speed up time by

log2N and to shrink the space scale by aN . Using the relation between the N -BRW and

the stairs process they prove their main result: the speed of the particle cloud grows as

aN/ log2N in N , and the propagation is linear or superlinear (but at most polynomial)

in time. The propagation is linear if the jump distribution has �nite expectation, and

superlinear otherwise; the asymptotics follow from the behaviour of the stairs process. This

behaviour is di�erent from that of the classical branching random walk without selection,

where the propagation is exponentially fast in time in a heavy-tailed setting [21].

The tribe heuristics in [3] predict�but do not prove�that the majority of the popu-

lation is located close to the leftmost particle, that the genealogy should be star-shaped,

and that the relevant time scale for coalescence of ancestral lineages is `N . We will prove

the above properties in Theorem 2.2.1, and therefore the present paper and [3] together

provide a comprehensive picture of the N -BRW with regularly varying tails, including the

behaviour of the speed, spatial distribution and genealogy.

Light-tailed displacement distribution

Particle systems with selection have been studied with light-tailed displacement distribution

in the physics literature as a microscopic stochastic model for front propagation. First

Brunet and Derrida [14, 15], and later Brunet, Derrida, Mueller and Munier [12, 11] made

predictions on the behaviour of particle systems with branching and selection.

Speed: For the N -BRW, Bérard and Gouéré [2] proved the existence of the asymptotic

speed of the particle cloud as time goes to in�nity, which in fact applies for any jump

distribution with �nite expectation. They also proved that the asymptotic speed converges

to a �nite limiting speed as the number of particles N goes to in�nity, with a surprisingly

slow rate (logN)−2, which was predicted by Brunet and Derrida [14, 15]. The limiting

speed is the same as the speed of the rightmost particle in a classical branching random

walk without selection with exponentially decaying tails [29, 31, 8].
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Spatial distribution: The spatial distribution in the light-tailed case is also predicted

in [14, 15]. The authors argue that the fraction of particles to the right of a given position

at a given time should evolve according to an analogue of the FKPP equation. The FKPP

equation is a reaction-di�usion equation admitting travelling wave solutions. Rigorous

results on the relation between particle systems with selection and free boundary problems

with travelling wave solutions have been proved in [23] and [5, 17].

Genealogy: On the genealogy of the N -BRW with light-tailed displacement distribu-

tion, the papers [12, 11] arrived at the following conjecture (see also [34]). If we pick two

particles at random in a generation, then the number of generations we need to go back to

�nd a common ancestor of the two particles is of order (logN)3. Furthermore, if we take

a uniform sample of k particles in a generation and trace back their ancestral lines, the

coalescence of their lineages is described by the Bolthausen-Sznitman coalescent, if time is

scaled by (logN)3. This property has been shown for a continuous time model, a branch-

ing Brownian motion (BBM) with absorption [4], where particles are killed when hitting

a deterministic moving boundary. For the N -BRW and its continuous time analogue, the

N -BBM, no rigorous proof has yet been given.

Displacement distribution with stretched exponential tail

As we have seen, the behaviour of the N -BRW is signi�cantly di�erent in the light-tailed

and heavy-tailed cases. It is then a natural question to ask what happens in an intermediate

regime, where the jump distribution has stretched exponential tails. Random walks and

branching random walks with stretched exponential tails have been investigated in the

literature [19, 27], but questions about the N -BRW with such a jump distribution, such

as asymptotic speed, spatial distribution, and genealogy, remain open. In the future we

intend to investigate the N -BRW in the stretched exponential case.

2.1.7 Organisation of the paper

In Section 2.2 we state Theorem 2.2.1 and Propositions 2.2.1 and 2.2.2, our main results,

which we have explained in Sections 2.1.3 and 2.1.5. Furthermore, we give a heuristic argu-

ment for the proof of Theorem 2.2.1, introduce the notation we will be using throughout,

and carry out the �rst step towards proving Theorem 2.2.1 in Lemma 2.2.4. As a result,

the proof of Theorem 2.2.1 will be reduced to proving Propositions 2.2.5 and 2.2.6. We

prove the former in Sections 2.3 and 2.4 and the latter in Section 2.5.

In Section 2.3 we give a deterministic argument for the existence of a common ancestor

between times t1 and t2 of almost the whole population at time t. The argument will also

imply that almost every particle in the population at time t is near the leftmost particle.

Then in Section 2.4 we check that the events of the deterministic argument occur with high

probability. A key step in the proof is to see that paths cannot move a distance of order

aN in `N time without making at least one jump of order aN . We prove a large deviation
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result to show this, taking ideas from [21] and [27]. The other important tool, which we

will use to estimate probabilities, is Potter's bound for regularly varying functions.

In Section 2.5 we prove that the genealogy is star-shaped. We will use concentration

results from [35] to see that a single particle at time T + εN`N cannot have more than of

order N1−εN surviving descendants at time t, which will be enough to conclude the result.

In Section 2.6 we prove Propositions 2.2.1 and 2.2.2 using some of our ideas from the

deterministic argument in Section 2.3.

Section 2.7 is a glossary of notation, where we collect the notation most frequently used

in this paper with a brief explanation, and with a reference to the section or equation where

the notation is de�ned. In Section 2.7 we also list the most important intermediate steps

of the proof of our main result.

We note here that sometimes we explain or justify an equation or inequality shortly

after the statement appears; we encourage any reader who is struggling to understand a

logical step to read a few lines ahead.

2.2 Genealogy and spatial distribution result

2.2.1 Formal de�nition of the N-BRW

Let Xi,b,n, i ∈ [N ], b ∈ {1, 2}, n ∈ N0 be i.i.d. random variables with common law given

by (2.1.3). Each Xi,b,n stands for the jump size of the bth o�spring of particle (i, n). Let

X (0) = {X1(0) ≤ . . . ≤ XN (0)} be any ordered set of N real numbers, which represents the

initial locations of the N particles. Now we describe inductively how X (0) and the random

variables Xi,b,n, i ∈ [N ], b ∈ {1, 2}, n ∈ N0 determine the N -BRW, that is, the sequence of

locations of the N particles, (X (n))n∈N0 .

We start with the initial con�guration of particles X (0). Once X (n) has been de-

termined for some n ∈ N0, then X (n + 1) is de�ned as follows. Each particle has two

o�spring, each of which performs a jump from the location of its parent. The 2N inde-

pendent jumps at time n are then given by the i.i.d. random variables Xi,b,n, i ∈ [N ],

b ∈ {1, 2} as above. After the jumps, only the N rightmost o�spring particles survive; that

is, X (n+ 1) = {X1(n+ 1) ≤ · · · ≤ XN (n+ 1)} is given by the N largest numbers from the

collection (Xi(n) +Xi,b,n)i∈[N ],b∈{1,2}. Ties are decided arbitrarily.

Note that since the jumps are non-negative, the sequences Xi(n) are non-decreasing in

n for all i ∈ [N ]. Indeed, at time n there are at least N − i+ 1 particles to the right of or

at position Xi(n), and so there are at least min(N, 2(N − i+ 1)) particles to the right of or

at Xi(n) at time n + 1, so we must have Xi(n + 1) ≥ Xi(n). We refer to this property as

monotonicity throughout.
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2.2.2 Statement of our main result

We explained the message of our main result in Section 2.1.3. In this section we provide

the precise statement in Theorem 2.2.1. First we introduce the setup for the theorem.

For n, k ∈ N0 and i ∈ [N ] we will denote the index of the time-n ancestor of the particle

(i, n+ k) by

ζi,n+k(n),

i.e. particle (ζi,n+k(n), n) is the ancestor of (i, n + k). Recall that the relevant space scale

for our process is aN , de�ned in (2.1.5). For r ≥ 0 and n ∈ N0, let Lr,N (n) denote the

number of particles which are within distance raN of the leftmost particle at time n:

Lr,N (n) := max {i ∈ [N ] : Xi(n) ≤ X1(n) + raN} . (2.2.1)

De�ne a sequence (εN )N∈N such that εN`N is an integer for all N ≥ 1, and which satis�es

εN`N →∞ and εN → 0 as N →∞. (2.2.2)

We introduce two events which describe the spatial distribution and the genealogy of the

population at a given time t. Our main result, Theorem 2.2.1, says that these two events

occur with high probability. We de�ne the events for all N ≥ 2 and t > 4`N . For η > 0

and γ ∈ (0, 1), the �rst event says that at least N −N1−γ particles (i.e. almost the whole

population if N is large) are within distance ηaN of the leftmost particle at time t. We let

A1 = A1(t,N, η, γ) :=
{
Lη,N (t) ≥ N −N1−γ} . (2.2.3)

Recall the notation ti from (2.1.7). We illustrate the second event in Figure 2-2. We

sample M ∈ N particles uniformly at random from the population at time t. Let P =

(P1, . . . ,PM ) be the index set of the sampled particles. The event says that there exists

a time T between t2 and t1 such that all of the particles in the sample have a common

ancestor at time T , but no pair of particles in the sample have a common ancestor at

time T + εN`N . Moreover, the common ancestor at time T is the leader particle (N,T ).

Additionally, the event says that the time T is not particularly close to t1 or t2, in that

T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] for some δ > 0. We let

A2 = A2(t,N,M, δ) :=

{
∃T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] : ζPi,t(T ) = N ∀i ∈ [M ] and

ζPi,t(T + εN`N ) 6= ζPj ,t(T + εN`N ) ∀i, j ∈ [M ], i 6= j

}
.

(2.2.4)

For convenience, we will often write A1 and A2 for the two events above, omitting the

arguments. We will prove the following result.

Theorem 2.2.1. For all η > 0 and M ∈ N there exist γ, δ ∈ (0, 1) such that for all N ∈ N
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su�ciently large and t ∈ N0 with t > 4`N ,

P(A1 ∩ A2) > 1− η,

where `N is given by (2.1.4), and A1 = A1(t,N, η, γ) and A2 = A2(t,N,M, δ) are de�ned

in (2.2.3) and (2.2.4) respectively.

T

T + εN`N

t

o(`N )

t−
T
∈

[`
N
,2
`
N

]

Figure 2-2: Coalescence of the ancestral lineages of M = 6 particles. We go backwards
in time from top to bottom in the �gure. To each particle in the sample we associate a
vertical line, representing its ancestral line. Two lines coalesce into one when the particles
they are associated with have a common ancestor for the �rst time going backwards from
time t. All coalescences of the lineages of the sample happen within a time window of size
o(`N ). Time T is the generation of the most recent common ancestor of the majority of
the whole population at time t. The three dots in each line indicate that the picture is
not proportional: the time between t and T is of order `N , whereas the time between all
coalescences and T is o(`N ).

We explained two additional results in Section 2.1.5 which show the optimality of The-

orem 2.2.1. We state these results precisely below.

We de�ne the event A′2 as a modi�cation of the event A2. Whereas A2 said that the

coalescence time T is roughly in [t2, t1], the event A′2 says that T is in the smaller interval

[t2 +ds1`Ne , t2 +ds2`Ne] for 0 < s1 < s2 < 1; and whereas A2 occurs with high probability,

we will show that A′2 occurs with probability bounded away from 0. For M ∈ N and

0 < s1 < s2 < 1, we de�ne

A′2 = A′2(t,N,M, s1, s2)

:=

{
∃T ∈ [t2 + ds1`Ne , t2 + ds2`Ne] : ζPi,t(T ) = N ∀i ∈ [M ] and

ζPi,t(T + εN`N ) 6= ζPj ,t(T + εN`N ) ∀i, j ∈ [M ], i 6= j

}
. (2.2.5)

Proposition 2.2.1 below says that for all 0 < s1 < s2 < 1 and r > 0, with probability
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bounded below by a constant depending on r and s2 − s1, the event A′2 occurs and the

diameter at time t1 is at least raN . The diameter of the particle cloud at time n will be

denoted by d(X (n)); that is,

d(X (n)) := XN (n)−X1(n). (2.2.6)

Proposition 2.2.1. For all 0 < s1 < s2 < 1, M ∈ N and r > 0, there exists πr,s2−s1 > 0

such that for N su�ciently large and t > 4`N ,

P
(
A′2 ∩ {d(X (t1)) ≥ raN}

)
> πr,s2−s1 ,

where A′2(t,N,M, s1, s2) is de�ned in (2.2.5).

Our second result about the diameter says that for all r, the probability that d(X (n)) ≥
raN is bounded away from zero, and it tends to 1 as r → 0, and tends to 0 as r →∞, if N

is su�ciently large and n > 3`N . This shows that the probability that after a long time the

diameter is not of order aN is small, and therefore the part of Theorem 2.2.1 that says most

of the population is within distance ηaN of the leftmost particle with high probability, for

arbitrarily small η > 0, is meaningful.

Proposition 2.2.2. There exist 0 < pr ≤ qr ≤ 1 such that qr → 0 as r → ∞ and pr → 1

as r → 0, and for all r > 0,

0 < pr ≤ P(d(X (n)) ≥ raN ) ≤ qr,

for N su�ciently large and n > 3`N .

2.2.3 Heuristics for the proof of Theorem 2.2.1

We �rst prove a simple lemma which will be helpful in the course of the proof of The-

orem 2.2.1 and also helpful for understanding the heuristics. The lemma says that the

number of particles that are to the right of a given position at least doubles at every time

step until it reaches N . The statement follows deterministically from the de�nition of

the N -BRW. The proof serves as a warm-up for several more deterministic arguments to

come. For x ∈ R and n ∈ N0, we write the set of particles to the right of position x at time

n as

Gx(n) := {i ∈ [N ] : Xi(n) ≥ x} . (2.2.7)

Lemma 2.2.3. Let x ∈ R and n, k ∈ N0. Then

|Gx(n+ k)| ≥ min
(
N, 2k|Gx(n)|

)
.

Proof. The statement is clearly true when Gx(n) = ∅. Now assume that Gx(n) 6= ∅. Let

us �rst consider the case in which every descendant of the particles in Gx(n) survives until
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time n+ k. Since there are 2k|Gx(n)| such descendants, each of which is to the right of x

since all jumps are non-negative, in this case we have |Gx(n+ k)| ≥ 2k|Gx(n)|.
Now let us consider the case in which not every descendant of the particles in Gx(n)

survives until time n + k. This means that there exist m ∈ [n, n + k − 1], j ∈ [N ] and

b ∈ {1, 2} such that (j,m) is a descendant of a particle in Gx(n) and

Xj(m) +Xj,b,m ≤ X1(m+ 1).

Since particle (j,m) descends from Gx(n), and all jumps are non-negative, we also have

x ≤ Xj(m) +Xj,b,m, and therefore x ≤ X1(m+ 1) ≤ X1(n+ k), and the result follows.

Now we turn to the heuristics for the proof of Theorem 2.2.1. The heuristic picture to

keep in mind when thinking about both the statement and the proof is Figure 2-1. As in

Section 2.1.4, we let T denote the last time at which a particle takes the lead with a big

jump of order aN before time t1. In Section 2.1.4, we argued that if T ∈ [t2, t1] then with

high probability, particle (N,T ) will be the common ancestor of almost every particle in

the population at time t, and almost the whole population at time t is close to XN (T ) on

the aN space scale. We will use a rigorous version of this heuristic argument to show that

the event A1 occurs with high probability, and that the time T satis�es the �rst line in the

event A2 with high probability. That is, every particle from a uniform sample of �xed size

M at time t descends from particle (N,T ) with high probability.

If T is as described above, then we can only have T ∈ [t2, t1] if there is a particle which

takes the lead with a jump of order aN in the time interval [t2, t1]. It is not straightforward

to show that this happens with high probability. It could be the case that the diameter is

large on the aN space scale during the time interval [t2, t1], say greater than CaN , where

C > 0 is large. In this situation, if the jumps of order aN in the time interval [t2, t1] come

from close to the leftmost particle, and they are all smaller than CaN , then these jumps

will not make a new leader, and time T will not be in the time interval [t2, t1]. We will

prove that this is unlikely. A key property which is helpful in seeing this is the following.

If no particle takes the lead with a big jump of order aN for `N time, e.g. between times

s ∈ N and s + `N , then the diameter of the particle cloud will be very small on the aN
space scale at time s + `N . Indeed, all the N particles, including the leftmost, are to the

right of position XN (s) at time s+`N by Lemma 2.2.3. But with high probability, particles

cannot move far to the right from this position without making big jumps of order aN . We

will prove this in Corollary 2.4.5. Therefore, provided that no unlikely event happens, if

no particle takes the lead with a big jump between times s and s+ `N , then every particle

will be near the position XN (s) at time s+ `N . We formally prove this in Lemma 2.3.9.

We will be able to use this property for s = t2 − c′`N with small c′ > 0. We will

conclude that if no particle takes the lead with a jump of order aN in the time interval

[t2−c′`N , t1−c′`N ] then the diameter at time t1−c′`N is likely to be small on the aN space

scale, i.e. d(X (t1 − c′`N )) < caN , for some c > 0 which we can choose to be much smaller
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than c′. If the diameter is less than caN , then any particle performing a jump larger than

caN becomes the new leader.

The expected number of jumps larger than caN in c′`N time is c′`N2Nh(caN )−1, because

there are 2N jumps at each time step and the jump distribution is given by (2.1.3), which

is roughly c′/cα for N su�ciently large. If cα is much smaller than c′, then with high

probability there will be a jump of size greater than caN in the time interval [t1− c′`N , t1],

and the particle performing it will become the new leader. Therefore the last time before

time t1 when a particle becomes the leader with a jump of order aN will be after time t2,

which gives us T ∈ [t2, t1].

The above idea works for the case where no particle takes the lead with a big jump

of order aN in the time interval [t2 − c′`N , t2] for some small c′ > 0. If instead there is

such a particle then we will argue that in a short interval of length c′`N it is likely that

the jump made by this particle will not be too large on the aN scale and therefore the

particle's descendants will be surpassed by larger jumps of order aN at some point in the

much longer time interval [t2, t1].

In order to show that the coalescence is star shaped, we also need the second line of

the event A2, which says that all coalescences of the lineages of a sample of M particles at

time t happen within a time window of size εN`N ; that is, instantaneously on the `N time

scale (see Figure 2-2).

To prove that no pair of particles in the sample of M have a common ancestor at time

T + εN`N , it will be enough to prove that every particle at time T + εN`N has a number

of time-t descendants which is at most a very small proportion of the total population size

N (we will check this in Lemma 2.2.4). With high probability, most of the population at

time t descends from the leading 2εN `N ≈ N εN particles at time T +εN`N (the descendants

of particle (N,T )). If these particles share their time-t descendants fairly evenly, then a

particle in this leading tribe will have roughly N1−εN = o(N) descendants. Indeed, we will

prove using concentration results from [35] that with high probability the number of time-t

descendants of a particle from the leading tribe at time T + εN`N will not exceed the order

of N1−εN .

2.2.4 Notation

We now introduce the notation we will be using throughout the proof of Theorem 2.2.1.

We recall from Section 2.2.1 that the jump of the ith particle's bth o�spring at time n will

be referred to using the random variable Xi,b,n, and that these contain all the randomness

in the system, with ties between two particles with the same position broken using some

arbitrary but deterministic rule. We de�ne the �ltration (Fn)n∈N0 by letting Fn be the σ-

algebra generated by the random variables (Xi,b,m, i ∈ [N ], b ∈ {1, 2} ,m < n). Since X (n)

is de�ned in such a way that it only depends on jumps performed before time n, the process

(X (n))n∈N0 is adapted to the �ltration (Fn)n∈N0 . Since (Xi,b,m, i ∈ [N ], b ∈ {1, 2} ,m ∈ N0)

are i.i.d., the jumps (Xi,b,n, i ∈ [N ], b ∈ {1, 2}) are independent of the σ-algebra Fn. In
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Theorem 2.2.1 we assume that t > 4`N , as in the proof we will examine the process in

the time interval [t4, t], where t4 is given by (2.1.7). Since jumps at time t are not Ft-
measurable, we will be interested in jumps performed in the time interval [t4, t− 1].

In order to study the genealogy of the N -BRW system, we will need notation which

says when two particles are related. We introduce the partial order . on the set of

pairs {(i, n), i ∈ [N ], n ∈ N0}. First, for i ∈ [N ] and n ∈ N0 we say that (i, n) . (i, n)

and, for j ∈ [N ], we write (i, n) . (j, n+ 1) if and only if the jth particle at time n+ 1 is

an o�spring of the ith particle at time n. Then in general, for n, k ∈ N0 and i0, ik ∈ [N ]

we write (i0, n) . (ik, n + k) if and only if particle (ik, n + k) is a descendant of particle

(i0, n):

(i0, n) . (ik, n+k) ⇐⇒ ∃i1, . . . , ik−1 : (ij−1, n+j−1) . (ij , n+j), ∀j ∈ [k]. (2.2.8)

Then the particles ((ij , n + j), j ∈ [k]) represent the ancestral line between (i0, n) and

(ik, n+k). Recall that for n, k ∈ N0 and i ∈ [N ] we denote the index of the time-n ancestor

of the particle (i, n+ k) by ζi,n+k(n). Thus, using our partial order above, we can write for

j ∈ [N ],

ζi,n+k(n) = j ⇐⇒ (j, n) . (i, n+ k). (2.2.9)

We also introduce a slightly di�erent (strict) partial order .b, which will be convenient

later on. For i0, ik ∈ [N ], n ∈ N0 and k ∈ N we write (i0, n) .b (ik, n + k) if and only if

the bth o�spring of particle (i0, n) is the time-(n+ 1) ancestor of particle (ik, n+ k). Note

that if (i0, n) .b (ik, n+ k) then there exists i1 ∈ [N ] such that

Xi1(n+ 1) = Xi0(n) +Xi0,b,n and (i1, n+ 1) . (ik, n+ k).

Using the above partial order, we de�ne the path between particles (i0, n) and (ik, n+k)

(and between positions Xi0(n) and Xik(n + k)), as the sequence of jumps connecting the

two particles. For i0, ik ∈ [N ] and n ∈ N0, if k ∈ N and (i0, n) . (ik, n+ k), we let

P ik,n+k
i0,n

:=
{

(ij , bj , n+ j) : j ∈ {0, . . . , k − 1} and (ij , n+ j) .bj (ik, n+ k)
}
, (2.2.10)

and we let P ik,n+k
i0,n

:= ∅ otherwise. Then if k ∈ N and (i0, n) . (ik, n+ k),

Xik(n+ k) = Xi0(n) +
∑

(j,b,m)∈P ik,n+ki0,n

Xj,b,m. (2.2.11)

For i ∈ [N ] and n, k ∈ N0 with n ≤ k, let Ni,n(k) denote the set of descendants of

particle (i, n) at time k:

Ni,n(k) := {j ∈ [N ] : (i, n) . (j, k)} , (2.2.12)

and if n < k, for b ∈ {1, 2}, let N b
i,n(k) be the set of time-k descendants of the bth o�spring
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of particle (i, n):

N b
i,n(k) := {j ∈ [N ] : (i, n) .b (j, k)} . (2.2.13)

(Note that the sets Ni,n(k) and N b
i,n(k) may be empty.) We write |Ni,n(k)| and |N b

i,n(k)|
for the number of descendants in each case.

Finally, as time is discrete, it will be useful to introduce a notation for the set of integers

in an interval; for 0 ≤ s1 ≤ s2, we let

Js1, s2K := [s1, s2] ∩ N0.

2.2.5 Big jumps and breaking the record

As discussed in Section 2.1.4, the common ancestor of the majority of the population at

time t is a particle which made an unusually big jump, of order aN , between times t2 and

t1. The set of unusually big jumps will play an essential role in the proof of Theorem 2.2.1.

We will be particularly interested in particles which become `leaders' after performing such

jumps. These particles are the candidates to become the common ancestor of almost the

whole population at time t.

We now introduce the necessary notation for the above concepts. In the de�nitions

we will indicate the dependence on a new parameter ρ ∈ (0, 1), as the choice of ρ will be

important later on. Furthermore, everything we de�ne will depend on N and t, which we

do not always indicate.

For ρ ∈ (0, 1) we introduce the term big jump for jumps of size greater than ρaN , and

we denote the set of big jumps on an interval [s1, s2] ⊆ [t4, t− 1] by B[s1,s2]
N :

B
[s1,s2]
N = B

[s1,s2]
N (ρ) := {(k, b, s) ∈ [N ]× {1, 2} × Js1, s2K : Xk,b,s > ρaN} , (2.2.14)

where aN is given by (2.1.5). We also let

BN := B
[t4,t−1]
N . (2.2.15)

We say a particle breaks the record if it takes the lead with a big jump. If one of the

current leader's descendants makes a small jump (that is, a non-big jump) to become the

leader, then that does not count as breaking the record in our terminology. Let SN denote

the set of times when the record is broken by a big jump between times t4 and t:

SN = SN (ρ) :=

{
s ∈ Jt4, t− 1K : ∃(k, b) ∈ [N ]× {1, 2} such that

(k, s) .b (N, s+ 1) and Xk,b,s > ρaN

}
. (2.2.16)

Next, we de�ne T as the last time when the leader broke the record with a big jump

before time t1, if there is any such time. We let

T = T (ρ) := 1 + max {SN (ρ) ∩ [t4, t1 − 1]} , (2.2.17)
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and let T = 0 if SN (ρ) ∩ [t4, t1 − 1] = ∅. Note that the big jump which takes the lead

happens at time T − 1, and T is the time right after the jump. In the proof it turns out

that with high probability, T ∈ [t2 + dδ`Ne , t1−dδ`Ne] for some δ > 0, and particle (N,T )

is the common ancestor of almost the whole population at time t.

We will have a separate notation, ŜN , for the times when the leader is surpassed by a

particle which performs a big jump. Note that this is not exactly the same set of times as

SN : it might happen that a particle (i, s) has an o�spring (j, s+1), which beats the current

leader (N, s) with a big jump, but it does not become the next leader at time s+ 1 because

it is beaten by another o�spring particle which did not make a big jump. We de�ne

ŜN = ŜN (ρ) :=

{
s ∈ Jt4, t− 1K : ∃(k, b) ∈ [N ]× {1, 2} such that

Xk,b,s > ρaN and Xk(s) +Xk,b,s > XN (s)

}
. (2.2.18)

We will see in Corollary 2.3.8 below that with high probability, SN and ŜN coincide on

certain time intervals. Sometimes we will also need to refer to the set of times when big

jumps do not take the lead or beat the current leader. Therefore, with a slight abuse

of notation, we will write ScN and ŜcN to denote the sets of times Jt4, t − 1K \ SN and

Jt4, t− 1K \ ŜN respectively.

2.2.6 Reformulation

In this section, we break down the event A2 of Theorem 2.2.1. Our ultimate goal is to show,

for a suitable choice of ρ, that T = T (ρ), as de�ned in (2.2.17), has the properties required

in A2. To this end we introduce new events which imply A2 with high probability, and

only involve T and the number of time-t descendants of particle (N,T ) and of the particles

at time T + εN`N . We will use the following notation:

T εN = T εN (ρ) := T (ρ) + εN`N , (2.2.19)

where εN is de�ned in (2.2.2). Recalling (2.2.12), for i ∈ [N ], we write

Ni := Ni,T εN (t) (2.2.20)

for the set of time-t descendants of the ith particle at time T εN , and

Di = Di,T εN (t) := |Ni,T εN (t)| (2.2.21)

for the size of this set.

For γ, δ, ρ ∈ (0, 1), we introduce the event

A3 = A3(t,N, δ, ρ, γ) := {T (ρ) ∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∩
{
|NN,T (ρ)(t)| ≥ N −N1−γ} .

(2.2.22)

This event says that almost the whole population at time t descends from particle (N,T ),
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which will imply with high probability that each particle in the uniform sample of M

particles in the event A2 is a descendant of (N,T ). The �nal part of the de�nition of the

event A2 says that no two particles at time t in the uniform sample ofM particles share an

ancestor at time T εN . We now de�ne an event which says that every time-T εN particle has

at most a very small proportion of the N surviving descendants at time t, so that with high

probability none of them have two descendants in the sample of M particles. For ν > 0

and ρ ∈ (0, 1), we let

A4(ν) = A4(t,N, ρ, ν) :=

{
max

i∈NN,T (T εN )
Di,T εN (t) ≤ νN

}
. (2.2.23)

Note that in the de�nition of A4(ν) we take the maximum only over the time-T εN descen-

dants of particle (N,T ). It will be easy to deal with the remaining particles at time T εN ,

because the event A3 implies that for ν > 0, if N is large, particles not descended from

(N,T ) cannot have more than νN descendants at time t. In the following result, we reduce

the proof of Theorem 2.2.1 to showing that A1, A3 and A4(ν) occur with high probability.

As part of the proof we show that the probability that two particles in the sample of

M at time t have a common ancestor at time T εN can be upper bounded by little more

than the sum of the probabilities of the events Ac3 and A4(ν)c when ν is small. We will use

this intermediate result in another argument later on in Section 2.6, so we state it as part

of Lemma 2.2.4 below.

Lemma 2.2.4. Take M ∈ N and γ, δ, ρ, η ∈ (0, 1), and let 0 < ν < η/M2. Then for all N

su�ciently large and t > 4`N ,

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN )) ≤ P(Ac3) + P(A4(ν)c) + η/2,

and

P(Ac2) ≤ 2P(Ac3) + P(A4(ν)c) + η,

where A2(t,N,M, δ), A3(t,N, δ, ρ, γ) and A4(t,N, ρ, ν) are de�ned in (2.2.4), (2.2.22) and

(2.2.23) respectively, Pj is the index of a particle in the uniform sample of M particles

at time t, and ζPj ,t(T
εN ) is the index of the time-T εN ancestor of particle (Pj , t), de�ned

in (2.2.9).

Proof. Fix M ∈ N and γ, δ, ρ, η ∈ (0, 1). Note that by the de�nition of A2 in (2.2.4),

{T ∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∩
{
ζPj ,t(T ) = N ∀j ∈ [M ]

}
∩
{
ζPj ,t(T

εN ) 6= ζPl,t(T
εN ) ∀j, l ∈ [M ], j 6= l

}
⊆ A2. (2.2.24)

First we aim to show that for N su�ciently large,

P({T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∪
{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
) ≤ P(Ac3) + η/2. (2.2.25)
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Note that if A3 occurs then T ∈ [t2 + dδ`Ne , t1 − dδ`Ne], and A3 is Ft-measurable, so

P({T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]} ∪
{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
)

≤ E
[
1A3P(∃j ∈ [M ] : ζPj ,t(T ) 6= N | Ft)

]
+ P (Ac3) .

Now, on the event A3, at most N1−γ time-t particles are not descended from (N,T ), and

therefore a union bound on the uniformly chosen sample (which is not Ft-measurable) gives

that the above is at mostMN1−γ/N+P (Ac3). This implies (2.2.25) for N su�ciently large.

Now �x ν ∈ (0, η/M2). Our second step is to prove that for N su�ciently large,

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN )) ≤ P(Ac3) + P(A4(ν)c) + η/2, (2.2.26)

which is the �rst part of the statement of the lemma. The event on the left-hand side means

that there is a particle at time T εN which has at least two descendants in the sample of M

particles at time t. That is

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN ))

= P (∃i ∈ [N ], j, l ∈ [M ], j 6= l : {Pj ,Pl} ⊆ Ni) .
(2.2.27)

We will use that if all the Ni sets have size smaller than νN then it is unlikely that

two particles of the uniformly chosen sample will fall in the same Ni set. Since Di is

Ft-measurable for all i, a union bound gives

P (∃i ∈ [N ], j, l ∈ [M ], j 6= l : {Pj ,Pl} ⊆ Ni)

≤ E
[
1{maxi∈[N ]Di≤νN}

N∑
i=1

∑
1≤j<l≤M

P({Pj ,Pl} ⊆ Ni | Ft)
]

+ P
(

max
i∈[N ]

Di > νN

)
.

(2.2.28)

Since the sample is chosen uniformly at random, the �rst term on the right-hand side is

equal to

E

[
1{maxi∈[N ]Di≤νN}

N∑
i=1

(
M

2

)(Di
2

)(
N
2

) ] ≤ E

[
1{maxi∈[N ]Di≤νN} max

j∈[N ]
Dj

(
M

2

) ∑N
i=1Di

N(N − 1)

]

≤
(
M

2

)
νN

N − 1
, (2.2.29)

where in the second inequality we exploit the indicator and use that
∑N

i=1Di = N . In order

to deal with the second term on the right-hand side of (2.2.28), note that the maximum is

taken over all particles at time T εN (because of the de�nition of Di in (2.2.21)). Suppose N

is su�ciently large that N1−γ ≤ νN . Then if the event A3 occurs, particles not descended
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from particle (N,T ) (i.e. particles not in NN,T (T εN )) have at most νN descendants at time

t. Therefore, by the de�nition of A4(ν),

P
(

max
i∈[N ]

Di > νN

)
≤ P(A4(ν)c) + P

(
max

i∈[N ]\NN,T (T εN )
Di > νN

)
≤ P(A4(ν)c) + P(Ac3),

(2.2.30)

for N su�ciently large.

Putting (2.2.27)-(2.2.30) together, since we chose ν < η/M2 we have that (2.2.26) holds

for N su�ciently large. By (2.2.24), (2.2.25) and (2.2.26), the result follows.

We now state the two main intermediate results in the proof of Theorem 2.2.1, which say

that, for well-chosen γ, δ, and ρ, the events A1, A3 and A4(ν) occur with high probability.

In Sections 2.3 and 2.4 we give the proof of Proposition 2.2.5, and in Section 2.5 we prove

Proposition 2.2.6.

Proposition 2.2.5. For η ∈ (0, 1] there exist 0 < γ < δ < ρ < η such that for N su�ciently

large and t > 4`N ,

P(A1 ∩ A3) > 1− η,

where A1(t,N, η, γ) and A3(t,N, δ, ρ, γ) are de�ned in (2.2.3) and (2.2.22) respectively.

Proposition 2.2.6. Let η ∈ (0, 1] and ν > 0. Then for ρ ∈ (0, η) as in Proposition 2.2.5,

for N su�ciently large and t > 4`N ,

P(A4(ν)) > 1− 2η,

where A4(t,N, ρ, ν) is de�ned in (2.2.23).

Proof of Theorem 2.2.1. Lemma 2.2.4, Proposition 2.2.5 and Proposition 2.2.6 immediately

imply Theorem 2.2.1.

2.2.7 Strategies for the proofs of Propositions 2.2.5 and 2.2.6

Our strategy for the proof of Proposition 2.2.5 is based on the picture in Figure 2-1. For

t > 4`N , we will show that the following happens between times t2 and t with probability

close to 1.

1. There will be particles which lead by a large distance at times in [t2, t1]. The last

such particle will be at time T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] with position XN (T ).

2. The descendants of this particle are close together and far away from the the rest of

the population at time t1, forming a small (size o(N)) leader tribe.

3. At time t, the descendants of the small leader tribe from time t1 form a big tribe of

N − o(N) particles, which descend from particle (N,T ) and are close to the leftmost

particle.
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The �rst part of the proof is a deterministic argument given in Section 2.3, which shows

that if `all goes well' between times t4 and t, then steps 1-2-3 above roughly describe what

happens, which will imply that the events A1 and A3 in Proposition 2.2.5 occur. For the

deterministic argument we will introduce a number of events, which will describe su�cient

criteria for A1 and A3 to happen. Once we have shown that the intersection of these events

is contained in A1 ∩ A3, it is enough to prove that the probability of this intersection is

close to 1. This part will be carried out in Section 2.4, and consists of checking that `all

goes well' with high probability.

We describe our strategy for showing Proposition 2.2.6 in detail in Section 2.5.1. The

main idea is to give a lower bound on the position of the leftmost particle at time t with

high probability, and then use concentration inequalities from [35] to bound the number of

time-t descendants of each particle in NN,T (T εN ) which can reach that lower bound by time

t. A key intermediate step will be to see that with high probability, particles can reach the

lower bound only if they have an ancestor which made a jump larger than a certain size.

2.3 Deterministic argument for the proof of Proposition 2.2.5

In this section we provide the main component of the proof of Proposition 2.2.5. We

follow the plan explained in the previous section; we de�ne new events and show that

they imply A1 and A3. In Section 2.4, we will prove that the new events occur with high

probability. The events describe a strategy designed to make sure that the majority of the

population at time t has a common ancestor at some time between t2 and t1; that is, to

ensure that A3 occurs. The strategy will also show that most of the particles descended

from particle (N,T ) cannot move too far from position XN (T ) by time t. Thus it will be

easy to see that these descendants are near the leftmost particle at time t, and so A1 must

occur. So although the strategy is designed for the event A3, it will imply A1 too.

In the course of the proof we will use several constants. We �rst give a guideline, which

shows how the constants should be thought of throughout the rest of the paper, then we

describe the speci�c assumptions we need for the rest of this section. Recall that we �xed

α > 0 as in (2.1.3) and that we have η ∈ (0, 1] from the statement of Proposition 2.2.5.

The other constants can be thought of as

0 < γ < δ � ρ� c1 � c2 � c3 � c4 � c5 � c6 � η < 1 and K � ρ−α. (2.3.1)

As everything is constant in (2.3.1), we only use � as an informal notation to say that the

left-hand side is much smaller than the right-hand side.

More speci�cally, for the rest of this section we �x the constants γ, δ, ρ, c1, c2, . . . , c6, η

and K, and assume that they satisfy

0 < γ < δ < ρ, (2.3.2)
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10ρ < c1, (2.3.3)

10cj < cj+1 < η < 1, j = 1, . . . , 5, (2.3.4)

K > ρ−α. (2.3.5)

We will have additional conditions on these constants in Section 2.4, which will be consistent

with the assumptions (2.3.2)-(2.3.5).

Every event we introduce below will depend on N , t (with t > 4`N ) and on some of the

constants above. In the de�nitions we will not indicate this dependence explicitly. Note

furthermore that in the statement of Proposition 2.2.5, taking N su�ciently large may

depend on γ, δ, or ρ.

2.3.1 Breaking down event A3

We begin by breaking down the event A3 from Proposition 2.2.5 into two other events.

Then we will de�ne a strategy for showing that these two events occur. The �rst event

describes the particle system at time t1; it says that there is a small leader tribe of size less

than 2N1−δ, and every other particle is at least c2aN to the left of this tribe. Moreover,

each particle in the leading tribe descends from the same particle, (N,T ). The common

ancestor (N,T ) is the last particle which breaks the record with a big jump before time t1
(see (2.2.17) and also Figure 2-1). We also require T ∈ [t2 + dδ`Ne , t1 − dδ`Ne], which is

part of the event A3.

To keep track of the size of the leader tribe we introduce notation for the number of

particles which are within distance εaN of the leader at time n:

Rε,N (n) := max {i ∈ [N ] : XN−i+1(n) ≥ XN (n)− εaN} , for n ∈ N0 and ε > 0. (2.3.6)

Note that if Rε,N (t1) < N then particle (N − Rε,N (t1) + 1, t1) is within distance εaN of

the leader, but particle (N − Rε,N (t1), t1) is not. In the event we introduce below, we set

ε = c1 and require the distance between these two particles to be at least c2aN , showing

that there is a gap between the leader tribe and the other particles. The event is de�ned

as follows:

B1 :=


Rc1,N (t1) ≤ min

{
N − 1, 2N1−δ} ,

XN−Rc1,N (t1)(t1) ≤ XN−Rc1,N (t1)+1(t1)− c2aN ,

T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] and NN,T (t1) = {N −Rc1,N (t1) + 1, . . . , N}

 ,

(2.3.7)

where T = T (ρ) and NN,T (t1) are given by (2.2.17) and (2.2.12) respectively.

In the description of Figure 2-1 in Section 2.1.4, we explained that the descendants

of particle (N,T ) are likely to lead at time t1. The event B1 requires more; it also says

that the leading tribe leads by a large distance, which is important to ensure that no other

tribes can interfere with our heuristic picture and will be useful in Section 2.3.2. The most
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involved part of the deterministic argument in the remainder of Section 2.3 is to break up

the event B1 into other events which happen with probability close to 1.

We now de�ne another event which says that particles which are not in the leading tribe

at time t1 have at most N1−γ (i.e. much less than N for N large) descendants in total at

time t. This will imply that the leading tribe at time t1 will dominate the population at

time t. We let

B2 :=


N−Rc1,N (t1)∑

j=1

|Nj,t1(t)| ≤ N1−γ

 , (2.3.8)

where Nj,t1(t) is given by (2.2.12). The events which we will introduce to break down the

event B1 will easily imply B2 as well. Before de�ning the new events we check that B1

and B2 indeed imply A3.

Lemma 2.3.1. Let A3, B1 and B2 be the events given by (2.2.22), (2.3.7) and (2.3.8)

respectively. Then for all N ≥ 2 and t > 4`N ,

B1 ∩ B2 ⊆ A3.

Proof. On the event B1, the descendants of particle (N,T ) are the Rc1,N (t1) rightmost

particles at time t1. Thus NN,T (t) is a disjoint union of the sets Nj,t1(t) for j ∈ JN −
Rc1,N (t1) + 1, NK. We deduce that on the event B1 ∩ B2,

|NN,T (t)| =
N∑

j=N−Rc1,N (t1)+1

|Nj,t1(t)| ≥ N −N1−γ .

Since T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] on the event B1, the result follows.

2.3.2 Breaking down events B1 and B2

We now break down the events B1 and B2 into new events C1 to C7 whose probabilities

will be easier to estimate. The majority of the work in this section consists of showing

that the intersection of the new events implies B1. We can then quickly conclude that the

intersection implies both B2 and A1. One of the new events will need to be further broken

down in Section 2.3.3.

New events C1 to C7

Recall that Js1, s2K denotes the set of integers in the interval [s1, s2] and that the constants

γ, δ, ρ, c1, c2, . . . , c6, η and K satisfy (2.3.2)-(2.3.5). We �rst introduce τ1 to denote the

�rst time after t2 when a gap of size 2c3aN appears between the leader and the second

rightmost particle:

τ1 := inf {s ≥ t2 + 1 : XN (s) > XN−1(s) + 2c3aN} . (2.3.9)
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The �rst new event we de�ne says that such a gap appears by time t1, that is

C1 := {τ1 ∈ Jt2 + 1, t1K} . (2.3.10)

The next event C2 ensures that the current leading tribe keeps distance from the other

tribes during the time interval [τ1, t1]. This is important, since B1 requires a gap behind

the leading tribe at time t1. The event C2 says that if a particle is far away (at least c3aN )

from the leader, then it cannot jump to within distance 2c2aN of the leader's position with

a single big jump (recall from (2.3.1) that c2 � c3). That is, a particle far from the leader

either stays at least 2c2aN behind the leader, or it beats the leader by more than 2c2aN .

Jumping close to the leader would require a large jump, of size greater than c3aN , restricted

to an interval of size 4c2aN , which is much smaller than the size of the jump. We will see in

Section 2.4 that the probability that such a jump occurs between times t3 and t1 is small.

Let Zi(s) denote the gap between the rightmost and the ith particle at time s:

Zi(s) := XN (s)−Xi(s), for s ∈ N0 and i ∈ [N ]. (2.3.11)

Now we can de�ne our next event

C2 :=

{
@(i, b, s) ∈ [N ]× {1, 2} × Jt3, t− 1K such that

Zi(s) ≥ c3aN and Xi,b,s ∈ (Zi(s)− 2c2aN , Zi(s) + 2c2aN ]

}
. (2.3.12)

We need to introduce several more events to make sure that `all goes well'; that is,

particles which we do not expect to make big jumps indeed do not make big jumps, and

smaller jumps do not make too much di�erence on the aN space scale. The next event says

that if a particle makes a big jump, then it will not have a descendant which makes another

big jump within `N time:

C3 :=

{
BN ∩ P k2,s2k1,s1

= {(k1, b1, s1)}
∀(k1, b1, s1) ∈ BN , ∀s2 ∈ Js1 + 1,min {s1 + `N + 1, t}K, ∀k2 ∈ N b1

k1,s1
(s2)

}
,

(2.3.13)

where BN , P
k2,s2
k1,s1

and N b1
k1,s1

(s2) are de�ned in (2.2.15), (2.2.10) and (2.2.13) respectively.

The next event says the following. Take any path between two particles in the time

interval [t4, t]. If we omit the big jumps from the path then it does not move more than

distance c1aN . In particular, if there are no big jumps at all then the path moves at most

c1aN . The event is given by

C4 :=


∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤ρaN} ≤ c1aN

∀(k1, s1) ∈ [N ]× Jt4, t− 1K, ∀s2 ∈ Js1 + 1, tK, ∀k2 ∈ Nk1,s1(s2)

 , (2.3.14)

where P k2,s2k1,s1
and Nk1,s1(s2) are de�ned in (2.2.10) and (2.2.12) respectively.

The last three events are simple. On C5, two big jumps cannot happen at the same
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time:

C5 := {|BN ∩ {(k, b, s) : (k, b) ∈ [N ]× {1, 2}} | ≤ 1 ∀s ∈ Jt4, t− 1K} . (2.3.15)

Then C6 excludes big jumps which happen either right after time t2 or very close to time

t1:

C6 :=
{
B

[t2,t2+dδ`N e]
N ∪B[t1−dδ`N e,t1+dδ`N e]

N = ∅
}

(2.3.16)

where B[s1,s2]
N is de�ned in (2.2.14). Finally, C7 gives a bound on the number of big jumps:

C7 := {|BN | ≤ K} , (2.3.17)

where we recall that we chose K to be a positive constant at the start of Section 2.3.

Now we can state the main result of this subsection. It says that on the events C1 to C7

the events B1, B2 and A1 occur, and therefore A3 occurs as well. We have an additional

event in Proposition 2.3.2 below, which says that the diameter of the particle cloud at time

t1 is larger than 3
2c3aN . As part of the proposition we also show that C1 to C7 imply this

event, because it will be useful in another argument later on in Section 2.6.

Proposition 2.3.2. Let η ∈ (0, 1], and assume that the constants γ, δ, ρ, c1, c2, . . . , c6,K

satisfy (2.3.2)-(2.3.5). Then for N su�ciently large that 2KN−δ < N−γ < 1 and t > 4`N ,

7⋂
j=1

Cj ⊆ B1 ∩ B2 ∩ A1 ∩
{
d(X (t1)) ≥ 3

2c3aN
}
⊆ A1 ∩ A3 ∩

{
d(X (t1)) ≥ 3

2c3aN
}
,

where B1, B2, A1 and A3 are de�ned in (2.3.7), (2.3.8), (2.2.3) and (2.2.22) respectively,

and C1, C2, . . . , C7 are given by (2.3.10) and (2.3.12)�(2.3.17).

Note that the second inclusion in Proposition 2.3.2 follows directly from Lemma 2.3.1.

C1 to C7 imply B1, B2 and A1: proof of Proposition 2.3.2

We start by proving some easy lemmas which hold on the event
⋂7
j=1 Cj , and which will be

applied in the course of the proof of Proposition 2.3.2.

The �rst lemma gives another way of writing the event C4, which will be more convenient

to use in this section. (The de�nition of C4 will be easier to work with when we show, in

Section 2.4, that C4 occurs with high probability.) The lemma says that on the event C4, if

a path moves more than c1aN then it must contain a big jump.

Lemma 2.3.3. On the event C4, for all (k1, s1) ∈ [N ]× Jt4, t−1K, s2 ∈ Js1 + 1, tK and k2 ∈
Nk1,s1(s2),

Xk2(s2) > Xk1(s1) + c1aN =⇒ BN ∩ P k2,s2k1,s1
6= ∅,

where BN , Nk1,s1(s2) and P k2,s2k1,s1
are de�ned in (2.2.15), (2.2.12) and (2.2.10) respectively.
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Proof. Let (k1, s1) ∈ [N ] × Jt4, t − 1K, s2 ∈ Js1 + 1, tK, and k2 ∈ Nk1,s1(s2). Assume that

BN ∩ P k2,s2k1,s1
= ∅, and the event C4 occurs. Then by (2.2.11),

Xk2(s2) = Xk1(s1) +
∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s = Xk1(s1) +
∑

(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤ρaN}

≤ Xk1(s1) + c1aN

by the de�nition of the event C4, which completes the proof.

The next lemma says that on the event C3 ∩ C4, if a path of length at most `N starts

with a big jump then it moves distance at most c1aN after the big jump.

Lemma 2.3.4. On the event C3∩C4, for all (k1, b1, s1) ∈ BN , s2 ∈ Js1+1,min {s1 + `N , t}K
and k2 ∈ N b1

k1,s1
(s2),

Xk2(s2) ≤ Xk1(s1) +Xk1,b1,s1 + c1aN ,

where BN and N b1
k1,s1

(s2) are de�ned in (2.2.15) and (2.2.13) respectively.

Proof. Let l ∈ [N ] be such that (k1, s1) .b1 (l, s1 + 1), so that

Xl(s1 + 1) = Xk1(s1) +Xk1,b1,s1 . (2.3.18)

If s2 = s1 + 1 then we are done; from now on assume s2 ≥ s1 + 2. Since Xk1,b1,s1 is a

big jump, on the event C3 there are no further big jumps on the path between particles

(l, s1 + 1) and (k2, s2), that is BN ∩ P k2,s2l,s1+1 = ∅. Therefore, by Lemma 2.3.3 we have

Xk2(s2) ≤ Xl(s1 + 1) + c1aN , which, together with (2.3.18), completes the proof.

In the next lemma, we describe how we can exploit the fact that on the event C5 there

are never two big jumps at the same time. First, the event C5 tells us that if a particle

makes a big jump, then the other particles move very little at the time of the jump. Second,

it also implies that if a particle signi�cantly beats the current leader with a big jump, then

it becomes the new leader, and the gap behind this new leader will be roughly the distance

by which it beat the previous leader. Both statements follow immediately from the setup,

but will be useful for example in the proofs of Corollaries 2.3.7 and 2.3.8 below, and later

on in the proofs of Propositions 2.3.11 and 2.2.1 as well.

Lemma 2.3.5. On the event C5, for all (k, b, s) ∈ BN ,

(a) Xj(s+ 1) ≤ XN (s) + ρaN for all j ∈ [N ] \ N b
k,s(s+ 1), and

(b) if Xk(s) + Xk,b,s > XN (s) + caN for some c > ρ, then (k, s) .b (N, s + 1) and

XN (s+ 1)−XN−1(s+ 1) > (c− ρ)aN .

Proof. Assume that C5 occurs and �x k, b, s as in the statement. Let j ∈ [N ] \ N b
k,s(s+ 1)

be arbitrary. Assume that i ∈ [N ] and bi ∈ {1, 2} are such that (i, s) .bi (j, s + 1), and
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so Xj(s + 1) = Xi(s) + Xi,bi,s, with (i, bi) ∈ ([N ] × {1, 2}) \ {(k, b)}. By the de�nition of

the event C5, Xk,b,s is the only big jump at time s. Thus we have Xi,bi,s ≤ ρaN , and by

bounding the ith particle's position at time s by the rightmost position at time s we get

Xj(s+ 1) = Xi(s) +Xi,bi,s ≤ XN (s) + ρaN ,

which completes the proof of part (a). Furthermore, if the condition in (b) holds, then we

also have

Xj(s+ 1) ≤ XN (s) + ρaN < Xk(s) +Xk,b,s − (c− ρ)aN . (2.3.19)

Since (2.3.19) holds for any j ∈ [N ] \ N b
k,s(s+ 1) and we are assuming c > ρ, we conclude

that (k, s) .b (N, s+ 1), and the result follows by taking j = N − 1 in (2.3.19).

The next lemma says that if C3 ∩ C4 occurs then all big jumps in the time interval

[t3, t − 1] come from close to the leftmost particle. Our heuristics suggest this should be

true, because we expect most particles to be close to the leftmost particle at a typical time.

However, the proof only relies on the assumption that the events C3 and C4 occur.

Lemma 2.3.6. On the event C3 ∩ C4,

Xk(s) ≤ X1(s) + c1aN ∀(k, b, s) ∈ B[t3,t−1]
N .

Proof. Take s ∈ Jt3, t− 1K, k ∈ [N ] and b ∈ {1, 2}, and assume that we have Xk,b,s > ρaN .

Let ik = ζk,s(s− `N ) be the time-(s− `N ) ancestor of particle (k, s) (recall (2.2.9)). Since

(k, b, s) ∈ BN , by the de�nition of the event C3, we must have BN ∩P k,sik,s−`N = ∅. Then by

Lemma 2.3.3 we have

Xk(s) ≤ Xik(s− `N ) + c1aN . (2.3.20)

Furthermore, at time s every particle is to the right of Xik(s− `N ), by Lemma 2.2.3. This

means Xik(s− `N ) ≤ X1(s), and so Xk(s) ≤ X1(s) + c1aN by (2.3.20).

We will use Lemma 2.3.6 to prove the next result, which says that on the event
⋂5
j=2 Cj ,

if the diameter of the cloud of particles is large and a particle makes a big jump, then either

it takes the lead and will be signi�cantly ahead of the second rightmost particle, or it stays

signi�cantly behind the leader.

Corollary 2.3.7. On the event
⋂5
j=2 Cj, if (k, b, s) ∈ B[t3,t−1]

N and d(X (s)) ≥ (c3 + c1)aN

then

(a) if Xk,b,s > Zk(s) then XN (s+ 1) = Xk(s) +Xk,b,s > XN−1(s+ 1) + (2c2 − ρ)aN , and

(b) if Xk,b,s ≤ Zk(s) then Xk(s) +Xk,b,s ≤ XN (s)− 2c2aN ,

where Zk(s) and C2, . . . , C5 are given by (2.3.11)�(2.3.15).
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Proof. Since Xk,b,s is a big jump, by Lemma 2.3.6 and the fact that d(X (s)) = XN (s) −
X1(s) ≥ (c3 + c1)aN ,

Xk(s) ≤ X1(s) + c1aN ≤ XN (s)− c3aN .

Hence the gap between the kth particle and the rightmost particle is bounded below by

c3aN :

Zk(s) ≥ c3aN . (2.3.21)

It follows that if Xk,b,s > Zk(s), by the de�nition of the event C2 we have Xk,b,s > Zk(s) +

2c2aN , which implies that

Xk,b,s + Xk(s) > XN (s) + 2c2aN .

Since 2c2 > ρ by (2.3.3) and (2.3.4), Lemma 2.3.5(b) implies the statement of part (a).

If instead Xk,b,s ≤ Zk(s), then by (2.3.21) and the de�nition of C2, we have Xk,b,s ≤
Zk(s)− 2c2aN , which completes the proof.

The next result says that on the event
⋂5
j=2 Cj , if the diameter of the cloud of particles

is big at some time s, then if at time s or s − 1 a particle makes a big jump which beats

the current leader, this particle becomes the new leader.

Corollary 2.3.8. On the event
⋂5
j=2 Cj, for all s ∈ Jt3 +1, t−1K, if d(X (s)) ≥ 3

2c3aN then

s ∈ SN ⇐⇒ s ∈ ŜN and s− 1 ∈ SN ⇐⇒ s− 1 ∈ ŜN ,

where SN and ŜN are de�ned in (2.2.16) and (2.2.18).

Proof. Take s ∈ Jt3 + 1, t− 1K and suppose d(X (s)) ≥ 3
2c3aN .

If s ∈ SN , then there exists (k, b, s) ∈ BN such that Xk(s)+Xk,b,s = XN (s+1) ≥ XN (s),

where we used monotonicity for the inequality. To show that s ∈ ŜN , we need to show

that in fact Xk(s) + Xk,b,s > XN (s), i.e. the inequality is strict, but this follows from

Corollary 2.3.7(b), which applies since d(X (s)) ≥ 3
2c3aN ≥ (c1 + c3)aN by (2.3.4).

Now suppose s ∈ ŜN . Since d(X (s)) ≥ 3
2c3aN ≥ (c1 + c3)aN , and by the de�nition of

ŜN , the conditions of Corollary 2.3.7(a) hold for (k, b, s), for some (k, b) ∈ [N ] × {1, 2}.
Then Corollary 2.3.7(a) implies that s ∈ SN , and therefore the �rst equivalence in the

statement holds.

If d(X (s − 1)) ≥ (c3 + c1)aN , then we can repeat the proof of the �rst equivalence to

show that s− 1 ∈ SN ⇐⇒ s− 1 ∈ ŜN .

If instead d(X (s − 1)) < (c3 + c1)aN we argue as follows. Suppose s − 1 ∈ SN . Then

there exists (k, b, s− 1) ∈ BN such that

Xk(s− 1) +Xk,b,s−1 = XN (s) ≥ XN (s− 1),

which means Xk,b,s−1 ≥ Zk(s − 1). Now Xk,b,s−1 = Zk(s − 1) is impossible because, with
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the assumption that d(X (s− 1)) < (c3 + c1)aN , it would imply

XN (s) = Xk(s− 1) + Zk(s− 1) = XN (s− 1) < X1(s− 1) + (c3 + c1)aN < X1(s) + 3
2c3aN

by monotonicity and (2.3.4). This contradicts the assumption d(X (s)) ≥ 3
2c3aN from the

statement of this corollary. Hence, we must have Xk,b,s−1 > Zk(s− 1), and so s− 1 ∈ ŜN .

Now suppose s− 1 ∈ ŜN , and take (k, b, s− 1) ∈ BN such that Xk(s− 1) +Xk,b,s−1 >

XN (s − 1). Then by Lemma 2.3.5(a) and the assumption on d(X (s − 1)), for all j ∈
[N ] \ N b

k,s−1(s) we have

Xj(s) ≤ XN (s− 1) + ρaN < X1(s− 1) + (c3 + c1 + ρ)aN .

By monotonicity, (2.3.3) and (2.3.4) this is strictly smaller than X1(s) + 3
2c3aN . Thus, at

time s, all particles not in N b
k,s−1(s) are closer than distance 3

2c3aN to the leftmost particle.

Hence, since we assumed that d(X (s)) ≥ 3
2c3aN , we must have (k, s− 1) .b (N, s), which

means that s− 1 ∈ SN .

The last property we state before the proof of Proposition 2.3.2 says the following.

First, if no particle beats the leader with a big jump for a time interval of length at most

`N , then the leader's position does not change much during this time. We will use the extra

condition that the diameter is not too small to prove this easily; if the diameter is too small

then jumps that are �almost big� could complicate matters. Second, the lemma says that

if the diameter becomes small at some point, then it cannot become too large within `N
time, if there is no particle which beats the leader with a big jump. Recall the de�nition

of ŜN from (2.2.18).

Lemma 2.3.9. On the event
⋂5
j=2 Cj, for all s ∈ Jt3, t1− 1K and ∆s ∈ [`N ], if s+ ∆s ≤ t1

and Js, s+ ∆s− 1K ⊆ ŜcN then the following statements hold:

(a) If d(X (r)) ≥ 3
2c3aN for all r ∈ Js, s+ ∆s− 1K, then XN (s+ ∆s) ≤ XN (s) + c1aN . In

particular, if ∆s = `N then d(X (s+ `N )) ≤ c1aN .

(b) If there exists r ∈ Js, s + ∆s − 1K such that d(X (r)) ≤ 3
2c3aN , then d(X (s + ∆s)) ≤

3
2c3aN + 2c1aN .

Proof. First we prove part (a). Let i, j ∈ [N ] with (i, s) . (j, s+∆s). Assume that there is

a big jump on the path between Xi(s) and Xj(s+∆s) at time s′ ∈ Js, s+∆s−1K, i.e. there
exists (k′, b′, s′) ∈ BN ∩ P j,s+∆s

i,s . Since we assume s′ ∈ ŜcN , we have Xk′(s′) + Xk′,b′,s′ ≤
XN (s′). Then since we assume d(X (s′)) ≥ 3

2c3aN > (c3 + c1)aN by (2.3.4), we can apply

Corollary 2.3.7(b) to obtain

Xk′(s′) +Xk′,b′,s′ ≤ XN (s′)− 2c2aN . (2.3.22)

Therefore, �rst by Lemma 2.3.4, second by (2.3.22), and third by monotonicity and (2.3.4)
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we get

Xj(s+ ∆s) ≤ Xk′(s′) +Xk′,b′,s′ + c1aN ≤ XN (s′)− 2c2aN + c1aN < XN (s+ ∆s).

Hence j 6= N , which means that the leader at time s + ∆s must be a particle which does

not have an ancestor which made a big jump in the time interval [s, s+ ∆s− 1]. That is,

BN ∩ PN,s+∆s
i,s = ∅ for all i ∈ [N ]. But then by Lemma 2.3.3 we must have

XN (s+ ∆s) ≤ XN (s) + c1aN ,

which shows the �rst statement of part (a). By Lemma 2.2.3 we also have X1(s + `N ) ≥
XN (s), and the second statement of part (a) follows.

Now we prove part (b). Let τd denote the last time before s+ ∆s when the diameter is

at most 3
2c3aN , that is

τd = sup
{
r ≤ s+ ∆s : d(X (r)) ≤ 3

2c3aN
}
.

By our assumption in part (b) we have τd ≥ s.
If τd = s + ∆s then we are done. Assume instead that τd < s + ∆s. Then we can

estimate the leftmost particle position at time s+∆s using monotonicity and the de�nition

of τd:

X1(s+ ∆s) ≥ X1(τd) ≥ XN (τd)− 3
2c3aN . (2.3.23)

To estimate the rightmost position, we �rst use the fact that τd ∈ Js, s + ∆s − 1K ⊆ ŜcN
and d(X (τd + 1)) > 3

2c3aN by the de�nition of τd. Hence, the second equivalence of

Corollary 2.3.8 implies that τd ∈ ScN ; that is, no big jump takes the lead at time τd + 1.

Thus, for some (k, b) ∈ [N ]× {1, 2} we have

XN (τd + 1) = Xk(τd) +Xk,b,τd ≤ XN (τd) + ρaN . (2.3.24)

Now (2.3.23), (2.3.24) and (2.3.3) show that if τd = s+ ∆s− 1 then we are done. Assume

instead that τd < s+∆s−1. Then we can apply part (a) for the time interval [τd+1, s+∆s],

because d(X (r)) > 3
2c3aN ∀r ∈ Jτd + 1, s+ ∆sK by the de�nition of τd. So by part (a) and

then by (2.3.24) we have

XN (s+ ∆s) ≤ XN (τd + 1) + c1aN ≤ XN (τd) + (ρ+ c1)aN . (2.3.25)

Now (2.3.25), (2.3.23) and (2.3.3) yield part (b).

Proof of Proposition 2.3.2. The main e�ort of this proof is in showing that the Ci events
imply B1. So we want to see a leader tribe at time t1 in which all the particles are descended

from particle (N,T ), and are signi�cantly to the right of all the particles not descended

from particle (N,T ). We begin by giving an outline of how this will be proved.
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Outline of proof that C1 to C7 imply B1

Assume the event ∩7
j=1Cj occurs. On the event C1 there will be a time τ1 ∈ [t2 + 1, t1] when

the leader, particle (N, τ1), is a distance more than 2c3aN ahead of the second rightmost

(and every other) particle. Having this gap at time τ1 will ensure that the back of the

population is further than 3
2c3aN away from the leader at all times up to t1. That is, the

diameter cannot be too small after time τ1, and so we will be able to apply Corollary 2.3.7.

It is a possibility that on the time interval [τ1, t1], every particle not descended from

(N, τ1) stays further than roughly 2c2aN to the left of the tribe descending from (N, τ1).

Then we will have the desired leader tribe with a gap behind it at time t1. Alternatively,

the tribe of particle (N, τ1) may be surpassed by other particles. But then, by Corol-

lary 2.3.7(a), the leader must be beaten by at least roughly 2c2aN . The new leader's

descendants might be surpassed too, but again by at least 2c2aN . Then, after the last

time T when a tribe is surpassed before t1 (i.e. the last time when a big jump takes the

lead, see (2.2.17)), no particle will make a big jump that gets closer to the leader tribe

than 2c2aN , by Corollary 2.3.7(b). We will see that this implies that at time t1, the leader

tribe will be further away than c2aN from all the other particles. This argument works if

the particles of the tribes do not move far from the position of their ancestor which made

a big jump. We have this property due to Lemma 2.3.4.

Therefore, the proof will expand on the following steps:

(i) The record is broken by a big jump at time τ1. Therefore time T , the last time when

the record is broken by a big jump before time t1, is either at time τ1 or later.

(ii) The diameter is at least 3
2c3aN between times τ1 and t1.

We will show that the back of the population stays far behind XN (τ1), because of

the small number of big jumps compared to the number of particles. This is useful,

because most of the lemmas and corollaries above will apply if the diameter is not

too small.

(iii) At time T , the last time before t1 when a particle takes the lead with a big jump,

there will be a gap of size at least 3
2c2aN between the leader (N,T ) and the second

rightmost particle (N − 1, T ).

This step follows by Corollary 2.3.7(a), which we can apply because of step (ii). If

the diameter is big and the leader is beaten, then the new leader will lead by a large

distance.

(iv) Every other particle stays at least distance c2aN behind the descendants of particle

(N,T ) until time t1.

This is mainly due to steps (ii) and (iii) and Corollary 2.3.7(b): if the diameter is big

and the leader is not beaten by a big jump, then big jumps will arrive far behind the

leader. Therefore, the gap behind the leader tribe created in step (iii) will remain

until time t1.
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(v) The leading tribe has the size required by the event B1, and thus the event B1 occurs.

Proof that C1 to C7 imply B1

We now give a detailed proof, following steps (i)-(v) above, that

7⋂
j=1

Cj ⊆ B1. (2.3.26)

Assume that
⋂7
j=1 Cj occurs. We �rst check that we have T ∈ [t2 + dδ`Ne , t1 − dδ`Ne] by

proving the following statement.

Step (i). We have t2 + dδ`Ne < τ1 ≤ T ≤ t1−dδ`Ne, where τ1 and T are de�ned in (2.3.9)

and (2.2.17).

In order to see this, we will use the following simple property:

Xj(s− 1) ≤ XN−1(s) ∀s ∈ N and j ∈ [N ]. (2.3.27)

Indeed, since all jumps are non-negative, and particle (N, s − 1) has two o�spring, there

are at least two particles to the right of (or at) position XN (s − 1) at time s. Thus

XN (s− 1) ≤ XN−1(s), which shows (2.3.27).

By the de�nition of the event C1, we have τ1 ∈ Jt2 + 1, t1K. Let (Ĵ , b̂) ∈ [N ]× {1, 2} be
such that (Ĵ , τ1 − 1) .b̂ (N, τ1), and so XN (τ1) = XĴ(τ1 − 1) + XĴ ,b̂,τ1−1. It also follows

from (2.3.27) that XĴ(τ1−1) ≤ XN−1(τ1). Hence the de�nition of τ1 in (2.3.9) implies that

XĴ ,b̂,τ1−1 > 2c3aN , which means that XĴ ,b̂,τ1−1 is a big jump, and so cannot happen on

the time interval [t2, t2 + dδ`Ne] by the de�nition of C6. This implies the �rst inequality in

Step (i). We also notice that XĴ ,b̂,τ1−1 is a big jump which takes the lead at time τ1, that

is τ1− 1 ∈ SN (see (2.2.16)). Then we have T ≥ τ1 by the de�nition of T in (2.2.17), which

shows the second inequality of Step (i). Furthermore, the de�nition of T also shows that

T > t1−dδ`Ne is not possible on C6, which concludes the third inequality and the proof of

Step (i).

Since we now know that T 6= 0, particle (N,T ) is the last particle which broke the record

with a big jump before time t1. Take (J, b∗) ∈ [N ]×{1, 2} such that (J, T − 1) .b∗ (N,T ),

so

XN (T ) = XJ(T − 1) +XJ,b∗,T−1, (2.3.28)

with XJ,b∗,T−1 > ρaN . That is, at time T − 1 the Jth particle's b∗th o�spring performed a

big jump XJ,b∗,T−1, with which it became the leader at time T at position XN (T ). We will

show that at time t1 there is a leader tribe in which every particle descends from particle

(N,T ). Our next step towards this statement is to show that the diameter is large between

times τ1 and t1.

Step (ii). We have d(X (s)) ≥ 3
2c3aN for all s ∈ Jτ1, t1K.
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We prove Step (ii) by showing that the number of particles within distance 3
2c3aN of the

leader is strictly smaller than N at all times in Jτ1, t1K.
Let s ∈ Jτ1, t1K. Consider an arbitrary particle (i, s) in the population at time s. We

�rst claim that if

Xi(s) > XN (τ1)− 3
2c3aN , (2.3.29)

then particle (i, s) has an ancestor which made a big jump at some time s̃ ∈ Jτ1− 1, s− 1K.
That is, if (2.3.29) holds then

BN ∩ P i,sj,τ1−1 6= ∅, for some j ∈ [N ]. (2.3.30)

To see this, we notice that

Xj(τ1 − 1) ≤ XN−1(τ1) < XN (τ1)− 2c3aN ∀j ∈ [N ], (2.3.31)

where the �rst inequality follows by (2.3.27), and the second from the de�nition of τ1.

Therefore, by (2.3.29), (2.3.31) and (2.3.4), we have

Xi(s) > Xj(τ1 − 1) + c1aN ∀j ∈ [N ]. (2.3.32)

In particular, this holds for j ∈ [N ] such that (j, τ1 − 1) . (i, s). Therefore (2.3.30) must

hold by Lemma 2.3.3, showing that our claim is true.

Thus, every particle which is to the right of XN (τ1)− 3
2c3aN at time s has an ancestor

which made a big jump between times τ1− 1 and s− 1. This gives us the following bound:

#
{
i ∈ [N ] : Xi(s) > XN (τ1)− 3

2c3aN
}
≤

∑
(l,b,r)∈B[τ1−1,s−1]

N

|N b
l,r(s)|, (2.3.33)

where N b
l,r(s) and B

[τ1−1,s−1]
N are de�ned in (2.2.13) and (2.2.14) respectively. On the

right-hand side we sum the number of descendants of all particles which made a big jump

between times τ1− 1 and s− 1. We want to show that this is smaller than N , because that

means that there must be at least one particle to the left of (or at) XN (τ1)− 3
2c3aN at time

s.

Since [τ1 − 1, s] ⊆ [t2 + dδ`Ne , t1] by Step (i), any particle at a time in [τ1 − 1, s − 1]

has at most 2t1−(t2+dδ`N e) descendants at time s. Furthermore, the number of big jumps

in the time interval [τ1 − 1, s− 1] is at most K, by the de�nition of C7. Hence, by (2.3.33)

and then since t1 − t2 = `N ,

#
{
i ∈ [N ] : Xi(s) > XN (τ1)− 3

2c3aN
}
≤ K2t1−(t2+dδ`N e) ≤ 2KN1−δ < N, (2.3.34)

by our assumption on N in the statement of Proposition 2.3.2. Therefore, by (2.3.34) and

monotonicity we must have X1(s) ≤ XN (τ1) − 3
2c3aN ≤ XN (s) − 3

2c3aN , which concludes

the proof of Step (ii).
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Next we show that there is a gap between the two rightmost particles at time T .

Step (iii). We have XN−1(T ) + 3
2c2aN < XN (T ).

Note that we have τ1 ≤ T by Step (i). If T = τ1 then the statement of Step (iii) holds by

the de�nition of τ1 and (2.3.4).

Suppose instead that T > τ1. We now check the conditions of Corollary 2.3.7(a).

Recall from (2.3.28) that XJ,b∗,T−1 is a big jump. Since the particle performing the jump

XJ,b∗,T−1 becomes the leader at time T , we have XJ,b∗,T−1 ≥ ZJ(T − 1), where ZJ(T −
1) is the gap between the Jth particle and the leader at time T − 1. Also note that

(J, b∗, T − 1) ∈ B[t2,t1]
N , and that by Step (ii) and (2.3.4) we have d(X (T−1)) > (c3 +c1)aN .

Therefore Corollary 2.3.7 (using part (a) when XJ,b∗,T−1 > ZJ(T − 1); part (b) shows that

we cannot have XJ,b∗,T−1 = ZJ(T − 1) since otherwise the particle performing the jump

XJ,b∗,T−1 would not take the lead at time T ) implies

XN (T ) = XJ(T − 1) +XJ,b∗,T−1 > XN−1(T ) + (2c2 − ρ)aN ,

which together with (2.3.3) and (2.3.4) shows the statement of Step (iii).

In Step (iv) we show that every particle which does not descend from particle (N,T ) is to

the left of XN (T )− c2aN at time t1.

Step (iv). Let i ∈ [N − 1] and j ∈ [N ]. If (i, T ) . (j, t1) then Xj(t1) ≤ XN (T )− c2aN .

First we will use Lemma 2.3.9(a) to bound XN (t1). Since T is the last time when a particle

took the lead with a big jump before time t1, we have JT, t1−1K ⊆ ScN , where SN is de�ned

in (2.2.16). By Corollary 2.3.8 and Steps (i) and (ii), it follows that JT, t1 − 1K ⊆ ŜcN .

Therefore the conditions of Lemma 2.3.9(a) hold with s = T and ∆s = t1 − T . Then

Lemma 2.3.9(a) yields

XN (t1) ≤ XN (T ) + c1aN . (2.3.35)

Now we prove the upper bound on Xj(t1) in the statement of Step (iv). Let us �rst con-

sider the case in which there is no big jump in the path between particles (i, T ) and (j, t1),

i.e. BN ∩ P j,t1i,T = ∅. Then, by Lemma 2.3.3, Step (iii) and (2.3.4) we have

Xj(t1) ≤ Xi(T ) + c1aN < XN (T )− 3
2c2aN + c1aN < XN (T )− c2aN ,

which shows that the statement of Step (iv) holds in this case.

Now suppose instead that there exists a big jump on the path between particles (i, T )

and (j, t1), so assume we have some (l, b, r) ∈ BN ∩P j,t1i,T . We will show that, even with the

big jump Xl,b,r, particle (j, t1) cannot arrive close to the leader particle (N, t1) at time t1.

This fact together with (2.3.35) will imply Step (iv).

We know that JT, t1− 1K ⊆ ŜcN , and so, in particular, the leader at time r is not beaten

by the big jump Xl,b,r. Hence by the de�nition of Zl(r) in (2.3.11) we have Xl,b,r ≤ Zl(r).
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Therefore, because of Steps (i) and (ii) and by (2.3.4), Corollary 2.3.7(b) applies, which

implies

Xl(r) +Xl,b,r ≤ XN (r)− 2c2aN . (2.3.36)

Now by Lemma 2.3.4 and since t1 − T < `N by Step (i), then by (2.3.36), and �nally by

monotonicity,

Xj(t1) ≤ Xl(r) +Xl,b,r + c1aN ≤ XN (r)− 2c2aN + c1aN ≤ XN (t1)− 2c2aN + c1aN .

(2.3.37)

Putting (2.3.37) and (2.3.35) together and then using (2.3.4), we obtain

Xj(t1) ≤ XN (T )− 2c2aN + 2c1aN ≤ XN (T )− c2aN ,

which �nishes the proof of Step (iv).

Step (v). The event B1, as de�ned in (2.3.7), occurs.

Let us simplify the notation by writing R = Rc1,N (t1), where Rc1,N (t1) is given by (2.3.6).

To prove that B1 occurs, we �rst show that

NN,T (t1) = {j ∈ [N ] : Xj(t1) ≥ XN (t1)− c1aN} = {N −R+ 1, . . . , N} . (2.3.38)

The second equality follows directly from the de�nition of R; we will prove the �rst equality.

Note that Step (iv) implies that every descendant of particle (N,T ) survives until time

t1, that is |NN,T (t1)| = 2t1−T > 1. Indeed, by Step (i) and our assumption on N we have

2t1−T ≤ 2N1−δ < N , thus at time t1 there are at least 2t1−T particles to the right of (or

at) position XN (T ) by Lemma 2.2.3. By Step (iv), particles not descended from particle

(N,T ) are to the left of position XN (T ) at time t1. Therefore, particle (N,T ) must have

2t1−T surviving descendants at time t1, since otherwise there would not be 2t1−T particles

to the right of (or at) position XN (T ).

The above argument also implies that the leader at time t1 must be a descendant

of particle (N,T ), i.e. N ∈ NN,T (t1). Furthermore, as all jumps are non-negative, and

by (2.3.35), we have

Xk(t1) ∈ [XN (T ),XN (T ) + c1aN ] ∀k ∈ NN,T (t1). (2.3.39)

In particular, using the above and (2.3.35) again, we must have Xk(t1) ≥ XN (T ) ≥ XN (t1)−
c1aN for all k ∈ NN,T (t1).

By Step (iv) and then by monotonicity and (2.3.4),

Xj(t1) ≤ XN (T )− c2aN < XN (t1)− c1aN ∀j ∈ [N ] \ NN,T (t1),

and (2.3.38) follows.
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Next we check that

XN−R(t1) ≤ XN−R+1(t1)− c2aN . (2.3.40)

By (2.3.38) we see that N −R+ 1 ∈ NN,T (t1) and N −R /∈ NN,T (t1). Therefore, Step (iv)

and (2.3.39) imply (2.3.40).

Finally, we need to show that

R ≤ 2N1−δ. (2.3.41)

We have that

R = | {N −R+ 1, . . . , N} | = |NN,T (t1)| ≤ 2t1−(t2+dδ`N e) ≤ 2N1−δ,

where in the second equality we used (2.3.38), and the inequality follows since T > t2+dδ`Ne
by Step (i). Therefore by Step (i), (2.3.38), (2.3.40) and (2.3.41), B1 occurs, which concludes

Step (v).

This completes the proof of (2.3.26).

Proof that C1 to C7 imply B2

Recall the de�nition of the event B2 in (2.3.8). We now prove that

B1 ∩ C4 ∩ C6 ∩ C7 ⊆ B2, (2.3.42)

which implies
⋂7
j=1 Cj ⊆ B2 because of (2.3.26).

Assume that B1 ∩ C4 ∩ C6 ∩ C7 occurs. Again write R = Rc1,N (t1), where Rc1,N (t1) is

de�ned using (2.3.6). Take j ∈ [N−R] and consider particle (j, t1). Then, by the de�nition

of the event B1 in (2.3.7), and since the leader at time t1 is to the right of every particle at

time t1, we have

Xj(t1) ≤ XN−R+1(t1)− c2aN ≤ XN (t1)− c2aN . (2.3.43)

Now suppose that the ith particle at time t is a descendant of particle (j, t1), i.e. i ∈ Nj,t1(t).

Lemma 2.2.3 implies that every particle at time t is to the right of (or at) XN (t1). Thus

we have Xi(t) ≥ XN (t1), which together with (2.3.43) and (2.3.4) implies

Xi(t) > Xj(t1) + c1aN .

Thus, by Lemma 2.3.3, there must be a big jump in the path between particles (j, t1) and

(i, t); that is, we must have BN ∩ P i,tj,t1 6= ∅.
Therefore we can bound the number of time-t descendants of particles (1, t1), (2, t1),

. . . , (N −R, t1) by the number of descendants of particles which made a big jump between
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times t1 and t− 1:

N−R∑
j=1

|Nj,t1(t)| ≤
∑

(k,b,s)∈B[t1,t−1]
N

|N b
k,s(t)|. (2.3.44)

By the de�nition of the event C6, no particle makes a big jump in the time interval [t1 −
dδ`Ne , t1 + dδ`Ne]. Hence, any particle which made a big jump between times t1 and t− 1

can have at most 2t−(t1+dδ`N e) descendants at time t. Furthermore, by the de�nition of C7,

|B[t1,t−1]
N | ≤ K. Putting these observations together with (2.3.44) we obtain

N−R∑
j=1

|Nj,t1(t)| ≤ 2KN1−δ < N1−γ , (2.3.45)

by our assumption on N in the statement of the proposition. This completes the proof

of (2.3.42).

Proof that C1 to C7 imply A1

Recall the de�nition of A1 in (2.2.3). We now complete the proof of Proposition 2.3.2 by

showing that
7⋂
j=1

Cj ⊆ A1. (2.3.46)

Assume
⋂7
j=1 Cj occurs. Let i, j ∈ [N ] be such that (j, t1) . (i, t). Assume �rst that

BN ∩ P i,tj,t1 = ∅. Then, by Lemma 2.3.3 and using the leader's position as an upper bound,

we obtain

Xi(t) ≤ Xj(t1) + c1aN ≤ XN (t1) + c1aN ≤ X1(t) + c1aN ,

where the last inequality follows by Lemma 2.2.3. Thus, recalling the de�nition of Lc1,N (t)

in (2.2.1), we have i ∈ [Lc1,N (t)]. Therefore, if i > Lc1,N (t) then we must have BN ∩P i,tj,t1 6=
∅. It follows that

N − Lc1,N (t) ≤
∑

(k,b,s)∈B[t1,t−1]
N

|N b
k,s(t)| < N1−γ

by the same argument as for (2.3.45). Since we took c1 < η in (2.3.4), we now have

Lη,N (t) ≥ N −N1−γ , which �nishes the proof of (2.3.46). The proof of Proposition 2.3.2

then follows from (2.3.26), (2.3.42), (2.3.46) and Step (ii).

2.3.3 Breaking down event C1

We have now broken down the events B1, B2 and A1 into simpler events C1 to C7. In

Section 2.4 we will be able to show directly that the events C2 to C7 occur with high

probability. However, we will need to break C1 down further, into simpler events that we

will show occur with high probability in Section 2.4. In this section we carry out the task

of breaking down C1, which says that a gap of size 2c3aN appears behind the rightmost
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particle at some point during the time interval [t2 +1, t1] (see (2.3.10)), into simpler events.

Recall that we assumed t > 4`N , and that the constants η ∈ (0, 1], γ, δ, ρ, c1, c2, . . . , c6, K

satisfy (2.3.2)-(2.3.5).

The �rst event we introduce is the same as the event C2 in (2.3.12), except with larger

gaps and jumps. That is, if a particle is more than c4aN away from the leader, then it does

not jump to within distance 3c3aN of the leader's position with a single big jump (recall

that c3 � c4). We let

D1 :=

{
@(i, b, s) ∈ [N ]× {1, 2} × Jt3, t− 1K such that

Xi,b,s ∈ (Zi(s)− 3c3aN , Zi(s) + 3c3aN ] and Zi(s) ≥ c4aN

}
, (2.3.47)

where Zi(s) is the gap between the ith and the rightmost particle. The reason behind the

de�nition of D1 is the following. Assume that a big jump beats the leader at a time when

the diameter is fairly big (> 3
2c4aN ). Then the event D1, together with the events C3, C4

and C5, implies that this particle must become the new leader and it will lead by at least

(3c3 − ρ)aN , which will be enough to show that C1 occurs. We state this as a corollary

below, which we will use later on in this section.

Corollary 2.3.10. On the event D1 ∩ C3 ∩ C4 ∩ C5, if (k, b, s) ∈ B
[t3,t−1]
N , d(X (s)) ≥

(c4 + c1)aN and Xk,b,s > Zk(s), then

XN (s+ 1) = Xk(s) +Xk,b,s > XN−1(s+ 1) + (3c3 − ρ)aN ,

where Zk(s),D1 and C3, C4, C5 are given by (2.3.11), (2.3.47) and (2.3.13)-(2.3.15) respec-

tively, and B
[t3,t−1]
N is de�ned in (2.2.14).

Proof. The statement follows by exactly the same argument as for Corollary 2.3.7(a), if we

replace C2 by D1, c3 by c4 and 2c2 by 3c3.

The next two events will ensure that the record is broken in the time interval [t2 +1, t1].

The �rst event says that there is a jump of size greater than 2c4aN in every interval of

length c5`N in [t3, t1] (recall c4 � c5). We de�ne

D2 := {∀s ∈ Jt3, t1 − c5`N K, ∃(k, b, ŝ) ∈ [N ]× {1, 2} × Js, s+ c5`N K : Xk,b,ŝ > 2c4aN} .
(2.3.48)

The event D2 will be useful if at some point in the time interval [t2, t1] the diameter is not

too large (≤ 3
2c4aN ). If D2 occurs then shortly after this point a jump of size larger than

2c4aN happens. We will show that this jump breaks the record, and the particle performing

this jump will lead by at least 2c3aN . The reason for this is that the jump size (> 2c4aN )

is much greater than the preceding diameter (≤ 3
2c4aN ), and that c3 � c4.

The next event says that there will be a jump of size greater than 2c6aN between times

t2 and t2 + d`N/2e (recall c6 � c5). Let

D3 := {∃(i, b, s) ∈ [N ]× {1, 2} × Jt2, t2 + d`N/2eK : Xi,b,s > 2c6aN} . (2.3.49)
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The next event says that there is no jump of size greater than c6aN shortly before time t2.

We let

D4 := {@(i, b, s) ∈ [N ]× {1, 2} × Jt2 − dc5`Ne , t2K : Xi,b,s > c6aN} (2.3.50)

(recall c5 � c6). Our last event excludes jumps of size in a certain small range in a certain

short time interval. The starting point of this time interval will be the �rst time after t2
when the diameter is at most 3

2c4aN :

τ2 := inf
{
s ≥ t2 : d(X (s)) ≤ 3

2c4aN
}
, (2.3.51)

and we de�ne the event

D5 :=

{
@(k, b, s) ∈ [N ]× {1, 2} × Jτ2, τ2 + c5`N K :

Xk,b,s ∈ (2c4aN , 2c4aN + 3c3aN ]

}
. (2.3.52)

We can now state the main result of this subsection.

Proposition 2.3.11. Let η ∈ (0, 1], and assume that the constants γ, δ, ρ, c1, c2, . . . , c6,K

satisfy (2.3.2)-(2.3.5). For all N ≥ 2 su�ciently large that `N − dc5`Ne ≥ d`N/2e and
t > 4`N ,

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆ C1,

where D1, . . . ,D5 are de�ned in (2.3.47)-(2.3.50) and (2.3.52) respectively, and C1, . . . , C7

are de�ned in (2.3.10) and (2.3.12)-(2.3.17) respectively.

Before giving a precise proof of Proposition 2.3.11, we give an outline of the argument,

which is divided into four separate cases. Suppose
⋂7
j=2 Cj ∩

⋂5
i=1Di occurs.

Case 1: Suppose there is a time τ2 ∈ [t2, t1 − c5`N ] when the diameter is not too large (at

most 3
2c4aN ). Then shortly after time τ2, there will be a jump of size larger than 2c4aN , by

the de�nition of the event D2. We will show that the particle making this jump breaks the

record and will lead by a distance larger than 2c3aN . The proof will also use the de�nition

of the event D5.

Case 2(a): Suppose the diameter is larger than 3
2c4aN at all times in [t2, t1 − c5`N ],

but the record is broken by a big jump at some point in this time interval. Then Corol-

lary 2.3.10 tells us that there will be a gap of size greater than 2c3aN behind the new record.

Case 2(b): Suppose the diameter is larger than 3
2c4aN at all times in [t2, t1− c5`N ]. If the

record is not broken on the time interval [t2 − dc5`Ne , t1 − c5`N ], then using Lemma 2.3.9,
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we can show that the diameter is less than 3
2c4aN at time t1 − dc5`Ne, giving us a contra-

diction. Thus this case is impossible.

Case 2(c): Suppose the diameter is larger than 3
2c4aN at all times in [t2, t1 − c5`N ]. Now

consider the case that the record is not broken on the time interval [t2, t1 − c5`N ], but is

broken shortly before t2, during the time interval [t2 − dc5`Ne , t2 − 1]. By the de�nition of

the event D4, this jump cannot be very big. Therefore, we will see that the new leader will

be beaten by the �rst jump of size greater than 2c6aN , if the record has not already been

broken before that. There will be a jump of size greater than 2c6aN before time t2 +d`N/2e
because of the event D3, so the record must be broken by a big jump before time t1− c5`N .

This again gives us a contradiction, meaning that Case 2(c) is also impossible.

We now prove Proposition 2.3.11, using cases 1, 2(a), 2(b) and 2(c) as described above.

Proof of Proposition 2.3.11. Fix η ∈ (0, 1] and take constants γ, δ, ρ, c1, c2, . . . , c6,K as in

(2.3.2)-(2.3.5). Let us assume that
⋂7
j=2 Cj ∩

⋂5
i=1Di occurs.

Case 1: t2 ≤ τ2 ≤ t1 − c5`N .

In this case, by the de�nition of τ2 we have

d(X (τ2)) ≤ 3
2c4aN . (2.3.53)

Let us now consider the �rst jump of size greater than 2c4aN after time τ2; that is, let

s∗ = inf {s ≥ τ2 : ∃(k, b) ∈ [N ]× {1, 2} such that Xk,b,s > 2c4aN} ∈ Jτ2, τ2 + c5`N K
(2.3.54)

by the de�nition of the eventD2 in (2.3.48). Take (k∗, b∗) ∈ [N ]×{1, 2} such thatXk∗,b∗,s∗ >

2c4aN (there is a unique choice of the pair (k∗, b∗) by the de�nition of the event C5). We

will show that the jump Xk∗,b∗,s∗ creates a gap of size larger than 2c3aN behind the leader.

We do this in two steps. First we show that the diameter is not too large right before the

jump Xk∗,b∗,s∗ occurs; then we show that a gap is created.

(i) We claim that

d(X (s∗)) ≤ 2c4aN + c2aN . (2.3.55)

Now we prove the claim. By (2.3.53), the claim holds if s∗ = τ2. Suppose on the

other hand that s∗ > τ2. Let j ∈ [N ] be arbitrary, and then take i ∈ [N ] such that

(i, τ2) . (j, s∗). We will show that particle (j, s∗) is within distance (2c4 + c2)aN of

the leftmost particle at time s∗. We consider two cases, depending on whether there

is a big jump on the path between Xi(τ2) and Xj(s∗).
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� If BN ∩ P j,s
∗

i,τ2
= ∅, then by Lemma 2.3.3, (2.3.53) and monotonicity,

Xj(s∗) ≤ Xi(τ2) + c1aN ≤ X1(τ2) + 3
2c4aN + c1aN ≤ X1(s∗) + 3

2c4aN + c1aN .

(2.3.56)

� If BN ∩P j,s
∗

i,τ2
6= ∅, then take (k′, b′, s′) ∈ BN ∩P j,s

∗

i,τ2
. Then Xk′(s′) is the position

of the parent of the particle that makes the jump Xk′,b′,s′ . Since (by (2.3.54))

Xk∗,b∗,s∗ is the �rst jump of size greater than 2c4aN after time τ2, and since

s′ < s∗, we have Xk′,b′,s′ ≤ 2c4aN . Then since s∗ − s′ ≤ s∗ − τ2 ≤ c5`N , by

Lemma 2.3.4 we have

Xj(s∗) ≤ Xk′(s′) +Xk′,b′,s′ + c1aN ≤ Xk′(s′) + 2c4aN + c1aN .

Now Lemma 2.3.6 and monotonicity imply that this is at most

X1(s′) + 2c4aN + 2c1aN ≤ X1(s∗) + 2c4aN + 2c1aN . (2.3.57)

By (2.3.56), (2.3.57) and our choice of constants in (2.3.4), we conclude that for any

particle position Xj(s∗) in the population at time s∗, Xj(s∗) ≤ X1(s∗)+2c4aN +c2aN ,

which implies (2.3.55).

(ii) We claim that

XN−1(s∗ + 1) + 2c3aN < XN (s∗ + 1). (2.3.58)

By the de�nition of (k∗, b∗, s∗), we have Xk∗,b∗,s∗ > 2c4aN , and we also know that

Xk∗,b∗,s∗ /∈ (2c4aN , 2c4aN + 3c3aN ] by the de�nition of the event D5, because s∗ ∈
Jτ2, τ2 + c5`N K. Therefore we have

Xk∗,b∗,s∗ > 2c4aN + 3c3aN . (2.3.59)

Then by (2.3.59) and (2.3.55),

Xk∗(s∗) +Xk∗,b∗,s∗ > X1(s∗) + (2c4 + 3c3)aN ≥ XN (s∗) + (3c3 − c2)aN . (2.3.60)

Note that 3c3−c2 > ρ by (2.3.3)-(2.3.4), which in particular shows that Xk∗,b∗,s∗ must

be a big jump. Hence by (2.3.60) and Lemma 2.3.5(b), we have (k∗, s∗) .b∗ (N, s∗+1)

and

XN (s∗ + 1) > XN−1(s∗ + 1) + (3c3 − c2 − ρ)aN ,

which is larger than XN−1(s∗ + 1) + 2c3aN by (2.3.3)-(2.3.4). This �nishes the proof

of (2.3.58).

Recall from (2.3.54) that s∗ ∈ Jτ2, τ2 + c5`N K. Furthermore, event C6 tells us that s∗ /∈
[t1 − dδ`Ne , t1]. Therefore, by the assumption of Case 1 that τ2 ∈ [t2, t1 − c5`N ], we con-
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clude t2 + 1 ≤ s∗+ 1 ≤ t1, which together with (2.3.58) shows that C1 occurs. We conclude

that Proposition 2.3.11 holds in Case 1.

Case 2(a): τ2 > t1 − c5`N and [t2, t1 − c5`N ] ∩ ŜN 6= ∅, where ŜN is de�ned in (2.2.18).

This means that there exists (k̂, b̂, ŝ) ∈ B[t2,t1−c5`N ]
N with Xk̂,b̂,ŝ > Zk̂(ŝ) (recall (2.3.11)).

Since τ2 > t1 − c5`N , we have d(X (ŝ)) > 3
2c4aN . Then by (2.3.4), we can apply Corol-

lary 2.3.10 to obtain

XN (ŝ+ 1) = Xk̂(ŝ) +Xk̂,b̂,ŝ > XN−1(ŝ+ 1) + (3c3 − ρ)aN .

By our choice of constants in (2.3.3)-(2.3.4), and because ŝ + 1 ∈ Jt2 + 1, t1K, this shows
that C1 occurs. Therefore we are done with the proof of Proposition 2.3.11 in Case 2(a).

Case 2(b): τ2 > t1 − c5`N and [t2 − dc5`Ne, t1 − c5`N ] ∩ ŜN = ∅.
We will apply Lemma 2.3.9 with s = t2 − dc5`Ne and ∆s = `N . By assumption we have

[s, s+ ∆s− 1] ⊆ ŜcN , and therefore applying either part (a) or part (b) of Lemma 2.3.9 as

appropriate, we have

d(X (s+ ∆s)) = d(X (t1 − dc5`Ne)) ≤ max
{
c1aN ,

3
2c3aN + 2c1aN

}
which is smaller than 3

2c4aN by (2.3.4), contradicting the assumption that τ2 > t1 − c5`N .

This shows that Case 2(b) cannot occur.

Case 2(c): τ2 > t1− c5`N and [t2, t1− c5`N ]∩ ŜN = ∅, but [t2−dc5`Ne, t2− 1]∩ ŜN 6= ∅.
De�ne

τ3 := inf
{
s ≤ t2 : Js, t2K ⊆ ŜcN

}
∈ (t2 − dc5`Ne, t2]. (2.3.61)

Suppose, aiming for a contradiction, that there exists r ∈ Jτ3, t1−c5`N K such that d(X (r)) ≤
3
2c3aN . Then since Jτ3, t2K ⊆ ŜcN and Jt2, t1 − c5`N K ⊆ ŜcN , Lemma 2.3.9(b) applies with

s = r and ∆s = t1− dc5`Ne − r (which is smaller than `N since r ≥ τ3 > t2− dc5`Ne), and
says that d(X (t1− dc5`Ne)) ≤ 3

2c3aN + 2c1aN . By (2.3.4), this contradicts the assumption

that τ2 > t1 − c5`N . Thus we must have

d(X (r)) ≥ 3
2c3aN ∀r ∈ Jτ3, t1 − c5`N K. (2.3.62)

Now note that τ3 − 1 ∈ ŜN . Then by (2.3.62), the second equivalence in Corollary 2.3.8

implies that in fact τ3 − 1 ∈ SN . Hence, by the de�nition of SN in (2.2.16), there exists

(k, b) ∈ [N ]× {1, 2} such that

XN (τ3) = Xk(τ3 − 1) +Xk,b,τ3−1, (2.3.63)

whereXk,b,τ3−1 > ρaN . Now Lemma 2.3.6 provides a bound on Xk(τ3−1), and the de�nition
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of D4 together with the fact that τ3 − 1 ∈ [t2 − dc5`Ne , t2] gives us a bound on Xk,b,τ3−1,

so that we obtain

XN (τ3) ≤ X1(τ3 − 1) + (c1 + c6)aN . (2.3.64)

Now, on the event D3, there exists (̃i, b̃, s̃) ∈ [N ]× {1, 2} × Jt2, t2 + d`N/2eK such that

Xĩ,b̃,s̃ > 2c6aN > ρaN (2.3.65)

by (2.3.3)-(2.3.4). We show that the particle performing this big jump beats the leader at

time s̃. By our assumption that `N−dc5`Ne ≥ d`N/2e and by (2.3.61), we have Jτ3, s̃K ⊆ ŜcN
and s̃ − τ3 ≤ `N . Therefore, by (2.3.62) we can apply Lemma 2.3.9(a) with s = τ3 and

∆s = s̃− τ3, and then by (2.3.64) we have

XN (s̃) ≤ XN (τ3) + c1aN ≤ X1(τ3 − 1) + (2c1 + c6)aN . (2.3.66)

By (2.3.4), it follows that

XN (s̃) < X1(τ3 − 1) + 2c6aN < X1(s̃) +Xĩ,b̃,s̃ ≤ Xĩ(s̃) +Xĩ,b̃,s̃,

where in the second inequality we use monotonicity and (2.3.65). Therefore, by the as-

sumptions that s̃ ∈ Jt2, t2 + d`N/2eK and `N − dc5`Ne ≥ d`N/2e, and by the de�nition of

ŜN in (2.2.18), we have s̃ ∈ ŜN ∩ [t2, t1 − c5`N ], which contradicts the assumption of Case

2(c).

We have now shown that if
⋂7
j=2 Cj ∩

⋂5
i=1Di occurs then Cases 2(b) and 2(c) are

impossible, whereas Cases 1 and 2(a) imply that C1 must occur. This concludes the proof

of Proposition 2.3.11.

2.4 Probabilities of the events from the deterministic argu-

ment

In the deterministic argument in Section 2.3 we have provided a strategy which ensures

that the events A1 and A3 occur. In this section we check that the events C2 to C7 and D1

to D5 which make up this strategy all occur with high probability, and use this to �nish

the proof of Proposition 2.2.5.

When bounding the probabilities of these events, it will be useful to consider branching

random walks (BRWs) without selection, where at each time step all particles have two

o�spring, the o�spring particles make i.i.d. jumps from their parents' locations, and every

o�spring particle survives. Below we describe a construction of the N -BRW from N in-

dependent BRWs, which will allow us to consider our events on the probability space on

which the BRWs are de�ned. (A similar construction was used in [2].)
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2.4.1 Construction of the N-BRW from N independent BRWs

Consider a binary tree with the following labelling. Let

U0 :=
∞⋃
n=0

{1, 2}n ,

and for convenience we write e.g. 121 instead of (1, 2, 1). Then the root of the binary tree

has label ∅, and for all u ∈ U0 the two children of vertex u have labels u1 and u2. We will

use the partial order � on the set U0; we write u � v if either u = v or the vertex with

label u is an ancestor of the vertex with label v in the binary tree. We also write u ≺ v if

u � v and u 6= v.

The particles of the N independent BRWs will have labels from the set [N ]×U0, and we

have a lexicographical order on the set of labels. We also let U := U0 \ {∅}. The jumps of

the BRWs will be given by random variables (Yj,u)j∈[N ],u∈U , which are i.i.d. with common

law given by (2.1.3).

The N initial particles of the N independent BRWs are labelled with the pairs (j, ∅)
with j ∈ [N ]. For each j ∈ [N ], we let Yj(∅) ∈ R be the initial location of particle (j, ∅).
Then, at each time step n ∈ N0, each particle (j, u) with j ∈ [N ] and u ∈ {1, 2}n has two

o�spring labelled (j, u1) and (j, u2), which make jumps Yj,u1, Yj,u2 from the location Yj(u).

The locations of the o�spring particles (j, u1) and (j, u2) will be Yj(u1) = Yj(u) + Yj,u1

and Yj(u2) = Yj(u) + Yj,u2. Note that for u ≺ v, the path between particles (j, u) and

(j, v) is given by the jumps Yj,w with u ≺ w � v, i.e. Yj(v)− Yj(u) =
∑

u≺w�v Yj,w.

Now we construct the N -BRW by de�ning the surviving set of particles for each time

n ∈ N0 as the N -element set Hn ⊆ [N ] × {1, 2}n, constructed iteratively as follows. Let

H0 := {(1, ∅), . . . , (N, ∅)}. Given Hn for some n ∈ N0, we let H ′n denote the set of o�spring

of the particles in the set Hn:

H ′n :=
⋃

(j,u)∈Hn

{(j, u1), (j, u2)} .

Then Hn+1 ⊆ H ′n consists of the particles with the N largest values in the collection

(Yj(u))(j,u)∈H′n , where ties are broken based on the lexicographical order of the labels. In

this way an N -BRW is constructed from the initial con�guration (Yj(∅))j∈[N ] and the jumps

(Yj,u)j∈[N ],u∈U .

For n ∈ N, we let F ′n denote the σ-algebra generated by (Yj,u)j∈[N ],u∈∪nm=1{1,2}m . Note

that Hn is F ′n-measurable for each n.

Returning to our original notation in Section 2.2.1, we can say the following. For

all n ∈ N0, let X (n) denote the ordered set which contains the values (Yj(u))(j,u)∈Hn in

ascending order:

X (n) = {X1(n) ≤ · · · ≤ XN (n)} := {Yj1(u1) ≤ · · · ≤ YjN (uN )} , (2.4.1)

72
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where Hn = {(ji, ui) : i ∈ [N ]}, and again ties are broken based on the lexicographical

order of the labels. Then we de�ne the map σ which associates the pair (i, n) ∈ [N ] × N0

with particle (ji, ui) ∈ Hn, where Yji(ui) has the ith position in the ordered set X (n). That

is, for (i, n) ∈ [N ]× N0 we let

σ(i, n) = (ji, ui) ∈ Hn ⊂ [N ]× U0, (2.4.2)

where (ji, ui) is as in (2.4.1). The jumps in our original notation are then given by

Xi,1,n := Yji,ui1 and Xi,2,n := Yji,ui2, (2.4.3)

if σ(i, n) = (ji, ui).

Finally, recall that we introduced the partial order . in (2.2.8) in Section 2.2.4 to denote

that two particles are related in the N -BRW. This partial order corresponds to the partial

order � in the N independent BRWs as follows. For all n, k ∈ N0 and i0, ik ∈ [N ], we have

(i0, n) . (ik, n+ k) if and only if for some j ∈ [N ] and u, v ∈ U0, we have σ(i0, n) = (j, u),

σ(ik, n + k) = (j, v), and u � v. Furthermore, for b ∈ {1, 2} we have (i0, n) .b (ik, n + k)

if and only if the above holds and additionally k ≥ 1 and ub � v.
Now we can consider the N -BRW constructed from N independent BRWs with the

notation introduced in Sections 2.2.1 and 2.2.4. It follows from our construction that for

any path in the N -BRW, there is a path in one of the N independent BRWs that consists

of the same sequence of jumps as the path in the N -BRW. We state and prove this simple

property below. Recall the notation P i2,n2
i1,n1

from (2.2.10).

Lemma 2.4.1. For all k ∈ N, i0, ik ∈ [N ] and n ∈ N0, if (i0, n) . (ik, n + k) with

P ik,n+k
i0,n

= {(il, bl, n + l) : l ∈ {0, . . . , k − 1}}, then there exists j ∈ [N ] and (ul)
k
l=0 ⊆ U0

such that

(1) (j, ul) ∈ Hn+l, for all l ∈ {0, . . . , k},

(2) ulbl � uk, for all l ∈ {0, . . . , k − 1}, and

(3) Xil,bl,n+l = Yj,ulbl , for all l ∈ {0, . . . , k − 1}.

Proof. Take (il, bl, n+ l) ∈ P ik,n+k
i0,n

(with l ∈ {0, . . . , k − 1}). Then (il, n+ l) .bl (ik, n+k).

Thus, there exist j ∈ [N ] and ul, uk ∈ U0 such that σ(il, n+l) = (j, ul), σ(ik, n+k) = (j, uk),

and ulbl � uk. This implies Xil,bl,n+l = Yj,ulbl (see (2.4.3)) and also (j, ul) ∈ Hn+l and

(j, uk) ∈ Hn+k by the de�nition (2.4.2) of σ. Since (il, bl, n + l) ∈ P ik,n+k
i0,n

was arbitrary,

the result follows.

2.4.2 Paths with regularly varying jump distribution

One of the most important components of the deterministic argument in Section 2.3 is that

paths cannot move very far without big jumps; this is the meaning of the event C4 de�ned
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in (2.3.14). Corollary 2.4.5 is the main result of this section and will be used to bound from

below the probability that the event C4 occurs.

As in [3], we use Potter's bounds to give useful estimates on the regularly varying func-

tion h (with index α) de�ned in (2.1.3). We will use the following elementary consequence

of Potter's bounds.

Lemma 2.4.2. For ε > 0, there exist B(ε) > 1 and C1(ε), C2(ε) > 0 such that

1

h(x)
≤ C1x

ε−α and h(x) ≤ C2x
α+ε ∀x ≥ B.

Proof. Let ε > 0 be arbitrary. By Potter's bounds [9, Theorem 1.5.6(iii)], there exists

x0 > 0 depending only on ε such that

h(y)

h(x)
≤ 2 max

(
(y/x)α+ε, (y/x)α−ε

)
∀x, y ≥ x0. (2.4.4)

Let x ≥ x0 be arbitrary and let y = x0 in (2.4.4). Then we have y/x ≤ 1 and so

(y/x)α+ε ≤ (y/x)α−ε, and the �rst inequality in the statement of the lemma holds with

C1 = 2xα−ε0 h(x0)−1 and B = x0 + 1. Similarly, since we have x/y ≥ 1, we have (x/y)α−ε ≤
(x/y)α+ε, and hence by (2.4.4) (with x and y exchanged) the second inequality holds with

C2 = 2h(x0)x
−(α+ε)
0 and B = x0 + 1.

In order to show that C4 occurs with high probability, we prove a lemma about a random

walk with the same jump distribution as our N -BRW, but in which jumps larger than a

certain size are discarded and count as a jump of size zero. The lemma gives an upper bound

on the probability that this random walk moves a large distance xN in of order `N steps,

if the jumps larger than rxN are discarded (for some r ∈ (0, 1)). For an arbitrarily large

q > 0, the parameter r can be taken su�ciently small that the above probability is smaller

than N−q (for large N). Our lemma is similar to the lemma on page 168 of [21], where the

jump distribution is truncated; jumps greater than a threshold value are not allowed at all,

instead of being counted as zero. We use ideas from the proof of Theorem 3 in [27], which

is a large deviation result for sums of random variables with stretched exponential tails.

Recall that P(X > x) = h(x)−1 for x ≥ 0, where h is regularly varying with index

α > 0.

Lemma 2.4.3. Let X1, X2, . . . be i.i.d. random variables with X1
d
= X. For any m ∈ N,

q > 0, λ > 0, 0 < r < 1 ∧ λ(1∧α)
8q , for N su�ciently large, if xN > Nλ then

P

(
m`N∑
j=1

Xj1{Xj≤rxN} ≥ xN

)
≤ N−q.

Before proving Lemma 2.4.3, we now state and prove an elementary identity which will

be used in the proof. This identity was also used in the proof of Theorem 3 in [27].
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Lemma 2.4.4. Suppose Y is a non-negative random variable. For v > 0 and 0 < K1 <

K2 <∞,

E[exp(vY 1{Y≤K2})1{Y≥K1}]

=

∫ K2

K1

vevuP(Y > u)du+ evK1P(Y ≥ K1)− (evK2 − 1)P(Y > K2). (2.4.5)

Proof. First note that the random variable in the expectation on the left-hand side of (2.4.5)

takes the value 1 if Y > K2. The expectation can be written as

E[exp(vY 1{Y≤K2})1{Y≥K1}] = E
[
evY 1{K1≤Y≤K2}

]
+ P(Y > K2). (2.4.6)

Now we will work on the integral on the right-hand side of (2.4.5). First, by Fubini's

theorem we have∫ K2

K1

vevuP(Y > u)du = E
[∫ K2

K1

vevu1{Y >u}du

]
= E

[∫ K2∧Y

K1

vevudu1{Y≥K1}

]
.

By calculating the integral, it follows that∫ K2

K1

vevuP(Y > u)du = E
[(
ev(K2∧Y ) − evK1

)
1{Y≥K1}

]
= E

[
evY 1{K1≤Y≤K2}

]
+ E

[
evK21{Y >K2}

]
− E

[
evK11{Y≥K1}

]
.

The result follows by (2.4.6).

Proof of Lemma 2.4.3. Let X̃ := X1{X≤rxN} and X̃j := Xj1{Xj≤rxN} for all j ∈ N. Take
N su�ciently large that `N ≤ 2 log2N . Then by Markov's inequality and since X̃1, X̃2, . . .

are i.i.d. with X̃1
d
= X̃, for c > 0,

P

m`N∑
j=1

X̃j ≥ xN

 = P

exp

c`Nx−1
N

m`N∑
j=1

X̃j

 ≥ ec`N


≤ e−c`NE
[
ec`Nx

−1
N X̃

]m`N
≤ N

− c
log 2

+ 2m
log 2

logE
[
e
c`Nx

−1
N

X̃
]
, (2.4.7)

since log2N ≤ `N ≤ 2 log2N . We will show that with an appropriate choice of c > 0, for

N su�ciently large, the right-hand side of (2.4.7) is smaller than N−q. First we require

c > 2q log 2. (2.4.8)

Second, we will have another condition on c which ensures that E[ec`Nx
−1
N X̃ ] ≤ 1 +O(N−ε)

as N →∞ for some ε > 0. We now estimate this expectation and determine the choice of
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c.

Take 0 < ε < λ(1∧α)
2(λ+1) , and take B = B(ε) > 1 and C1 = C1(ε) > 0 as in Lemma 2.4.2.

Suppose N is su�ciently large that rxN > B. We apply Lemma 2.4.4 with Y = X,

v = c`Nx
−1
N , K1 = B and K2 = rxN , and then use (2.1.3), to obtain

E
[
ec`Nx

−1
N X̃

]
≤ E

[
e
c`Nx

−1
N X1{X≤rxN}1{X≥B}

]
+ eBc`Nx

−1
N P(X < B)

≤
∫ rxN

B
c`Nx

−1
N ec`Nx

−1
N uh(u)−1du+ eBc`Nx

−1
N . (2.4.9)

We will choose c such that the �rst term on the right-hand side of (2.4.9) is close to

zero. By Lemma 2.4.2, and then since r < 1, we have∫ rxN

B
c`Nx

−1
N ec`Nx

−1
N uh(u)−1du ≤

∫ rxN

B
C1c`Nx

−1
N ec`Nx

−1
N uu−α+εdu

≤ C1c`Nx
−1
N

∫ rxN

B
ec`Nx

−1
N (rxN )xεNu

−αdu.

Integrating the right-hand side, since we took N su�ciently large that `N ≤ 2 log2N , we

conclude

∫ rxN

B
c`Nx

−1
N ec`Nx

−1
N uh(u)−1du ≤


C1c
1−α`NN

2cr
log 2

(
r1−αxε−αN −B1−αxε−1

N

)
, if α 6= 1,

C1c`Nx
ε−1
N N

2cr
log 2 log xN , if α = 1,

(2.4.10)

where in the α = 1 case we use that B > 1 and that r < 1.

Now, since xN > Nλ and ε < 1 ∧ α, the right-hand side of (2.4.10) is at most of order

N−ε if

2cr

log 2
+ λ(ε− (1 ∧ α)) < −ε. (2.4.11)

Since r < λ(1∧α)
8q by the assumptions of the lemma, we can �nd c such that

2q log 2 < c <
λ(1 ∧ α) log 2

4r
.

Then since we chose ε < λ(1∧α)
2(λ+1) , c satis�es (2.4.8) and (2.4.11). Note furthermore that since

xN > Nλ, the second term on the right-hand side of (2.4.9) is close to 1 for N large; for N

su�ciently large we have

eBc`Nx
−1
N ≤ eBc`NN−λ ≤ 1 + 2Bc`NN

−λ. (2.4.12)

Hence, (2.4.9), (2.4.10) and the choice of c, and (2.4.12) with the fact that ε < λ show
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that there exists a constant A > 0 such that

E
[
ec`Nx

−1
N X̃

]
≤ 1 +AN−ε

for N su�ciently large and xN > Nλ. Therefore, by (2.4.7) and (2.4.8) we have

P

m`N∑
j=1

X̃j ≥ xN

 ≤ N−2q+ 2m
log 2

log(1+AN−ε) ≤ N−2q+ 2m
log 2

AN−ε
< N−q,

for N su�ciently large, which concludes the proof.

We now apply Lemma 2.4.3 to the N -BRW, to give us a convenient form of the result

which we will use later in this section and also in Section 2.5.

Corollary 2.4.5. Let λ > 0 and 0 < r < 1∧ λ(1∧α)
48 . Then there exists C > 0 such that for

N su�ciently large, if xN > Nλ,

P

 ∃(k1, s1) ∈ [N ]× Jt4, t− 1K, s2 ∈ Js1 + 1, tK and k2 ∈ Nk1,s1(s2) :∑
(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤rxN} ≥ xN

 ≤ CN−1,

where P k2,s2k1,s1
and Nk1,s1(s2) are de�ned in (2.2.10) and (2.2.12) respectively.

Proof. Take (k1, s1), (k2, s2) ∈ [N ]×Jt4, t−1K with (k1, s1) . (k2, s2), and let k′ = ζk1,s1(t4)

be the index of the time-t4 ancestor of (k1, s1) (see (2.2.9) for the notation). If the path

between particles (k1, s1) and (k2, s2) moves at least xN even with discarding jumps greater

than rxN , then the path between (k′, t4) and (k2, s2) does the same, because all jumps are

non-negative. Therefore we only need to consider paths starting with the N particles of

the population at time t4:

P

 ∃(k1, s1) ∈ [N ]× Jt4, t− 1K, s2 ∈ Js1 + 1, tK and k2 ∈ Nk1,s1(s2) :∑
(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤rxN} ≥ xN


≤ P

 ∃k′ ∈ [N ], s2 ∈ Jt4 + 1, tK and k2 ∈ Nk′,t4(s2) :∑
(i,b,s)∈Pk2,s2

k′,t4

Xi,b,s1{Xi,b,s≤rxN} ≥ xN

 . (2.4.13)

Now consider the N -BRW constructed from N independent BRWs (see Section 2.4.1).

Assume that k′ ∈ [N ], s2 ∈ Jt4 + 1, tK and k2 ∈ Nk′,t4(s2) are such that∑
(i,b,s)∈Pk2,s2

k′,t4

Xi,b,s1{Xi,b,s≤rxN} ≥ xN .

Then by Lemma 2.4.1 there exists a path in one of the N independent BRWs that contains

the same jumps as the path P k2,s2k′,t4
. Thus Lemma 2.4.1 implies that there exist (j, u) ∈ Ht4
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and (j, v) ∈ Hs2 such that u ≺ v and∑
u≺w�v

Yj,w1{Yj,w≤rxN} ≥ xN .

That is, there is a path in the N independent BRWs between times t4 and s2 which moves

at least xN even with discarding jumps of size greater than rxN . This means that there

must be a path with the same property between times t4 and t as well, because all jumps

are non-negative. Therefore

P

 ∃k′ ∈ [N ], s2 ∈ Jt4 + 1, tK and k2 ∈ Nk′,t4(s2) :∑
(i,b,s)∈Pk2,s2

k′,t4

Xi,b,s1{Xi,b,s≤rxN} ≥ xN


≤ P

(
∃(j, u) ∈ Ht4 and v ∈ {1, 2}t with v � u :

∑
u≺w�v

Yj,w1{Yj,w≤rxN} ≥ xN
)
. (2.4.14)

LetXi, i = 1, 2, . . . be i.i.d. with distribution given by (2.1.3), and take λ > 0, xN > Nλ,

and 0 < r < 1 ∧ λ(1∧α)
48 . Note that the random variables Yj,w are all distributed as the

Xi random variables, and that there are 4`N terms in the sum on the right-hand side

of (2.4.14). We will give a union bound for the probability of the event on the right-hand

side of (2.4.14), using that Ht4 is a set of N elements and that a particle in the set Ht4 has

24`N descendants in a BRW (without selection) at time t, which means 24`N possible labels

for v for each (j, u) ∈ Ht4 . Then by (2.4.13), (2.4.14) and by conditioning on F ′t4 and using

a union bound,

P

 ∃(k1, s1) ∈ [N ]× Jt4, t− 1K, s2 ∈ Js1 + 1, tK and k2 ∈ Nk1,s1(s2) :∑
(i,b,s)∈Pk2,s2k1,s1

Xi,b,s1{Xi,b,s≤rxN} ≥ xN


≤ N24`NP

(
4`N∑
j=1

Xj1{Xj≤rxN} ≥ xN

)
. (2.4.15)

Then by Lemma 2.4.3 with m = 4 and q = 6, we have that for N su�ciently large,

P

(
4`N∑
j=1

Xj1{Xj≤rxN} ≥ xN

)
≤ N−6.

The result follows by (2.4.15).

2.4.3 Simple properties of the regularly varying function h

In order to bound the probabilities of the events C2 to C7 and D1 to D5, we will need to use

several properties of the function h from (2.1.3). Recall that h is regularly varying with

index α > 0, and that it determines the jump distribution of the N -BRW in the sense that
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for each jump (i, b, s),

P(Xi,b,s > x) = h(x)−1 ∀x ≥ 0. (2.4.16)

Recall that aN = h−1(2N`N ), and note that aN →∞ as N →∞. Indeed, by the de�nition

of h−1 in (2.1.6), aN is non-decreasing, and since h is non-decreasing by (2.1.3), aN cannot

converge to a �nite limit a ∈ R, because this would imply h(a+ 1) ≥ 2N`N ∀N . Moreover,

letting C2 = C2(α) as in Lemma 2.4.2, for N su�ciently large that aN + 1 ≥ B = B(α),

2N`N < h(aN + 1) ≤ C2(aN + 1)2α, (2.4.17)

where in the �rst inequality we use the de�nition (2.1.6) of h−1 and that h is non-decreasing,

and the second inequality follows by the second inequality of Lemma 2.4.2.

Since h is regularly varying with index α, we have

2N`N
h(aN )

→ 1 as N →∞. (2.4.18)

Indeed, since h is non-decreasing, for any ε ∈ (0, 1), by (2.1.2) and by the de�nition of aN
we have

(1− ε)α − ε ≤ h(aN (1− ε))
h(aN )

≤ 2N`N
h(aN )

≤ h(aN (1 + ε))

h(aN )
≤ (1 + ε)α + ε,

for N su�ciently large. Often in our proofs it will be enough to use that (2.4.18) implies

1

2
<

2N`N
h(aN )

< 2, (2.4.19)

for N su�ciently large.

For convenience we state a few other simple properties of h, which we will apply several

times. Let r ∈ (0, 1) and η < 1/1000. First, we have

1

h(raN )
<

1

h(aN )
(r−α + η4) <

1

h(aN )
2r−α, (2.4.20)

for N su�ciently large, by (2.1.2). Second, for N su�ciently large, we also have

2N`N
h(raN )

<
2N`N
h(aN )

(r−α + η4) < (1 + η4)(r−α + η4) < 2r−α, (2.4.21)

by (2.4.20) and (2.4.18). Furthermore, by the same argument as for (2.4.21), for N su�-

ciently large,
2N`N
h(raN )

>
r−α

2
. (2.4.22)
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2.4.4 Probabilities and proof of Proposition 2.2.5

Next we will go through the events (Cj)7
j=2 and (Di)5

i=1, which we de�ned in Section 2.3,

one by one. We will prove upper bounds on the probabilities of their complement events,

which will then allow us to prove Proposition 2.2.5. Recall that the events (Cj)7
j=2 and

(Di)5
i=1 all depend on the constants η,K, γ, δ, ρ, c1 . . . , c6 introduced in (2.3.2)-(2.3.5), and

Propositions 2.3.2 and 2.3.11 hold when the constants satisfy the conditions (2.3.2)-(2.3.5).

In order to show that the events in question occur with high probability, the constants need

to satisfy some extra conditions which are consistent with (2.3.2)-(2.3.5). We now specify

these choices.

Recall that α > 0. First we assume that η ∈ (0, 1] is very small; in particular, that it is

small enough to satisfy

η2 < min

((
2α+2 log

(
1000

η

))−1/α

,
η

1000 · 2α

)
. (2.4.23)

Then we choose the remaining constants as follows (we will see shortly that these choices

are consistent with (2.3.2)-(2.3.5)):

(a) c6 := η2,

(b) c5 := η6(1∨α),

(c) c4 := c
4/(1∧α)
5 ,

(d) take c3 > 0 small enough to satisfy c3 < c
4(1∨α)
4 and (1− 6c3/c4)α ≥ 1− 12αc3/c4,

(e) take c2 > 0 small enough to satisfy c2 < c
4(1∨α)
3 and (1− 4c2/c3)α ≥ 1− 8αc2/c3,

(f) c1 := c2
2,

(g) ρ := c1(1 ∧ α)2/(100α),

(h) δ := ρα+1 ,

(i) γ := δ/2,

(j) K := ρ−α−1.

Note that the constants with the choices above can be thought of as in (2.3.1). We state a

few simple consequences of these choices, which will be useful in proving upper bounds on

the probabilities of the complement events of C2 to C7 and D1 to D5. First, by (2.4.23), we

have

η <
1

1000 · 2α
<

1

1000
, (2.4.24)

and note that all constants γ, δ, ρ, c1 . . . , c6 and 1/K are at most η2. Thus, from (a)-(f)

and (2.4.24), for j = 1, . . . , 5, we have

cj ≤ c2
j+1 ≤ cj+1η

2 <
cj+1

106 · 22α
, (2.4.25)
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which also means

cj <
η2

106
(2.4.26)

for j = 1, . . . , 5. In particular we will need that

c2

c3
<

1

106(1 ∨ α)
(2.4.27)

and
c3

c4
<

1

106(1 ∨ α)
, (2.4.28)

which both follow by (2.4.25) and by the fact that 22α ≥ eα ≥ 1 ∨ α for α > 0. We will

also use that from (e) we have

c−α−1
3 c2 < c

−2(1∨α)+4(1∨α)
3 ≤ c2

3 <
c4

106 · 22α

c4

106α
<

η4

16α2α
, (2.4.29)

where we applied (2.4.25) and that 22α ≥ α, and then that c4 < η2. Then similarly, from

(d) we have

c−α−1
4 c3 <

η4

24α2α
. (2.4.30)

Finally, from (g) and (2.4.26) we have

ρ < c1 <
η

106
. (2.4.31)

Considering the choices (a)-(j) together with the consequences (2.4.24) and (2.4.25), and

noticing that (g) implies ρ ≤ c1/100, we conclude that the constants η,K, γ, δ, ρ, c1 . . . , c6

satisfy (2.3.2)-(2.3.5), so we will be able to apply Propositions 2.3.2 and 2.3.11 with this

choice of constants.

We can now show that the events C2 to C7 and D1 to D5 occur with high probability.

Lemma 2.4.6. Suppose the constants η, K, γ, δ, ρ, c1, . . . , c6 > 0 satisfy (2.4.23) and

(a)-(j). Then for N su�ciently large and t > 4`N ,

P(Ccj ) <
η

1000
and P(Dci ) <

η

1000

for all j ∈ {2, . . . , 7} and i ∈ {1, . . . , 5}, where the events (Cj)7
j=2 and (Di)5

i=1 are de�ned

in (2.3.12)-(2.3.17) and (2.3.47)-(2.3.52) respectively.

Proof. Assume that η > 0 satis�es (2.4.23). We consider the events (Cj)7
j=2 and (Di)5

i=1 with

the constants K, γ, δ, ρ, c1, . . . , c6, and we assume that these constants satisfy (a)-(j). We

will upper bound the probabilities of the events (Ccj )7
j=2 and (Dci )5

i=1 using (2.4.25)-(2.4.31)

above, and the properties of the regularly varying function h described in Section 2.4.3.

The event Cc2 (see (2.3.12)) says that there is a time s ∈ [t3, t − 1] when a particle at

distance at least c3aN behind the leader jumps to within distance 2c2aN of the leader's
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position. We use Markov's inequality, and sum over all the jumps happening between

times t3 and t− 1 to bound the probability of this event. We have

P(Cc2) ≤ E

[
#

{
(i, b, s) ∈ [N ]× {1, 2} × Jt3, t− 1K such that

Zi(s) ≥ c3aN and Xi,b,s ∈ (Zi(s)− 2c2aN , Zi(s) + 2c2aN ]

}]
=

∑
(i,b,s)∈[N ]×{1,2}×Jt3,t−1K

E
[
1{Zi(s)≥c3aN}1{Xi,b,s∈(Zi(s)−2c2aN ,Zi(s)+2c2aN ]}

]
.

Recall from Section 2.2.4 that for s ∈ N and i ∈ [N ], the distance Zi(s) of the ith particle

from the leader is Fs-measurable, but the jumps performed at time s, Xi,1,s and Xi,2,s, are

independent of Fs. Hence by (2.4.16),

P(Cc2)

≤
∑

(i,b,s)∈[N ]×{1,2}×Jt3,t−1K

E
[
E
[
1{Zi(s)≥c3aN}1{Xi,b,s∈(Zi(s)−2c2aN ,Zi(s)+2c2aN ]}

∣∣∣Fs]]
=

∑
(i,b,s)∈[N ]×{1,2}×Jt3,t−1K

E
[
1{Zi(s)≥c3aN}

(
h(Zi(s)− 2c2aN )−1 − h(Zi(s) + 2c2aN )−1

)]
.

(2.4.32)

Since h is monotone non-decreasing, for any z ≥ c3aN we have

h(z − 2c2aN )−1 − h(z + 2c2aN )−1 ≤ h((c3 − 2c2)aN )−1

(
1− h(z − 2c2aN )

h(z + 2c2aN )

)
. (2.4.33)

Take ε > 0. For the fraction on the right-hand side of (2.4.33) we have that forN su�ciently

large, for z ≥ c3aN ,

1 ≥ h(z − 2c2aN )

h(z + 2c2aN )
≥
h
(

(z + 2c2aN ) · (c3−2c2)aN
(c3+2c2)aN

)
h(z + 2c2aN )

≥
(

1− 4c2

c3 + 2c2

)α
− ε ≥ 1− 8α

c2

c3
− ε,

(2.4.34)

where we �rst use the monotonicity of h, and in the second inequality we use that z ≥
c3aN , that the function y 7→ (y − 2c2aN )/(y + 2c2aN ) is increasing in y, and we again

use the monotonicity of h. The third inequality follows by (2.1.2), and the fourth holds

by the de�nition of c2 in (e). Then, by (2.4.20) and the lower bound in (2.4.34) with

ε = η4(c3 − 2c2)α, we see from (2.4.33) that for N su�ciently large, for z ≥ c3aN ,

h(z − 2c2aN )−1 − h(z + 2c2aN )−1 ≤ 2(c3 − 2c2)−αh(aN )−1

(
8α
c2

c3
+ η4(c3 − 2c2)α

)
≤ h(aN )−1(16α2αc−α−1

3 c2 + 2η4), (2.4.35)

where for the �rst term of the second inequality we used the fact that (c3 − 2c2)−α <

(c3/2)−α, because 2c2 < c3/2 by (2.4.25).
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Now let us return to (2.4.32) and notice that we sum over 6N`N jumps. Therefore,

by (2.4.35) we conclude that for N su�ciently large,

P(Cc2) ≤ 6N`N
h(aN )

(16α2αc−α−1
3 c2 + 2η4) ≤ 6(16α2αc−α−1

3 c2 + 2η4) < 18η4 <
η

1000
,

where we used (2.4.19) in the second inequality, (2.4.29) in the third, and (2.4.24) in the

fourth.

The event Cc3 (see (2.3.13)) says that there exists a big jump in the time interval [t4, t− 1]

such that a descendant also performs a big jump during the time interval [t4, t− 1], within

time `N of the �rst big jump.

Consider the N -BRW constructed from N independent BRWs (see Section 2.4.1). If

Cc3 occurs then there must be two big jumps in the N -BRW as above; that is, we must

have (i1, s1) .b1 (i2, s2) with s1 ∈ Jt4, t − 2K and s2 ∈ Js1 + 1,min {s1 + `N , t− 1}K,
and (i1, b1, s1), (i2, b2, s2) ∈ BN , where BN is the set of big jumps de�ned in (2.2.15).

Then by Lemma 2.4.1 there are two big jumps with the same properties in the N in-

dependent BRWs; that is, there exist j ∈ [N ], u1, u2 ∈ U0 such that (j, u1) ∈ Hs1 ,

(j, u2) ∈ Hs2 , u1b1 � u2, Xi1,b1,s1 = Yj,u1b1 and Xi2,b2,s2 = Yj,u2b2 . Therefore, since

s2 ∈ Js1 + 1,min {s1 + `N , t− 1}K ⊆ Js1 + 1, s1 + `N K and Hs2 ⊆ [N ]× {1, 2}s2 , we have

P(Cc3) ≤ P

 ∃s1 ∈ Jt4, t− 2K, (j, u1) ∈ Hs1 , b1 ∈ {1, 2} and

s2 ∈ Js1 + 1, s1 + `N K, u2 ∈ {1, 2}s2 , u2 � u1, b2 ∈ {1, 2} :

Yj,u1b1 > ρaN and Yj,u2b2 > ρaN

 . (2.4.36)

Recall the de�nition of F ′n in Section 2.4.1. By a union bound over the possible values of

s1, s2, b1 and b2, and then conditioning on F ′s1 and applying another union bound over the

possible values of (j, u1) and u2,

P(Cc3)

≤
∑

s1∈Jt4,t−2K,
s2∈Js1+1,s1+`N K,

b1,b2∈{1,2}

E

 ∑
(j,u1)∈Hs1 ,u2∈{1,2}

s2 ,u2�u1

P
(
Yj,u1b1 > ρaN , Yj,u2b2 > ρaN

∣∣F ′s1)
 .

Then since (Yj,u)j∈[N ],u∈∪m>s1{1,2}m are independent of F ′s1 , for (j, u1) ∈ Hs1 and u2 ∈
{1, 2}s2 we have

P
(
Yj,u1b1 > ρaN , Yj,u2b2 > ρaN

∣∣F ′s1) = h(ρaN )−2.

Hence by summing over the 4`N − 1 possible values for s1, and the two possible values for

b1 and b2, and since |Hs1 | = N , and for u1 ∈ {1, 2}s1 there are 2s2−s1 possible values of
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u2 ∈ {1, 2}s2 with u2 � u1, for N su�ciently large we have

P(Cc3) ≤ 4`N · 4
∑

s2∈Js1+1,s1+`N K

N2s2−s1h(ρaN )−2

≤ 16N`N · 2 · 2log2N+1h(ρaN )−2 =

(
2N`N
h(ρaN )

)2

16`−1
N ≤ 4ρ−2α · 16`−1

N <
η

1000
,

(2.4.37)

where in the third inequality we used (2.4.21).

The event Cc4 (see (2.3.14)) can be bounded using Corollary 2.4.5. We apply the corollary

with xN = c1aN , r = ρ/c1 and λ = 1/(2α). We can make this choice for λ, because we

have

c1aN > N1/(2α) (2.4.38)

for all N su�ciently large by (2.4.17). By our choice of ρ in (g), we have r < 1 ∧ λ(1∧α)
48 ,

and so Corollary 2.4.5 tells us that for some constant C > 0, for N su�ciently large,

P(Cc4) ≤ CN−1 <
η

1000
. (2.4.39)

The event Cc5 (see (2.3.15)) says that two big jumps occur at the same time, that is

Cc5 =
{
∃s ∈ Jt4, t− 1K, (k1, b1) 6= (k2, b2) ∈ [N ]× {1, 2}

: Xk1,b1,s > ρaN and Xk2,b2,s > ρaN
}
.

By a union bound over the 4`N time steps and the possible pairs of jumps at each time

step,

P(Cc5) ≤ 4`N

(
2N

2

)
h(ρaN )−2 ≤

(
2N`N
h(ρaN )

)2

2`−1
N ≤ 4ρ−2α · 2`−1

N <
η

1000
(2.4.40)

for N su�ciently large, where the third inequality follows by (2.4.21).

The event Cc6 (see (2.3.16)) says that a big jump happens in (at least) one of two very short

time intervals, [t2, t2+dδ`Ne] and [t1−dδ`Ne , t1+dδ`Ne]. In total there are 2N ·(3 dδ`Ne+2)

jumps performed during these two time intervals. By a union bound over these jumps, we

get

P(Cc6)

= P(∃(i, b, s) ∈ [N ]× {1, 2} × (Jt2, t2 + dδ`NeK ∪ Jt1 − dδ`Ne , t1 + dδ`NeK) : Xi,b,s > ρaN )

≤ 2N(3δ`N + 5)h(ρaN )−1 ≤ 6δρ−α(1 + 2δ−1`−1
N ) <

η

1000
, (2.4.41)
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2.4. Probabilities of the events from the deterministic argument

for N su�ciently large, where in the second inequality we used (2.4.21), and the last in-

equality follows by the choice of δ in (h) and by (2.4.31).

The event C7 gives an upper bound on the number of big jumps (see (2.3.17)). There

are 8N`N jumps performed in the time interval [t4, t− 1]; by Markov's inequality and then

by (2.4.21), we have

P(Cc7) = P(# {(i, b, s) ∈ [N ]× {1, 2} × Jt4, t− 1K : Xi,b,s > ρaN} > K)

≤ 8N`Nh(ρaN )−1

K
≤ 8

K
ρ−α <

η

1000
(2.4.42)

for N su�ciently large, where the last inequality follows by the choice of K in (j) and

by (2.4.31).

The event D1 (see (2.3.47)) has the same de�nition as that of C2 (see (2.3.12)), except

with di�erent constants. By the same argument as for (2.4.35), using the de�nition of c3

in (d), for N su�ciently large we have

h(z − 3c3aN )−1 − h(z + 3c3aN )−1 ≤ h(aN )−1(24α · 2αc−α−1
4 c3 + 2η4) ∀z ≥ c4aN .

(2.4.43)

Then continuing in the same way as after (2.4.35) we obtain

P(Dc1) ≤ 6(24α2αc−α−1
4 c3 + 2η4) < 18η4 <

η

1000
, (2.4.44)

for N su�ciently large, by (2.4.30) and (2.4.24).

The event D2 in (2.3.48) says that in every interval of length c5`N in [t3, t1] there is

a particle which performs a jump of size greater than 2c4aN . We introduce a slightly

di�erent event to show that D2 happens with high probability. Let us divide the interval

[t3, t1] into subintervals of length 1
2c5`N , to get

⌈
4c−1

5

⌉
subintervals (the last subinterval

may end after time t1; we also note that 1
2c5`N is not necessarily an integer, but we will

intersect the intervals with N). If a jump of size greater than 2c4aN happens in each of

these subintervals then D2 occurs. We describe this formally by the following event:

D̃2 :=


∀m ∈

{
1, 2, . . . ,

⌈
4c−1

5

⌉}
,

∃(k, b, s) ∈ [N ]× {1, 2} × Jt3 + (m− 1)1
2c5`N , t3 +m1

2c5`N K :

Xk,b,s > 2c4aN

 ;

as mentioned above, if D̃2 occurs then D2 occurs. The complement event of D̃2 is that there

is a subinterval in which every jump made by a particle has size at most 2c4aN . Note that

in each subinterval Jt3 + (m− 1)1
2c5`N , t3 +m1

2c5`N K, there are at least 2N · 1
2c5`N jumps.
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2.4. Probabilities of the events from the deterministic argument

Therefore, by a union bound, we have

P(Dc2) ≤ P(D̃c2) ≤
⌈
4c−1

5

⌉(
1− 1

h(2c4aN )

)c5`NN
≤ (4c−1

5 + 1) exp

(
− c5N`N
h(2c4aN )

)
≤ 5c−1

5 exp

(
−c5(2c4)−α

4

)
, (2.4.45)

where in the third inequality we use that 1− x ≤ e−x for x ≥ 0, and the fourth inequality

follows by (2.4.22) for N su�ciently large and since c5 < 1. Now note that by (c),

c5c
−α
4 = c

1−4α/(1∧α)
5 ≥ c−3

5 > 22+α log
(5000

c5η

)
,

where the last inequality holds because c−1
5 > 22+α by (2.4.25), 0 < log x < x for x > 1,

and c−1
5 > 5000

η by (2.4.26). Substituting this into (2.4.45) shows that P(Dc2) < η/1000.

The event Dc3 de�ned in (2.3.49) says that every jump in the time interval [t2, t2 +d`N/2e]
has size at most 2c6aN . There are at least N`N jumps in this time interval, and so for N

su�ciently large, since e−x ≥ 1− x for x ≥ 0, and then by (2.4.22),

P(Dc3) ≤
(

1− 1

h(2c6aN )

)N`N
≤ exp

(
− N`N
h(2c6aN )

)
≤ exp

(
−(2c6)−α

4

)
. (2.4.46)

Now (a) and (2.4.23) tell us that c−α6 = η−2α > 2α+2 log(1000
η ), and substituting this

into (2.4.46) shows that P(Dc3) < η/1000.

The event Dc4 (see (2.3.50)) says that in the time interval [t2 − dc5`Ne , t2], a particle

performs a jump of size greater than c6aN (recall from (a) and (b) that c5 � c6). Since

there are at most 2N(dc5`Ne+1) ≤ 2N(c5`N+2) jumps in the time interval [t2−dc5`Ne , t2],

by a union bound,

P(Dc4) = P(∃(i, b, s) ∈ [N ]× {1, 2} × Jt2 − dc5`Ne, t2K : Xi,b,s > c6aN )

≤ 2N(c5`N + 2)

h(c6aN )
≤ 2c5c

−α
6 (1 + 2c−1

5 `−1
N ) ≤ 4η6(1∨α)η−2α <

η

1000
, (2.4.47)

for N su�ciently large, where in the second inequality we use (2.4.21), the third inequality

holds by the choices in (b) and (a) forN su�ciently large, and the fourth follows by (2.4.24).

The event Dc5 (see (2.3.52)) says that in a short time interval after time τ2 (de�ned

in (2.3.51)) a jump is performed whose size falls into a small interval, (2c4aN , (2c4+3c3)aN ].

We can see from the de�nition of τ2 as the �rst time after t2 when the diameter is at most
3
2c4aN , that τ2 is a stopping time. Therefore we can condition on Fτ2 , and apply the strong
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2.4. Probabilities of the events from the deterministic argument

Markov property. By Markov's inequality we have

P(Dc5)

= P(∃(k, b, s) ∈ [N ]× {1, 2} × Jτ2, τ2 + c5`N K : Xk,b,s ∈ (2c4aN , (2c4 + 3c3)aN ])

≤ E [E[# {(k, b, s) ∈ [N ]× {1, 2} × Jτ2, τ2 + c5`N K :Xk,b,s ∈ (2c4aN , (2c4 + 3c3)aN ]} |Fτ2 ]] .

Note that if τ2 <∞ then during the time interval [τ2, τ2+c5`N ] there are at most 2N(c5`N+

1) jumps; it follows that

P(Dc5) ≤ E

[ ∑
(k,b,s)∈[N ]×{1,2}×Jτ2,τ2+c5`N K

P (Xk,b,s ∈ (2c4aN , (2c4 + 3c3)aN ]| Fτ2)1{τ2<∞}

]

≤ 2N(c5`N + 1)
(
h(2c4aN )−1 − h((2c4 + 3c3)aN )−1

)
(2.4.48)

by the strong Markov property. Now we can use the monotonicity of h and then the upper

bound (2.4.43) to get

h(2c4aN )−1 − h((2c4 + 3c3)aN )−1 ≤ h((2c4 − 3c3)aN )−1 − h((2c4 + 3c3)aN )−1

≤ h(aN )−1(24α · 2αc−α−1
4 c3 + 2η4) (2.4.49)

for N su�ciently large. Therefore, by (2.4.48), (2.4.49), and (2.4.18), we have that for N

su�ciently large,

P(Dc5) ≤ (1 + c−1
5 `−1

N )c5(1 + η4)(24α2αc−α−1
4 c3 + 2η4) < 4c5 · 3η4 <

η

1000
, (2.4.50)

where in the second inequality we use (2.4.30) and that (1 + c−1
5 `−1

N )(1 + η4) < 4 for N

su�ciently large, and the last inequality follows by (2.4.26) and (2.4.24). This concludes

the proof of Lemma 2.4.6.

We have seen in Lemma 2.4.6 above that with an appropriate choice of constants, the

probabilities of the events C2 to C7 and D1 to D5 which imply A1 and A3 are close to 1.

We can now use this to prove Proposition 2.2.5.

Proof of Proposition 2.2.5. Take η ∈ (0, 1]. Without loss of generality, we can assume

that η is su�ciently small that it satis�es (2.4.23). Then choose K, γ, δ, ρ, c1, . . . , c6 as

in (a)-(j) (at the beginning of Section 2.4.4). Note that before stating Lemma 2.4.6 we

checked that these constants also satisfy (2.3.2)-(2.3.5). Therefore by Proposition 2.3.2 and

Proposition 2.3.11, for N su�ciently large and t > 4`N ,

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆ A1 ∩ A3.
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2.5. Proof of Proposition 2.2.6: star-shaped coalescence

Therefore, for N su�ciently large and t > 4`N , by a union bound,

P((A1 ∩ A3)c) ≤ P

 7⋂
j=2

Cj ∩
5⋂
i=1

Di

c ≤ 7∑
j=2

P(Ccj ) +
5∑
i=1

P(Dci ) < η

by Lemma 2.4.6, which completes the proof.

2.5 Proof of Proposition 2.2.6: star-shaped coalescence

We will prove Proposition 2.2.6 in this section. So far we have proved Proposition 2.2.5,

which says that with high probability the common ancestor of the majority of the population

at time t is particle (N,T ), where T is given by (2.2.17); in particular, T is between times

t2 and t1. Now recall the notation introduced in (2.2.19)-(2.2.23). Proposition 2.2.6 says

that for ν > 0, with high probability, every particle in the set NN,T (T + εN`N ) has at most

νN surviving descendants at time t, where we may assume that (εN )N∈N0 satis�es

εN`N ∈ N0 ∀N ≥ 1, εN`N →∞ as N →∞ and εN ≤
1

4

log2 `N
`N

∀N ≥ 1.

(2.5.1)

The �rst two of these assumptions on εN are from (2.2.2). The third can be made without

loss of generality, because if ε′N > εN , and every particle in NN,T (T + εN`N ) has at most

νN surviving descendants at time t, then certainly every particle in NN,T (T + ε′N`N ) has

at most νN surviving descendants at time t.

Fix η ∈ (0, 1] su�ciently small that it satis�es (2.4.23). Then chooseK, γ, δ, ρ, c1, . . . , c6

as in (a)-(j). Then take N su�ciently large that Proposition 2.2.5 and Lemma 2.4.6 hold

for our chosen constants, and take t > 4`N . Let ν > 0 be �xed and let us write A4 := A4(ν)

from now on.

2.5.1 Strategy

Our strategy for showing Proposition 2.2.6 is to give a lower bound on the position of

the leftmost particle at time t with high probability, and then bound the number of time-t

descendants of each particle in NN,T (T εN ) which can reach that lower bound by time t. We

will be able to control the number of such descendants because of Corollary 2.4.5. Assume

that we know X1(t) ≥ XN (T ) + âT,N , where âT,N > Nλ for some λ > 0, but âT,N � aN .

Then Corollary 2.4.5 implies that with high probability all surviving particles at time t

must have an ancestor which made a jump of size greater than râT,N for an appropriate

choice of r ∈ (0, 1). So given a particle i ∈ NN,T (T εN ), we can �nd an upper bound for the

number of its time-t descendants with high probability, by considering the number of its

descendants which made a jump of size greater than râT,N before time t. Thus, we should

choose âT,N such that we have X1(t) ≥ XN (T ) + âT,N with high probability, and also such
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2.5. Proof of Proposition 2.2.6: star-shaped coalescence

that we can get a good enough upper bound for each Di (see (2.2.21)) from Corollary 2.4.5

to conclude Proposition 2.2.6.

We now give a sketch argument to motivate our choice of lower bound on X1(t). Assume

that T ∈ [t2 + dδ`Ne , t1 − dδ`Ne]. We also assume that the record set at time T is not

broken by a big jump before time t1 + δ`N , and so almost all the descendants of particle

(N,T ) survive between times T and T + `N . This all happens with high probability, as we

saw in Section 2.4; in particular recall the event C6 from (2.3.16). Set θT,N := (t1− T )/`N .

Note that if a descendant of particle (N,T ) makes a jump of size greater than âT,N

at time T + k for some k ∈ [(1 − δ)`N , `N ], then it can have 2(1+θT,N )`N−k descendants

at time t, and all of these descendants are to the right of XN (T ) + âT,N . Also, there

are approximately 2k particles in the leading tribe descending from (N,T ) at time T + k.

Therefore, we expect that jumps of size greater than âT,N , performed by the descendants

of (N,T ) in the time interval [T + (1− δ)`N , T + `N ], contribute to the number of particles

to the right of XN (T ) + âT,N at time t by roughly

∑
k∈J(1−δ)`N ,`N K

2k · 2(1+θT,N )`N−k 1

h(âT,N )
≈ δ`N2(1+θT,N )`N

1

h(âT,N )
.

If we want to make sure that all the N particles are to the right of XN (T ) + âT,N at time t,

then the above should be approximately N , and so âT,N should be roughly h−1(δ`NN
θT,N ).

There are several potential inaccuracies in this argument. For example, the descendants

of a particle making a jump of size greater than âT,N do not necessarily all survive until time

t. We will use a reasoning similar to Lemma 2.2.3 to clarify this issue. Another problem

might occur if a particle (i, T + k) makes a jump of size greater than âT,N , and then at

time T + k+ 1, its o�spring does the same. In this case our sketch argument double counts

the time-t descendants of particle (i, T + k). We will therefore make some adjustments in

the rigorous proof to avoid double counting.

In Sections 2.5.2 to 2.5.5 below, we will make the sketch argument precise, then use

Corollary 2.4.5 to see that with high probability, particles must have at least one jump

greater than a certain size (roughly but not exactly h−1(δ`NN
θT,N )) in their ancestry to

survive until time t. Finally, for each particle (i, T εN ), we upper bound the number of

particles at time t which descend from particle (i, T εN ) and have a jump greater than this

certain size in their ancestry between times T εN and t.

2.5.2 Sequence of stopping times

In the strategy above we suggested that h−1(δ`NN
θT,N ) should be a good lower bound for

X1(t)−XN (T ). A problem with this lower bound is that it depends on T , and conditioning

on T would change the distribution of the process, as T is not a stopping time; see the

de�nition in (2.2.17).

Note however, that the �rst, second, . . . , nth times after time t2 at which a jump of

size greater than ρaN breaks the record between times t2 and t1, are stopping times, and
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2.5. Proof of Proposition 2.2.6: star-shaped coalescence

T is equal to one of these times with high probability. Furthermore, the number of such

times is at most K with high probability, by Lemma 2.4.6 and the de�nition of the event

C7. Therefore, we can de�ne a �nite set of stopping times in such a way that T is in the set

with high probability. Then we can prove a similar statement to Proposition 2.2.6 for each

stopping time in the �nite set with the strategy described in the previous section. This will

be enough to prove Proposition 2.2.6.

Recall the de�nition of SN in (2.2.16). De�ne a sequence of stopping times by setting

T0 := t2 + dδ`Ne − 1, and

Tn := 1 + inf {SN (ρ) ∩ [Tn−1, t1 − dδ`Ne − 1]} , (2.5.2)

for n ∈ N; let Tn := t1 if the intersection above is empty.

For all n ∈ N, we introduce some new notation which will be frequently used in the

course of the proof. First we let

T εNn := Tn + εN`N . (2.5.3)

The set and number of time-t descendants of the ith particle at time T εNn will be denoted

by

Ni,n := Ni,T εNn (t) and Di,n := |Ni,n|. (2.5.4)

We also introduce

θn,N :=
(t1 − Tn)

`N
≥ 0. (2.5.5)

Take 0 < δ1 < δ/8 and set

ân,N := h−1(δ1N
θn,N `N ), (2.5.6)

where h−1, de�ned in (2.1.6), is the generalised inverse of h from (2.1.3). We explained the

motivation for this de�nition of ân,N in Section 2.5.1. By the same argument as for (2.4.18),

for any ε > 0 we can choose N0 su�ciently large (and deterministic, since all quantities

involved are deterministic) such that

x

h(h−1(x))
∈ [1− ε, 1 + ε] for all N ≥ N0 and x ≥ δ1`N ,

and then since δ1N
θn,N `N ≥ δ1`N , we also have for each n ∈ N,

δ1N
θn,N `N

h(ân,N )
∈ [1− ε, 1 + ε] for all N ≥ N0. (2.5.7)

We note that ân,N is roughly N θn,N/α; in particular, if h(x) = xα for x ≥ 1 then ân,N =

(δ1N
θn,N `N )1/α.

Take 0 < δ2 < δ2. Throughout Section 2.5 we will use the term `medium jump' for

jumps of size greater than δ2ân,N , as the relevant space scale in this section is ân,N . We
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denote the set of medium jumps on a time interval [s1, s2] ⊆ [t2, t− 1] by

M[s1,s2]
n,N := {(k, b, s) ∈ [N ]× {1, 2} × Js1, s2K : Xk,b,s > δ2ân,N} , (2.5.8)

and we let

Mn,N :=M[t2,t−1]
n,N . (2.5.9)

The stopping times (Tn)n∈N allow us to give an upper bound on the probability of Ac4.
Suppose |B[t2,t1]

N | ≤ K and T ∈ [t2 + dδ`Ne , t1 − dδ`Ne]. Then |SN (ρ) ∩ [t2, t1]| ≤ K by

the de�nition of SN in (2.2.16), and so by the de�nition of T in (2.2.17) and the de�nition

of Tn in (2.5.2), it follows that T = Tn for some n ∈ [K]. Hence, by the de�nition of A4

in (2.2.23) and then by a union bound,

P(Ac4) = P
(

max
i∈NN,T (T εN )

Di > νN

)
≤ P

(
∃n ∈ [K] : Tn ≤ t1 − dδ`Ne and max

i∈NN,Tn (T
εN
n )

Di,n > νN

)
+ P

(
|B[t2,t1]

N | > K
)

+ P
(
T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]

)
.

(2.5.10)

By the de�nition of the event C7 in (2.3.17) and by Lemma 2.4.6,

P(|B[t2,t1]
N | > K) ≤ P(Cc7) <

η

1000
.

Then by the de�nition of the event A3 in (2.2.22) and by Proposition 2.2.5,

P(T /∈ [t2 + dδ`Ne , t1 − dδ`Ne]) ≤ P(Ac3) < η.

Therefore, applying a union bound for the �rst term on the right-hand side of (2.5.10), we

obtain

P(Ac4) ≤ E

[
K∑
n=1

1{Tn≤t1−dδ`N e}P
(

max
i∈NN,Tn (T

εN
n )

Di,n > νN

∣∣∣∣ FTn)
]

+
1001

1000
η. (2.5.11)

From now on we aim to show that each term of the sum inside the expectation is small.

For all n ∈ N, we let PTn denote the law of the N -BRW conditioned on FTn :

PTn(·) := P( · | FTn) and ETn [·] := E[ · | FTn ]. (2.5.12)

2.5.3 Proof of Proposition 2.2.6

We now state the most important intermediate results in the proof of Proposition 2.2.6, and

show that they imply the result. We then prove these intermediate results in Sections 2.5.4

and 2.5.5.
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Our �rst main intermediate result says the probability that a particle in NN,Tn(T εNn )

has a descendant at time t such that there is no medium jump on the path between the

particle and the descendant is small. We prove this result in Section 2.5.4.

Lemma 2.5.1. For all N su�ciently large, t > 4`N , and n ∈ N with Tn < t1,

PTn
(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
<

η

100K
,

where Tn, T
εN
n and PTn are given by (2.5.2), (2.5.3) and (2.5.12), NN,Tn(T εNn ) and Ni,n are

de�ned in (2.2.12) and (2.5.4), P k,t
i,T

εN
n

in (2.2.10), andMn,N in (2.5.9).

Our second main intermediate result says that with high probability, for each i ∈
NN,Tn(T εNn ), there cannot be more than νN time-t descendants of particle (i, T εNn ) if each

descendant has a medium jump on their path. We prove this result in Section 2.5.5.

Lemma 2.5.2. For all N su�ciently large, t > 4`N , and n ∈ N with Tn < t1,

PTn
(
∃i ∈ NN,Tn(T εNn ) : Di,n > νN and P k,t

i,T
εN
n
∩Mn,N 6= ∅ ∀k ∈ Ni,n

)
<

η

100K
,

where Tn, T
εN
n and PTn are given by (2.5.2), (2.5.3) and (2.5.12), NN,Tn(T εNn ), Ni,n and

Di,n are de�ned in (2.2.12) and (2.5.4), P k,t
i,T

εN
n

in (2.2.10), andMn,N in (2.5.9).

Proof of Proposition 2.2.6. Suppose N is su�ciently large that Lemmas 2.5.1 and 2.5.2

hold. Take n ∈ N and suppose Tn < t1 (which also implies Tn ≤ t1 − dδ`Ne by the

de�nition (2.5.2) of Tn). Suppose a particle in NN,Tn(T εNn ) has more than νN surviving

descendants at time t. Then either all the descendants have an ancestor which performed

a medium jump between times T εNn and t, or there is at least one particle which survives

without a medium jump in its ancestry. Therefore we have

PTn
(

max
i∈NN,Tn (T

εN
n )

Di,n > νN

)
≤ PTn

(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
+ PTn

(
∃i ∈ NN,Tn(T εNn ) : Di,n > νN and P k,t

i,T
εN
n
∩Mn,N 6= ∅ ∀k ∈ Ni,n

)
<

η

50K
(2.5.13)

by Lemmas 2.5.1 and 2.5.2. Then by (2.5.11), it follows that

P(Ac4) < K · η

50K
+

1001

1000
η < 2η,

which completes the proof.

2.5.4 Leaders must take medium jumps to survive: proof of Lemma 2.5.1

There are two key ideas in the proof. First we show that for a �xed n ∈ N with Tn < t1, the

whole population is to the right of position XN (Tn) + ân,N at time t, with high probability.
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Second, we prove that with high probability paths cannot reach position XN (Tn) + ân,N

without having a medium jump on the path.

Lemma 2.5.3. For all N su�ciently large, t > 4`N , and n ∈ N with Tn < t1,

PTn(X1(t) < XN (Tn) + ân,N ) <
η

200K
,

where Tn and ân,N are given by (2.5.2) and (2.5.6) respectively.

Proof. Recall the de�nition of Gx(n) in (2.2.7). Let G := GXN (Tn)+ân,N (t); then, to prove

the statement of the lemma, we aim to show that for N su�ciently large and t > 4`N ,

PTn(|G| < N) <
η

200K
. (2.5.14)

Recall the de�nition of δ1 > 0 in (2.5.6); �x δ′ ∈ (8δ1, δ) and then take δ3 ∈ (8δ1, δ
′)

such that δ3`N is an integer (this is possible for N su�ciently large). Let Sk := Tn+ `N −k
for k ∈ J1, δ3`N K. Then for each k ∈ J1, δ3`N K, at time Sk there are at least 2`N−k particles

to the right of (or at) position XN (Tn), by Lemma 2.2.3. These particles are either in the

interval [XN (Tn),XN (Tn) + ân,N ) or to the right of this interval. Let us denote the set of

particles in [XN (Tn),XN (Tn) + ân,N ) at time Sk by Ak, i.e. for k ∈ J1, δ3`N K let

Ak := {i ∈ [N ] : Xi(Sk) ∈ [XN (Tn),XN (Tn) + ân,N )} .

We will handle the following two cases separately:

(a) the event E :=
{
|Ak| ≥ 1

22`N−k ∀k ∈ J1, δ3`N K
}
occurs,

(b) the event Ec =
{
∃k ∈ J1, δ3`N K : |GXN (Tn)+ân,N (Sk)| > 1

22`N−k
}
occurs.

First we deal with case (a). We give a lower bound on |G| using a similar argument to

the proof of Lemma 2.2.3. First note that jumps of size greater than ân,N from particles

in Ak arrive to the right of position XN (Tn) + ân,N for all k ∈ J1, δ3`N K. Thus all time-t

descendants of a particle that makes such a jump will be in the set G. For k ∈ J1, δ3`N K,
letM′k denote the set of such jumps:

M′k := {(i, b, Sk) : Xi,b,Sk > ân,N and i ∈ Ak} .

Suppose for all k ∈ J1, δ3`N K, all particles descending from the set M′k survive until time

t. Then the total number of such descendants will be∣∣∣∣∣ ⋃
k∈J1,δ3`N K

⋃
(i,b,Sk)∈M′k

N b
i,Sk

(t)

∣∣∣∣∣ =

δ3`N∑
k=1

2k+θn,N `N−1
∑

i∈Ak,b∈{1,2}

1{Xi,b,Sk>ân,N}. (2.5.15)

The �rst term in the sum is the number of time-t descendants of a particle at time Sk+1 =

Tn + `N − k + 1, and the second sum gives the number of jumps of size greater than ân,N
from particles in Ak.
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If instead there exists k ∈ J1, δ3`N K such that not every particle descending from a

jump in M′k survives until time t, then there must be N particles to the right of (or at)

XN (Tn)+ ân,N at some time s ≤ t (and therefore at time t, by monotonicity). We conclude

the following lower bound:

|G| ≥ min

(
N,

δ3`N∑
k=1

2k+θn,N `N−1
∑

i∈Ak,b∈{1,2}

1{Xi,b,Sk>ân,N}

)
. (2.5.16)

Let ξj,k ∼ Ber(h(ân,N )−1) be i.i.d. random variables, by which we mean that

PTn(ξj,k = 1) =
1

h(ân,N )
= 1− PTn(ξj,k = 0) for all k, j ∈ N.

The indicator random variables in (2.5.16) all have this distribution. Thus by (2.5.16),

PTn({|G| < N} ∩ E) ≤ PTn

({
δ3`N∑
k=1

2k+θn,N `N−1
∑

i∈Ak,b∈{1,2}

1{Xi,b,Sk>ân,N} < N

}
∩ E

)

≤ PTn

(
δ3`N∑
k=1

2k+θn,N `N−1
2`N−k∑
j=1

ξj,k < N

)
, (2.5.17)

since on the event E there are at least 2`N−k jumps from the set Ak for each k ∈ J1, δ3`N K.
We will use the concentration inequality from [35, Theorem 2.3(c)] to estimate the right-

hand side of (2.5.17). As the inequality applies for independent random variables taking

values in [0, 1], we consider the random variables 2−δ3`N+kξj,k ∈ [0, 1] for k ∈ J1, δ3`N K
and j ∈ [2`N−k]. Let µ denote the expectation of the sum of these random variables over k

and j:

µ := ETn

[
δ3`N∑
k=1

2−δ3`N+k
2`N−k∑
j=1

ξj,k

]
=

δ3`N∑
k=1

2−δ3`N+k 2`N−k

h(ân,N )
≥ δ3`NN

1−δ3

h(ân,N )
≥ 4N1−δ3−θn,N

(2.5.18)

for N su�ciently large, where the last inequality holds because h(ân,N ) ≤ 2δ1N
θn,N `N by

(2.5.7) for N su�ciently large, and because we chose δ3/δ1 ≥ 8. Thus

PTn

(
δ3`N∑
k=1

2k+θn,N `N−1
2`N−k∑
j=1

ξj,k < N

)
≤ PTn

(
δ3`N∑
k=1

2−δ3`N+k
2`N−k∑
j=1

ξj,k < 2N1−δ3−θn,N

)

≤ PTn

(
δ3`N∑
k=1

2−δ3`N+k
2`N−k∑
j=1

ξj,k <
1

2
µ

)

for N su�ciently large, where in the �rst inequality we multiply by 21−(δ3+θn,N )`N to get

terms in [0, 1] in the sum and notice that 2−`N ≤ N−1, and the second inequality holds
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by (2.5.18). We now apply the concentration inequality from [35, Theorem 2.3(c)] to the

independent random variables 2−δ3`N+kξj,k ∈ [0, 1] on the right-hand side above, giving

that

PTn

(
δ3`N∑
k=1

2k+θn,N `N−1
2`N−k∑
j=1

ξj,k < N

)
≤ e−µ/8 ≤ e−

1
2
Nδ−δ3

, (2.5.19)

where in the second inequality we use (2.5.18) again and that θn,N ≤ 1 − δ by (2.5.5)

and since Tn ≥ t2 + δ`N by (2.5.2). Now putting (2.5.17) and (2.5.19) together, since

δ − δ3 > δ − δ′ > 0 we conclude that

PTn({|G| < N} ∩ E) <
η

200K
(2.5.20)

for N su�ciently large.

In case (b), Ec deterministically implies that |G| = N . Indeed, if Ec occurs then it

follows that there exists k0 ∈ J1, δ3`N K such that |GXN (Tn)+ân,N (Sk0)| > 1
22`N−k0 . Recall

that Sk0 = Tn + `N − k0. Then by Lemma 2.2.3 we have

|G| ≥ min
(
N, 1

22`N−k02k0+θn,N `N
)

= N (2.5.21)

for N su�ciently large, because θn,N ≥ δ by (2.5.5) and (2.5.2), and since we are assuming

Tn < t1. Thus for N su�ciently large,

PTn({|G| < N} ∩ Ec) = 0,

which together with (2.5.20) and (2.5.14) concludes the proof.

Now we are ready to prove Lemma 2.5.1. Corollary 2.4.5 tells us that paths cannot move

a large distance without having jumps which have size at least the order of magnitude of

that large distance. So Lemma 2.5.3 and Corollary 2.4.5 together will show that paths

without medium jumps cannot survive until time t with high probability.

Proof of Lemma 2.5.1. We partition the event in Lemma 2.5.1 based on the position of the

leftmost particle:

PTn
(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
= PTn

({
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

}
∩ {X1(t) < XN (Tn) + ân,N}

)
+ PTn

({
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

}
∩ {X1(t) ≥ XN (Tn) + ân,N}

)
.

(2.5.22)

This will be useful, because from Lemma 2.5.3 we know that the leftmost particle at time

t is to the right of (or at) XN (Tn) + ân,N with high probability. Hence it is enough to focus

on the second term on the right-hand side of (2.5.22), and show that with high probability,
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paths cannot move beyond XN (Tn) + ân,N without medium jumps.

Assume that the event in the second term on the right-hand side of (2.5.22) occurs with

i ∈ NN,Tn(T εNn ) and k ∈ Ni,n, and so we have P k,t
i,T

εN
n
∩Mn,N = ∅ and Xk(t) ≥ X1(t) ≥

XN (Tn) + ân,N . Note that particle (k, t) is a descendant of particle (N,Tn) as well. The

path between these two particles has to move distance at least ân,N . Thus one of the

following must happen. Either the path between particles (N,Tn) and (k, t) moves ân,N
even without medium jumps, or there must be a medium jump on this path. In the latter

case the medium jump must be in the time interval [Tn, T
εN
n − 1], because we assumed

P k,t
i,T

εN
n
∩Mn,N = ∅. This leads to the following upper bound:

PTn
({
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

}
∩ {X1(t) ≥ XN (Tn) + ân,N}

)
≤ PTn

(
∃k ∈ NN,Tn(t) :

∑
(i,b,s)∈Pk,tN,Tn

Xi,b,s1{Xi,b,s≤δ2ân,N} ≥ ân,N

)

+ PTn (∃s ∈ JTn, T εNn − 1K, i ∈ NN,Tn(s) and b ∈ {1, 2} : Xi,b,s > δ2ân,N )

≤ CN−1 + PTn (∃s ∈ JTn, T εNn − 1K, i ∈ NN,Tn(s) and b ∈ {1, 2} : Xi,b,s > δ2ân,N )

(2.5.23)

for N su�ciently large, where the second inequality holds for some constant C > 0 because

of Corollary 2.4.5 applied with xN = ân,N , r = δ2 and λ = δ/(2α). To check the conditions

of Corollary 2.4.5 we �rst notice that we chose δ2 < δ2, and claim that δ2 < 1 ∧ δ(1∧α)
96α .

Indeed, at the beginning of Section 2.5 we chose δ together with the other constants η, K,

γ, ρ, c1, . . . , c6 satisfying (a)-(j). From (h) and (g) we have δ ≤ ρ ≤ c1(1∧α)
100α , and since c1 is

certainly smaller than 1 (for example by (2.4.26) and (2.4.24)) the claim follows. Regarding

the condition that xN > Nλ, we have ân,N > N θn,N/2α ≥ N δ/2α for N su�ciently large,

where the �rst inequality follows by (2.5.7) and Lemma 2.4.2 by the same argument as

for (2.4.17) and (2.4.38), and the second inequality holds because θn,N ≥ δ by (2.5.5),

(2.5.2) and since we are assuming Tn < t1.

Next we use a union bound to control the second term on the right-hand side of (2.5.23),

using that there are at most 2 · 2k jumps descending from particle (N,Tn) at time Tn + k.

We have

PTn (∃s ∈ JTn, T εNn − 1K, i ∈ NN,Tn(s) and b ∈ {1, 2} : Xi,b,s > δ2ân,N )

≤
εN `N−1∑
k=0

2 · 2k

h(δ2ân,N )
<

21+εN `N

h(δ2ân,N )
≤ 8N εN

δα2 δ1N θn,N `N
≤ 8

δα2 δ1
N εN−δ (2.5.24)

for N su�ciently large, where in the third inequality we use that 2εN `N ≤ 2N εN for N

su�ciently large, and that h(δ2ân,N ) ≥ δα2 δ1N
θn,N `N/2 for N su�ciently large because

of (2.1.2) and (2.5.7), and in the fourth inequality we use that θn,N ≥ δ by (2.5.5), (2.5.2)

and since we are assuming Tn < t1.
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Note that we have εN < δ/2 for N su�ciently large by our assumptions in (2.5.1).

Therefore, by (2.5.22), Lemma 2.5.3, (2.5.23), and (2.5.24) we conclude that

PTn
(
∃i ∈ NN,Tn(T εNn ), k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N = ∅

)
<

η

100K

for N su�ciently large.

2.5.5 The number of descendants of medium jumps: proof of Lemma 2.5.2

Proof of Lemma 2.5.2. We partition the time interval [T εNn , t−1] into two subintervals, and

look at the number of medium jumps and the number of time-t descendants of the medium

jumps. Let

I1 := [T εNn , t1 + 2εN`N − 1] and I2 := [t1 + 2εN`N , t− 1]

be the two intervals, and let Aij denote the set of particles in Ni,n which have a medium

jump in their ancestral lines which happened in the time interval Ij :

Aij :=
{
k ∈ Ni,n : P k,t

i,T
εN
n
∩MIj

n,N 6= ∅
}
, i ∈ NN,Tn(T εNn ), j ∈ {1, 2}. (2.5.25)

If there is a medium jump in I1, then there may be many, possibly of order N , particles at

time t descending from this medium jump. However, we will see that with high probability

there are no medium jumps at all in I1: particle (N,Tn) does not have enough descendants

by the end of I1 for any to have made a medium jump. In contrast, in the second interval

there are many particles to make medium jumps (although not more than N at any one

time), but there is less time to produce many descendants by time t. Indeed, for each

i ∈ NN,Tn(T εNn ) the expected number of time-t descendants of (i, T εNn ) whose path has a

medium jump in I2 is of order N1−εN . Using a concentration result from [35], we will see

that the number of descendants itself (rather than the expected number) is of order N1−εN

with high probability, and therefore for each i, the total contribution of Ai1 and Ai2 is o(N)

with high probability. With the above strategy in mind, we give the following upper bound

on the probability in the statement of Lemma 2.5.2, using (2.5.4):

PTn
(
∃i ∈ NN,Tn(T εNn ) : Di,n > νN and P k,t

i,T
εN
n
∩Mn,N 6= ∅ ∀k ∈ Ni,n

)
≤ PTn

(
∃i ∈ NN,Tn(T εNn ) : #

{
k ∈ Ni,n : P k,t

i,T
εN
n
∩Mn,N 6= ∅

}
> νN

)
= PTn(∃i ∈ NN,Tn(T εNn ) : |Ai1 ∪Ai2| > νN)

≤ PTn(∃i ∈ NN,Tn(T εNn ) : Ai1 6= ∅) + PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
(2.5.26)

for N su�ciently large and any constant C, since εN`N →∞ as N →∞ by our choice of

εN in (2.5.1).

We let Ĩ1 := [Tn, t1 + 2εN`N − 1] ⊃ I1. It is enough to bound the �rst term on the
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right-hand side of (2.5.26) by the probability that any of the descendants of particle (N,Tn)

makes a medium jump by time t1 + 2εN`N − 1:

PTn(∃i ∈ NN,Tn(T εNn ) : Ai1 6= ∅) ≤ PTn
(
∃(j, b, s) ∈MĨ1

n,N : (N,Tn) . (j, s)
)
. (2.5.27)

This probability will be very small, as the total number of descendants of (N,Tn) in the

time interval Ĩ1 is not large enough to see jumps of order ân,N . Indeed, applying a union

bound over the jumps made by descendants of (N,Tn) at times Tn + k shows that the

right-hand side of (2.5.27) is at most

(θn,N+2εN )`N−1∑
k=0

2 · 2k

h(δ2ân,N )
≤ 2 · 2(θn,N+2εN )`N

2

δα2 δ1N θn,N `N
≤ 8

δα2 δ1
`
−1/2
N (2.5.28)

for N su�ciently large, where in the �rst inequality we use the fact that h(δ2ân,N ) ≥
δα2 δ1N

θn,N `N/2 for N su�ciently large by (2.1.2) and (2.5.7), and in the second inequality

we use the assumption on εN in (2.5.1), and that 2θn,N `N ≤ 2N θn,N .

For the second term on the right-hand side of (2.5.26) we will give an upper bound

using the concentration inequality from [35, Theorem 2.3(b)]. First we bound |Ai2| for any
i ∈ NN,Tn(T εNn ):

|Ai2| ≤
(1+θn,N )`N−1∑

k=(θn,N+2εN )`N

∑
j∈N

i,T
εN
n

(Tn+k),b∈{1,2}

1{Xj,b,Tn+k>δ2ân,N}|N
b
j,Tn+k(t)|, (2.5.29)

where we sum up the number of time-t descendants of every particle descended from (i, T εNn )

which made a jump of size greater than δ2ân,N at a time Tn + k in the time interval I2.

Now let ξij,k ∼ Ber(h(δ2ân,N )−1) be i.i.d. random variables, by which we mean that

PTn(ξij,k = 1) = h(δ2ân,N )−1 = 1− PTn(ξij,k = 0),

for all i, j, k ∈ N. The indicator random variables in (2.5.29) all have this distribu-

tion. Considering that we have |Ni,T εNn (Tn + k)| ≤ min(N, 2k−εN `N ) and |N b
j,Tn+k(t)| ≤

2(1+θn,N )`N−k−1 ≤ 2(1+θn,N )`N−k for all k ∈ J(θn,N + 2εN )`N , (1 + θn,N )`N − 1K, and since

NN,Tn(T εNn ) ≤ 2εN `N , we obtain the following upper bound from (2.5.29):

PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
≤ PTn

(
∃i ∈ [2εN `N ] :

(1+θn,N )`N∑
k=(θn,N+2εN )`N

2(1+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξij,k > CN1−εN

)

≤ 2εN `NPTn

( (1+θn,N )`N∑
k=(θn,N+2εN )`N

2(1+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξ1
j,k > CN1−εN

)
(2.5.30)
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by a union bound.

Now [35, Theorem 2.3(b)] applies for independent random variables taking values in

[0, 1], so we consider the random variables 2(2εN+θn,N )`N−kξ1
j,k ∈ [0, 1] for each k and j in

the sum. Let µ denote the expectation of the sum of these random variables over k and j:

µ := ETn

[ (1+θn,N )`N∑
k=(θn,N+2εN )`N

2(2εN+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξ1
j,k

]

= ETn

[
(1+εN )`N−1∑

k=(θn,N+2εN )`N

2(2εN+θn,N )`N−k 2k−εN `N+1

h(δ2ân,N )

]

+ ETn

[ (1+θn,N )`N∑
k=(1+εN )`N

2(2εN+θn,N )`N−k 2N

h(δ2ân,N )

]
. (2.5.31)

Now considering that for N su�ciently large, δα2 δ1N
θn,N `N/2 ≤ h(δ2ân,N ) ≤ 2δα2 δ1N

θn,N `N

by (2.1.2) and (2.5.7), that N2εN+θn,N ≤ 2(2εN+θn,N )`N ≤ 4N2εN+θn,N , that δ ≤ θn,N ≤ 1−δ
and that εN < δ/4 for N su�ciently large, it can be seen that we have

K1N
εN ≤ µ ≤ K2N

εN , (2.5.32)

for some constants K1,K2 > 0. Then, if we multiply both sides of the sum in (2.5.30) by

2(2εN−1)`N and use that 2(2εN−1)`N ≥ N2εN−1/2, we get

PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
≤ 2εN `NPTn

( (1+θn,N )`N∑
k=(θn,N+2εN )`N

2(2εN+θn,N )`N−k
2 min(N,2k−εN`N )∑

j=1

ξ1
j,k >

1

2
CN εN

)
.

By (2.5.32) we have µ ≥ K1N
εN , and we can choose C > 3K2 so that 1

2CN
εN ≥ 3

2µ for N

su�ciently large. Then by [35, Theorem 2.3(b)] we have for N su�ciently large,

PTn
(
∃i ∈ NN,Tn(T εNn ) : |Ai2| > CN1−εN

)
≤ 2N εN exp

(
−

1
4K1N

εN

2(1 + 1
6)

)
, (2.5.33)

which is small if N is large, by our choice of εN in (2.5.1). Then by (2.5.26), (2.5.27),

(2.5.28) and (2.5.33) we conclude Lemma 2.5.2.

2.6 Proofs of Propositions 2.2.1 and 2.2.2

In Proposition 2.2.1 we need to prove that for any interval of the form [t2 + ds1`Ne , t2 +

ds2`Ne] with 0 < s1 < s2 < 1, the probability that the time of the common ancestor T is

in this interval is bounded away from 0 for large N . The main idea of the proof is that if

there is a big jump in the time interval [t2 + ds1`Ne , t2 + ds2`Ne] which is much larger than
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any other jump in the time interval [t3, t1], then that big jump will break the record, and

we will have T ∈ [t2 + ds1`Ne , t2 + ds2`Ne].
More precisely, let r > 0 be as in Proposition 2.2.1. We will ask that a particle performs

a jump larger than (r+3)aN at some time s∗ ∈ [t2 +ds1`Ne , t2 +ds2`Ne), and all the other

jumps in the time interval [t3, t1] are smaller than aN . We will show that this happens with

a probability bounded below by a positive constant (independent of N).

Suppose the above event occurs, and also the events C3 and C4 occur. Then we will also

see that d(X (s∗)) ≤ (1 + c1)aN . This will imply that the particle which makes the jump

larger than (r + 3)aN at time s∗ breaks the record, and it will lead by more than roughly

(r+2)aN at time s∗+1. As a result, the tribe of this particle will lead between times s∗+1

and t1, because we assumed that all jumps in [s∗ + 1, t1) are smaller than aN . Moreover,

particles not in the leading tribe cannot get closer than raN to the leading tribe by time

t1; therefore, we will conclude d(X (t1)) ≥ raN as well.

The following lemma will be useful for proving the above statements.

Lemma 2.6.1. Take ρ, c1 > 0. Then for N ≥ 2 and t > 4`N , for all s0 ∈ [t4, t1] and

r0 > 0, on the event C3 ∩ C4,

{Xi,b,s ≤ r0aN ∀(i, b, s) ∈ [N ]× {1, 2} × Js0, s0 + `N − 1K}

⊆ {d(X (s0 + `N )) ≤ (r0 + c1)aN} ,

where the events C3 and C4 are de�ned in (2.3.13) and (2.3.14) respectively.

Proof. Let G1 denote the event on the left-hand side in the statement of the lemma:

G1 := {Xi,b,s ≤ r0aN ∀(i, b, s) ∈ [N ]× {1, 2} × Js0, s0 + `N − 1K} .

Let j ∈ [N ] be arbitrary, and let i = ζj,s0+`N (s0). Then, on the event C3, we have |BN ∩
P j,s0+`N
i,s0

| ≤ 1, and on the event C4, no particle moves further than c1aN once big jumps

have been removed from its path. Thus, on the event C3 ∩ C4 ∩ G1,

Xj(s0 + `N ) ≤ Xi(s0) + c1aN +
∑

(i′,b′,s′)∈BN∩P
j,s0+`N
i,s0

Xi′,b′,s′ ≤ XN (s0) + (r0 + c1)aN .

But by Lemma 2.2.3, we have XN (s0) ≤ X1(s0 + `N ), and the result follows.

Proof of Proposition 2.2.1. Recall the de�nition of A′2 from (2.2.5), and consider a uniform

sample of M particles at time t with indices P1, . . . ,PM . Also recall the de�nitions of T (ρ)

in (2.2.17) and T εN (ρ) in (2.2.19). For any ρ > 0 we have

{T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne]} ∩
{
ζPj ,t(T (ρ)) = N ∀j ∈ [M ]

}
∩
{
ζPj ,t(T

εN (ρ)) 6= ζPl,t(T
εN (ρ)) ∀j, l ∈ [M ], j 6= l

}
⊆ A′2. (2.6.1)
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For r > 0, we de�ne A′3 as a modi�cation of the event A3 from (2.2.22):

A′3 = A′3(t,N, ρ, γ, r, s1, s2) := {T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne]}

∩
{
|NN,T (ρ)(t)| ≥ N −N1−γ} ∩ {d(X (t1)) ≥ raN} .

(2.6.2)

We also de�ne the set of jumps in the time interval [t2 + ds1`Ne , t2 + ds2`Ne) which are

larger than (r + 3)aN :

B′N (t, r, s1, s2) :=

{
(i, b, s) ∈ [N ]× {1, 2} × Jt2 + ds1`Ne , t2 + ds2`Ne − 1K :

Xi,b,s > (r + 3)aN

}
, (2.6.3)

and the event G, which says that there is only one jump in the set B′N , and every other

jump is smaller than aN during the time interval [t3, t1 − 1]:

G = G(t,N, r, s1, s2) :=

{
|B′N | = 1 and Xi,b,s ≤ aN ,
∀(i, b, s) ∈ ([N ]× {1, 2} × [t3, t1 − 1]) \B′N

}
. (2.6.4)

Fix 0 < s1 < s2 < 1, M ∈ N and r > 0. Choose πr,s2−s1 > 0 such that

πr,s2−s1 <
s2 − s1

8(r + 3)α
· e−8, (2.6.5)

and then η > 0 su�ciently small that it satis�es (2.4.23) and

5η <
s2 − s1

8(r + 3)α
· e−8 − πr,s2−s1 . (2.6.6)

Then choose the constants γ, δ, ρ, c1, c2, . . . , c6,K such that they satisfy (a)-(j). Recall from

Section 2.4.4 that this implies the properties in (2.3.2)-(2.3.5) and (2.4.24)-(2.4.31) also hold

for η and γ, δ, ρ, c1, c2, . . . , c6,K. Let 0 < ν < η/M2.

In the course of the proof we will use the events A3 and A4 from (2.2.22) and (2.2.23),

and we will show the following for N su�ciently large and t > 4`N :

1. P ((A′2)c ∪ {d(X (t1)) < raN}) ≤ P((A′3)c) + P(Ac3) + P(A4(ν)c) + η

2.
⋂7
j=2 Cj ∩

⋂5
i=1Di ∩ G ⊆ A′3

3. P(G) ≥ s2−s1
8(r+3)α · e

−8

4. P ((A′2)c ∪ {d(X (t1)) < raN}) ≤ 1− πr,s2−s1 .

We start by proving step 1. Notice that with our choices of constants, the conditions of

Lemma 2.2.4 hold. Therefore, we know

P(∃j, l ∈ [M ], j 6= l : ζPj ,t(T
εN ) = ζPl,t(T

εN )) ≤ P(Ac3) + P(A4(ν)c) + η/2, (2.6.7)
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for N su�ciently large. Hence, because of (2.6.1), in order to prove step 1 it remains to

show that

P
(
{T (ρ) /∈ [t2 + ds1`Ne , t2 + ds2`Ne]} ∪

{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
∪ {d(X (t1)) < raN}

)
≤ P((A′3)c) + η/2, (2.6.8)

for N su�ciently large. This follows similarly to the proof of (2.2.25). Partitioning the

event on the left-hand side of (2.6.8) using the event A′3, and then conditioning on Ft, we
obtain

P
(
{T (ρ) /∈ [t2 + ds1`Ne , t2 + ds2`Ne]} ∪

{
∃j ∈ [M ] : ζPj ,t(T ) 6= N

}
∪ {d(X (t1)) < raN}

)
≤ E

[
1A′3P(∃j ∈ [M ] : ζPj ,t(T ) 6= N | Ft)

]
+ P

(
(A′3)c

)
(2.6.9)

where we use that if A′3 occurs then T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne] and d(X (t1)) ≥ raN ,
and that A′3 is Ft-measurable. Now, on the event A′3, at most N1−γ time-t particles

are not descended from (N,T ), and therefore a union bound on the uniformly chosen

sample (which is not Ft-measurable) shows that the right-hand side of (2.6.9) is at most

MN1−γ/N + P ((A′3)c). This implies (2.6.8) for N su�ciently large, and by (2.6.7) and

(2.6.8) we are done with step 1.

We next prove step 2. Assume the event
⋂7
j=2 Cj ∩ G occurs. Then there exists

(i∗, b∗, s∗) ∈ B′N with s∗ ∈ Jt2 + ds1`Ne , t2 + ds2`Ne − 1K. We notice that every jump

in the time interval [t3, s
∗ − 1] has size at most aN on the event G. Thus, we can apply

Lemma 2.6.1 with s0 = s∗− `N > t3, ρ and c1 as chosen at the beginning of the proof, and

with r0 = 1. We then obtain

d(X (s∗)) ≤ (1 + c1)aN . (2.6.10)

This means that a particle that makes a jump larger than (r + 3)aN at time s∗ must take

the lead at time s∗ + 1. Indeed,

Xi∗(s∗) +Xi∗,b∗,s∗ > X1(s∗) + (r + 3)aN ≥ XN (s∗) + (r + 2− c1)aN , (2.6.11)

where in the �rst inequality we use that Xi∗(s∗) ≥ X1(s∗) and that (i∗, b∗, s∗) ∈ B′N , and
the second inequality follows by (2.6.10). Note that our choice of constants means that

ρ < r + 2 − c1 < r + 3 holds (it is enough that ρ < 1 and c1 ∈ (0, 1), which certainly

follow from (2.4.24) and (2.4.31)); thus we have B′N ⊆ BN , and Lemma 2.3.5(b) applies.

Therefore, by Lemma 2.3.5(b), we have (i∗, s∗) .b∗ (N, s∗ + 1) and

Xi∗(s∗) +Xi∗,b∗,s∗ = XN (s∗ + 1) > XN−1(s∗ + 1) + (r + 2− c1 − ρ)aN , (2.6.12)

which also shows that s∗ ∈ SN (ρ), where SN (ρ) is the set of times when the record is

broken by a big jump (see (2.2.16)).
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Now we prove that s∗ + 1 = T (ρ) and d(X (t1)) ≥ raN . Let ŝ ∈ Js∗ + 1, t1 − 1K be

arbitrary (and note that Js∗ + 1, t1 − 1K is not empty for N su�ciently large). We will see

that ŝ /∈ SN (ρ), and therefore T (ρ) /∈ Js∗ + 2, t1K, i.e. T (ρ) = s∗ + 1.

Take k ∈ [N − 1], and assume that j ∈ Nk,s∗+1(ŝ + 1). Note that |BN ∩ P j,ŝ+1
k,s∗+1| ≤ 1

by the de�nition of the event C3, and that every jump in the time interval [s∗ + 1, t1 − 1]

is at most of size aN by the de�nition of the event G. Hence, by the de�nition of the event

C4 we have

Xj(ŝ+ 1) ≤ Xk(s∗ + 1) + c1aN +
∑

(i,b,s)∈BN∩P j,ŝ+1
k,s∗+1

Xi,b,s

≤ XN−1(s∗ + 1) + (c1 + 1)aN

< XN (s∗ + 1)− (r + 1− 2c1 − ρ)aN

≤ XN (ŝ+ 1)− (r + 1− 2c1 − ρ)aN , (2.6.13)

where in the second inequality we also use that k ≤ N − 1, the third inequality follows by

(2.6.12), and the fourth by monotonicity.

Then (2.6.13) has two consequences. First, it shows that Xj(ŝ + 1) < XN (ŝ + 1)

(see e.g. (2.4.24) and (2.4.31)); thus the leader at time ŝ + 1 must descend from particle

(N, s∗ + 1); that is, ζN,ŝ+1(s∗ + 1) = N . Note that we also have Xi,b,ŝ ≤ ρaN for all

i ∈ NN,s∗+1(ŝ) and b ∈ {1, 2} by the de�nition of the event C3. We conclude that the

record is not broken by a big jump at time ŝ + 1, which means that ŝ /∈ SN (ρ). Since

ŝ ∈ Js∗ + 1, t1 − 1K was arbitrary, and s∗ ∈ SN (ρ), we must have T (ρ) = s∗ + 1, by the

de�nition (2.2.17) of T (ρ). Hence,

7⋂
i=2

Ci ∩ G ⊆ {T (ρ) ∈ [t2 + ds1`Ne , t2 + ds2`Ne]} . (2.6.14)

The second consequence of (2.6.13) is that d(X (ŝ+ 1)) > raN , since 2c1 + ρ < 1. Indeed,

we notice that since s∗ + 1 > t2 and ŝ + 1 ≤ t1, the number of descendants of particle

(N, s∗ + 1) is strictly less than N at time ŝ + 1. Thus, there exists k ∈ [N − 1] such that

Nk,s∗+1(ŝ+ 1) 6= ∅, and for such a k and for some j ∈ Nk,s∗+1(ŝ+ 1) the bound in (2.6.13)

holds, and shows that d(X (ŝ + 1)) > raN . Since ŝ ∈ Js∗ + 1, t1 − 1K was arbitrary we

conclude

7⋂
i=2

Ci ∩ G ⊆ {d(X (t1)) ≥ raN} . (2.6.15)

Propositions 2.3.11 and 2.3.2 (and the de�nition of A3 in (2.2.22)) imply for N su�-
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ciently large that

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆
7⋂
i=1

Ci ⊆ A3 ⊆
{
|NN,T (ρ)(t)| ≥ N −N1−γ} .

The same statement obviously remains true if we also intersect with G on the left-hand

side, and therefore step 2 follows by (2.6.14) and (2.6.15) and the de�nition of A′3 from

(2.6.2).

For step 3, the event G says that out of the 4N`N jumps occurring in the time interval

[t3, t1 − 1], there are 4N`N − 1 jumps of size at most aN , and there is one larger than

(r + 3)aN , which can happen any time during the time interval [t2 + ds1`Ne , t2 + ds2`Ne).
Using that ds2`Ne − 1 − ds1`Ne ≥ (s2 − s1)`N/2 for large N , we have for N su�ciently

large,

P(G) ≥ 2N
(s2 − s1)

2
`N · h((r + 3)aN )−1

(
1− h(aN )−1

)4N`N−1

≥ (s2 − s1)

2

h(aN )

h((r + 3)aN )
· 2N`N
h(aN )

· e−2
4N`N
h(aN )

≥ s2 − s1

8(r + 3)α
· e−8,

where the second inequality holds if N is su�ciently large that 1− h(aN )−1 > e−2h(aN )−1
,

which is possible because h(aN ) → ∞ as N → ∞ by (2.4.18). In the third inequality we

use that h(aN )/h((r+3)aN ) ≥ (r+3)−α/2 for N large enough by (2.1.2) and (2.4.17), and

that 1/2 ≤ 2N`N/h(aN ) ≤ 2 for N large enough by (2.4.19). This completes step 3.

For step 4, we note that we chose the constants η, γ, δ, ρ, c1, c2, . . . , c6, K and ν in

such a way that the probability bounds in Propositions 2.2.5 and 2.2.6 and Lemma 2.4.6

hold for N su�ciently large and t > 4`N . Hence, putting steps 1 to 3 together we conclude

P
(
(A′2)c ∪ {d(X (t1)) < raN}

)
≤

7∑
j=2

P(Ccj ) +

5∑
i=1

P(Dci ) + P(Gc) + P(Ac3) + P(A4(ν)c) + η

≤ 1− s2 − s1

8(r + 3)α
· e−8 + 5η

< 1− πr,s2−s1 ,

where in the last inequality we used (2.6.6). This �nishes the proof of Proposition 2.2.1.

The proof of Proposition 2.2.2 involves some of our previous results. We will use the

statement of Proposition 2.2.1 about the diameter to prove that for any �xed r > 0,

P (d(X (n)) ≥ raN ) can be lower bounded by a positive constant. Then the statement of

Proposition 2.3.2 about the diameter shows that on the events C1 to C7 the diameter at

time t1 is greater than c3aN , so, considering Lemma 2.4.6, we will see that the diameter

is at least of order aN at a typical time with high probability. Finally, we will conclude
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that the diameter is at most of order aN with high probability using Lemma 2.6.1, and also

using that jumps of size raN are unlikely to happen in `N time if r is very large.

Proof of Proposition 2.2.2. Take η, γ, δ, ρ, c1, c2, . . . , c6,K such that they satisfy (2.4.23),

(a)-(j), and therefore also (2.3.2)-(2.3.5) and (2.4.24)-(2.4.31) (and η may be arbitrarily

small). Let r > 0 be arbitrary. Let s1 = 1/4, s2 = 1/2, M = 3. Then we take πr,s2−s1 > 0

and N ∈ N su�ciently large that the bounds in Proposition 2.2.1 and Lemma 2.4.6 and

the inclusions in Propositions 2.3.2 and 2.3.11 and in Lemma 2.6.1 hold with the above

constants and for all t > 4`N . Furthermore, we assume that N is su�ciently large that

e−2h(raN/2)−1
< 1− h(raN/2)−1, (2.6.16)

h(aN )

h(raN/2)
≤ 2(r/2)−α, (2.6.17)

and
2N`N
h(aN )

≤ 2. (2.6.18)

We can take N su�ciently large that (2.6.16), (2.6.17) and (2.6.18) hold because of (2.4.18),

(2.4.17) (i.e. aN → ∞ as N → ∞), (2.1.2) and (2.4.19). Having �xed N with these

properties, take n > 3`N .

First we apply Proposition 2.2.1 in the above setting with t = n + `N (and t1 = n).

The proposition implies that

0 < πr,s2−s1 < P (d(X (n)) ≥ raN ) . (2.6.19)

Now we prove that if r is su�ciently small then we have

P (d(X (n)) < raN ) < η. (2.6.20)

Assume that r < c3, where c3 was speci�ed at the beginning of this proof.

Consider the events (Cj)7
j=2 and (Di)5

i=1 with the constants γ, δ, ρ, c1, c2, . . . , c6,K and

with t = n+ `N . By Propositions 2.3.11 and 2.3.2 we have

7⋂
j=2

Cj ∩
5⋂
i=1

Di ⊆
7⋂
j=1

Cj ⊆
{
d(X (n)) ≥ 3

2c3aN
}
.

Therefore, since r < c3, and then by Lemma 2.4.6, we have

P(d(X (n)) < raN ) ≤ P(d(X (n)) < 3
2c3aN ) ≤

7∑
j=2

P(Ccj ) +
5∑
i=1

P(Dci ) < η,

which establishes (2.6.20).

105



2.7. Glossary of notation

Next we prove that if r is su�ciently large then

P (d(X (n)) ≥ raN ) < η. (2.6.21)

Assume r > 1. We apply Lemma 2.6.1 with t = n + `N , s0 = n − `N and r0 = r/2. Note

that by (2.4.24) and (2.4.26) we have r0 + c1 < r. Then Lemma 2.6.1 implies

P(d(X (n)) ≥ raN ) ≤ P(∃(i, b, s) ∈ [N ]× {1, 2} × Jn− `N , n− 1K : Xi,b,s >
r
2aN )

= 1− (1− h(raN/2)−1)2N`N

≤ 1− exp

(
−2

2N`N
h(raN/2)

)
= 1− exp

(
−2

2N`N
h(aN )

h(aN )

h(raN/2)

)
≤ 1− exp

(
−8(r/2)−α

)
, (2.6.22)

where in the equality we use the tail distribution (2.1.3) for the 2N`N jumps in the time in-

terval Jn−`N , n−1K, the second inequality holds by (2.6.16), and in the third we use (2.6.17)
and (2.6.18). Then (2.6.22) shows that (2.6.21) holds for r su�ciently large.

Since η > 0 was arbitrarily small, (2.6.19) and (2.6.20) show the existence of pr
and (2.6.21) proves the existence of qr as in the statement of Proposition 2.2.2, and therefore

we have �nished the proof of this result.

2.7 Glossary of notation

Below we list the most frequently used notation of this paper. In the second column of the

table we give a brief description, and in the third column we refer to the section or equation

where the notation is de�ned or �rst appears.

Notation Meaning Def./Sect.

N number of particles Sect. 2.1.1

(i, n) refers to the ith particle from the left at time

n

Sect. 2.1.1

Xi(n) location of the ith particle from the left at

time n

Sect. 2.1.1

h the function 1/h de�nes the tail of the jump

distribution

(2.1.3)

α h is regularly varying with index α > 0 (2.1.2), (2.1.3)

`N time scale: `N = dlog2Ne (2.1.4)

aN space scale: aN = h−1(2N`N ), h(aN ) ∼
2N`N

(2.1.5)

t t ∈ N is an arbitrary time, we assume t > 4`N Sect. 2.1.3
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ti ti = t− i`N , we use t1, t2, t3, t4 (2.1.7)

Xi,b,n jump size of the bth o�spring of particle (i, n) Sect. 2.2.1

(i, b, n) refers to the jump Xi,b,n of the bth o�spring

of particle (i, n)

Sect. 2.2.4

d(X (n)) diameter of the particle cloud at time n (2.2.6)

(i, n) . (j, n+ k) particle (i, n) is the time-n ancestor of parti-

cle (j, n+ k)

(2.2.8)

(i, n) .b (j, n+ k) the bth o�spring of particle (i, n) is the time-

(n+ 1) ancestor of particle (j, n+ k)

Sect. 2.2.4

ζi,n+k(n) ζi,n+k(n) ∈ [N ] is the index of the time-n

ancestor of the particle (i, n+ k)

(2.2.9)

P ik,n+k
i0,n

path (sequence of jumps) between particles

(i0, n) and (ik, n+ k), if (i0, n) . (ik, n+ k)

(2.2.10)

Ni,n(n+ k) Ni,n(n + k) ⊆ [N ] is the set of time-(n + k)

descendants of particle (i, n)

(2.2.12)

N b
i,n(n+ k) N b

i,n(n + k) ⊆ [N ] is the set of time-(n + k)

descendants of the bth o�spring of particle

(i, n)

(2.2.13)

ρaN jumps of size greater than ρaN are called big

jumps

Sect. 2.2.5

BN set of big jumps (2.2.14), (2.2.15)

SN set of times when the record is broken by a

big jump

(2.2.16)

ŜN times when the leader is surpassed by a big

jump

(2.2.18)

T time of the common ancestor of almost every

particle at time t

Sect. 2.1.3

T = T (ρ) the last time before t1 when a particle breaks

the record with a big jump

(2.2.17)

(N,T ) the leader (rightmost) particle at time T Sect. 2.1.4

Zi(s) distance between the ith and the rightmost

particle

(2.3.11)

Next, we list the events which appear throughout our main argument. We give a brief

explanation of each event and refer to the equation where the event is de�ned. We also

include short descriptions of the main results involving these events to give a summary of

the major steps of the proof of Theorem 2.2.1. We write �whp� as shorthand for �with high

probability�.

Event Meaning Def./Sect.
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A1 Almost the whole population is close to the leftmost particle

at time t.

(2.2.3)

A2 The genealogy of the population at time t is given by a

star-shaped coalescent; there is a common ancestor at time

T ∈ [t2, t1].

(2.2.4)

A1 and A2 occur whp (Theorem 2.2.1)

A3 Almost every particle at time t descends from the leader at

time T ∈ [t2, t1].

(2.2.22)

A4 Shortly after time T no particle has a positive proportion of

the population as descendants at time t.

(2.2.23)

If A3 and A4 occur whp then A2 occurs whp

(Lemma 2.2.4)

The event A4 occurs whp (Proposition 2.2.6)

The event A1 ∩ A3 occurs whp (Proposition 2.2.5). This is

shown using the events below.

B1 There is a leading tribe, descended from the leader at time

T ∈ [t2, t1], which is a signi�cant distance from the other

particles at time t1.

(2.3.7)

B2 Particles which are not in the leading tribe at time t1 have

o(N) descendants in total at time t.

(2.3.8)

B1 ∩ B2 ⊆ A3 (Lemma 2.3.1)

C1 A particle leads by a large distance compared to the second

rightmost particle at some point in [t2 + 1, t1].

(2.3.10)

C2 Particles far from the leader stay far behind or beat the

leader by a lot.

(2.3.12)

C3 There is at most one big jump on a path of length `N . (2.3.13)

C4 Paths without big jumps move very little on the aN space

scale.

(2.3.14)

C5 Two big jumps cannot happen at the same time. (2.3.15)

C6 No big jumps happen at times very close to t2 or t1. (2.3.16)

C7 The number of big jumps performed in [t4, t] is bounded

above by a constant independent of N .

(2.3.17)

⋂7
j=1 Cj ⊆ B1 ∩ B2 ∩ A1 ⊆ A1 ∩ A3 (Proposition 2.3.2)

D1 Same as C2 with di�erent constants. (2.3.47)

D2 In every short interval on the `N time scale, at least one big

jump larger than a certain size occurs.

(2.3.48)
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D3 In the �rst half of [t2, t1] a big jump larger than a certain

size occurs.

(2.3.49)

D4 Shortly before time t2, only jumps smaller than a certain

size occur.

(2.3.50)

D5 During a short time interval, jumps of size in a certain small

range do not happen.

(2.3.52)

⋂7
j=2 Cj ∩

⋂5
i=1Di ⊆ C1 (Proposition 2.3.11)

The events C2 − C7, D1 −D5 all occur whp (Lemma 2.4.6)
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Chapter 3

Speed of the particle cloud in the

N-BRW with stretched exponential

jump distribution

In this chapter we study the speed of the particle cloud in the N -BRW when the jump

distribution has stretched exponential tails. First we state and recall the proof of the result

of Bérard and Gouéré about the existence of an asymptotic speed vN for any �xed N as

time goes to in�nity. Then we state and prove our theorem about the behaviour of vN
as N → ∞, in the stretched exponential case. This chapter is based on joint work with

Sarah Penington.

3.1 Reminder of notation

Consider the N -BRW (as de�ned in Chapter 2 in Section 2.2.1, but note that we will work

with a di�erent jump distribution) and recall the following notation from Chapter 2. We

refer to the glossary of notation in Section 2.7 for references to the section or equation

where the notation is de�ned or �rst appears.

� [n] = {1, 2, . . . , n} for n ∈ N, and Ja, bK = [a, b] ∩ N0 for 0 ≤ a ≤ b

� X (n) = {X1(n) ≤ · · · ≤ XN (n)}: ordered positions of the N particles at time n

� Xi,b,n: jump size of the ith particle's bth o�spring at time n

� `N = dlog2Ne

� (i, n): ith particle from the left at time n

� (i, n) . (j, n+ k): particle (i, n) is the time-n ancestor of particle (j, n+ k)

� (i, n) .b (j, n + k): the bth o�spring of particle (i, n) is the time-(n+ 1) ancestor of

particle (j, n+ k)
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� P j,n+k
i,n : path (sequence of jumps) between particles (i, n) and (j, n + k) if (i, n) .

(j, n+ k)

� Gx(n): set of particles to the right of position x at time n (see (2.2.7))

We will also use the following lemmas which were already stated and proved in Chapter 2.

Lemma 3.1.1. Let x ∈ R and n, k ∈ N0. Then

|Gx(n+ k)| ≥ min
(
N, 2k|Gx(n)|

)
.

This statement is Lemma 2.2.3 in Chapter 2, where we prove this lemma.

Lemma 3.1.2. Suppose Y is a non-negative random variable. For v > 0 and 0 < K1 <

K2 <∞,

E[exp(vY 1{Y≤K2})1{Y≥K1}]

=

∫ K2

K1

vevuP(Y > u)du+ evK1P(Y ≥ K1)− (evK2 − 1)P(Y > K2). (3.1.1)

We proved this identity as Lemma 2.4.4.

We say that a function f is regularly varying with index β ∈ R if for all y > 0,

f(xy)

f(x)
→ yβ as x→∞, (3.1.2)

and slowly varying if for all y > 0,

f(xy)

f(x)
→ 1 as x→∞. (3.1.3)

Lemma 3.1.3. Let f be a regularly varying function with index β > 0. For ε > 0, there

exist B(ε) > 1 and C1(ε), C2(ε) > 0 such that

1

f(x)
≤ C1x

ε−β and f(x) ≤ C2x
β+ε ∀x ≥ B.

We proved this lemma as Lemma 2.4.2.

3.2 The main result

First we state a result of Bérard and Gouéré, which says that if the jump distribution of

the N -BRW has �nite mean, then for any �xed N the particle cloud has a deterministic

asymptotic speed as time goes to in�nity, which depends onN and on the jump distribution.

Proposition 3.2.1. [2, Proposition 2] Consider an N -BRW with arbitrary initial con�gu-

ration and with a jump distribution given by the non-negative random variable X. Assume
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that E [X] <∞. Then for any �xed N ∈ N, there exists vN ∈ R such that

lim
n→∞

X1(n)

n
= lim

n→∞

XN (n)

n
= vN , (3.2.1)

almost surely and in L1, where vN depends on the jump distribution.

We will discuss the proof of this result in Section 3.3 following the steps in [2]. Now we

turn to the main result of this chapter, which describes the behaviour of the asymptotic

speed vN as N →∞, when the jump distribution of the N -BRW has stretched exponential

tails.

Let X be a random variable, and let us de�ne the function g by letting

P(X > x) = e−g(x), for x ≥ 0. (3.2.2)

We assume throughout that P(X ≥ 0) = 1 and that g is regularly varying with index

β ∈ (0, 1). We assume furthermore that the function x 7→ g(x)/x is non-increasing for x

su�ciently large; that is, there exists K > 0 such that

g(x1)

x1
≥ g(x2)

x2
for all x2 > x1 > K. (3.2.3)

One of our arguments will be similar to the proof of Theorem 3 in [27], where the same

(fairly weak) assumption is made.

Let us also de�ne

LN := g−1(logN), (3.2.4)

for all N ∈ N, where g−1 denotes the generalised inverse of g de�ned by

g−1(x) := inf {y ≥ 0 : g(y) > x} . (3.2.5)

It is worth keeping in mind the particular case when g(x) = xβ for x ≥ 0, and LN =

(logN)1/β .

We remark here that the function g is non-decreasing because of (3.2.2), and the function

g−1 is non-decreasing as well. To see this, take 0 ≤ x1 < x2, and let yi := g−1(xi), i = 1, 2.

Then by the de�nition of g−1 and since g is non-decreasing, for all ε > 0,

g(y2 + ε) ≥ x2 > x1.

By the de�nition of g−1, this implies that y1 ≤ y2 + ε, and since ε > 0 was arbitrary, we

conclude that g−1(x1) ≤ g−1(x2).

Now we state our main result. Let vN denote the asymptotic speed de�ned by (3.2.1).

For two positive sequences aN and bN we say that aN ∼ bN as N → ∞, if aN/bN → 1 as

N →∞.
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Theorem 3.2.2. Consider an N -BRW with arbitrary initial con�guration and with a jump

distribution given by the random variable X. Assume that the jump distribution satis-

�es (3.2.2) and (3.2.3) with a function g which is regularly varying with index β ∈ (0, 1).

Then

vN ∼
LN log 2

logN
as N →∞,

where LN is de�ned in (3.2.4).

Note that in the case when g(x) = xβ for x ≥ 0, the theorem says that vN ∼
(log 2)(logN)1/β−1 as N →∞, as stated in Theorem 1.3.2 in Chapter 1.

3.2.1 Strategy and intuition for the proof of Theorem 3.2.2

In Section 3.3 we will prove a simple monotonicity property of the N -BRW (Lemma 3.3.2

and Lemma 1 in [2]), which has some helpful consequences also used in [2]. In our case

these consequences will be that in the proof of Theorem 3.2.2

� it will be enough to consider the initial condition when all particles start from position

zero;

� to prove a good lower bound on vN it will be enough to give a lower bound on

X1(`N + 1) with high probability;

� to prove a good upper bound on vN it will be enough to show an upper bound on

XN (dA logNe) with high probability for some large constant A > 0.

We now discuss the intuition behind the lower and upper bounds on vN that we will

establish to prove Theorem 3.2.2. In order to get an idea of how the speed should behave,

let us assume in this section that for x ≥ 0,

g(x) = xβ,

and that therefore

LN = g−1(logN) = (logN)1/β.

Then we also have

P (X > LN ) = e−g(LN ) = N−1.

Thus, the probability that at time 0 there is at least one jump of size larger than LN is

1 − (1 − 1/N)2N , which can be bounded below by a positive constant (close to 1 − e−2)

for large values of N . If there is such a jump at time 0, then by Lemma 3.1.1, at time

`N +1 there must be N particles to the right of position LN , that is, X1(`N +1) ≥ LN with

probability bounded away from zero if we assume that all particles have initial position 0.

If we instead �x ε ∈ (0, 1) and consider jumps larger than (1− ε)LN , we can show that

at time 0, with high probability at least one such jump occurs, and therefore we will have
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X1(`N + 1) ≥ (1 − ε)LN for any ε ∈ (0, 1) with high probability. This suggests that the

speed should be at least

vN ≈
X1(`N + 1)

`N + 1
≥ (1− ε)LN
dlog2Ne+ 1

≈ (1− ε)LN log 2

logN
(3.2.6)

for large values of N , where we use ≈ as an informal notation to indicate that the two sides

are close to each other in some sense. The details of this argument will be discussed in

Section 3.4.

The more di�cult part of our proof is to give an upper bound on vN . One of the

key ideas to do this is to use the strategy of the proof of Theorem 3 in [27], which is a

large deviation result of Gantert. Assume we have a random walk (Sn)n∈N with stretched

exponential jump distribution given by (3.2.2), assuming g(x) = xβ . The main message of

Gantert's result is that for �xed x > 0 and large n ∈ N,

P
(
Sn > xn1/β

)
≈ ne−xβn.

That is, the probability that the random walk goes further than xn1/β is roughly the

expected number of jumps greater than xn1/β by time n; and the proof in [27] also shows

that the most likely way for a random walk path to reach xn1/β is to have a single big jump

of this size on the path.

If we apply this result directly to our problem, we will get an upper bound for vN , but

it will be weaker than what we are aiming for. The following short calculation shows this.

We consider a dlogNe time scale similarly to the lower bound. Recall the construction

of the N -BRW from N independent branching random walks (BRWs) in Section 2.4.1 in

Chapter 2 (see also Figure 1-4). The total number of paths in the N independent BRWs

without selection up to time dlogNe isN2dlogNe. Fix x > 0. If in theN -BRW the rightmost

particle at time dlogNe is to the right of position x dlogNe1/β ≈ xLN , then there must be

a path in at least one of the N independent BRWs which moves more than x dlogNe1/β in

dlogNe time (again assuming that all particles started initially from position 0). Therefore,

�xing ε > 0,

P
(
XN (dlogNe) > x dlogNe1/β

)
≤ N2dlogNeP

(
SdlogNe > x dlogNe1/β

)
≤ N2dlogNee−dlogNe(xβ−ε)

≤ 2N1+log 2−xβ+ε, (3.2.7)

where the second inequality holds forN su�ciently large by Theorem 3 in [27]. Now in order

for the right-hand side to tend to zero as N → ∞, we need x > (1 + log 2)1/β . Using the

upper bound in (3.2.7), it is possible (but not immediate) to show that for x > (1+log 2)1/β ,

we have vN ≤ xLN/ logN for N su�ciently large. Hence, this argument leads to an upper

bound which already shows the order of vN but the constant (1 + log 2)1/β does not match
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with the constant log 2 in the lower bound in (3.2.6).

The idea to improve this upper bound is the following. Fix A > 0 a large constant. We

claim that in the N -BRW in A logN time (let us assume A logN ∈ N for now), jumps of

size signi�cantly larger than LN do not occur with high probability for large N . Indeed,

since the number of jumps up to time A logN is 2NA logN , for any ε > 0, the probability

that there exists a jump larger than (1 + ε)LN in A logN time is at most

2NA logNe−(1+ε)β logN → 0

as N →∞.

The key statement to show in our proof for the upper bound on vN will be that, for

any ε > 0, there exists A > 0 such that XN (A logN) ≤ (1 + ε)A(log 2)LN with high

probability for large N . To do this, we again use the construction of the N -BRW from N

independent BRWs, and it will be enough to count paths in the BRWs up to time A logN

with jumps of size at most (1 + ε/100)LN , since larger jumps do not occur in the N -BRW

with high probability. Then the minimal number of jumps needed to cover the distance

(1 + ε)A(log 2)LN is roughly (1 + ε)A(log 2) with jumps of size roughly LN . The idea of

`one big jump does the job' in [27] suggests that this should be the optimal (most likely)

way for a path to cover the above distance, if the jumps are restricted to being at most

roughly LN .

The probability that on a given path of length A logN in a BRW there are (1+ε)A(log 2)

jumps of size LN is less than(
A logN

(1 + ε)(log 2)A

)
N−(1+ε)(log 2)A.

The number of paths in N independent BRWs up to time A logN is N2A logN = N1+A log 2.

So for any ε > 0 we can choose A large enough that the probability that we see a path with

(1 + ε)A(log 2) jumps of size LN in at least one of N independent BRWs by time A logN

goes to zero as N →∞.

In our rigorous proof we will give an upper bound for the probability that a random

walk path of length A logN goes further than (1 + ε)A(log 2)LN without making any big

jumps of size larger than (1 + ε/100)LN . In our argument we will consider an exponential

moment of the jump distribution restricted to jumps of size at most (1 + ε/100)LN , and

we will follow similar steps to the ones in the proof of Theorem 3 in [27].

We will see that the upper bound on this probability implies that XN (A logN) ≤
(1 + ε)A(log 2)LN with high probability, which then gives the desired upper bound on vN .

3.3 Asymptotic speed and proof of Theorem 3.2.2

In this section we discuss the proof of Proposition 3.2.1 following the steps in [2], then state

the lower and upper bounds on vN which lead to the proof of Theorem 3.2.2. The proofs
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of the lower and upper bounds are in Section 3.4 and 3.5 respectively.

Up to Section 3.3.4 we only assume a general jump distribution given by a non-negative

random variable X and with E [X] <∞.

3.3.1 Diameter

Proposition 3.2.1 states that the leftmost and rightmost particles have the same asymptotic

speed as time goes to in�nity. Proposition 3.3.1 below is a step towards proving this result:

it says that the distance between the rightmost and leftmost particles at time n is o(n) as

n → ∞; hence, if (say) the rightmost particle has an asymptotic speed then the leftmost

particle has an asymptotic speed as well, and both will have the same value. For n ∈ N0,

let

d(X (n)) := XN (n)−X1(n)

denote the diameter of the particle cloud at time n.

Proposition 3.3.1. [2, Corollary 1] For all N ∈ N,

lim
n→∞

d(X (n))

n
= 0 almost surely and in L1.

Proof. We follow the proof given in [2], and start with an estimate for the diameter at

any �xed time greater than log2N , which is stated in Proposition 1 in [2]. Let n ∈ N0 be

arbitrary. Assume that the rightmost particle is at position y := XN (n) at time n. Consider

the process at time n+ `N .

Note that there are 2N`N jumps between time n and n + `N in the N -BRW. Let us

denote the maximum of these jumps byMN (n). Then the position of the rightmost particle

increases at most by MN (n) at each step between times n and n + `N , giving the upper

bound

XN (n+ `N ) ≤ y + `NMN (n).

Furthermore, since we have a particle at position y at time n, Lemma 3.1.1 implies

X1(n+ `N ) ≥ y.

Therefore, using the above upper and lower bounds, we conclude that for any n ∈ N, we
have

d(X (n+ `N )) ≤ `NMN (n). (3.3.1)

Let X1, . . . , X2N`N be i.i.d. jumps distributed as X, and let MN := maxj=1,...,2N`N Xj .

Then we have

MN (n)
d
= MN (3.3.2)

for all n ∈ N0. Since the jumps are non-negative, we can bound MN , the maximum of
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2N`N jumps, by the sum of these jumps. Therefore, for any �xed N ∈ N,

E [MN (n)] = E [MN ] ≤ E

2N`N∑
j=1

Xj

 = 2N`NE [X] =: CN <∞. (3.3.3)

Now (3.3.1) immediately implies the L1 convergence; indeed, for all �xed N ∈ N there

exists CN > 0 such that

0 ≤ lim inf
n→∞

E [d(X (n))]

n
≤ lim sup

n→∞

E [d(X (n))]

n
= lim sup

n→∞

E [d(X (n+ `N ))]

n+ `N
≤ lim sup

n→∞

`NCN
n+ `N

= 0.

To see the almost sure convergence, we observe that for any �xed N ∈ N and ε > 0 we

have

∞∑
n=`N

P
(
d(X (n))

n
> ε

)
=
∑
n≥0

P
(
d(X (n+ `N ))

n+ `N
> ε

)

≤
∞∑
n=0

P
(
`NMN (n)

ε
> n+ `N

)

≤
∞∑
n=0

P
(
`NMN

ε
> n

)
=
`NE [MN ]

ε
<∞,

where in the �rst inequality we use (3.3.1), the second inequality follows by (3.3.2), and

the third by (3.3.3). Therefore, the Borel-Cantelli lemma implies that for all N ∈ N and

ε > 0, almost surely there exists a random number n0 ∈ N0 such that d(X (n))/n ≤ ε for

all n > n0. Since ε can be taken arbitrarily small, the result follows.

3.3.2 Monotonicity properties

In [2] it is shown that due to a monotonicity property, to prove Proposition 3.2.1, it is

enough to consider the N -BRW with the initial con�guration in which all particles are at

zero. We now recall this property (in a slightly less general form than is written in [2]),

and we include its proof as well for completeness.

The monotonicity property says the following. Assume that we have a pair of N -BRWs,

determined by the same sequence of jumps but starting from di�erent initial con�gurations.

Assume furthermore that at some time k, the positions of the �rst N -BRW are pairwise

smaller than those of the second N -BRW. Then we claim that the �rst N -BRW will have

pairwise smaller positions than the second at all times after time k.

Recall the notation Xi,b,n from Section 3.1.

Lemma 3.3.2. [2, Lemma 1] Consider a pair of N -BRWs (X (n),X ∗(n))n∈N0, where

(X (n))n∈N0 is determined by the jumps (Xi,b,n)i∈[N ],b∈{1,2},n∈N0
and the initial con�guration

X (0), and (X ∗(n))n∈N0 is determined by the same jumps (Xi,b,n)i∈[N ],b∈{1,2},n∈N0
and the
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initial con�guration X ∗(0). Suppose that there exists a time k ∈ N0 such that Xi(k) ≤ X ∗i (k)

for all i ∈ [N ]. Then

Xi(n) ≤ X ∗i (n),

for all n ≥ k and i ∈ [N ].

Proof. Assume that we have

Xi(k) ≤ X ∗i (k) (3.3.4)

for all i ∈ [N ] and for some k ∈ N0. We will show that

Xi(k + 1) ≤ X ∗i (k + 1) (3.3.5)

for all i ∈ [N ]; by induction on k, this implies the result.

For i ∈ [N ] and n ∈ N0, let (i, n) denote the ith particle from the left at time n in

X (n), at position Xi(n). Recall the notation (i, n) .b (j, n+ k) from Section 3.1. Let also

(j, b, k) refer to the jump of the bth o�spring of the jth particle at time k (in both X and

X ∗). The size of the jump (j, b, k) is Xj,b,k (in both X and X ∗).
Take i′ ∈ [N ]. Let Ai′ denote the set of jumps at time k for which the particles

performing these jumps are in the set (i′, k + 1), (i′ + 1, k + 1), . . . , (N, k + 1) in X (k + 1):

Ai′ :=
N⋃
i=i′

{(j, b, k) : (j, k) .b (i, k + 1)}.

Then |Ai′ | = N − i′ + 1, and we claim that all positions in the collection (X ∗j (k) +

Xj,b,k)(j,b,k)∈Ai′ are to the right of or at position Xi′(k + 1). The reason for this is that

for each (j, b, k) ∈ Ai′ there exists i ≥ i′ such that (j, k) .b (i, k + 1), and thus, by the

assumption in (3.3.4) and since i ≥ i′, we have

X ∗j (k) +Xj,b,k ≥ Xj(k) +Xj,b,k = Xi(k + 1) ≥ Xi′(k + 1).

This establishes the claim. It follows that if all the N − i′+1 particles that performed a

jump from the set Ai′ survive the selection step in X ∗(k+1), then there are at least N−i′+1

particles to the right of or at position Xi′(k + 1) in X ∗(k + 1), and therefore (3.3.5) holds

for i = i′. If instead there is a particle which performed a jump from the set Ai′ , but it

does not survive the selection step in X ∗(k + 1), then we must have some j and b with

(j, b, k) ∈ Ai′ such that

Xi′(k + 1) ≤ X ∗j (k) +Xj,b,k ≤ X ∗1 (k + 1) ≤ X ∗i′(k + 1),

which again implies that (3.3.5) holds for i = i′. Since i′ was arbitrary the result follows.

The next corollary makes sure that in the proof of Proposition 3.2.1 and later in the

proof of Theorem 3.2.2 we can assume that the initial con�guration is Xi(0) = 0 for all
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i ∈ [N ]. In [2], the authors argue that we can make this assumption because of Lemma 3.3.2

and by translation invariance (the dynamics does not change if we shift each particle by a

translation on R). In Corollary 3.3.3 we expand on this argument.

Corollary 3.3.3. Consider a pair of N -BRWs (X (n),X ∗(n))n∈N0, where (X (n))n∈N0 is

determined by the initial con�guration X (0) and the jumps (Xi,b,n)i∈[N ],b∈{1,2},n∈N0
, and

(X ∗(n))n∈N0 is determined by the same jumps (Xi,b,n)i∈[N ],b∈{1,2},n∈N0
and by the initial

con�guration X ∗i (0) = 0 for all i ∈ [N ]. Assume that

vN := lim
n→∞

X ∗N (n)

n

exists almost surely and in L1. Then

lim
n→∞

XN (n)

n
= vN

almost surely and in L1.

Proof. Consider the process (X ∗(n) + X1(0))n∈N0 , by which we mean that the particle

positions of this process at time n ∈ N0 are given by X ∗i (n) + X1(0) for all i ∈ [N ]. Then

the process (X ∗(n) + X1(0))n∈N0 is an N -BRW given by the same jumps as (X (n))n∈N0 ,

started with all particles at X1(0). For this process it certainly holds that X ∗i (0) +X1(0) =

X1(0) ≤ Xi(0) for all i ∈ [N ]. Therefore, applying Lemma 3.3.2 with k = 0, we have

X ∗N (n) + X1(0) ≤ XN (n) (3.3.6)

for all n ∈ N0. Similarly, we can also consider the process (X ∗(n) + XN (0))n∈N0 . For this

process it holds that X ∗i (0)+XN (0) = XN (0) ≥ Xi(0) for all i ∈ [N ]. Thus, by Lemma 3.3.2

we have

X ∗N (n) + XN (0) ≥ XN (n) (3.3.7)

for all n ∈ N0. We then conclude by (3.3.6) and (3.3.7) that

X ∗N (n) + X1(0)

n
≤ XN (n)

n
≤
X ∗N (n) + XN (0)

n
,

which implies the result.

3.3.3 Proof of Proposition 3.2.1 � existence of asymptotic speed

In this section, we are following the steps of [2] to complete the proof of Proposition 3.2.1.

Let (X (n))n∈N0 be an N -BRW given by the jumps (Xi,b,n)i∈[N ],b∈{1,2},n∈N0
and by the initial

condition

Xi(0) = 0 for all i ∈ [N ]. (3.3.8)

By Corollary 3.3.3 it is enough to prove the statement of Proposition 3.2.1 for (X (n))n∈N0 .
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The proof of Proposition 3.2.1 relies on Kingman's subadditive ergodic theorem which

we now state.

Theorem 3.3.4. (Kingman's subadditive ergodic theorem � Ligget's version [22, Theorem

7.4.1])

Suppose that the process (Ym,n)0≤m<n satis�es the following conditions:

(i) Y0,m + Ym,n ≥ Y0,n (subadditivity).

(ii)
{
Ynk,(n+1)k, n ≥ 1

}
is a stationary sequence for all k.

(iii) The distribution of {Ym,m+k, k ≥ 1} does not depend on m.

(iv) E [max(Y0,n, 0)] <∞ for all n, and there exists γ0 > −∞ such that E[Y0,n] ≥ γ0n for

all n.

Then

(a) limn→∞ E
[
Y0,n
n

]
= infm

E[Y0,m]
m ≡ γ.

(b) Y := limn→∞
Y0,n
n exists almost surely and in L1, and hence E[Y ] = γ.

(c) If
{
Ynk,(n+1)k, n ≥ 1

}
is ergodic for all k, then Y = γ almost surely.

We will apply Kingman's theorem for the so-called shifted processes of the N -BRW.

Before introducing these, we will consider a modi�ed N -BRW, which will be related to

the shifted processes. Take m,n ∈ N0. Let X ∗ be an identical copy of X up to time m,

i.e. X (l) = X ∗(l) for all l ≤ m. At time m we make a change in X ∗(m): we push every

particle in X ∗(m) to the rightmost position, so that X ∗i (m) = XN (m) for all i ∈ [N ]. Then

after time m, we let X ∗ evolve as an N -BRW with the same sequence of jumps as X . Now
by Lemma 3.3.2, X ∗ will dominate X at all times after time m; in particular,

X ∗N (m+ n) ≥ XN (m+ n). (3.3.9)

Similarly, we also let X ∗∗ be an identical copy of X up to time m, and the change we

make at time m is that we pull back every particle in X ∗∗(m) to the leftmost position, so

that X ∗∗i (m) = X1(m) for all i ∈ [N ]. Then after time m, we let X ∗∗ evolve as an N -BRW

with the same sequence of jumps as X . Then X will dominate X ∗∗ at all times after time

m; in particular

X ∗∗1 (m+ n) ≤ X1(m+ n). (3.3.10)

In order to use the above properties conveniently, we introduce the process (Xm(m +

k))k∈N0 , which will be the shifted process of the N -BRW (X (k))k∈N0 shifted by m. We

de�ne this shifted process as follows: (Xm(m+ k))k∈N0 is an N -BRW which starts at time

120



3.3. Asymptotic speed and proof of Theorem 3.2.2

m, and it is given by the initial con�guration Xmi (m) = Xi(0) = 0 for all i ∈ [N ], and by

the jumps (Xi,b,k)i∈[N ],b∈{1,2},k≥m. Since the jumps are i.i.d. and Xm(m) = X (0), we have

Xmi (m+ n)
d
= Xi(n), (3.3.11)

for all i ∈ [N ].

Furthermore, because of the construction of X ∗, the rightmost position in X ∗ can be

written as

X ∗N (m+ n) = XN (m) + XmN (m+ n). (3.3.12)

Similarly, we also have

X ∗∗1 (m+ n) = X1(m) + Xm1 (m+ n). (3.3.13)

A useful consequence of the above construction and the inequalities (3.3.9) and (3.3.10),

which we will use in our main proofs later on, is stated in the following lemma.

Lemma 3.3.5. For all m ∈ N and n ∈ N0, we have

E [XN (m+ n)] ≤ E [XN (m)] + E [XN (n)]

and

E [X1(m+ n)] ≥ E [X1(m)] + E [X1(n)] .

Proof. The �rst inequality of the lemma follows from (3.3.9), (3.3.11) and (3.3.12); and we

see the second inequality by (3.3.10), (3.3.11) and (3.3.13).

Now we can prove Proposition 3.2.1 by applying Kingman's subadditive ergodic theorem

to the shifted process we introduced earlier.

Proof of Proposition 3.2.1. Proposition 3.3.1 implies that if either of the two limits in

Proposition 3.2.1 exists, the other exists as well and has the same value. We will prove

the result by considering the evolution of the rightmost position XN (n). We will apply

Kingman's subadditive ergodic theorem to the shifted process (XmN (n))m,n∈N0,n≥m.

Now we check the conditions of Theorem 3.3.4. Let Ym,n := XmN (n) for all 0 ≤ m ≤ n,

and then �x m and n. Condition (i) requires

X 0
N (m) + XmN (n) ≥ X 0

N (n).

Notice that X 0
N (k) = XN (k) for all k ∈ N0 by the de�nition of the shifted process. There-

fore, (3.3.9) and (3.3.12) imply condition (i).

Regarding condition (ii), notice that by (3.3.11) we have X nkN ((n + 1)k)
d
= XN (k) for

all n ∈ N0. Thus, (X nkN ((n + 1)k))n∈N0 is an i.i.d. sequence and therefore it is station-

ary and ergodic, which shows both condition (ii) and the condition in statement (c) of

Theorem 3.3.4.
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3.3. Asymptotic speed and proof of Theorem 3.2.2

For condition (iii) we have XmN (m + k)
d
= XN (k), and therefore the distribution of

(XmN (m + k))k≥1 indeed does not depend on m. For the �rst condition in (iv), note that

because of (3.3.8) and since the jumps are non-negative, we have X 0
N (n) ≥ 0 for all n ∈ N0,

and we can bound X 0
N (n) above by the sum of all jumps that occurred in X before time n.

Hence, for all n ∈ N0 we have

E
[
X 0
N (n)

]
≤ E

 ∑
i∈[N ],b∈{1,2},k∈[0,n−1]

Xi,b,k

 = 2NnE [X] <∞.

The second condition in (iv) also holds, since E
[
X 0
N (n)

]
≥ 0 for all n ∈ N0.

Therefore Theorem 3.3.4 applies, and since X 0
N (n) = XN (n), it says that

lim
n→∞

XN (n)

n
= lim

n→∞

E [XN (n)]

n
= inf

k

E [XN (k)]

k

almost surely and in L1, which concludes the proof of Proposition 3.2.1.

3.3.4 Proof of Theorem 3.2.2

We now move on to proving the main result of this chapter, Theorem 3.2.2. Consider an

N -BRW (X (n))n∈N0 with arbitrary initial con�guration X (0) and with a jump distribution

given by the random variable X in (3.2.2). Recall that X is non-negative and that g

in (3.2.2) is regularly varying with index β ∈ (0, 1).

Since X has �nite moments (for example by applying Lemma 3.1.3 to f = g), Proposi-

tion 3.2.1 applies, and the L1 convergence implies

lim
n→∞

E [X1(n)]

n
= lim

n→∞

E [XN (n)]

n
= vN . (3.3.14)

Our main argument will consist of proving the lower and upper bounds stated below.

Proposition 3.3.6. Assume Xi(0) = 0 for all i ∈ [N ]. Then for all c1 < log 2, for N

su�ciently large,

c1
LN

logN
≤ lim

n→∞

E[X1(n)]

n
= vN .

Proposition 3.3.7. Assume Xi(0) = 0 for all i ∈ [N ]. Then for all c2 > log 2, for N

su�ciently large,

vN = lim
n→∞

E[XN (n)]

n
≤ c2

LN
logN

.

Proof of Theorem 3.2.2. Corollary 3.3.3, Propositions 3.3.6 and 3.3.7, together with (3.3.14)

immediately imply the theorem.

We will prove Proposition 3.3.6 in Section 3.4 and the proof of Proposition 3.3.7 is in

Section 3.5.
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3.3. Asymptotic speed and proof of Theorem 3.2.2

3.3.5 Simple properties of the regularly varying function g

Recall the de�nitions of g and g−1 from (3.2.2) and (3.2.5). In the proofs of Proposi-

tions 3.3.6 and 3.3.7, the following properties will be helpful.

Lemma 3.3.8. For all r > 0,

(a) g(g−1(r logN)) ∼ r logN as N →∞; in particular g(LN ) ∼ logN as N →∞

(b) g(rLN ) ∼ rβ logN as N →∞

(c) g−1(r logN) ∼ r1/βLN as N →∞.

Proof. Take ε ∈ (0, 1).

(a) By the de�nition of a regularly varying function in (3.1.2), the de�nition of g−1 in

(3.2.5), and since g is non-decreasing, for N su�ciently large,

(1− ε)β − ε ≤ g((1− ε)g−1(r logN))

g(g−1(r logN))
≤ r logN

g(g−1(r logN))

≤ g((1 + ε)g−1(r logN))

g(g−1(r logN))
≤ (1 + ε)β + ε,

which shows (a), since ε ∈ (0, 1) was arbitrary.

(b) Recall the de�nition of LN in (3.2.4). By part (a) (with r = 1) and by (3.1.2), for N

su�ciently large we have

(1− ε)2rβ logN ≤ (1− ε)rβg(LN ) ≤ g(rLN ) ≤ (1 + ε)rβg(LN ) ≤ (1 + ε)2rβ logN,

which shows (b), since ε ∈ (0, 1) was arbitrary.

(c) For N su�ciently large,

g
(

(1− ε)2/βr1/βLN

)
≤ 1

1− ε
(1− ε)2r logN < g(g−1(r logN))

<
1

1 + ε
(1 + ε)2r logN

≤ g
(

(1 + ε)2/βr1/βLN

)
,

where in the �rst inequality we use part (b) with (1− ε)2/βr1/β in the role of r, the

second follows by part (a), and the third and fourth again by (a) and (b) respectively.

Since the function g is non-decreasing because of (3.2.2), the above implies

(1− ε)2/βr1/βLN < g−1(r logN) < (1 + ε)2/βr1/βLN ,

and since we can take ε arbitrarily small, we conclude (c).
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3.4. Lower bound: proof of Proposition 3.3.6

We will also need a lower bound on LN , which we state in the corollary below. This

lower bound follows from Lemma 3.1.3 and Lemma 3.3.8.

Corollary 3.3.9. For all ε > 0, for N su�ciently large,

LN ≥ (logN)1/β−ε.

Proof. Without loss of generality, assume ε ∈ (0, 1). Let ε1 ∈ (0, εβ2), and C2(ε1) as

in Lemma 3.1.3 with f = g. Since ε < 1/β, we can take N su�ciently large that

(logN)1/β−ε > B(ε1) from Lemma 3.1.3. Now �rst by Lemma 3.1.3, then by the choice of

ε1, and �nally by Lemma 3.3.8(a) we have

g
(

(logN)1/β−ε
)
≤ C2(ε1)(logN)(1/β−ε)(β+ε1) ≤ (1− ε) logN < g(LN ),

for N su�ciently large. Since the function g is non-decreasing, the result follows.

3.4 Lower bound: proof of Proposition 3.3.6

Proof of Proposition 3.3.6. Take a ∈ (0, 1) and assume that c1 < a log 2. Also, choose

η > 0 such that aβ(1+η) < 1. Recall the de�nition of LN from (3.2.4). First we claim that

for large N , the leftmost particle is to the right of position aLN at time `N + 1 with high

probability. Indeed, for the probability that a single jump is greater than aLN we have

P(X > aLN ) = e−g(aLN ) ≥ e−(1+η)aβ logN = N−(1+η)aβ ,

where the inequality follows for N su�ciently large by Lemma 3.3.8(b).

The probability that at time one there is at least one particle to the right of aLN (i.e.

XN (1) > aLN ) is equal to the probability that we see a jump of size greater than aLN

among the 2N jumps happening at time 0 (since we assume that all particles start from 0

at time 0). Since the jumps are i.i.d., we have for N su�ciently large,

P(XN (1) > aLN ) = 1− (1− P(X > aLN ))2N ≥ 1− (1−N−(1+η)aβ )2N .

By Lemma 3.1.1 it follows that for N su�ciently large,

P(X1(`N + 1) > aLN ) ≥ P(XN (1) > aLN ) ≥ 1− (1−N−(1+η)aβ )2N , (3.4.1)

which tends to 1 as N goes to in�nity, because (1 + η)aβ ∈ (0, 1) by our assumption at the

beginning of the proof. This establishes the claim above.

In order to establish a lower bound on E [X1(n)] for any large n, we will split the time

interval [0, n] into subintervals of length `N +1, and use Lemma 3.3.5 to gain a lower bound

on E [X1(n)] in terms of E [X1(`N + 1)]. Let us �x N ∈ N and n ∈ N0, and introduce the
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3.5. Upper bound: proof of Proposition 3.3.7

notation

M :=

⌊
n

`N + 1

⌋
.

Then by the de�nition of M and because X1(s) is a non-decreasing function of s, and then

writing X1(M(`N + 1)) as a telescoping sum, we have

1

n
E[X1(n)] ≥ 1

n
E[X1(M(`N + 1))] =

1

n

M−1∑
k=0

E[X1((k + 1)(`N + 1))−X1(k(`N + 1))]

≥ 1

n
ME[X1(`N + 1)]

≥ 1

n

(
n

`N + 1
− 1

)
E[X1(`N + 1)], (3.4.2)

where in the second inequality we use Lemma 3.3.5, and the third follows since M + 1 ≥
n/(`N + 1). Now letting n go to in�nity and applying Proposition 3.2.1, we conclude that

for any �xed N , we have

vN = lim
n→∞

E[X1(n)]

n
≥ E [X1(`N + 1)]

`N + 1
.

This implies that for N su�ciently large,

vN ≥
E[X1(`N + 1)]

aLN

aLN
`N + 1

≥ P(X1(`N + 1) > aLN )
aLN
`N + 1

≥ (1− (1−N−(1+η)aβ )2N )
aLN

logN
log 2 + 2

,

where the second inequality comes from Markov's inequality, and the third holds for N

su�ciently large by (3.4.1) and because `N ≤ logN/ log 2 + 1. Now the right-hand side

converges to a(log 2)LN/ logN as N → ∞, and note that we assumed c1 < a log 2 at the

start of the proof. Therefore, for N su�ciently large, the right-hand side is greater than

c1LN/ logN , which shows the result.

3.5 Upper bound: proof of Proposition 3.3.7

In this section, we �rst prove Proposition 3.3.7 using the lemma below, then we prove the

lemma. For all A > 0 and N ∈ N we introduce the notation

tN = tN (A) := dA logNe . (3.5.1)

Recall the de�nition of LN from (3.2.4). The �rst lemma below says that for a suitable

constant A, the probability that there is a particle to the right of position (log 2)(1+ε)ALN

at time tN is very small for large N . We will see in Section 3.5.1 that this lemma implies

Proposition 3.3.7.
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Lemma 3.5.1. Assume Xi(0) = 0 for all i ∈ [N ]. Then for all ε > 0, there exist δ > 0

and A > 0 such that for N su�ciently large,

P(XN (tN (A)) > (log 2)(1 + ε)ALN ) ≤ N−δ.

Before showing how Lemma 3.5.1 can be used to prove Proposition 3.3.7, we now state

a second lemma. Our second lemma is about a path in which jumps of size signi�cantly

larger than LN are discarded and count as a jump of size zero. The lemma says that the

probability that such a path of length tN goes further than (log 2)(1 + ε)ALN is very small

for large N . The result is strong enough to say that if we consider all paths of length tN
in N independent branching random walks without selection, then it is still very unlikely

that one of them makes it further than (log 2)(1 + ε)ALN if jumps much larger than LN
are discarded. We can also check that jumps of size much greater than LN are unlikely to

occur during a time interval of length tN . Hence, using the lemma below, we will be able

to prove Lemma 3.5.1 in Section 3.5.2.

Lemma 3.5.2. For all ε > 0 and δ1 > 0, there exist A > 0 and ε̃ > 0 such that for N

su�ciently large,

P
(
S̃tN > (log 2)(1 + ε)ALN

)
≤ N−A log 2−1−δ1 ,

where S̃n =
∑n

j=1 Yj1{Yj≤(1+ε̃)LN} for n ≥ 1, and Yj, j = 1, . . . , n are non-negative and

i.i.d. and distributed as (3.2.2), where g is regularly varying with index β ∈ (0, 1) and

satis�es (3.2.3).

We will prove Lemma 3.5.2 in Section 3.5.3.

3.5.1 Proof of the upper bound

Proof of Proposition 3.3.7. Similarly to the proof of the lower bound in Proposition 3.3.6,

we can show that it is enough to consider the �rst tN steps, using Lemma 3.3.5. Indeed, let

us �x N ∈ N, n ∈ N0, A > 0, set tN = tN (A) and introduce M := dn/tNe. Now similarly

to (3.4.2), we use the de�nition of M and that XN (s) is non-decreasing in s, and then use

a telescoping sum to write

E[XN (n)]

n
≤ E[XN (MtN )]

n
=

1

n

M−1∑
k=0

E[XN ((k + 1)tN )−XN (ktN )]

≤ 1

n
ME[XN (tN )]

≤ 1

n

(
n

tN
+ 1

)
E[XN (tN )] (3.5.2)

where in the second inequality we use Lemma 3.3.5, and the third follows since M ≤
n/tN + 1. Now letting n go to in�nity and applying Proposition 3.2.1, we conclude that
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3.5. Upper bound: proof of Proposition 3.3.7

for any �xed N and A,

vN ≤
E [XN (tN (A))]

tN (A)
. (3.5.3)

We will now use Lemma 3.5.1 to establish an upper bound on the right-hand side. Take

c2 > log 2 and let ε > 0 be such that c2 > (1 + ε) log 2. For this ε, choose δ > 0 and A > 0

as in Lemma 3.5.1, and take γ ∈ (0, δ). Let us also de�ne

KN := (log 2)(1 + ε)ALN .

Then partitioning the expectation on the right-hand side of (3.5.3), we get

E[XN (tN )]

tN
≤ 1

tN
E
[
XN (tN )1{XN (tN )≤KN}

]
+

1

tN
E
[
XN (tN )1{XN (tN )∈(KN ,Nγ ]}

]
+

1

tN
E
[
XN (tN )1{XN (tN )>Nγ}

]
. (3.5.4)

Recall from (3.5.1) that tN = dA logNe. For the �rst term on the right-hand side of (3.5.4)

we have

1

tN
E
[
XN (tN )1{XN (tN )≤KN}

]
≤ KN

tN
≤ (log 2)(1 + ε)LN (logN)−1. (3.5.5)

For the second term,

1

tN
E
[
XN (tN )1{XN (tN )∈(KN ,Nγ ]}

]
≤ 1

tN
P (XN (tN ) > KN )Nγ ≤ Nγ−δ

tN
< ε, (3.5.6)

for N su�ciently large, where the second inequality follows by Lemma 3.5.1, and the third

since γ < δ.

For the third term on the right-hand side of (3.5.4), we will use the identity that for

any non-negative random variable Y with E [Y ] <∞, and for any �xed x > 0,

E
[
Y 1{Y >x}

]
=

∫ ∞
x

P (Y > y) dy + xP (Y > x) .

To prove the identity, we write the �rst probability on the right-hand side as the expectation

of an indicator, and apply Fubini's theorem to obtain∫ ∞
x

P (Y > y) dy = E
[∫ ∞

x
1{Y >y}dy

]
= E

[∫ Y

x
dy1{Y >x}

]
= E

[
(Y − x)1{Y >x}

]
= E

[
Y 1{Y >x}

]
− xP (Y > x) ,

which shows the identity. Using the identity for the third term on the right-hand side
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of (3.5.4) we get

1

tN
E
[
XN (tN )1{XN (tN )>Nγ}

]
≤ 1

tN

∫ ∞
Nγ

P (XN (tN ) > y) dy +
1

tN
NγP (XN (tN ) > Nγ) .

(3.5.7)

Now notice that the event {XN (tN ) > y} implies that at least one jump of size larger than

y/tN occurred in the N -BRW process before time tN . Thus, since the total number of

jumps before time tN is 2NtN , we have

P (XN (tN ) > y) ≤ 2NtNe
−g(y/tN ) ≤ 2NtNe

−(y/tN )β/2 ,

for y su�ciently large, where the second inequality comes from Lemma 3.1.3 with ε < 1/2.

Substituting into (3.5.7) we get

1

tN
E
[
XN (tN )1{XN (tN )>Nγ}

]
≤ 1

tN
2NtN

(∫ ∞
Nγ

e−(y/tN )β/2dy +Nγe−(Nγ/tN )β/2
)
< ε,

(3.5.8)

for N su�ciently large. Now (3.5.3)-(3.5.8) show that

vN ≤
E[XN (tN )]

tN
≤ (log 2)(1 + ε)LN (logN)−1 + 2ε,

for N su�ciently large, and by Corollary 3.3.9 and since we chose ε such that c2 > (1 +

ε) log 2, we are done with the proof of Proposition 3.3.7.

3.5.2 Lemma 3.5.2 implies Lemma 3.5.1 � bounding the rightmost posi-

tion

We now prove Lemma 3.5.1 using Lemma 3.5.2, and then prove Lemma 3.5.2 in the next

section.

Proof of Lemma 3.5.1. Take ε > 0 and δ1 > 0. Let A and ε̃ be as in Lemma 3.5.2. Let BN

denote the set of big jumps before time tN = tN (A) which are larger than (1 + ε̃)LN :

BN = BN (A, ε̃) := {(i, b, k) ∈ [N ]× {1, 2} × J0, tN (A)− 1K : Xi,b,k > (1 + ε̃)LN}.

Now we split the event in Lemma 3.5.1 based on whether a big jump occurred before

time tN :

P(XN (tN ) > (log 2)(1 + ε)ALN ) = P({XN (tN ) > (log 2)(1 + ε)ALN} ∩ {BN 6= ∅})

+ P({XN (tN ) > (log 2)(1 + ε)ALN} ∩ {BN = ∅}).
(3.5.9)

Recall that we assume Xi(0) = 0 for all i ∈ [N ]. The event in the second term on the

right-hand side implies that there is a path between time 0 and tN such that no big jumps
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happen on the path, and the sum of the jumps on the path is more than (log 2)(1+ε)ALN .

(Recall the notation for paths from (2.2.10)) Hence, (3.5.9) implies

P(XN (tN ) > (log 2)(1 + ε)ALN )

≤ P (BN 6= ∅) + P

∃i1, i2 ∈ [N ] :
∑

(i,b,k)∈P i2,tNi1,0

Xi,b,k1{Xi,b,k≤(1+ε̃)LN} > (log 2)(1 + ε)ALN

 .

(3.5.10)

Indeed, a particular case of the event in the second term in the right-hand side of (3.5.10)

is when all the indicators in the sum are 1; that is, there is a path which goes further than

(log 2)(1 + ε)ALN , and every jump on the path is smaller than (1 + ε̃)LN . Thus, this event

indeed contains the second event on the right-hand side of (3.5.9).

Recall the construction of the N -BRW from N independent BRWs from Section 2.4.1.

Also recall Lemma 2.4.1, which allows us to bound the second probability on the right-

hand side of (3.5.10) by the probability that there exists a path in at least one of the N

independent BRWs which moves more than (log 2)(1 + ε)ALN without big jumps. We will

use the notation of Section 2.4.1 to formalise this. Furthermore, for the �rst probability

on the right-hand side of (3.5.10) we use a union bound and that in the N -BRW there are

altogether 2NtN jumps before time tN . Therefore, we continue (3.5.10) as follows:

P(XN (tN ) > (log 2)(1 + ε)ALN )

≤ 2NtNe
−g((1+ε̃)LN )

+ P

∃j ∈ [N ], v ∈ {1, 2}tN :
∑
w�v

Yj,w1{Yj,w≤(1+ε̃)LN} > (log 2)(1 + ε)ALN

 ,

where on the right-hand side, j is the index of one of the N independent BRWs, (j, v) is

the label of a time-tN particle, and (Yj,w, w � v) are the i.i.d. jumps of all the ancestors of

particle (j, v).

The total number of paths in N independent BRWs from time 0 up to tN is N2tN .

Indeed, there are N possible values of j and 2tN possible values of v in the event above.

Furthermore, the sum of i.i.d. jumps in that event is distributed as S̃tN from Lemma 3.5.2.

To bound the �rst term on the right-hand side above, we pick η1 > 0 such that (1−η1)(1+

ε̃)β > 1, and we apply Lemma 3.3.8(b). Then we obtain that for N su�ciently large,

P(XN (tN ) > (log 2)(1 + ε)ALN ) ≤ 2NtNe
−(1−η1)(1+ε̃)β logN

+N2tNP
(
S̃tN > (log 2)(1 + ε)ALN

)
≤ 2tNN

1−(1−η1)(1+ε̃)β + 2N1+A log 2−A log 2−1−δ1

= 2tNN
1−(1−η1)(1+ε̃)β + 2N−δ1 ,
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where in the second inequality we used Lemma 3.5.2 and that tN ≤ A logN + 1. Now

any 0 < δ < min((1 − η1)(1 + ε̃)β − 1, δ1) satis�es the statement of Lemma 3.5.1 for N

su�ciently large, thus we are done with the proof of this result.

3.5.3 Proof of Lemma 3.5.2 � large deviation for paths without big jumps

Proof of Lemma 3.5.2. Without loss of generality we can assume that we have ε ∈ (0, 1)

and it is small enough that for all ε′ ∈ (0, ε),

(1 + ε′)−1 > 1− 3
2ε
′, (3.5.11)

and that

1− 1/β + ε < 0. (3.5.12)

Let δ1 > 0. Let ε̃ = ε/100, and de�ne Ỹj := Yj1{Yj≤(1+ε̃)LN} for j ≥ 1, and Ỹ :=

Y 1{Y≤(1+ε̃)LN}, where Y has the same distribution as Y1. We will need some constants in

the course of the proof, which we choose as follows:

(a) Let δ2 := 2ε̃.

(b) Set A > 0 such that A log 2( ε2 − δ2 − ε
2δ2) > 1 + δ1.

(c) Set c > 0 such that cA1−1/β = 1− δ2.

(d) Set ε1 > 0 such that (1 + ε1)(1− δ2) < (1 + ε̃)−1.

(e) Set ε2 ∈ (0, 1) such that (1 + ε2)(1 + ε1)(1− δ2) < (1− ε2)(1 + ε̃)−1.

The choice in (b) is possible because ε/2 = 50ε̃ = 25δ2 > (1 + ε/2)δ2, where in the �rst

inequality we use (a) and in the second the assumption that ε < 1. The choice in (d) is

possible because, by the assumption in (3.5.11), and since ε̃ < ε, we have

(1 + ε̃)−1 > 1− 3
2 ε̃ > 1− δ2,

where the second inequality follows by (a). The choice in (e) is possible because of (d).

Finally, we set

x = (1 + ε/2)A1−1/β log 2. (3.5.13)

Now we start to bound the probability in Lemma 3.5.2. First we claim that for N

su�ciently large,

xg−1(tN ) ≤ (log 2)(1 + ε)ALN . (3.5.14)

To see this, let η2 > 0 be su�ciently small that

(1 + ε
2)(A+ 2η2)1/β ≤ (1 + ε)A1/β.
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Then, by the de�nition of x, and since tN ≤ (A+ η2) logN for N large enough and g−1 is

non-decreasing (see the paragraph after (3.2.5)), we have

xg−1(tN ) ≤ (log 2)A1−1/β(1 + ε
2)g−1((A+ η2) logN)

≤ (log 2)A1−1/β(1 + ε
2)(A+ 2η2)1/βLN

≤ (log 2)A(1 + ε)LN ,

for N su�ciently large, where the second inequality follows by Lemma 3.3.8(c) and the

third by the choice of η2. This �nishes the proof of our claim in (3.5.14), which implies

that for N su�ciently large,

P
(
S̃tN > (log 2)(1 + ε)ALN

)
≤ P

(
S̃tN > xg−1(tN )

)
. (3.5.15)

We will now use an argument similar to Gantert's proof of Theorem 3 in [27] to establish

an upper bound on the right-hand side of (3.5.15). Recall that we chose c > 0 in (c). We

start by applying Markov's inequality and using independence to obtain

P
(
S̃tN > xg−1(tN )

)
= P

exp

 ctN
g−1(tN )

tN∑
j=1

Ỹj

 > exp

(
ctN

g−1(tN )
xg−1(tN )

)
≤ E

[
exp

(
ctN

g−1(tN )
Ỹ

)]tN
e−ctNx. (3.5.16)

From now on we will be focussing on the exponential moment of Ỹ on the right-hand

side. The following two facts will be helpful in our calculations. First, for any y > 0 we

have

log y ≤ y − 1; (3.5.17)

and second, for any z ≥ 0

ez − 1 ≤ zez. (3.5.18)

To check (3.5.17), we �rst note that the two sides are equal for y = 1. For y ∈ (0, 1) we

have

log 1− log y =

∫ 1

y

1

x
dx ≥ 1− y,

which shows (3.5.17); and for y > 1, we have

log y − log 1 =

∫ y

1

1

x
dx ≤ y − 1,

which again shows (3.5.17). To see (3.5.18) we can say that we have equality at z = 0, and

the derivative of the right-hand side is greater than the derivative of the left-hand side for

all z > 0.

Applying (3.5.17) to the expectation in (3.5.16), and then using (3.5.18) for the exponent
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in the expectation, we obtain

logE
[
exp

(
ctN

g−1(tN )
Ỹ

)]
≤ E

[
exp

(
ctN

g−1(tN )
Ỹ

)]
− 1 ≤ ctN

g−1(tN )
E
[
Ỹ exp

(
ctN

g−1(tN )
Ỹ

)]
.

(3.5.19)

Next we apply Hölder's inequality, which says that for real numbers p, q > 1 with
1
p + 1

q = 1 and for random variables Z1, Z2, we have

E[|Z1Z2|] ≤ E[|Z1|p]1/pE[|Z2|q]1/q.

We apply Hölder's inequality with Z1 = Ỹ , Z2 = exp
(

ctN
g−1(tN )

Ỹ
)
, p = 1+ε1

ε1
, and q = 1+ε1,

where ε1 was chosen in (d). Then we obtain

E
[
Ỹ exp

(
ctN

g−1(tN )
Ỹ

)]
≤ E

[
(Ỹ )

1+ε1
ε1

] ε1
1+ε1

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)] 1
1+ε1

. (3.5.20)

Note that the �rst factor on the right-hand side can be bounded above by a constant

independent of N , since Y ≥ Ỹ has �nite moments (by applying Lemma 3.1.3 to g).

Therefore, (3.5.19) and (3.5.20) show that there exists a constant C1 > 0 such that for all

N ,

logE
[
exp

(
ctN

g−1(tN )
Ỹ

)]
≤ C1tN
g−1(tN )

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)]
, (3.5.21)

where we also used that the expectation above is at least 1.

We now claim that there exists a constant C2 such that for all large enough N ,

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)]
< C2. (3.5.22)

After proving this claim, we will be able to conclude the proof of Lemma 3.5.2 very quickly.

It will be useful in the proof of (3.5.22) to handle the left-hand side with an indicator

on Y , so we will use the upper bound below:

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)]
= E

[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)
1{Ỹ≥1}

]
+ E

[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)
1{Ỹ <1}

]
≤ E

[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)
1{Y≥1}

]
+ e(1+ε1)ctN/g

−1(tN ), (3.5.23)

where in the inequality we used that
{
Ỹ ≥ 1

}
⊆ {Y ≥ 1}.

Now we give an upper bound on tN/g−1(tN ) which we will use in our further calcula-

tions. Let η′ ∈ (0, 1) be su�ciently small that (1 + η′)/(1 − η′) ≤ 1 + ε2, where ε2 was

chosen in (e). Then A logN ≤ tN ≤ (1 + η′)A logN for N su�ciently large. Using that
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g−1 is non-decreasing, and then applying Lemma 3.3.8(c), we get for N su�ciently large,

tN
g−1(tN )

≤ (1 + η′)A logN

g−1(A logN)
≤ (1 + η′)A logN

(1− η′)A1/βLN
≤ (1 + ε2)A1−1/β logN

LN
. (3.5.24)

Then it follows that the second term on the right-hand side of (3.5.23) is bounded by

e(1+ε1)ctN/g
−1(tN ) ≤ exp

(
(1 + ε1)c(1 + ε2)A1−1/β logN

LN

)
≤ 2, (3.5.25)

for N su�ciently large, where the second inequality follows by Corollary 3.3.9.

For the �rst term on the right-hand side of (3.5.23), we apply Lemma 3.1.2 with the

random variable Y , and with K1 = 1, K2 = (1 + ε̃)LN , v = (1 + ε1)ctN/g
−1(tN ). We

obtain

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)
1{Y≥1}

]
≤
∫ (1+ε̃)LN

1

(1 + ε1)ctN
g−1(tN )

e
(1+ε1)ctN
g−1(tN )

s
P(Y > s)ds+ e

(1+ε1)ctN
g−1(tN ) P(Y ≥ 1).

Now using (3.5.24) and (3.5.25), it follows that for N su�ciently large,

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)
1{Y≥1}

]
≤
∫ (1+ε̃)LN

1
(1 + ε1)c(1 + ε2)A1−1/β logN

LN

× exp

(
(1 + ε1)c(1 + ε2)A1−1/β logN

LN
s− g(s)

)
ds+ 2.

Finally, we make the change of variables u = s/LN to arrive at a form which will be

convenient to estimate:

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)
1{Y≥1}

]
≤
∫ 1+ε̃

1/LN

(1 + ε1)c(1 + ε2)A1−1/β logN

× exp
(

(1 + ε1)c(1 + ε2)A1−1/β(logN)u− g(uLN )
)
du+ 2 (3.5.26)

for N su�ciently large.

To handle the integral on the right-hand side of (3.5.26), we split the domain into three

subintervals. Let K be as in (3.2.3) (we assume without loss of generality that K > 1),
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and consider the integral on the interval [1/LN ,K/LN ]. Then we have∫ K/LN

1/LN

(1 + ε1)c(1 + ε2)A1−1/β logN exp
(

(1 + ε1)c(1 + ε2)A1−1/β(logN)u− g(uLN )
)
du

≤ K

LN
(1 + ε1)c(1 + ε2)A1−1/β logN exp

(
(1 + ε1)c(1 + ε2)A1−1/β(logN)

K

LN

)
≤ ε, (3.5.27)

for N su�ciently large, by Corollary 3.3.9.

Next, we assume N is su�ciently large that LN > K, and consider the interval

(K/LN , 1). By the assumption in (3.2.3) and then by Lemma 3.3.8(b), for N su�ciently

large, for all u ∈ (K/LN , 1) we have

g(uLN )

uLN
≥ g(LN )

LN
≥ (1− ε2)

logN

LN
.

Then for the integral in (3.5.26) on this subinterval for N su�ciently large we get∫ 1

K/LN

(1 + ε1)c(1 + ε2)A1−1/β logN exp
(

(1 + ε1)c(1 + ε2)A1−1/β(logN)u− g(uLN )
)
du

≤
∫ 1

K/LN

(1 + ε1)c(1 + ε2)A1−1/β logN

× exp
((

(1 + ε1)c(1 + ε2)A1−1/β − (1− ε2)
)
u logN

)
du

≤ C3, (3.5.28)

for some constant C3 > 0, where the last inequality can be seen as follows. By the choices

in (c) and (e) we have

1− ε2 − (1 + ε1)c(1 + ε2)A1−1/β =: c1 > 0.

Then calculating the integral in the second line, there exists a constant C3 > 0 such that

the integral is at most

C3

[
−e−c1u logN

]1

K/LN
≤ C3.

This establishes (3.5.28).

Finally, we bound the integral in (3.5.26) on the interval [1, 1 + ε̃]. On this subinterval,

for N su�ciently large, for all u ∈ [1, 1 + ε̃], since g is non-decreasing we have

g(uLN ) ≥ g(LN ) ≥ (1− ε2) logN ≥ (1− ε2)(1 + ε̃)−1u logN,

where we applied Lemma 3.3.8(b) in the second inequality. Then for N su�ciently large,
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we can write∫ 1+ε̃

1
(1 + ε1)c(1 + ε2)A1−1/β logN exp

(
(1 + ε1)c(1 + ε2)A1−1/β(logN)u− g(uLN )

)
du

≤
∫ 1+ε̃

1
(1 + ε1)c(1 + ε2)A1−1/β logN

× exp
((

(1 + ε1)c(1 + ε2)A1−1/β − (1− ε2)(1 + ε̃)−1
)
u logN

)
du

≤ ε, (3.5.29)

where the last inequality follows in a similar way to (3.5.28). Indeed, by the choices in (c)

and (e) we have

(1− ε2)(1 + ε̃)−1 − (1 + ε1)c(1 + ε2)A1−1/β =: c2 > 0.

Then there exists a constant C4 > 0 such that the integral in the second line is at most

C4

[
−e−c2u logN

]1+ε̃

1
≤ ε

for N su�ciently large. Hence, by (3.5.26)-(3.5.29) we conclude that for N su�ciently

large,

E
[
exp

(
(1 + ε1)ctN
g−1(tN )

Ỹ

)
1{Y≥1}

]
≤ C3 + 2ε+ 2, (3.5.30)

which together with (3.5.23) and (3.5.25) shows (3.5.22).

Now we put (3.5.16), (3.5.21) and (3.5.22) together to obtain that for N su�ciently

large

P
(
S̃tN > xg−1(tN )

)
≤ exp

(
tN

C1tN
g−1(tN )

C2 − cxtN
)

≤ exp

(
tNC1C2(1 + ε2)A1−1/β logN

(logN)1/β−ε − cxtN
)
,

where in the second inequality we used (3.5.24) and Corollary 3.3.9. Since tN ≥ A logN ,

by the de�nition of x in (3.5.13) and by (c) we have

cxtN ≥ c(log 2)A1−1/β(1 + ε/2)A logN = (1− δ2)(1 + ε/2)(log 2)A logN.

We therefore conclude

P
(
S̃tN > xg−1(tN )

)
≤ N

C1C2(1+ε2)A1−1/β tN

(logN)1/β−ε
−(1−δ2)(1+ε/2)(log 2)A

≤ N−A log 2−1−δ1

for N su�ciently large, where the second inequality follows by (3.5.12) and (b). By (3.5.15),

this �nishes the proof of Lemma 3.5.2.
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Chapter 4

Genealogy of the N-particle

branching random walk with

stretched exponential tails

In this chapter we state a result on the genealogies of the N -BRW when the jump distribu-

tion X has stretched exponential tails given by P (X > x) = e−x
β
with β ∈ (0, 1/2). The

result says that for any large time t, with at least probability of order (logN)−1/2, there

exists a time k ∈ [t−2 dlog2Ne , t−dlog2Ne], such that a positive proportion of the time-t

population descends from a single time-k particle. We then give a summary of the proof of

this result. For some of the intermediate statements we will include the proof, but in many

cases we will omit the details. Altogether we aim to give an idea of why the result is true

and why we could not prove a stronger result with our method. This chapter is based on

joint work with Sarah Penington.

4.1 Reminder of notation

Consider the N -BRW (as de�ned in Chapter 2 in Section 2.2.1, but note that we will work

with a di�erent jump distribution) and recall the following notation from Chapter 2. We

refer to the glossary of notation in Section 2.7 for references to the section or equation

where the notation is de�ned or �rst appears.

� [n] = {1, 2, . . . , n} for n ∈ N, and Ja, bK = [a, b] ∩ N0 for 0 ≤ a ≤ b

� X (n) = {X1(n) ≤ · · · ≤ XN (n)}: ordered positions of the N particles at time n

� Xi,b,n: jump size of the ith particle's bth o�spring at time n

� `N = dlog2Ne

� (i, n): ith particle from the left at time n
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� (i, n) . (j, n+ k): particle (i, n) is the time-n ancestor of particle (j, n+ k)

� P j,n+k
i,n : path (sequence of jumps) between particles (i, n) and (j, n + k) if (i, n) .

(j, n+ k)

� Gx(n): set of particles to the right of or at position x at time n (see (2.2.7))

� Ni,n(n+ k): set of time-(n+ k) descendants of the ith particle at time n (for k ≥ 0)

� N b
i,n(n+ k): set of time-(n+ k) descendants of the ith particle's bth o�spring at time

n (for k ≥ 1)

� Fn: σ-algebra generated by the jumps (Xi,b,m, i ∈ [N ], b ∈ {1, 2},m < n) (Recall

that jumps made at time n are independent of Fn; also see Section 2.2.4.)

We will also use the following two lemmas which were already stated and proved in

Chapters 2 and 3.

Lemma 4.1.1. Let x ∈ R and n, k ∈ N0. Then

|Gx(n+ k)| ≥ min
(
N, 2k|Gx(n)|

)
.

This statement is Lemma 2.2.3 in Chapter 2, where we prove this lemma.

Lemma 4.1.2. [2, Lemma 1] Consider a pair of N -BRWs (X (n),X ∗(n))n∈N0, where

(X (n))n∈N0 is determined by the jumps (Xi,b,n)i∈[N ],b∈{1,2},n∈N0
and the initial con�guration

X (0), and (X ∗(n))n∈N0 is determined by the same jumps (Xi,b,n)i∈[N ],b∈{1,2},n∈N0
and the

initial con�guration X ∗(0). Suppose that there exists a time k ∈ N0 such that Xi(k) ≤ X ∗i (k)

for all i ∈ [N ]. Then

Xi(n) ≤ X ∗i (n),

for all n ≥ k and i ∈ [N ].

This statement is Lemma 3.3.2 in Chapter 3, where we include the proof.

4.2 The main result

Let X be a random variable with stretched exponential tails given by

P (X > x) = e−x
β
, (4.2.1)

for x ≥ 0 and for some β ∈ (0, 1/2). That is, in this section we also assume that the jump

distribution has a density given by

f(x) = βxβ−1e−x
β

(4.2.2)
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for all x > 0. We also de�ne

LN := (logN)1/β. (4.2.3)

This is a special case of the de�nition of LN in Chapter 3 (see (3.2.4)).

Consider the N -BRW with stretched exponential jump distribution, given by the ran-

dom variable X. The decay of the tail of this jump distribution is faster than polynomial

and slower than exponential. As the genealogies show completely di�erent behaviours in

the exponentially decaying case from the polynomially decaying one, we aim to investigate

whether there is a change of behaviour in the stretched exponential case as we change the

value of β. In the result we state below we study the genealogies of the N -BRW when

β ∈ (0, 1/2). In the future we are planning to study the case when β ∈ [1/2, 1) (see

Section 4.7).

To study the genealogies of the N -BRW with a stretched exponential jump distribution

requires a more precise analysis than in the polynomial case. This can be seen for example

by considering that the largest jump in a single time step of the N -BRW (i.e. the maximum

of 2N jumps) is close to the size of the largest jump in of order logN steps (and both are

close to LN ). Indeed, one can check that the largest jump in a single time step is greater

than of size (logN − C/ logN)1/β with high probability, and the largest jump in of order

logN time steps is less than (logN +C log logN/ logN)1/β with high probability for some

large enough constant C > 1. Thus, there will be a large number of jumps close to the size

of the largest in 2`N steps, which is a problem we did not have in the polynomial case.

In this chapter we will assume that N is a power of 2, so

N = 2`N .

Let us also introduce the notation

xj := XN−2j+1(0), (4.2.4)

that is, xj denotes the position of the 2j-th particle from the right at time zero. We can

now state the main result of this chapter.

Theorem 4.2.1. There exist C > 0 and c > 0 such that for N su�ciently large, for any

t ≥ 2`N ,

P (∃k ∈ Jt− 2`N , t− `N K, i ∈ [N ] : |Ni,k(t)| ≥ cN) ≥ C

(logN)1/2
.

In the proof it will be practical to show a stronger statement, where the event also

includes that all particles at time t are to the right of a well-chosen position y∗, which

we will specify later on. Furthermore, to prove Theorem 4.2.1 we will condition on the

con�guration at time t − 2`N , but without loss of generality, we will assume t = 2`N and

138



4.2. The main result

prove results for any initial con�guration, so the notation is slightly simpler. We de�ne

PN (y, c) := P (∃k ∈ Jt− 2`N , t− `N K, i ∈ [N ] : |Ni,k(t)| ≥ cN and X1(2`N ) > y) (4.2.5)

and we will prove

PN := PN (y∗, c) ≥ C

(logN)1/2
, (4.2.6)

for a well-chosen y∗.

Including the event {X1(2`N ) > y} is helpful because of the following idea. We aim to

say that for a well-chosen y = y∗, in order for N particles to reach position y∗, an unusually

big jump must happen during the time interval [0, `N − 1], and we aim to show that the

probability that such a big jump occurs and at least cN time-t particles descend from that

big jump is at least of order (logN)−1/2.

We remark that the largest jump at time `N is not necessarily the one with the most

descendants. If the largest jump is of size M and the particle performing this jump starts

from position x at time `N , then other particles starting from to the right of position x

might end up to the right of position x+M even with smaller jumps than M .

We made an attempt to show that starting from an arbitrary con�guration at time zero,

by time `N the con�guration should be such that the largest jump takes the lead with high

probability. Our idea was the following. Let X1(`N ) := x. The largest jump at any time

step is likely to be of size close to LN . We were aiming to show Gx+δLN (`N ) = o(N (1−δ)β ),

no matter what the initial con�guration is. If this were true, then the diameter of the

particle cloud at time `N would be about LN , and the largest jump from position x + δ

would likely to be of size less than (1− δ)LN , and so it would end up to the left of position

x+LN . Since the number of particles very close to x is close to N in this case, there would

be jumps of size roughly LN starting from close to x, ending up roughly at position LN +x.

Then the largest of these jumps could take the lead, and studying the gap between this

leader particle and the rest of the population, we could try to prove that the leader particle

will have at least cN descendants at time 2`N . However, for certain choices of initial particle

con�guration we could not show that Gx+δ(`N ) will decay faster than N (1−δ)β , in which

case the above argument fails. In the following we will discuss a di�erent approach which

leads to the proof of Theorem 4.2.1

4.2.1 Outline of the proof of Theorem 4.2.1

Now we turn to the ideas of the proof of Theorem 4.2.1. In Section 4.4.1, we will de�ne

r(k) for k ∈ J1, `N K, such that, for any y ∈ R, on the event {XN (k) > y − r(k)},

P (X1(2`N ) > y | Fk) > 1/2.

Note that on the event in the de�nition of PN (y, c) in (4.2.5), we have X1(2`N ) > y. A

particular way for N particles to end up to the right of position y by time 2`N , is to have
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a particle which makes a jump at some time k ∈ J0, `N − 1K which arrives to the right of

position y − r(k + 1). Provided this happens, there is a positive constant probability that

{X1(2`N ) > y} occurs. In our proof we show that the probability that such jump happens,

and the particle performing the jump has at least cN time-2`N descendants is at least of

order (logN)−1/2. Let A(y) denote the following event:

A(y) :=
⋃

(i,b,k)∈[N ]×{1,2}×[0,`N−1]

{Xi(k) +Xi,b,k > y − r(k + 1)}.

Let c > 0 a small constant. In our proof, for some position y∗, we will �nd a lower

bound on PN (y∗, c) and an upper bound on the expected number of particles to the right

of y∗ (divided by N), both given roughly by P (A(y∗)). Comparing the two bounds leads

to the proof of Theorem 4.2.1.

We will de�ne a function h(y) roughly as

h(y) ≈ C1N(logN)1/2P (A(y)) ,

for some C1 > 0, and set y∗ such that

h(y∗) = cN.

(The precise de�nition of h(y) can be found in Section 4.4.2.) One of the main steps to

prove Theorem 4.2.1 is to show

E [|Gy∗(2`N )|] ≤ h(y∗) = cN.

We discuss this step in Section 4.6. The other main step of the proof of Theorem 4.2.1 is

to show (using that E [|Gy∗ |] ≤ cN) that for some C2 > 0,

PN (y∗, c) ≥ C2P (A(y∗)) . (4.2.7)

We give a sketch proof of this in Section 4.5. Now the de�nitions of h(y) and y∗ give

P (A(y∗)) ≈ h(y∗)

C1N(logN)1/2
=

c

C1(logN)1/2
,

which together with (4.2.7) shows (4.2.6), from which we can conclude Theorem 4.2.1.

The motivation for this argument comes from the fact that

E [|Gy(t)|] = E
[
|Gy(t)|1A(y)

]
+ E

[
|Gy(t)|1(A(y))c

]
≤ NP (A(y)) + E

[
|Gy(t)|1(A(y))c

]
.

If we had shown E
[
|Gy∗(t)|1(A(y∗))c

]
≤ E

[
|Gy∗(t)|1A(y∗)

]
, it would have meant that there

is a jump at some time k which arrives to the right of y∗ − r(k + 1) on most paths which

end up to the right of y∗ at time t. This would have implied that PN is of constant order
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rather than of order (logN)−1/2 (because we could have de�ned h(y) without the (logN)1/2

term). Our proof however does not show this; in the following we explain the main steps

of the above argument and give an idea of where the (logN)1/2 term comes from.

4.3 Fairly big jumps and large deviation result

One of the main tasks in proving Theorem 4.2.1 is to upper bound E [|Gy(2`N )|], i.e. the
expected number of particles to the right of some position y at time 2`N . The �rst useful

property which we will need for this upper bound is stated in Lemma 4.3.1 below. Recall

that we assume β ∈ (0, 1/2) in (4.2.1). Let

δN := (logN)−γ , for some γ ∈ (1/(1− β), 1/β), (4.3.1)

and let

ρN := 100δ1−β
N LN . (4.3.2)

From now on, jumps of size larger than δNLN will be called fairly big jumps.

Lemma 4.3.1 says that the probability that a path without fairly big jumps moves more

than ρN in 2`N time is very small.

Lemma 4.3.1. Let Xi, i = 1, 2, . . . be i.i.d. random variables with the same distribution

as X in (4.2.1). Then for N su�ciently large,

P

(
2`N∑
i=1

Xi1{Xi≤δNLN} > ρN

)
< N−49.

The proof of this lemma is very similar to the proof of Lemma 3.5.2 in the proof of the

asymptotic speed result. A consequence of Lemma 4.3.1 is, that we will be able to assume

that the sum of jumps which are smaller than δNLN is less than ρN on every path between

time 0 and 2`N . Let HN denote the event that we have just described. Recall the notation

for paths from (2.2.10). We let

HN :=


∑

(i,b,k)∈P i2,2`Ni1,0

Xi,b,k1{Xi,b,k≤δNLN} < ρN , ∀i1, i2 ∈ [N ]

 . (4.3.3)

Next, we state a consequence of Lemma 4.3.1 in terms of E [|Gy(2`N )|], because this is how
we will use it.

Corollary 4.3.2. For all ε > 0, for N su�ciently large,

E [|Gy(2`N )|] ≤ E [|Gy(2`N )|1HN ] + ε.

Proof. Consider the paths in N independent BRWs coupled with the N -BRW (see Sec-
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tion 2.4.1). The total number of such paths is N22`N by time 2`N . By Lemma 2.4.1, the

event Hc
N implies that there must be at least one among the N22`N paths which moves

more than ρN without fairly big jumps. Therefore, by Lemma 4.3.1,

E
[
|Gy(2`N )|1Hc

N

]
≤ N22`NN−49 < ε, (4.3.4)

for N su�ciently large.

The next lemma gives an upper bound on the probability that a path moves a distance

more than x with the restriction that every jump on the path is between sizes d and M

(the lemma will be useful for us with setting d = δNLN and M ≈ LN , in which case d is

much smaller than M).

Assume that there are m jumps on such a path. Note that if M is close x then a single

jump can still cover roughly the whole distance x, so in this case the restriction that jumps

are smaller than M is less signi�cant.

The �rst part of the lemma below says that if M is not a signi�cant restriction, then

the upper bound is given by roughly the probability that a jump is of size greater than

x − (m − 1)d and the remaining m − 1 jumps are greater than d. Then it can be checked

that this upper bound is largest when m = 1, that is, when the distance is covered by a

single jump.

The second part says that if M is a more signi�cant restriction, then the upper bound

is given by roughly the probability that a jump is of size greater than M , another jump is

of size greater than x−M − (m− 2)d, and the remaining m− 2 jumps are of size greater

than d. If M is much larger than d then it can be seen that this probability is largest when

m = 2.

Lemma 4.3.3. Let Xi, i = 1, 2, . . . be i.i.d. random variables with the same distribution

as X in (4.2.1). Let m ≥ 2 be an integer, let x, d,M ∈ R with 0 < d ≤ M and x > md.

Let Sm :=
∑m

i=1Xi. Then

� If x−M − (m− 1)d < 0 then

P (Sm > x, d < Xi < M, i = 1, . . . ,m) ≤ (1 + xβ)m−1e−(m−1)dβ−(x−(m−1)d)β .

� If x−M − (m− 1)d ≥ 0 then

P (Sm > x, d < Xi < M, i = 1, . . . ,m) ≤ (1+xβ)m−2Mβe−(m−2)dβ−Mβ−(x−M−(m−2)d)β .

Lemma 4.3.3 is needed to show that the most likely way for paths to arrive to the right

of position y∗ at time 2`N is to have only two fairly big jumps of size larger than δNLN on

the path. We do not include the proof of this lemma.
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4.4 Proof of Theorem 4.2.1

4.4.1 Choice of r(k)

For k ∈ J1, `N − 1K, we de�ne r(k) by

(k + 1)22`N−kP (X > r(k)) = 32N, (4.4.1)

and for k = `N we let

r(`N ) = 0. (4.4.2)

With the next lemma we show that r(k) is as we described in Section 4.2.1; that is,

given that there is at leasts one particle to the right of position y − r(k) at time k, we will

have X1(2`N ) > y with a positive constant probability.

Lemma 4.4.1. For all k ∈ J0, `N K and for all y ∈ R, on the event {XN (k) > y − r(k)},

P (X1(2`N ) > y | Fk) > 1− e−6.

Sketch proof. For k = `N , on the event {XN (`N ) > y}, we deterministically have X1(2`N ) >

y by Lemma 4.1.1.

Now we deal with the case when k ∈ J1, `N−1K. Let Xs,j , s, j = 1, 2 . . . be i.i.d. random

variables with the same distribution as X. For k ∈ J1, `N − 1K, on the event {XN (k) >

y − r(k)} we can lower bound |Gy(2`N )| by roughly1

2

2`N−1∑
s=k+1

2(2s−k∧N)∑
j=1

1{Xs,j>r(k)}(2
2`N−s−1 ∧N)

 ∧N. (4.4.3)

The reason for this is the following. On the event {XN (k) > y − r(k)}, by Lemma 4.1.1,

there must be at least 2s−k ∧ N particles to the right of position y − r(k) at any time

s ∈ Jk+ 1, 2`N − 1K. Then the children of these particles make at least 2(2s−k ∧N) jumps,

which arrive to the right of position y at time s + 1 if the jump is larger than r(k). A

time-(s+ 1) particle to the right of y will have 22`N−s−1 surviving descendants unless some

of the descendants are killed in the selection steps by time 2`N , but that is only possible if

there are N particles to the right of position y by time 2`N .

There is an issue about double counting particles that are already to the right of y

and make a jump of size r(k). It is possible (but not straightforward) to show that the

inequality holds with a factor of 1/2 in front of the sum.

Now,
k+`N∑
s=`N

2s−k · 22`N−s−1 = (k + 1)22`N−k−1;

thus, since the random variables Xs,j are i.i.d. and by the de�nition of r(k) in (4.4.1), we
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have

E

1

2

2`N−1∑
s=k+1

2(2s−k∧N)∑
j=1

1{Xs,j>r(k)}(2
2`N−s−1 ∧N)


≥ 1

2

k+`N∑
s=`N

2(2s−k ∧N)P (X > r(k)) (22`N−s−1 ∧N)

≥ 16N.

From here one can use Theorem 2.3(c) in [35] from McDiarmid to conclude the lemma. We

omit the further details of this argument.

Observe that by (4.4.1), we have

r(k) = (logN − (log 2)k + log(k + 1)− log 32)1/β (4.4.4)

for k ∈ J0, `N − 1K. Thus, we think of r(k) as a monotone decreasing function in k which

is roughly given by (logN − (log 2)k)1/β .

Consider paths starting from the right of position xj (see (4.2.4)). Then (by Lemma 4.1.1)

at time `N − j we will have |Gxj (`N − j)| = N , and it is likely that at least one of the par-

ticles in Gxj (`N − j) will perform a jump of size roughly LN . Then again by Lemma 4.1.1

there will be at least 2j particles to the right of position roughly xj + LN at time `N , and

it is likely that one of the 2j particles will make a jump of size roughly (j log 2)1/β in the

next step. As a result (by Lemma 4.1.1) there will be N particles to the right of roughly

xj + LN + (j log 2)1/β at time 2`N . Note that by (4.4.4), we have

(j log 2)1/β ≈ r(`N − j). (4.4.5)

Also recall that we will want to choose y∗ such that E [Gy∗(2`N )] ≤ cN for some c ∈ (0, 1).

Therefore, we will think of y∗ − xj as a slightly larger distance than

LN + (j log 2)1/β ≈ LN + r(`N − j)

for all j ∈ J0, `N K.
In the proof of Theorem 4.2.1 we need another function, R(k, y) as well. For k ∈

J0, `N − 1K, we choose R(k, y) such that all particles are to the right of y −R(k, y) at time

k with probability greater than 1/2; that is, we choose R(k, y) such that

P (X1(k) > y −R(k, y)) > 1/2. (4.4.6)

We note here that we will not present every step of the proof of Theorem 4.2.1, in particular,

we will not deal with most steps involving the function R(k, y). We therefore do not give a

precise de�nition of this function; instead we will refer to the property in (4.4.6) when we
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talk about R(k, y).

4.4.2 Proof of Theorem 4.2.1

Let K1,K2 > 1 be some large constants, and de�ne

h1(y) := K1(logN)1/2N

`N−1∑
k=0

`N−k∑
j=0

2j+kP (X > y − xj − r(k + 1)− ρN ) , (4.4.7)

h2(y) := K2(logN)1/2N2
`N−1∑
k=0

P (X > R(k, y)− r(k + 1)− ρN ) (4.4.8)

and

h(y) := h1(y) ∨ h2(y),

where xj , ρN , r(k) are de�ned in (4.2.4), (4.3.2), (4.4.1)-(4.4.2) respectively and R(k, y) is

as in (4.4.6).

We de�ne y∗ by

h(y∗) = cN, (4.4.9)

for some c ∈ (0, 1/100). This is possible because both h1(y) and h2(y) are continuous

functions of y (assuming (4.2.1)), and for a very small y both functions are larger than N ,

and for a very large y they are o(N). Now we state the two main intermediate results that

we need to prove Theorem 4.2.1.

Proposition 4.4.2. For N su�ciently large,

E [|[Gy∗(2`N )]] ≤ h(y∗) = cN.

We describe the ideas of the proof of Proposition 4.4.2 in Section 4.6.

Proposition 4.4.3. There exists C1 > 0 such that for N su�ciently large,

PN ≥ C1

`N−1∑
k=0

`N−k∑
j=0

2j+kP (X > y∗ − xj − r(k)− ρN ) ,

and

PN ≥ C1

`N−1∑
k=0

NP (X > R(k, y∗)− r(k)− ρN ) ,

where PN is given by (4.2.6), y∗ by (4.4.9), xj, ρN , r(k) are de�ned in (4.2.4), (4.3.2),

(4.4.1)-(4.4.2) respectively, and R(k, y) is as in (4.4.6).

We give a sketch proof of the �rst inequality in Proposition 4.4.3 in Section 4.5. The

proof of the second inequality is very similar to the �rst, but we will not give any detail on

this part.
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Proof of Theorem 4.2.1. By Proposition 4.4.3 and by the de�nitions of the functions h1, h2

and h, and by the choice of y∗,

PN ≥
C1

K1(logN)1/2N
h1(y∗) ∨ C2

K2(logN)1/2N
h2(y∗) =

C3

(logN)1/2N
h(y∗) =

C3c

(logN)1/2
,

which shows the inequality in (4.2.6), from which we can conclude Theorem 4.2.1.

Remark. We use Proposition 4.4.2 in the proof of Proposition 4.4.3.

Remark. The function h1(y) is more convenient for showing our calculations than the

function h2(y). In the rest of this argument we will prove the �rst lower bound in Proposi-

tion 4.4.3, and we will outline the ideas for proving that the size of a subset of Gy∗(2`N ) can

be bounded above by εh1(y∗) for any constant ε > 0. For other subsets we need a slightly

di�erent argument which gives the upper bound h2(y∗). We will not go into detail on that

part of the proof.

4.5 Sketch proof of Proposition 4.4.3 � lower bound on PN

In this section we discuss the main steps of the proof of the �rst inequality of Proposi-

tion 4.4.3. Including the term ρN (de�ned in (4.3.2)) in that inequality makes the proof

slightly longer but does not change the key ideas, partly because ρN = o(LN/(logN)) as

N →∞. Thus, we will go over the proof that

PN ≥ C1

`N−1∑
k=0

`N−k∑
j=0

2j+kP (X > y∗ − xj − r(k + 1)) , (4.5.1)

noting that the precise argument would need some adjustment.

4.5.1 Good events

Let us de�ne the function f(i, k) for i ∈ [N ] and k ∈ J0, `N − 1K as

f(i, k) := dlog2(N − i+ 1)e − k, (4.5.2)

that is, we have f(i, k) = j if

N − 2j+k + 1 ≤ i ≤ N − 2j+k−1. (4.5.3)

Then by the de�nition of xj and by Lemma 4.1.1, we have

Xi(k) ≥ xf(i,k), (4.5.4)
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for all i ∈ [N ] and k ∈ [0, `N − 1], and it is possible that we have Xi(k) < xf(i,k)−1.

Then (4.5.4) implies that

{Xi,b,k > y∗ − r(k + 1)− xf(i,k)} ⊆ {Xi(k) +Xi,b,k > y∗ − r(k + 1)}

= {Xl(k + 1) > y∗ − r(k + 1)}, (4.5.5)

if l ∈ N b
i,k(k + 1).

Next, for i ∈ [N ], b ∈ {1, 2} and k ∈ J0, `N−1K we �rst de�ne then explain the following

events:

� Ai,b,k := {Xi,b,k > y∗ − r(k + 1)− xf(i,k)},

� Bi,b,k :=
⋂
k1∈J0,`N K,i1∈[N ]\N bi,k(k1){Xi1(k1) ≤ y∗ − r(k1)},

� Ci,b,k := {|Gy∗(2`N ) \ N b
i,k(2`N )| ≤ c′N}, for some constant c′ ∈ (100c, 1), with c as

in (4.4.9),

� D = {|Gy∗(2`N )| = N}.

The event Ai,b,k says that the jump Xi,b,k is larger than y∗− r(k+ 1)−xf(i,k), and thus

by (4.5.5) it implies that there is at least one particle to the right of position y∗ − r(k+ 1)

at time k + 1; that is, on the event Ai,b,k we have

XN (k + 1) ≥ y∗ − r(k + 1). (4.5.6)

(Note that if the particle performing the jump Xi,b,k does not survive the selection step,

then there is not one, but N particles to the right of y∗ − r(k + 1) at time k + 1.) This

property will be important because of Lemma 4.4.1.

The event Bi,b,k means that every single particle which is not descended from the jump

Xi,b,k is to the left of position y∗−r(k1) at all times in the interval J0, `N K (thus, on the event
Ai,b,k ∩Bi,b,k the particle that performed the jump Xi,b,k survives the selection step). The

event Ci,b,k says that the number of time-2`N particles, which are to the right of position

y∗ and are not descended from the jump Xi,b,k, is less than c′N . The event D says that all

particles are to the right of y∗ at time 2`N .

We also de�ne the event

E :=
⋃

(i,b,k)∈[N ]×{1,2}×J0,`N−1K

Ci,b,k ∩D,

and notice that the event E is equivalent to the event in the de�nition of PN (see (4.2.5)-

(4.2.6)); that is,

PN = P (E) . (4.5.7)
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Hence, to prove (4.5.1), it will be enough to lower bound the probability of the event⋃
(i,b,k)∈[N ]×{1,2}×J0,`N−1K

Ai,b,k ∩Bi,b,k ∩ Ci,b,k ∩D ⊆ E. (4.5.8)

First we claim that for k′ ≤ k we have

Bi,b,k ∩Ai′,b′,k′ = ∅, (4.5.9)

if (i, b, k) 6= (i′, b′, k′). Now we prove this claim.

On the event Bi,b,k we have

Xj(k′ + 1) ≤ y∗ − r(k′ + 1) (4.5.10)

for all j /∈ N b
i,k(k

′ + 1). Let j∗ ∈ N b′
i′,k′(k

′ + 1). If k′ < k then j∗ /∈ N b
i,k(k

′ + 1), because

in this case N b
i,k(k

′ + 1) = ∅. If k′ = k then j∗ /∈ N b
i,k(k

′ + 1) still holds, since in this case

j∗ ∈ N b′
i′,k′(k

′ + 1) = N b′
i′,k(k + 1), and N b′

i′,k(k + 1) ∩ N b
i,k(k + 1) = ∅. We conclude that

(4.5.10) applies for j = j∗, thus

Xj∗(k′ + 1) ≤ y∗ − r(k′ + 1).

On the other hand, on the event Ai′,b′,k′ we have Xi′,b′,k′ > y∗ − r(k′ + 1)− xf(i′,k′), which

implies Xj∗(k′ + 1) > y∗ − r(k′) because of (4.5.5). This concludes the proof of (4.5.9) for
k′ ≤ k, and as a consequence we have

Ai,b,k ∩Bi,b,k ∩Ai′,b′,k′ ∩Bi′,b′,k′ = ∅

for all (i, b, k) 6= (i′, b′, k′). We then conclude that the set of events

{Ai,b,k ∩Bi,b,k ∩ Ci,b,k ∩D, (i, b, k)× {1, 2} × J0, `N − 1K}

consists of pairwise disjoint events. Therefore, by (4.5.8),

P (E) ≥
∑

(i,b,k)∈[N ]×{1,2}×J0,`N−1K

P (Ai,b,k ∩Bi,b,k ∩ Ci,b,k ∩D) . (4.5.11)

4.5.2 Coupling with modi�ed N-BRWs

At the moment the event Ai,b,k is not independent of Bi,b,k or Ci,b,k, because it a�ects for

example the number of particles in N b
i,k(k1) in the de�nition of Bi,b,k, and also the number

of surviving particles not in N b
i,k(2`N ) in the de�nition of Ci,b,k. To overcome this problem,

we de�ne the modi�ed processes X i,b,k for (i, b, k) ∈ [N ]×{1, 2}×J0, `N−1K as follows. Fix
(i∗, b∗, k∗) ∈ [N ]×{1, 2}× J0, `N −1K. Let (X i∗,b∗,k∗(n))n∈J0,k∗K be the N -BRW determined

by the original initial con�guration X (0) and by the jumps (Xi,b,k)(i,b,k)∈[N ]×{1,2}×J0,k∗−1K,

148



4.5. Sketch proof of Proposition 4.4.3 � lower bound on PN

so that we have

(X i∗,b∗,k∗(n))n∈J0,k∗K = (X (n))n∈J0,k∗K.

Then, in the selection step at time k∗ + 1 we �rst kill the particle that made the jump

Xi∗,b∗,k∗ , and then keep theN rightmost particles. That is, X i∗,b∗,k∗(k∗+1) = {X i
∗,b∗,k∗

1 (k∗+

1) ≤ · · · ≤ X i
∗,b∗,k∗

N (k∗ + 1)} is given by the N largest numbers from the collection

(X i
∗,b∗,k∗

i (k∗) +Xi,b,k∗)(i,b)∈([N ]×{1,2})\(i∗,b∗).

After time k∗ + 1 the process (X i∗,b∗,k∗(n))n∈Jk∗+2,2`N K is determined by the jumps

(Xi,b,k)(i,b,k)∈[N ]×{1,2}×Jk∗+1,2`N−1K as follows. For all k ∈ J0, 2`N K let N (k) denote the set

of time-k descendants of the particle that made the jump Xi∗,b∗,k∗ , and let Dk denote the

number of these descendants:

N (k) := N b∗
i∗,k∗(k), (4.5.12)

and

Dk := |N (k)|.

(Note that for k ≤ k∗ we have N (k) = ∅.) Furthermore, the ordered indices in N (k) will

be denoted by

n1(k) < n2(k) < · · · < nDk(k),

and the ordered indices in [N ] \ N (k) by

nc1(k) < nc2(k) < · · · < ncN−Dk(k).

We now re-index the jumpsXi,b,k in such a way that the children of theN−Dk rightmost

particles in X i∗,b∗,k∗ perform the same jumps as the children of the N −Dk particles in X
which are not descended from the jump Xi∗,b∗,k∗ . The remaining Dk (leftmost) particles'

children in X i∗,b∗,k∗ will perform the jumps of the Dk particles' children which descend

from the jump Xi∗,b∗,k∗ .

Formally, for all k ∈ [0, 2`N ] we de�ne the bijection σk : [N ]→ [N ] (from the indices of

X i∗,b∗,k∗(k) to the indices of X (k)) by

σk(i) = σi
∗,b∗,k∗

k (i) :=

{
ni(k), if i ≤ Dk

nci−Dk(k) if i > Dk,
(4.5.13)

and then we have

σ−1
k (j) =

{
|N (k) ∩ [1, j]|, if j ∈ N (k)

|([N ] \ N (k)) ∩ [1, j]|+Dk, if j /∈ N (k).
(4.5.14)

Now let (X i∗,b∗,k∗(n))n∈Jk∗+2,2`N K be the N -BRW determined by the jumps

(Xσk(i),b,k)(i,b,k)∈[N ]×{1,2}×Jk∗+1,2`N−1K the usual way: for all k ∈ Jk∗ + 1, 2`N K, the ordered
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positions {X i
∗,b∗,k∗

1 (k + 1) ≤ · · · ≤ X i
∗,b∗,k∗

N (k + 1)} = X i∗,b∗,k∗(k + 1) are given by the N

largest numbers from the collection

(X i
∗,b∗,k∗

i (k) +Xσk(i),b,k)(i,b)∈[N ]×{1,2}.

Note that with this de�nition, X i∗,b∗,k∗ is independent of the jump Xi∗,b∗,k∗ . Also note that

for all k ≤ k∗, we have Dk = 0 and hence σk(i) = i for all i ∈ [N ] in this case.

We also de�ne another process

(X̃ i∗,b∗,k∗(k))k∈J0,2`N K,

as the N -BRW determined by the jumps (Xσk(i),b,k)(i,b,k)∈[N ]×{1,2}×J0,2`N−1K and by the

initial con�guration X (0). That is, (X̃ i∗,b∗,k∗(k))k∈J0,2`N K is distributed as an N -BRW,

and, at all times k, the ith particle's children make exactly the same jumps as the ith

particle's children at time k in the process (X i∗,b∗,k∗(k))k∈J0,2`N K. The di�erence between

the two processes is that in (X̃ i∗,b∗,k∗(k))k∈J0,2`N K the selection step is not modi�ed at time

k∗ + 1.

With the lemmas below we compare the processes X , X i∗,b∗,k∗ and X̃ i∗,b∗,k∗ . First,

Lemma 4.5.1 says that X̃ i∗,b∗,k∗(k) dominates X i∗,b∗,k∗(k) for all k ∈ J0, 2`N K, and that the

positions of particles not descended from the jump Xi∗,b∗,k∗ in X are dominated by the

corresponding positions in X i∗,b∗,k∗ .

Lemma 4.5.1. For all (i∗, b∗, k∗) ∈ [N ]× {1, 2} × J0, `N − 1K and (i, k) ∈ [N ]× J0, 2`N K,
we have

X i
∗,b∗,k∗

i (k) ≤ X̃ i
∗,b∗,k∗

i (k),

and if i > Dk then

Xσk(i)(k) ≤ X i
∗,b∗,k∗

i (k).

The main point of the proof of this lemma is to check that the statements hold at time

k∗ + 1 (where we have the modi�ed selection step in X i∗,b∗,k∗), and then use Lemma 4.1.2

and a similar argument to the proof of Lemma 4.1.2 to conclude the result. We will not

include the details of this proof.

For all z ∈ R, n ∈ J0, 2`N K and (i, b, k) ∈ [N ]×{1, 2}× J0, `N −1K, let us write Gi,b,kz (n)

and G̃i,b,kz (n) for the sets of particles to the right of or at position z at time n in the

processes X i,b,k and X̃ i,b,k respectively. The next lemma is about Gi,b,kz (n) and it is a very

similar statement to Lemma 4.1.1.

Lemma 4.5.2. Let k1 ∈ J0, 2`N K, k2 ∈ Jk1, 2`N K and z ∈ R. Then for all (i, b, k) ∈
[N ]× {1, 2} × J0, `N − 1K,

|Gi,b,kz (k2)| ≥
(

2k2−k1−1|Gi,b,kz (k1)|
)
∧N.

We do not have exactly the same statement as in Lemma 4.1.1 for Gi,b,kz (k2), because
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the modi�ed selection step might make a small di�erence if it happens during the time

interval [k1, k2]. Then it is possible that the particle that makes the jump Xi,b,k descends

from the set Gi,b,kz (k1), and since this particle is killed, there will be fewer particles in the

set Gi,b,kz (k2). Taking this into account, the lower bound from Lemma 4.1.1 still works if

we subtract 1 from the exponent of 2 on the right-hand side. We will not write out the

precise proof of this statement.

Now we introduce the events B′i,b,k and C
′
i,b,k which are similar to the events Bi,b,k and

Ci,b,k, but they depend on the process X i,b,k. For all (i, b, k) ∈ [N ]×{1, 2}× J0, `N −1K, let

B′i,b,k :=
⋂

k1∈J0,`N K

{X i,b,kN (k1) ≤ y∗ − r(k1)} (4.5.15)

and

C ′i,b,k := {|Gi,b,ky∗ (2`N )| ≤ c′N}, (4.5.16)

where c′ is as in the de�nition of Ci,b,k. The event B′i,b,k means that for all times k1 ∈ J0, `N K,
in X i,b,k(k1), every particle is to the left of position y∗ − r(k1) at time k1. The event C ′i,b,k
says that the number of time-2`N particles in X i,b,k to the right of position y∗ is at most

c′N . The messages of both events are the same as those of the events Bi,b,k and Ci,b,k

considering that in X i,b,k we remove the particle that performs the jump Xi,b,k and hence

that particle has no descendants. In Lemma 4.5.3 we claim that in fact the events B′i,b,k
and C ′i,b,k imply the events Bi,b,k and Ci,b,k respectively.

Lemma 4.5.3. For all (i, b, k) ∈ [N ] × {1, 2} × J0, `N − 1K, n ∈ J0, 2`N K and z ∈ R, we
have

B′i,b,k ⊆ Bi,b,k, C ′i,b,k ⊆ Ci,b,k, and |Gi,b,kz (n)| ≤ |G̃i,b,kz (n)|.

Proof. Fix (i, b, k) ∈ [N ]×{1, 2}×J0, `N−1K and assume that B′i,b,k occurs. We will use the

notation introduced in (4.5.12). Take k1 ∈ J0, `N K, i1 ∈ [N ] \ N (k1), and let i2 := σ−1
k1

(i1).

Then i2 > Dk1 by the de�nition of σ−1
k1

in (4.5.14). Hence, by Lemma 4.5.1, on the event

B′i,b,k, we have

Xi1(k1) ≤ X i,b,ki2
(k1) ≤ X i,b,kN (k1) ≤ y∗ − r(k1),

which shows that the event Bi,b,k must occur.

In order to prove C ′i,b,k ⊆ Ci,b,k, we check that

|Gy∗(2`N ) \ N (2`N )| ≤ |Gi,b,ky∗ (2`N )|. (4.5.17)

Take i1 ∈ Gy∗(2`N ) \ N (2`N ), and let i2 = σ−1
2`N

(i1). Then similarly as before, i2 > D2`N .

Thus, by Lemma 4.5.1,

y∗ ≤ Xi1(2`N ) ≤ X i,b,ki2
(2`N ),

that is, i2 ∈ Gi,b,ky∗ (2`N ). Therefore, since σ2`N : [N ] → [N ] is a bijection, σ−1
2`N

de�nes an

injection from Gy∗(2`N )\N (2`N ) to Gi,b,ky∗ (2`N ), which shows (4.5.17), and so C ′i,b,k ⊆ Ci,b,k

151



4.5. Sketch proof of Proposition 4.4.3 � lower bound on PN

as well.

Finally, the �rst statement of Lemma 4.5.1 immediately implies |Gi,b,kz (n)| ≤ |G̃i,b,kz (n)|,
so we are done with the proof of Lemma 4.5.3.

4.5.3 Conclusion of proof of Proposition 4.4.3

Since X i,b,k is independent of the jump Xi,b,k, we also have that the events B′i,b,k and C
′
i,b,k

are independent of the event Ai,b,k. Therefore, by Lemma 4.5.3 and then by independence,

we have

P (Ai,b,k ∩Bi,b,k ∩ Ci,b,k ∩D) ≥ P
(
Ai,b,k ∩B′i,b,k ∩ C ′i,b,k

)
− P (Ai,b,k ∩Dc)

= P (Ai,b,k)P
(
B′i,b,k ∩ C ′i,b,k

)
− P (Ai,b,k ∩Dc) ,

for all (i, b, k) ∈ [N ]× {1, 2} × J0, `N − 1K. Then continuing (4.5.11), we obtain

P (E) ≥
∑

(i,b,k)∈[N ]×{1,2}×J0,`N−1K

(
P (Ai,b,k)P

(
B′i,b,k ∩ C ′i,b,k

)
− P (Ai,b,k ∩Dc)

)
. (4.5.18)

Fix (i, b, k) ∈ [N ]× {1, 2} × J0, `N − 1K. We have

P (Ai,b,k ∩Dc) = E [P (Ai,b,k ∩Dc | Fk+1)] = E
[
P (Dc | Fk+1)1Ai,b,k

]
.

Recall that on the event Ai,b,k we have XN (k+1) > y∗−r(k+1) as we explained in (4.5.6).

Hence, by Lemma 4.4.1 we have on the event Ai,b,k,

P (Dc | Fk+1) < e−6,

and therefore we conclude

P (Ai,b,k ∩Dc) ≤ e−6P (Ai,b,k) . (4.5.19)

We deal with the �rst term in the sum in (4.5.18) as follows. We have

P
(
B′i,b,k ∩ C ′i,b,k

)
= P

(
C ′i,b,k

)
− P

(
(B′i,b,k)

c ∩ C ′i,b,k
)
. (4.5.20)

By the de�nition of C ′i,b,k and by the third statement of Lemma 4.5.3,

P
(
(C ′i,b,k)

c
)
≤ P

(
|G̃i,b,ky∗ (2`N )| > c′N

)
= P

(
|Gy∗(2`N )| > c′N

)
≤ E [|Gy∗(2`N )|]

c′N
≤ c

c′
,

where the equality holds because X̃ i,b,s is distributed as X , then we apply Markov's in-

equality, and the third inequality follows by Proposition 4.4.2. Therefore, we have

P
(
C ′i,b,k

)
≥ 1− c

c′
. (4.5.21)
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Let τ denote the �rst time k1 before time `N when the rightmost particle in X i,b,k is to
the right of y − r(k1), if there is any such time:

τ := inf{k1 ∈ J0, `N K : X i,b,kN (k1) > y − r(k1)},

and let τ = `N + 1 if there is no such time up to time `N . Then we have B′i,b,k ∈ Fτ ,
since for any s ∈ J0, `N K, we have {τ ≤ s} ∩ B′i,b,k = ∅, and for any s ≥ `N + 1 we have

{τ ≤ s} ∩B′i,b,k = B′i,b,k ∈ Fs. Thus

P
(
(B′i,b,k)

c ∩ C ′i,b,k
)

= E
[
P
(
C ′i,b,k | Fτ

)
1(B′i,b,k)c

]
. (4.5.22)

On the event (B′i,b,k)
c we have τ ∈ J0, `N K and X i,b,kN (τ) > y∗ − r(τ). Also note that

P
(
C ′i,b,k | Fτ

)
≤ P

(
|Gi,b,ky∗ (2`N )| < N | Fτ

)
, (4.5.23)

by the de�nition of the event C ′i,b,k.

Now Lemma 4.4.1 does not exactly apply, because we are considering the process X i,b,k

rather than X . However, the idea for giving an upper bound on this conditional probability

on the event {X i,b,kN (τ) > y∗ − r(τ)} remains the same: we count the number of time-2`N
descendants of particles which made a jump of size r(τ) and which are descended from to

the right of position y∗ − r(τ). To lower bound the number of particles to the right of

y∗ − r(τ) at some time s, one can use Lemma 4.5.2 instead of Lemma 4.1.1. Apart from

that, one can repeat the proof of Lemma 4.4.1 to arrive at the following upper bound: on

the event (B′i,b,k)
c,

P
(
|Gi,b,ky∗ (2`N )| < N | Fτ

)
< e−9/8. (4.5.24)

(We will not give more details on this calculation.) Therefore, by (4.5.22) and (4.5.23),

P
(
(B′i,b,k)

c ∩ C ′i,b,k
)
≤ e−9/8,

and then by (4.5.20) and (4.5.21),

P
(
B′i,b,k ∩ C ′i,b,k

)
≥ 1− c

c′ − e
−9/8.

Now from (4.5.18) and (4.5.19) we have

P (E) ≥
∑

(i,b,k)∈[N ]×{1,2}×J0,`N−1K

P (Ai,b,k) (1− c
c′ − e

−9/8 − e−6)

≥
∑

(i,b,k)∈[N ]×{1,2}×J0,`N−1K

P
(
X > y∗ − r(k + 1)− xf(i,k)

)
/2,

by the de�nition of Ai,b,k and because 1− c
c′ − e

−9/8− e−6 > 1/2 by the choices of c and c′

in the de�nition of Ci,b,k. Then, considering that if f(i, k) = j then j ≤ `N − k by (4.5.2),

153



4.6. Ideas for the proof of Proposition 4.4.2 � upper bound on E [|Gy∗(t)|]

and then using (4.5.3), we have

P (E) ≥
`N−1∑
k=0

`N−k∑
j=0

∑
i: f(i,k)=j

2P (X > y∗ − r(k + 1)− xj) /2

≥ 1

2

`N−1∑
k=0

`N−k∑
j=0

2j+kP (X > y∗ − r(k + 1)− xj) ,

which together with (4.5.7) shows (4.5.1). This is what we wanted to prove; we do not

include the adjustments we have to make for a precise proof of the �rst inequality of

Proposition 4.4.3. To prove the second inequality, one can give a very similar argument to

the one in the present subsection. In order to write R(k)−r(k) instead of y∗−xj−r(k+1)

one can use the property in (4.4.6)

4.6 Ideas for the proof of Proposition 4.4.2 � upper bound on

E [|Gy∗(t)|]

Recall that for j ∈ J0, `N K, we de�ned the positions xj as

xj := XN−2j+1(0).

Now let us de�ne the sets Sj as follows. For j ∈ [`N − 1] let

Sj := {(N − 2j+1 + 1, 0), . . . , (N − 2j , 0)},

and let

S0 := {(N − 1, 0), (N, 0)}.

Then there are 2j particles in each set Sj for j ∈ [`N −1], and 2j+1 for j = 0. Furthermore,

a path starting from the set Sj needs to move at least distance y∗ − xj to arrive in the set

Gy∗(2`N ).

Recall the de�nition of the event HN from (4.3.3). When bounding E [|Gy∗(t)|], by
Corollary 4.3.2, we only need to consider the scenario when on every path between time 0

and 2`N , the sum of jumps which are smaller than δNLN is at most ρN . Then, if a path

starts from Sj , then the fairly big jumps (jumps larger than δNLN ) on the path must add

up to at least y∗ − xj − ρN in order for the path to arrive in the set Gy∗(2`N ). Let BδN
denote the set of fairly big jumps during the time interval [0, 2`N ]:

BδN := {(i, b, k) ∈ [N ]× {1, 2} × J0, 2`N − 1K : Xi,b,k > δNLN}.

We need to handle di�erent paths in di�erent ways depending on the number of fairly

big jumps on each path. Let Gk denote the subset of Gy∗(2`N ) for which there are exactly
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k fairly big jumps on the path leading to each particle in Gk from time zero:

Gk := Gy∗(2`N ) ∩
{
j ∈ [N ] :

∣∣∣P j,2`Ni,0 ∩BδN
∣∣∣ = k, if (i, 0) . (j, 2`N )

}
. (4.6.1)

It is easy to check that by the de�nitions of y∗ and the function h1 in (4.4.9) and (4.4.7),

that we must have

y∗ − xj > LN (4.6.2)

for all j ∈ J0, `N K. Therefore, the number of paths leading to Gy∗(2`N ) without any fairly

big jump on the path is zero on the event HN , and thus

E [|G0|1HN ] = 0. (4.6.3)

4.6.1 Paths with exactly one fairly big jump

Next, we count the expected number of particles in G1. We claim that

E [|G1|1HN ] ≤ 5

`N−1∑
k=0

`N−k∑
j=0

2j+kP (X > y∗ − r(k + 1)− xj − ρN )N. (4.6.4)

We prove this claim as follows. Let k1 denote the time of the single fairly big jump which

happens on a path between time zero and the set G1.

At time k1 ∈ J0, `N − 1K and for all j ∈ J0, (`N − k1) ∧ (`N − 1)K, there are at most

2j+k1+1 (surviving) particles descended from Sj which have not made a fairly big jump

yet (we have the `+1' in the exponent because there are two particles in S0). The at most

2j+k1+2 children of these particles need to make a fairly big jump of size at least y∗−xj−ρN
to get to the right of y∗ by time 2`N , and a particle making such a jump at time k1 will

have at most N descendants at time 2`N .

At time k1, for j = `N − k1 there are at most N = 2j+k1 particles descended from

the set
⋃`N−1
j′=j Sj′ which have not made a fairly big jump yet. The at most 2N children of

these particles have to make a fairly big jump of size at least y∗ − xj − ρN to get to the

right of y∗ by time 2`N , and a particle making such a jump at time k1 will have at most N

descendants at time 2`N .

At time k1 ∈ J`N , 2`N K, particles that have not made a fairly big jump yet have to make

a fairly big jump of size at least y∗ − XN (0) − ρN to get to the right of y∗ by time 2`N .

A particle performing such a jump at time k1 can have at most 22`N−k1−1 descendants at

time 2`N .

155



4.6. Ideas for the proof of Proposition 4.4.2 � upper bound on E [|Gy∗(t)|]

Therefore,

E [|G1|1HN ]

≤
`N−1∑
k1=0

(`N−k1)∧(`N−1)∑
j=0

2j+k1+2P (X > y − xj − ρN )N

+

2`N−1∑
k1=`N

2NP (X > y −XN (0)− ρN ) 22`N−k1−1

≤
`N−1∑
k1=0

`N−k1∑
j=0

2j+k1+2P (X > y − xj − ρN )N +

`N−1∑
k′1=0

2NP (X > y − x0 − ρN ) 2k
′
1 , (4.6.5)

where we took k′1 = 2`N − k1− 1, and the second sum on the right-hand side can be upper

bounded by the �rst sum (even by the j = 0 term of the �rst sum). Since r(k1) ≥ 0 for all

k1 ∈ [`N ], we conclude (4.6.4).

4.6.2 Paths with exactly two fairly big jumps

In this section we discuss the ideas to bound E [|G2|1HN ]. We distinguish several cases

within the set G2 based on when the two fairly big jumps occur and whether the �rst or

the second jump is larger. We will explain one particular case, and we note that the other

cases work similarly.

We say that a particle is in the set G2,1, if all of the following hold:

� the particle is in G2

� the �rst fairly big jump is larger than the second on the path from time zero to the

particle

� the �rst fairly big jump occurs before time `N .

Other subsets of G2 include the cases when the �rst fairly big jump occurs after time `N
and when the second fairly big jump is larger than the �rst. These cases can be handled

using a similar method to the proof we give for the set G2,1. In Proposition 4.6.1 we bound

the size of the set G2,1.

Proposition 4.6.1. For all ε > 0, for N su�ciently large,

E [|G2,1|1HN ] ≤ εh1(y∗).

The lemma below is a key step of the proof of Proposition 4.6.1. The lemma gives an

upper bound for the probability that the sum of two jumps is larger than y∗ − xj − ρN ,
assuming that the �rst (larger) jump is at most of size y∗ − xj − r(k1 + 1) − ρN . The

upper bound is expressed in terms of the probability that the �rst jump is larger than

y∗ − xj − r(k1 + 1)− ρN and the second is larger than r(k + 1).
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Lemma 4.6.2. Take k1 ∈ J0, `N − 1K and j ∈ J0, `N − k1K, and suppose that r(k1 + 1) ≤
(y∗ − xj − ρN )/2. Then for all ε > 0 and for K1 as in (4.4.7), for N su�ciently large,∫ y∗−xj−r(k1+1)−ρN

y∗−xj−ρN
2

f(z)P (X > y∗ − xj − ρN − z) dz

≤ εK1(logN)1/2e−r(k1+1)β−(y∗−xj−ρN−r(k1+1))β ,

where the function f(z) is the density given by (4.2.2).

We now prove Proposition 4.6.1 using Lemma 4.6.2, then discuss the lemma. In partic-

ular we will comment on the factor of (logN)1/2.

Proof of Proposition 4.6.1. Let Ga2,1 ⊆ G2,1 denote the set of particles in G2,1 for which the

�rst fairly big jump is larger than y∗ − xj − r(k1 + 1)− ρN , if it occurs at time k1. Then,

by the same argument as the one we gave for (4.6.5), we have

E
[
|Ga2,1|1HN

]
≤

`N−1∑
k1=0

`N−k1∑
j=0

2j+k1+2P (X > y∗ − xj − r(k1 + 1)− ρN )N. (4.6.6)

Next, let Gb2,1 ⊆ G2,1 denote the set of particles in G2,1 for which the �rst fairly big

jump is at most of size y∗ − xj − r(k1 + 1) − ρN , if it occurs at time k1. Then we claim

that we can give the following upper bound on the expected number of particles in Gb2,1:

E
[
|Gb2,1|1HN

]
≤

`N−1∑
k1=0

(`N−k1)∧(`N−1)∑
j=1

∫ y∗−xj−r(k1+1)−ρN

y∗−xj−ρN
2

2j+k1+2f(z)

2`N−1∑
k2=k1+1

2(2k2−k1−1 ∧N)P (X > y∗ − xj − ρN − z) (22`N−k2−1 ∧N)dz.

(4.6.7)

We explain this formula as follows:

� We integrate over the size z of the �rst fairly big jump. The integral domain follows

by the de�nition of G2,1, by the fact that the sum of the two fairly big jumps has to

be at least y∗ − xj − ρN , and by the de�nition of Gb2,1.

� The �rst fairly big jump can occur at any time k1 ∈ J0, `N − 1K.

� At time k1 ∈ J0, `N − 1K and for all j ∈ J0, (`N − k1) ∧ (`N − 1)K, there are at most

2k1+j+2 particles descended from the set Sj which can attempt to make a jump of

size z.

� At time k1 ∈ J1, `N − 1K for j = `N − k1, there are at most 2N = 2k1+j+1 particles

descended from the set
⋃`N−1
j′=j Sj′ which can attempt to make a jump of size z, with

density f(z).
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� The second fairly big jump can happen at any time k2 ∈ Jk1 + 1, 2`N − 1K.

� At any time k2 there are at most 2 ·(2k2−k1−1∧N) jumps descended from any particle

that performed a �rst fairly big jump at time k1.

� On the event HN , the size of the second fairly big jump has to be larger than y∗ −
xj − ρN − z, because the two fairly big jumps need to add up to at least y∗−xj − ρN
in order for the path to end up in the set G2.

� Any particle that performed a second jump at time k2 can have at most (22`N−k2−1∧
N) descendants at time 2`N .

Now considering only the terms in (4.6.7) which depend on k2, we have

2`N−1∑
k2=k1+1

(2k2−k1−1 ∧N)(22`N−k2−1 ∧N)

=

`N−1∑
k2=k1+1

2k2−k1−1N + 1{k1>0}

k1+`N∑
k2=`N

2k2−k1−1+2`N−k2−1 +

2`N−1∑
k2=k1+`N+1

N22`N−k2−1

≤ 22`N−k1−1 + (k1 + 1)22`N−k1−2 + 22`N−k1−1.

Therefore, by (4.6.7) and then by Lemma 4.6.2, we have

E
[
|Gb2,1|1HN

]
≤

`N−1∑
k1=0

`N−k1∑
j=1

∫ y∗−xj−r(k1+1)−ρN

y∗−xj−ρN
2

2(k1 + 2)22`N+jf(z)P (X > y∗ − xj − ρN − z) dz.

≤ εK1(logN)1/2

`N−1∑
k1=0

`N−k1∑
j=1

2(k1 + 2)22`N+jP (X > r(k + 1))P (X > y∗ − xj − ρN − r(k1 + 1)) .

(4.6.8)

Now by the de�nition of r(k) we have (k + 1)22`N−k1P (X > r(k + 1)) = 32N , and using

that k1 + 2 ≤ 2(k1 + 1) for all k1 ∈ J0, `N − 1K, we obtain

E
[
|Gb2,1|1HN

]
≤ 128εK1(logN)1/2N

`N−1∑
k1=0

`N−k1∑
j=1

2j+k1P (X > y∗ − xj − ρN − r(k1 + 1)) ,

which, by the de�nition of h1 in (4.4.7), concludes the proof of Proposition 4.6.1.

Discussion about Lemma 4.6.2: Take k1 ∈ J0, `N − 1K and j ∈ J0, `N − k1K and suppose

that r(k1 + 1) ≤ (y∗− xj − ρN )/2. Consider the integral in Lemma 4.6.2. Substituting the
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density from (4.2.2) and the tail probability from (4.2.1), we get∫ y∗−xj−r(k1+1)−ρN

y∗−xj−ρN
2

f(z)P (X > y∗ − xj − ρN − z) dz

=

∫ y∗−xj−r(k1+1)−ρN

y∗−xj−ρN
2

βzβ−1e−z
β−(y∗−xj−ρN−z)βdz

≤
∫ y∗−xj−r(k1+1)−ρN

y∗−xj−ρN
2

K ′(logN)1−1/βe−z
β−(y∗−xj−ρN−z)βdz, (4.6.9)

for some constant K ′ > 1, where in the inequality we used that zβ−1 ≤
(
y∗−xj−ρN

2

)β−1
≤

K ′(logN)1/β−1 by (4.6.2), (4.3.2) and (4.2.3). Now we claim that for any ε > 0, for N

su�ciently large, we have∫ y∗−xj−r(k1+1)−ρN

y∗−xj−ρN
2

e−z
β−(y∗−xj−ρN−z)βdz

≤ εK1

K ′
(logN)1/β−1/2e−r(k1+1)β−(y∗−xj−ρN−r(k1+1))β . (4.6.10)

Then (4.6.9) and the claim imply Lemma 4.6.2.

To prove the claim one needs to give a �rst order estimate on zβ− (y∗−xj−r(k1 +1)−
ρN )β and on (y∗−xj −ρN − z)β − r(k1 + 1)β , and then bound the di�erence between these

estimates. Then it is possible to prove that the integral of the exponential of this bound is

at most of order (logN)1/β−1/2. We will not write out this calculation.

Our original idea was, that if the largest fairly big jump is restricted to be at most

y∗ − xj − ρN − r(k + 1), then the number of paths with this restriction will contribute to

E [|G2,1|1HN ] by roughly the same order as the number of paths with jumps larger than

this size; i.e. we wanted to see E
[
|Ga2,1|1HN

]
≈ E

[
|Gb2,1|1HN

]
. This has not turned out to

be the case because of the (logN)1/2 factor in Lemma 4.6.2. To get rid of this factor, we

would have needed a (logN)1/β−1 factor on the right-hand side of (4.6.10) rather than a

(logN)1/β−1/2 factor. With the calculation below we would like to show that we cannot

give a better upper bound on the integral in question: it is possible that there exist j and

k1 such that the left-hand side of (4.6.10) is larger than a constant times the right-hand

side of (4.6.10).

Let r := r(k1 + 1) and A := (y∗ − xj − ρN )/2. We assume that

(a) A− r = c1(logN)1/β−1/2 for some constant c1 > 0, and

(b) A = c2LN for some constant c2 > 0.

We will show that with these assumptions, there exists a > 0 such that∫ 2A−r

A
e−z

β−(2A−z)βdz ≥ a(logN)1/β−1/2e−r
β−(2A−r)β . (4.6.11)
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4.6. Ideas for the proof of Proposition 4.4.2 � upper bound on E [|Gy∗(t)|]

Note that for any z ∈ [r,A], we have

zβ ≤ rβ + β(z − r)rβ−1

and

(2A− z)β ≤ (2A− r)β + β(r − z)(2A− r)β−1.

Therefore, with a change of variables, we have∫ 2A−r

A
e−z

β−(2A−z)βdz =

∫ A

r
e−z

β−(2A−z)βdz

≥ e−rβ−(2A−r)β
∫ A

r
e−β(z−r)(rβ−1−(2A−r)β−1)dz. (4.6.12)

Now in the exponent of the integrand we have

rβ−1 − (2A− r)β−1 = −
∫ 2A−r

r
(β − 1)xβ−2dx ≤ (1− β)(2A− 2r)rβ−2 ≤ c3(logN)1/2−1/β,

for some c3 > 0, where the second inequality follows by the assumptions in (a) and (b).

Thus,∫ A

r
e−β(z−r)(rβ−1−(2A−r)β−1)dz ≥

∫ A

r
e−βc3(logN)1/2−1/β(z−r)dz ≥ c4(logN)1/β−1/2,

for some c4 > 0, by the assumption in (a). Therefore, with the assumptions in (a) and

(b), (4.6.11) holds by (4.6.12), which means that under these assumptions we cannot im-

prove (4.6.10).

The assumptions in (a) and (b) are possibilities that can indeed occur. For example,

if y∗ − xj ≈ LN + r(`N − j) for j = (1 − ε)β`N with some small ε > 0, then we have

y∗− xj ≈ (2− ε)LN (see (4.4.5)). Now it can be checked that there exists k < `N − j such
that (1− ε/2)LN − r(k) is of order (logN)1/β−1/2.

4.6.3 Paths with at least three fairly big jumps

We would like to show that for any ε > 0,

2`N−1∑
i=3

E [|Gi|1HN ] ≤ εh(y∗). (4.6.13)

Intuitively, one can think of the following. Consider Lemma 4.3.3 with x = y∗ − xj for
some j ∈ J0, `N −1K, M = L+

N = (logN +C1 log logN)1/β for some C1 > 1, d = δNLN (see

(4.3.1)), and m = 3; and assume x −M > CLN for some C ∈ (0, 1). Now it is not hard

to see that the probability we get from the second part of Lemma 4.3.3 is much smaller

than in the case when we have the same assumptions except that we change m to m = 2.
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4.7. Conclusion

Hence, we expect that `it is not worth' making three fairly big jumps.

Indeed, with the assumptions above, it is enough to apply Lemma 4.3.3 for all the

2j+2`N paths in N independent BRWs without selection, to conclude that the number of

paths satisfying these assumptions is less than εh(y∗) for any ε > 0.

However, for small values of j, it is not necessarily true that
y∗−xj−L+

N
LN

> C > 0. It

turns out that when j < ε`N for some ε > 0, we need to include selection in our argument

similarly as we did in the case with two fairly big jumps in (4.6.7). This idea leads to

several di�erent cases based on when and how many big jumps happen on the paths. Thus

the proof becomes pretty long, but eventually it shows that (4.6.13) holds.

4.7 Conclusion

In the previous section we showed how we go about proving Proposition 4.4.2. Using that

result we showed Proposition 4.4.3 in Section 4.5 from which we conclude Theorem 4.2.1

as we described in Section 4.4.2.

In the future we would like to �nish the full write-up of this proof, and we would also like

to prove an upper bound for the probability of a similar event as the one in Theorem 4.2.1

but with β close to 1. An upper bound of smaller order than (logN)−1/2 would show that

there is a change of behaviour in the genealogy of the N -BRW in the stretched exponential

case as we change the value of β.
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