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SOME REMARKS ON SEMI-CLASSICAL ANALYSIS

ON TWO-STEP NILMANIFOLDS

CLOTILDE FERMANIAN KAMMERER, VÉRONIQUE FISCHER, AND STEVEN FLYNN

Abstract. In this paper, we present recent results about the developement of a semiclassical
approach in the setting of nilpotent Lie groups and nilmanifolds. We focus on two-step nilmanifolds
and exhibit some properties of the weak limits of sequence of densities associated with eigenfunctions
of a sub-Laplacian. We emphasize the influence of the geometry on these properties.

1. Introduction

1.1. Subelliptic operators and subelliptic estimates. Sub-elliptic operators are an impor-
tant class of operators containing sub-Laplacians - also known as Hörmander’s sums of squares
of vector fields [25] that generate the tangent space by iterated commutation. These operators
also appear naturally in stochastic analysis as the Kolmogorov equations of stochastic ordinary
differential equations are described in terms of second order differential operators which are often
sub-Laplacians. In complex geometry, Kohn Laplacian (acting on functions) on Cauchy-Riemann
manifolds also gives an example of sub-elliptic operators. More generally, sub-elliptic operators
appear in contact geometry, thereby having significant place.

One of their specific properties relies on the sub-elliptic estimates proved independently by Roth-
schild and Stein [28] on the one hand, and Fefferman and Phong [12], on the other one. While,
in the elliptic case, if ∆u ∈ Hs(Rd), then u ∈ Hs+2(Rd), the gain of regularity is smaller for a
sub-elliptic operator L = X2

1 + · · ·+X2
p . Indeed, one then has

Lu ∈ Hs(Rd) =⇒ u ∈ Hs+2/r(Rd)

where r is the mean length to obtain spanning commutators. The Rothschild and Stein proof
in [28] is based on Harmonic analysis on Lie groups, as developed in [20, 28], via a lifting procedure
consisting in the construction of a nilpotent stratified Lie group for which the sub-elliptic operator
is a sub-Laplacian. It is in that spirit that we work here and we are interested in sublaplacians
associated with a special type of manifolds called nilmanifolds, that are naturally attached to a
nilpotent Lie group.

1.2. Analysis on nilmanifolds. In this paper, as is often the case in harmonic analysis, we restrict
our attention to nilpotent Lie groups that are stratified. We will further assume that their step is
two later on.

1.2.1. Stratified Lie groups. A stratified Lie group G is a connected simply connected Lie group
whose (finite dimensional, real) Lie algebra g admits an N-stratification into linear subspaces, i.e.

g = g1 ⊕ g2 ⊕ . . . with [g1, gj] = g1+j, 1 ≤ i ≤ j.

In this case, the group G and its Lie algebra are nilpotent. Their step of nilpotency is the largest
number s ∈ N such that gs is not trivial. In this paper, all the nilpotent Lie groups are assumed
connected and simply connected.

Once a basis X1, . . . ,Xn for g has been chosen, we may identify the points (x1, . . . , xn) ∈ Rn

with the points x = expG(x1X1+ · · ·+xnXn) in G via the exponential mapping expG : g → G. By
1
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choosing a basis adapted to the stratification, we derive the product law from the Baker-Campbell-
Hausdorff formula. We can also define the (topological vector) spaces C∞(G) and S(G) of smooth
and Schwartz functions on G identified with Rn. This induces a Haar measure dx on G which
is invariant under left and right translations and defines Lebesgue spaces on G, together with a
(non-commutative) convolution for functions f1, f2 ∈ S(G) or in L2(G),

(f1 ∗ f2)(x) :=
∫

G
f1(y)f2(y

−1x)dy, x ∈ G.

The Lie algebra g is naturally equipped with the family of dilations {δr, r > 0}, δr : g → g,
defined by δrX = rℓX for every X ∈ gℓ, ℓ ∈ N [20]. The associated group dilations derive from

δr(expGX) = expG(δrX), r > 0, X ∈ g.

In a canonical way, this leads to a notion of homogeneity for functions (measurable functions as
well as distributions) and operators. For instance, the Haar measure is Q-homogeneous where

Q :=
∑

ℓ∈N

ℓ dim gℓ

is called the homogeneous dimension of G. Another example is obtained by identifying the elements
of the Lie algebra g with the left-invariant vector fields on G: we check readily that the elements
of gj are homogeneous differential operators of degree j.

When a scalar product is fixed on the first stratum g1 of the Lie algebra g, the group G is said
to be Carnot. The intrinsic sub-Laplacian on G is then the differential operator given by

LG := V 2
1 + · · · + V 2

q ,

for any orthonormal basis V1, . . . , Vq of g1. We fix such a basis that will be used in different places
of the paper.

1.2.2. Nilmanifolds. A nilmanifold is the one-sided quotient of a nilpotent Lie group G by a discrete
subgroup Γ of G. In this paper, we will choose the left quotient of G and denote it by M = Γ\G.
We will consider compact nilmanifolds, or equivalently cocompact subgroups Γ. We denote by
x 7→ ẋ the canonical projection which associates to x ∈ G its class modulo Γ in M .

Recall that the Haar measure dx on G is unique up to a constant and, once it is fixed, dẋ is the
only G-invariant measure on M satisfying for any function f : G→ C, for instance continuous with
compact support,

(1.1)

∫

G
f(x)dx =

∫

M

∑

γ∈Γ

f(γx) dẋ.

We may allow ourselves to write dx for the measure onM when the variable of integration is x ∈M
and no confusion with the Haar measure is possible.

The canonical projection G → M induces a one-to-one correspondence between the set of func-
tions on M with the set of Γ-left periodic functions on G, that is, the set of functions f on G
satisfying

∀x ∈ G, ∀γ ∈ Γ, f(γx) = f(x).

With a function f defined on M , we associate the Γ-left periodic function fG : x 7→ f(ẋ) defined
on G. Conversely, a Γ-left periodic function f on G naturally defines a function fM : ẋ 7→ f(x) on
M .

Consider a linear continuous mapping T : S(G) → S ′(G) which is invariant under Γ in the sense
that

∀F ∈ S(G), ∀γ ∈ Γ, T (F (γ ·)) = (TF )(γ ·).
2



Then it naturally induces [18] an operator TM on M via

TMf = (TfG)M .

Furthermore, TM : D(M) → D′(M) is a linear continuous mapping. Note that if T is invariant
under G, then it is invariant under Γ. For instance, any left-invariant differential operator T on G
induces a corresponding differential operator TM on M .

Let us now assume that G is a Carnot group. The intrinsic sub-Laplacian on M is the operator
LM induced by LG on M . It is a differential operator that is essentially self-adjoint on L2(M); we
will keep the same notation for its self-adjoint extension. The spectrum of −LM is a discrete and
unbounded subset of [0,+∞). Each eigenspace of LM has finite dimension. The constant functions
on M form the 0-eigenspace of LM , see e.g. [18].

1.2.3. Objectives. In this paper, we consider nilpotent Lie groups G of step s = 2 equipped with a
scalar product. They are naturally stratified, (see Section 1.3.1) and so they will also be Carnot.
We will focus our attention on sequences of eigenfuctions (ψk)k∈N and eigenvalues (Ek)k∈N of LM ,
ordered in increasing order and repeated according to multiplicity:

(1.2) − LMψk = Ekψk, E1 ≤ E2 ≤ · · · ≤ Ek ≤ · · · , Ek −→
k→∞

+∞.

We are interested in the measures on M that are limit points of the densities |ψk(x)|2dx as k tends
to +∞. Our result extends to operators

−LU
M = −LM + U(x)

where x 7→ U(x) is a smooth potential on M . Our analysis will be using a semi-classical approach
based on the harmonic analysis on the group G in order to derive invariance properties of these
measures.

1.3. Fourier analysis of step-two groups. Our semi-classical approach is based on the Fourier
theory of the group, as developed in Harmonic analysis (see for example [20, 19]). In the rest of
this paper, we will consider only a nilpotent Lie group G of step two and its associated compact
nilmanifolds M = Γ\G.
1.3.1. Step-two groups. As G is step two, the derived algebra z := [g, g] lies in the centre of g.
Moreover, denoting by v a complement of z, we have the decomposition:

g = v⊕ z.

Note that z = [v, v] and that this decomposition yields a stratification of g with g1 = v, g2 = z.
Hence G is naturally stratified with dilations given by δε(V + Z) = εV + ε2Z where ε > 0,
V ∈ v, Z ∈ z. Its topological dimension is n = dim v + dim z while the homogeneous dimension is
Q = dim v + 2dim z. We also assume that a scalar product has been fixed on g, and that v is an
orthogonal complement of z.

1.3.2. The dual set. The dual set Ĝ of G is the set of the equivalence classes of the irreducible
unitary representations of G. We will often allow ourselves to identify a class of such representations
with one of its representatives. Since G is a nilpotent Lie group, its dual is the disjoint union of
the (classes of unitary irreducible) representations of dimension one and of infinite dimension:

Ĝ = Ĝ1 ⊔ Ĝ∞, Ĝ1 := {class of π, dimπ = 1}, Ĝ∞ := {class of π, dimπ = ∞}.
As G is step two, Ĝ1 and Ĝ∞ can be described in a relatively simple manner.

(i) The (classes of unitary irreducible) one-dimensional representations are parametrized by the
elements ω ∈ v∗ of the dual of v and consists of the characters

πω(x) = eiω(V ), x = expG(V + Z), V ∈ v, Z ∈ z.
3



(ii) The (classes of unitary irreducible) infinite dimensional representations are parametrised by
a non-zero element λ ∈ z∗ \ {0} of the dual of z and another parameter ν ∈ v∗ which we now
describe. For any λ ∈ z⋆, we consider the skew-symmetric bilinear form on v defined by

(1.3) ∀U, V ∈ v , B(λ)(U, V ) := λ([U, V ]) .

We denote by rλ the radical of B(λ). The other parameter ν will be in the dual r∗λ of this radical.

Using the scalar product on g, we can construct the representation πλ,ν for each λ ∈ z∗ \{0} and
ν ∈ r∗λ as follows. First, we will allow ourselves to keep the same notation for the skew-symmetric
form B(λ) and the corresponding skew-symmetric linear map on v. Hence rλ = kerB(λ). As B(λ)
is skew symmetric, we find an orthonormal basis of v

(
P λ
1 , . . . , P

λ
d , Q

λ
1 , . . . , Q

λ
d , R

λ
1 , . . . , R

λ
k

)
with k = kλ := dim rλ, d = dλ :=

dim v− k

2
,

where the matrix of B(λ) takes the block form

(1.4)




0d,d D(λ) 0d,k
−D(λ) 0d,d 0d,k
0k,d 0k,d 0k,k


 .

Here D(λ) is a diagonal matrix with positive diagonal entries depending on λ. Note that rλ =
Span

(
Rλ

1 , . . . , R
λ
k

)
and we decompose v as

v = pλ + qλ + rλ where pλ := Span
(
P λ
1 , . . . , P

λ
d

)
, qλ := Span

(
Qλ

1 , . . . , Q
λ
d).

One may assume that the above basis for v depends continuously on λ.
The representation πλ,ν acts on L2(pλ) via

(1.5) πλ,ν(x)φ(ξ) = e
iλ
(
Z+

[
D(λ)

1
2 ξ+ 1

2
P,Q

])

eiν(R)φ
(
D(λ)

1

2 ξ + P
)
, φ ∈ L2(pλ), ξ ∈ pλ,

where x is written as x = expG(P +Q+R+ Z) with P ∈ pλ, Q ∈ qλ, R ∈ rλ, Z ∈ z. If ν = 0, we
will use the shorthand πλ,0 = πλ.

With the representations described in (i) and (ii) above, the dual set of G is: Ĝ = Ĝ1 ⊔ Ĝ∞ with

Ĝ1 = {class of πω, ω ∈ v∗} and Ĝ∞ = {class of πλ,ν , λ ∈ z∗ \ {0}, ν ∈ r∗λ}.
This can be justified in this case with the von Neumann theorem characterising the representations
of the Heisenberg groups. Equivalently, we can also use the orbit method which states that there

is a one-to-one correspondence between π ∈ Ĝ and the co-adjoint orbits g∗/G. The advantage

of the orbit method is that the Kirillov map g∗/G → Ĝ is a homeomorphism [7], giving us easy

information on the topology of subsets of Ĝ. Furthermore, one can check that the co-adjoint action
of G on g∗ = v∗⊕ z∗ leaves the z∗-component invariant. Hence, we can describe the co-adjoint orbit
of any ν+λ ∈ g∗ = v∗⊕ z∗ by choosing the unique representative as the linear form ω = ν if λ = 0,
and λ+ ν with ν ∈ r∗λ if λ 6= 0. Via the Kirillov map, they correspond respectively to πω and πλ,ν .

1.3.3. The subsets Ωk and Λ0. As a set, z∗ \ {0} decomposes as the disjoint union of

Ωk := {λ ∈ z∗ \ {0} : dim rλ = k}, k ∈ N.

Observe that Ωk = ∅ when k > dim v and also when k = dim v because if kλ = dim v then rλ = v∗,
thus Bλ = 0 and λ = 0. We denote by k0 the smallest k ∈ N such that Ωk 6= ∅; roughly speaking,
this is the set of λ ∈ z∗ for which B(λ) is of smallest kernel. We have

z∗ \ {0} = ⊔k0≤k<dim vΩk.

We can describe ∪k′≥kΩk′ as the set of λ ∈ z∗ \ {0} such that all the minors of B(λ) (viewed
as a matrix in the basis that we have fixed) of order ≤ dim v − k cancel, and Ωk as the subset of
∪k′≥kΩk′ formed by the λ′s such that at least one minor of order = dim v−k does not vanish. Since

4



B(λ) is linear in λ, ∪k′≥kΩk′ is an algebraic variety, and Ωk is an open subset of it. Moreover, if
Ωk 6= ∅ then ∪k′>kΩk′ is an algebraic subvariety with dim∪k′>kΩk′ < dim∪k′≥kΩk′ . Consequently,
Ωk is an open subset of ∪k′≥kΩk′ and it is either empty or dense in ∪k′≥kΩk′.

We can decompose each Ωk into further subsets, according to the multiplicity of the eigenvalues of
B(λ) viewed as a matrix in a canonical basis. Here, we will be only considering the case k = k0 and
denote by Λ0 the set of λ ∈ Ωk0 for which B(λ) has the maximal number of distinct eigenvalues.
Recall that, by the Cauchy residue formula, the multiplicity of a zero z0 of a polynomial p(z)

is equal to
∮
|z−z0|=r

p′(z)
p(z) dz for r small enough. Applying this to det(B(λ)2 − z) in the case of

maximal multiplicities implies that the multiplicities of the eigenvalues of B(λ)2 for λ ∈ Λ0 are
locally constant and that the subset Λ0 is open in Ωk0 . Moreover, by the implicit function theorem,
the eigenvalues of B(λ)2 can be written locally as smooth functions (even algebraic expressions) of
λ ∈ Λ0. Similar properties hold for each subset of Ωk0 with fewer constraints on the multiplicities,
implying that Λ0 is dense in Ωk0 .

The Heisenberg groups correspond to the case when dim z = 1 while the Heisenberg-type groups
are exactly the step-two nilpotent groups G for which B(λ)2 = −|λ|2Iv. Heisenberg-type groups and
their nilmanifolds have an H-type foliation as in [4], and so do the groups G and their nilmanifolds
when, more generally, every B(λ), λ ∈ z∗ \ {0}, has a trivial radical rλ = {0}. Geometrically,
these nilmanifolds are contact manifolds when the radicals are all trivial and dim z = 1, and they
are quasi-contact manifolds when the radicals may not be trivial. The analysis of the properties
of weak limits of densities of eigenvalues of the sub-Laplacian for contact manifolds was studied
in [10] and for quasi-contact manifold of dimension four with radical generically of dimension one
was studied in [29].

As the co-adjoint action is trivial on the z∗-component, the sets Ωk may be viewed as the unions
of the co-adjoint orbits of ν+ λ ∈ g∗ = v∗ ⊕ z∗ with λ ∈ Ωk, or our chosen representatives for those
co-orbits:

(1.6) Ωk ∼ {(λ, ν) ∈ z∗ × v∗, λ ∈ Ωk, ν ∈ r∗λ},
and therefore identified via Kirillov’s map with the following subset of Ĝ

Ωk ∼ {π = πλ,ν ∈ Ĝ∞, λ ∈ Ωk, ν ∈ r∗λ}.
We also proceed similarly for Λ0. As subsets of Ĝ∞, they enjoy the same topological properties;

for instance, Ωk0 which is an open dense subset of Ĝ∞.

1.3.4. The Fourier transform. Let f ∈ L1(G), the Fourier transform of f is the field of operators

F(f) := {f̂(π) : Hπ → Hπ, π ∈ Ĝ} given by f̂(π) =

∫

G
f(x)π(x)∗dx,

for any (continuous unitary) representation π of G.

The unitary dual Ĝ is a standard Borel space, and there exists a unique positive Borel measure µ

on Ĝ such that for any continuous function f : G→ C with compact support we have
∫

G
|f(x)|2dx =

∫

Ĝ
‖f̂(π)‖2HS(Hπ)

dµ(π).

The measure µ is called the Plancherel measure and the formula above the Plancherel formula.
For instance, in the case of step-two groups, the Plancherel measure is given by dµ(πλ,ν) =
c0 det(D(λ)) dλdν, for a known constant c0 > 0 [11, 27]; note that it is supported on the sub-

sets Ωk0 or even Λ0 of Ĝ∞ defined in Section 1.3.3.
The Plancherel formula extends the group Fourier transform unitarily to functions f ∈ L2(G):

their Fourier transforms are then a Hilbert-Schmidt fields of operators satisfying the Plancherel
5



formula. The group Fourier transform also extends readily to classes of distributions, for instance
the distributions with compact support and the distributions whose associated right convolution

operators are bounded on L2(G). If T is the associated operator, we denote by T̂ or π(T ) = T̂ (π)
the associated field of operators with

F(Tf)(π) = π(T ) ◦ Ff(π), ∀f ∈ S(G).
In particular, the group Fourier transform extends to left-invariant differential operators.

The considerations above are known for any nilpotent Lie group, and let us consider the case of
step-two groups. The group Fourier transform of f ∈ L1(G) gives a scalar number at π = πω and a
bounded operator on Hπλ,ν = L2(pλ) for π = πλ,ν . It is easy to compute that for the 1-dimensional
representation, we have πω(−LG) = |ω|2. In the remainder of the paper, we will use the notation

π(L) and L̂ = {π(L), π ∈ Ĝ} and omit the index G in this context. The case of representations of
infinite dimension is more involved. The following is known in great generality [19]:

(1) LG and π(L) for π ∈ Ĝ are essentially self-adjoint on L2(G) and Hπ; we keep the same
notation for their self-adjoint extensions. Hence they both admit spectral decompositions.

(2) For each π ∈ Ĝ \ {1Ĝ}, the spectrum sp(π(−L)) of π(−L) is discrete and lies in (0,∞) and
each eigenspace is finite dimensional, while for π = 1Ĝ, π(L) = 0.

(3) Consider the spectral decomposition Pζ , ζ ≥ 0, of −LG, i.e. −LG =
∫∞
0 ζdPζ . For each

π ∈ Ĝ \ {1Ĝ}, the group Fourier transform π(Pζ) of the projections Pζ are orthogonal

projections of Hπ. Furthermore, they yield a spectral decomposition of −L̂: π(−L) =∑
ζ∈sp(π(−L)) ζπ(Pζ).

In the step-two case, some of the properties above are easy to see. Indeed, denoting by

ηj = ηj(λ), 1 ≤ j ≤ d, with the convention 0 < η1(λ) ≤ . . . ≤ ηd(λ),

the positive entries of D(λ) = diag(η1, . . . , ηd), we readily compute

(1.7) πλ,ν(P λ
j ) =

√
ηj(λ)∂ξj and πλ,ν(Qλ

j ) = i
√
ηj(λ)ξj

and deduce from the additional observation πλ,ν(Rλ
ℓ ) = iνℓ, 1 ≤ l ≤ k.

πλ,ν(−L) = H(λ) + |ν|2,
where H(λ) is the operator on Hλ given by

H(λ) =
∑

1≤j≤d

ηj(λ)(−∂2ξj + ξ2j ).

which is up to multiplicative factors the harmonic oscillator of L2(Rd). Recall that Hermite func-
tions give an orthonormal basis of eigenfunctions of H(λ) with eigenvalues

(1.8) ζ(α, λ) :=
∑

1≤j≤d

(2αj + 1)ηj(λ), α ∈ Nd,

see Section 4.2.2. Hence, the spectrum of πλ,ν(−L) is sp(πλ,ν(−L)) =
{
ζ(α, λ) + |ν|2, α ∈ Nd

}
,

giving in this special case Property (2) above. Furthermore, the spectral projections πλ,ν(Pζ) onto
the eigenspaces of H(λ) are either zero or orthogonal projections onto subspaces generated by
Hermite functions.

The properties above hold for any λ ∈ z∗\{0}. Restricting to Λ0, each ηj(λ) is a smooth function
of λ ∈ Λ0 since the η2j ’s are the eigenvalues of B(λ)2 which are diagonalisable linear morphisms

with eigenvalues of constant multiplicities depending smoothly on λ. Therefore, ζ(α, λ) in (1.8)
also depends smoothly on λ in Λ0.

6



1.4. Main result. Let x 7→ U(x) be a smooth potential on M . Let (ψU
k )k∈N be a sequence of

eigenfunctions of −LU
M = −LM +U according to

(1.9) − LU
Mψ

U
k = EU

k ψ
U
k , k ∈ N.

Without loss of generality, we may assume EU
k ≥ 0 for all k ∈ N (if not, we modify U by a constant).

Let ̺ be a weak limit of the density |ψU
k (x)|2dx, then ̺ decompose according to the structure of Ĝ

and each of the elements of this decomposition enjoys its own invariances. These invariances are

expressed in terms of the elements ω, λ and ν characterizing the points of Ĝ. We will need the
following notation to state the result.

(a) For each λ ∈ z∗ and ν ∈ r∗λ, we associate

ν · Rλ := ν1R
λ
1 + · · ·+ νkR

λ
k ∈ rλ,

where the νj’s are the coordinates of ν in the dual of the orthonormal basis (Rλ
1 , · · · , Rλ

k), i.e.

ν = ν1(R
λ
1 )

∗+ . . .+νk(R
λ
k)

∗. This definition is independent of the choice of the orthonormal

basis (Rλ
1 , · · · , Rλ

k) for rλ.
(b) In the same spirit, for any ω ∈ v∗, we associate

ω · V := ω1V1 + · · ·ωqVq ∈ v,

where the ωj’s are the coordinates of ω in the dual of an orthonormal basis (V1, · · · , Vq):
ω = ω1V

∗
1 + . . . + ωqV

∗
q . Here, q = dim v. This definition is independent of the choice of

the orthonormal basis (V1, · · · , Vq) for v.
(c) If k0 = 0 and λ ∈ Λ0, each eigenvalue ζ = ζ(α, λ) in (1.8) of πλ(L) depends smoothly on λ

in Λ0. The vector in z corresponding to the gradient at λ is denoted by

∇λζ(α, λ) = ∇λζ ∈ z.

Theorem 1.1 ([15, 17, 16]). Let (ψU
k )k∈N be a sequence of eigenfunctions of −LU

M = −LM + U

according to (1.9). Then a weak limit ̺ of the density |ψU
k (x)|2dx decomposes as

(1.10) ̺ = ̺v + ̺z

with

(1) ̺v(x) =

∫

v∗
ς (x, dω) where the measure ς is invariant by the flow

(x, ω) 7→ (Exp(s ω · V )x, ω), s ∈ R

(2) ̺z(x) =
dim v−1∑

k=0

∫

(λ,ν)∈Ωk

γk(x, dλ, dν) with the identification (1.6) for Ωk, with each measure

γk(x, λ, ν) being supported in M × Ωk where it is invariant under the flow given by

(x, (λ, ν)) 7−→ (Exp(s ν · Rλ)x, (λ, ν)), s ∈ R.

(3) Furthermore, in the case when Ω0 6= ∅, omitting ν = 0,

γ0(x, λ) =
∑

α∈N

γ
(α)
0 (x, λ),

with each measure 1λ∈Λ0
γ
(α)
0 being supported on M×Λ0 where it is invariant under the flow

given by

(x, λ) 7−→ (Exp(s∇λζ(α, λ))x, λ), s ∈ R.
7



In the case of the groups of Heisenberg type, ηj(λ) = |λ| for all j, so Λ0 = Ω0 = z∗ \ {0} and

(1.11) ∇λζ(α, λ) = Zλ

dim v/2∑

j=1

(2αj + 1), where Zλ := |λ|−1λ∗,

and λ∗ ∈ z corresponds to λ by duality via the scalar product. We therefore recover with Theo-
rem 1.1 the results of the first two authors in [15].

Theorem 1.1 is a consequence of Theorem 2.4 below. It is based on a microlocal approach and
the measures γ that appear in the statement above are microlocal objects that can be compared
with the semi-classical measures introduced in the 90s in the Euclidean context in [24, 21, 22, 23].
The difference here is that the semi-classical calculus we use is based on the Harmonic analysis of
the group G and on the Fourier transform introduced via representation theory as presented above.
This setting has been introduced in [19] in a microlocal context where no specific semi-classical
scale ε is specified. It uses a pseudo-differential calculus with operator-valued symbols that can be
composed with the Fourier transform of the functions (that are also operator-valued).

The construction of a pseudodifferential calculus on groups is an old question from the 1980s
[30, 5, 6, 9] that have known recent developments with an abstract point of view from the theory
of algebra of operators in [31, 32, 33], and with a PDEs approach in [19, 1, 13] with applications
in control theory and observability [17]

We conclude this section with some comments about Theorem 1.1. It is noticeable that there
is coexistence of two kinds of behaviour, with a splitting of the measure γ corresponding to the

different types of elements of Ĝ. In the context of the Heisenberg group, Λ0 = Ω0 6= ∅ and ∇λζ is
colinear to Zλ (see (1.11)) and this is linked to the wave aspect of the sub-Laplacian in this group
pointed out in [3, 8, 10, 2]. On other nilpotent Lie groups where Ω0 = ∅, the other vector fields
involved, ν · Rλ, are more of Schrödinger’s type.

Acknowledgements. The authors acknowledges the support of the Leverhulme Trust via Research
Project Grant 2020-037. The first author thank Cyril Letrouit for inspiring discussions.

2. Noncommutative semi-classical setting

2.1. Semi-classical pseudodifferential operators. We consider the set A0 of fields of operators

{σ(x, π) ∈ L(Hπ), (x, π) ∈M × Ĝ} such that

σ(x, π) = Fκx(π) =
∫

G
κx(z)π(z)

∗dz,

where x 7→ κx(·) is in C∞(M,S(G)). We call the function κx the convolution kernel associated with
the symbol σ. In the spirit of the works [2, 19], and when ε≪ 1 is a semi-classical parameter, the
ε-quantization of the symbols σ ∈ A0 is given by

Opε(σ)f(x) =

∫

Ĝ
tr
(
π(x)σ(x, ε · π)f̂(π)

)
dµ(π), f ∈ S(M), x ∈M.

Here, ε · π denotes the class in Ĝ of the irreducible representation x 7→ π(δεx). Setting

κεx(z) = ε−Qκx(δε−1z),

the ε-quantization then obeys to

(2.1) Opε(σ)f(x) =

∫

G
κεx(y

−1x)f(y)dy =
∑

γ∈Γ

∫

y∈M
κεx(γy

−1x)dy, f ∈ S(M), x ∈M.

As in the case of groups (see [14]), the family (Opε(σ))ε>0 is a bounded family in L(L2(M)):
8



Proposition 2.1. There exists C > 0 such that for all σ ∈ A0 and ε > 0,

‖Opε(σ)‖L(L2(M)) ≤
∫

G
sup
x∈M

|κx(z)|dz.

Proof. By Young’s convolution inequality

‖f ∗ κεx(γ·)‖L2(M) ≤ ‖ sup
x∈M

|κεx(γ·)|‖L1(M)‖f‖L2(M),

with ‖ sup
x∈M

|κεx(γ·)|‖L1(M) = ε−Q

∫

M
sup
x∈M

|κx(ε−1 · γy)|dy =

∫

γ−1M
sup
x∈M

|κx(y)|dy.

Therefore, using (2.1), we deduce

‖Opε(σ)f‖L2(M) ≤
∑

γ∈Γ

‖f ∗ κεx(γ·)‖L2(M)

≤ ‖f‖L2(M)

∑

γ∈Γ

∫

γ−1M
sup
x∈M

|κx(y)|dy = ‖f‖L2(M)

∫

G
sup
x∈M

|κx(y)|dy.

�

Besides, this semi-classical pseudodifferential calculus enjoys symbolic calculus (see Proposi-
tion 3.6 in [14] in the case of groups and Proposition 2.2 in [17] for the extension to nilmanifolds).

2.2. Semi-classical measures. Let us first introduce our notion of operator-valued measures
introduced in the earlier papers of the first two authors. We will use the same notation as in those
paper, even if it means using the Greek letter Γ for the trace-class operators Γ(x, π). We think that
there is no possible confusion with our current notation for the co-compact discrete subgroup Γ
of G, and thus will allow this small conflict of notation

We consider pairs (Γ, γ) consisting in a positive Radon measure γ on M × Ĝ and a measurable

field over (x, π) ∈M × Ĝ of trace-class operators Γ(x, π) on Hπ satisfying
∫

M×Ĝ
Tr |Γ(x, π)| dγ(x, π) <∞.

We equip the set of such pairs with the equivalence relation (Γ, γ) ∼ (Γ′, γ′) given by the existence

of a measurable function f :M × Ĝ→ C such that

γ′ = fγ and Γ′ = f−1Γ, γ − a.e.

We denote by Mov(M × Ĝ) the set of equivalence classes for this relation and by Γdγ the class
of the pair (Γ, γ). If Γ ≥ 0, then we say that the operator valued measure Γdγ is positive, and

we denote by M+
ov(M × Ĝ) the set of the positive operator-valued measures on M × Ĝ. They

characterize bounded families in L2(M) according to the following theorem.

Proposition 2.2 ([14, 15]). Let (ψε)ε>0 be a bounded family in L2(M). There exist a subsequence

εk → 0 as k → ∞, and an operator-valued measure Γdγ ∈ M+
ov(M × Ĝ) satisfying

∀σ ∈ A0,
(
Opεk(σ)ψ

εk , ψεk
)
−→
k→∞

∫

M×Ĝ
Tr (σ(x, π)Γ(x, π)) dγ(x, π).

Continuing with the setting of the statement above, we say then that the operator-valued measure
Γdγ is a semi-classical measure of (ψε)ε>0 at the scale ε. A given family (ψε)ε>0 may have several
semi-classical measures, depending on different subsequences (εk)k∈N. The knowledge of all these
families indicates the obstruction to strong convergence in L2(M) of the family (ψε)ε>0.
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The scale ε is particularly interesting for analyzing the oscillations of a family (ψε)ε>0 that
satisfies weighted Sobolev estimates such as

(2.2) ∃s, C > 0, ∀ε > 0, ‖(−ε2LM )
s
2ψε‖L2(M) ≤ C.

Indeed, one can then link the weak limits of the energy densities with the semi-classical measures:

Proposition 2.3 ([15]). Assume (ψε)ε>0 satisfies (2.2) and that Γdγ is a semi-classical measure

of (ψε)ε>0 for the subsequence (εk)k∈N. Then for all φ ∈ C∞(M),

(2.3) lim sup
k→+∞

∫

M
φ(x)|ψεk(t, x)|2dx =

∫

M×Ĝ
φ(x)Tr (Γ(x, π)) dγ(x, π).

2.3. Application to quantum limits. Let us now come back to the sequence (1.2) of eigen-
functions (ψU

k )k∈N of the sub-Laplacian operator −LU
M = −LM + U(x) for a compact nilmanifod

M = Γ\G whose underlying group G is step two. Denoting by EU
k the associated sequence of

eignevalue; we set

εk = (EU
k )

−1/2

we obtain a semi-classical scale such that the sequence (ψU
k )k∈N is εk-oscillating. Thus any weak

limit ̺ of the energy density |ψU
k (x)|2dx is the marginal of a semi-classical measure Γdγ of the

family (ψU
k )k∈N according to (2.3). Therefore, the properties of the semi-classical measures of the

sequence (ψU
k )k∈N will reflect on any weak limit of the energy density.

We now omit the index k ∈ N and focus on the semi-classical measures of a family of normalized
functions (ψε)ε>0 that satisfy

(2.4) − ε2LU
Mψ

ε = ψε,

where U ∈ C∞(M) is a potential on M .

As G is a nilpotent Lie group, the elements of M+
ov(M × Ĝ) split into two parts

Γdγ = 1M×Ĝ1
Γdγ + 1M×Ĝ∞

Γdγ

In particular, on M × Ĝ1, we may assume Γ = 1, while on M × Ĝ∞, the trace-class operator
Γ(x, πλ,ν) acts on Hπλ,ν = L2(pλ) in the case of a step-two group G.

We can already observe that the decomposition (1.10) in Theorem 1.1 is due to the split above:

the measure ̺v is the restriction of Γdγ to M × Ĝ1, while the restriction to M × Ĝ∞ yields a more
involved measure ̺z. The invariance then comes from the theorem below. In this statement, we
will allow ourselves to use the identifications (see Sections 1.3.2 and 1.3.3):

Ĝ1 ∼ v∗ and Ĝ∞ ∼ ⊔dim v−1
k=k0

Ωk.

Theorem 2.4. Let (ψε)ε>0 be a family of normalized functions satisfying (2.4) and Γdγ one of its

semi-classical measures. Then we have the following properties:

(i) Localization:

π(L)Γ(x, π) = Γ(x, π)π(L) = −Γ(x, π), γ(x, π) a.e.

which implies

(1) The scalar measure 1M×Ĝ1
γ on M × Ĝ1 is supported in {(x, πω) ∈M × Ĝ1, |ω| = 1}.

(2) Setting Γζ := 1
M×Ĝ∞

P̂ζΓ for each ζ > 0, we have Γ(x, π) =
∑

ζ∈sp(π(−L)) Γζ(x, π) for

γ-almost every (x, π) ∈M×Ĝ∞. Moreover, it satisfies ζΓζdγ = Γζdγ in M+
ov(M×Ĝ).

In other words, ζ = 1 on the support of the measure Tr(Γζ(x, π))γ(x, π).
(ii) Invariance:
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(1) The scalar measure 1M×Ĝ1
γ is invariant under the flow

(x, πω) 7−→ (Exp(sω · V )x, πω), s ∈ R.

(2) (a) For each ζ > 0, the operator valued measure Γζdγ = 1
M×Ĝ∞

P̂ζΓdγ is supported

in M × Ĝ∞ where it is invariant under the flow

(x, πλ,ν) 7−→ (Exp(sν ·Rλ)x, πλ,ν), s ∈ R.

(b) Assume Ω0 6= ∅. For each ζ > 0 parametrized smoothly by λ, the operator valued

measure 1M×Λ0
Γζdγ is supported on M×Λ0 where it is invariant under the flow

(x, πλ) 7−→ (Exp(s∇λζ)x, π
λ), s ∈ R.

Note that the flow invariances may be different for various ζ in Part (2) (b). This was already

observed on the groups of Heisenberg type where Ω0 = Λ0 = z∗ \ {0} ∼ Ĝ∞ (see [15, 17]). The
invariance of Point (2)(a) is empty in that case since the flow map of (2)(a) reduces to identity on
Ω0.

Theorem 2.4 implies Theorem 1.1 through the identification that has been mentioned above:

̺v(x) =

∫

ω∈v∗
dγ(x, πω) and ̺z(x) =

∫

π∈Ĝ∞

Tr(Γ(x, π))dγ(x, π).

2.4. Main ideas of the proof. Theorem 2.4 is inspired by the results [14, 17] where the group G
was assumed to be of Heisenberg type. We follow here the ideas developed in these papers and
extend them to general two-step groups. We explain below the main elements of the proof that
rely on technical lemmata that are discussed in Section 4.

One can notice that, formally,

(2.5) − ε2LU
M = −Opε(π(L)) + ε2Opε(U),

which implies that the term involving the potential U is of lower order than the operator ε2LM

itself. For both the proof of the localisation results and the invariance ones, we start from some
relations coming from the (ψε)ε>0 being eigenfunctions of the subLaplacian. We then use symbolic
calculus as developed in [14, 17] to analyse these algebraic relations and compute precisely the
symbols involved in the calculus. Finally, passing to the limit ε → 0, we investigate what the

resulting equations mean for the semi-classical measure. We restrict ourselves to the zone Ĝ1 or

Ĝ∞ by using symbol belonging to the von Neumann algebra generated by A0. Another important
ingredient of the proof consists in analyzing the different behavior of symbols that commute with

L̂ and those who don’t. These technical points are developed in Section 4.

(i) Localization. Let σ ∈ A0. By the definition of the family (ψε)ε>0, we have (by equation (2.4))
(
Opε(σ)(−ε2LU

Mψ
ε), ψε

)
L2(M)

=
(
Opε(σ)ψ

ε,−ε2LU
Mψ

ε
)
L2(M)

= (Opε(σ)ψ
ε, ψε)L2(M) .

By passing to the limit and using (2.5), the definition of the semi-classical measures as in Propo-
sition 2.2 and the properties of the calculus [14, 17], give that any semi-classical measure Γdγ of
(ψε)ε>0 satisfies

∫

M×Ĝ
Tr (σ(x, π)π(L)Γ(x, π)) dγ(x, π) =

∫

M×Ĝ
Tr (π(L)σ(x, π)Γ(x, π)) dγ(x, π)(2.6)

= −
∫

M×Ĝ
Tr (σ(x, π)Γ(x, π)) dγ(x, π).

This readily implies the first localization property in (i). The rest of (i) follows as we can now
apply (2.6) not only to symbols σ in A0, but also in the von Neumann algebra generated by A0, in
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particular to 1M×Ĝ1
σ and to 1M×Ĝ∞

σ, see Lemma 4.5. Furthermore, (2.6) shows the commutation

of Γ with L̂ so also with the spectral projectors P̂ζ for ζ > 0. Therefore, with the notation of Section

4.1, our classical measure Γdγ is in Mov(M × Ĝ)(L̂), the subspace of semi-classical measures that

commute with L̂. Hence, by the analysis in Section 4.1, we only need to consider symbols σ in B0

which is the space of the symbols in A0 that commutes with L̂.

(ii) Invariance. We now take advantage of the fact that for all σ ∈ A0,

(2.7)
(
[Opε(σ),−ε2LU

M ]ψε, ψε
)
L2(M)

= 0.

Setting π(V ) ·V :=
∑q

j=1 π(Vj)Vj for any orthonormal basis of V1, . . . , Vq of v, a computation gives
for σ ∈ A0,

1

ε
[Opε(σ),−ε2LU

M ] = −1

ε
Opε([σ, π(L)]) + 2Opε(π(V ) · V σ) + εOpε(Lσ) + ε[Opε(σ),U(x)].(2.8)

For symbols σ ∈ B0 (which then commute with L̂), the term in 1
ε in the right-hand side vanishes

and we deduce by passing to the limit that any semi-classical measure Γdγ of (ψε)ε>0 satisfies

(2.9) ∀σ ∈ B0,

∫

M×Ĝ
Tr (π(V ) · V σ(x, π)Γ(x, π)) dγ(x, π) = 0.

Let us prove Part (2)(a). As for Part (1), we can apply this to the elements 1
M×Ĝ1

σ and to

1
M×Ĝ∞

σ of the von Neumann algebra generated by B0, see Lemma 4.5. We obtain first that (2.9)

holds with integration over M × Ĝ1; Part (ii)(1) then follows from this and Corollary 4.4. Then,

we obtain that (2.9) holds with integration on M × Ĝ∞. This yields

0 =

∫

M×Ĝ∞

Tr (π(V ) · V σ(x, π)Γ(x, π)) dγ(x, π)(2.10)

=

∫

M×Ĝ∞

∑

ζ∈sp(π(L)

Tr (π(Pζ)(π(V ) · V )π(Pζ) σ(x, π)Γ(x, π)) dγ(x, π),

since
∑

ζ∈sp(π(L) π(Pζ) is the identity operator on Hπ and π(Pζ) = π(Pζ)
2 commutes with σ(x, π)

and Γ(x, π). Furthermore, for π = πλ,ν , it follows from Section 4 (see (4.4))

∀ζ > 0, π(Pζ)(π(P
λ) · P λ)π(Pζ) = 0, π(Pζ)(π(Q

λ) ·Qλ)π(Pζ) = 0.

Hence (2.10) becomes

∀σ ∈ B0,

∫

M×Ĝ∞

Tr
(
ν · Rλσ(x, πλ,ν)Γ(x, πλ,ν)

)
dγ(x, πλ,ν) = 0.

This implies Part (ii)(2)(a) by Proposition 4.2 as Γdγ is in the set Mov(M × Ĝ)(L̂) of operator-

valued measures that commute with L̂.

Let us prove Part (2)(b). We now assume Ω0 6= ∅. Indeed, on Ω0, the analysis above does not
yield anything since ν · Rλ = 0 on Ω0. We will need the following observation:

Lemma 2.5. If σ ∈ A0 and η ∈ S(z∗), then the symbol ση given by (ση)(x, πλ,ν) = σ(x, πλ,ν)η(λ)
is in A0. If σ ∈ B0 then ση ∈ B0.

Proof. If κx(y) is the kernel of σ, then we check readily that (yv, yz) 7→ (κx(yv, ·) ∗z F−1
z η)(yz) is the

kernel of ση. The rest follows. �
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By Lemma 2.5, if σ1 ∈ B0 and if η ∈ S(z∗) is supported in the dense open subset Ω0 of z∗ \ {0},
then σ := σ1η is supported in M × Ω0. Moreover, by Lemma 4.6, there exists a symbol Tσ ∈ A0

such that
π(V ) · V σ = [Tσ, π(−L)].

Therefore, using the additional fact

[Opε(Tσ),U(x)] = O(ε) in L(L2(M)),

the equation (2.8) gives

1

ε
(Opε(π(V ) · V σ)ψε, ψε)L2(M) =

1

ε
(Opε([Tσ, π(−L)])ψε, ψε)L2(M)

=
1

ε

(
[Opε(Tσ),−ε2LU

M ]ψε, ψε
)
L2(M)

− 2 (Opε((π(V ) · V ) ◦ Tσ)ψε, ψε)L2(M) +O(ε).

By (2.7), the first term of the right-hand side is 0 and we have

1

ε
(Opε(π(V ) · V σ)ψε, ψε)L2(M) = −2 (Opε((π(V ) · V ) ◦ Tσ)ψε, ψε)L2(M) +O(ε).

Plugging this expression of (Opε(π(V ) · V σ)ψε, ψε)L2(M) in (2.8) and using one more time (2.7),

we finally get

O(ε) =
2

ε
(Opε(π(V ) · V σ)ψε, ψε)L2(M) + (Opε(Lσ)ψ

ε, ψε)L2(M)

= (Opε(−4π(V ) · V ◦ Tσ + Lσ)ψε, ψε)L2(M) .

We now pass to the limit ε→ 0 and transform the latter equation according to the equality

−4π(V ) · V ◦ Tσ + Lσ = i
∑

ζ∈SpL̂

∇λζ σ P̂ζ .

induced by Corollary 4.8 and the fact that σ ∈ B0. We are left with
∑

ζ∈SpL̂

∫

M×Ω0

Tr
(
∇λζ σ(x, π

λ)Γζ(x, π
λ)
)
dγ(x, πλ) = 0,

and the relation holds for all σ = σ1η with σ1 ∈ B0 and η ∈ S(z∗) supported in the dense open
set Ω0. This concludes the proof.

3. Geometric invariance

In this section, we address the geometric invariance of the objects that we have introduced above.

3.1. Nilmanifolds as filtered manifolds. A stratified Lie group G carries a natural filtration on
its Lie algebra given by

h1 ⊂ h2 ⊂ · · · ⊂ hk = g = TeG, with hj = g1 ⊕ · · · ⊕ gj .

One can view the nilmanifold M as a filtered manifold with associated filtration of subbundles

(3.1) H1
ẋ ⊂ H2

ẋ ⊂ · · · ⊂ Hr
ẋ = TẋM, x ∈ G, [H i,Hj] ⊂ H i+j, 1 ≤ i+ j ≤ r,

given by H i
ẋ = dπΓ ◦ dLx(hi). Here πΓ : G→M = Γ\G is the quotient map and Lx : G→ G is the

left-translation. In fact, G induces a left-invariant stratification by the subbundles dπΓ ◦ dLx(gi) of
TM in the obvious way, but such a stratification will not respect the Lie bracket of vector fields on
M unless one restricts to left-invariant vector fields. What’s more, we will see that the semi-classical
calculus only depends on the filtration, and not on the stratification or the metric.

When G is step 2, we have h1 = v and h2 = g. In this case, the data of the filtration on G is
almost the same as a stratification except that one forgets the second stratum g2 = z. On M , the
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filtration is given by a single step 2 bracket generating subbundle H1 ⊂ TM without a preferred
complement.

3.2. Filtration preserving maps. Let U be an open subset of M and Φ : U →M a smooth map
on M . We introduce two definitions.

Definition 3.1. (1) The smooth map Φ is said to preserve the filtration at ẋ ∈ U when

dẋΦ
(
H i

ẋ

)
⊆ H i

Φ(ẋ), i = 1, . . . , r.

(2) The map Φ is Pansu differentiable at the point ẋ when for any z ∈ G,

(3.2) lim
ε→0

δε−1

(
Φ(ẋ)−1Φ(ẋδεz)

)
= lim

ε→0
δε−1 (Φẋ(δεz)) =: PDẋΦ(z).

(3) The map Φ is uniformly Pansu differentiable on U if it is Pansu differentiable at every point
in U , and the limit (3.2) holds locally uniformly on U ×G.

Remark 3.2. Taking U ⊂ M to be a sufficiently small neighborhood of ẋ ∈ M , we may consider
U as a neighborhood of x ∈ G and lift Φ to a smooth map ΦG : U ⊂ G → G. Then the above
definition is equivalent to saying ΦG is Pansu differentiable (resp. uniformly Pansu differentiable)
at x ∈ G (resp. on U ×G).

On a neighborhood U ⊂ M sufficiently small to identify with a neighborhood in G, the notions
of Pansu differentiability and filtration preservation are related via the following result [16]:

Theorem 3.3 ([16]). The map Φ is uniformly Pansu differentiable on U if and only if Φ preserves

the filtration at every point x ∈ U.

This result relates a morally algebraic property, Pansu differentiability, to a geometric property
of being filtration-preserving. Consequently, the diffeomorphisms Φ we consider in the sequel are
uniformly Pansu differentiable, and the transformation of pseudodifferential operators by the pull-
back associated with Φ will involve the Pansu derivative of Φ. This leads us to employ the osculating
Lie group and Lie algebra bundles in the next section.

3.3. Schwartz Vertical Densities. For a filtered manifold M , the osculating Lie algebra bundle

GM (and the osculatig Lie group bundle GM := exp(GM)), defined in [16], play the role of the
tangent bundle. When M = Γ\G, with the filtration 3.1, the fibers of GM and GM , are all
isomorphic to g and G respectively. In particular, we have canonical identifications

GM ∼=M × g and GM ∼=M ×G.

The Haar measure on each fibers GẋM is given by dẋz = dz and the dual sets by ĜẋM = Ĝ.
To any semi-classical pseudodifferential operator on a compact nilmanifold M = Γ\G, its convo-

lution kernel κ may be viewed as an element of C∞(M,S(G)). However, this is not the right space
for the general case of filtered manifolds. Indeed, Theorem 3.4 together with Equation (3.5) below
will imply that as a pseudodifferential operator transforms under diffeomorphisms on M preserving
the filtration, its associated convolution kernel transforms like a density on the osculating group
bundle. We show that it is natural to view the convolution kernels κ as elements of the bundle of
Schwartz vertical densities on GM , rather than functions in C∞(M,S(G)). We briefly elaborate
below.

Let V(GM) be the vertical bundle of GM , that is, the kernel of the map GM → M . Let
|Λ|V(GM) be the bundle of vertical densities, that is, the bundle over GM whose fibers are den-
sities in the vertical spaces. Let S(GM) =

∐
ẋ∈M S(GẋM) be the Fréchet vector bundle over

M whose fibers are Schwartz class functions. Furthermore, let S(GM, |Λ|V) be the Fréchet bun-
dle over M whose fibers are Schwartz class densities on the vertical space. As in [16], denote
by Γc (S (GM, |Λ|V)), the space of its smooth compactly supported sections, which we call the

14



Schwartz vertical densities. After making a choice of Haar measure on G, this space is identified
with C∞(M,S(G)).

Indeed, by left-invariance, we identify the fibers of V(GM) with the Lie algebra g and fibers of
|Λ|V(GM) with |Λ|g, the set of densities on the Lie algebra:

(3.3) V(GM) ∼= (M ×G)× g, whence |Λ|V(GM) ∼= (M ×G)× |Λ|g.
The above trivializations give the identification

Γc (S (GM, |Λ|V)) ∼= C∞(M,S(G, |Λ|g))
And a choice of Haar measure on G gives S(G, |Λ|g) ∼= S(G).

For a choice of Haar measure dz on G, which in turn gives a Haar system {dẋz} on GM through
(3.3), the identifications of vertical Schwartz densities with functions is given explicitly by

κ ∈ Γc (S (GM, |Λ|V)) : ẋ 7→ κẋ = κ̃ẋdẋz, κ̃ẋ ∈ S(GẋM).

The symbols σ ∈ A0 are defined as the images of the elements κ ∈ Γc (S (GM, |Λ|V)) by the
fiberwise Fourier transform:

(3.4) ẋ 7→ σ(ẋ, π) =

∫

z∈GẋM
κ̃ẋ(z)π(z)

∗dẋz, π ∈ ĜẋM.

Since our convolution kernels are densities, the integral (3.4) is independent of the choice of Haar
measure.

3.4. Semi-classical pseudodifferential calculus and filtration diffeomorphisms. We keep
the notations of the preceding section except we suppose Φ : U ⊂ M → M is a diffeomorphism
onto its image. Let JΦ be the Jacobian of Φ. We associate with Φ

(i) a unitary transformation UΦ of L2(U) induced by Φ

UΦ(f) := J
1/2
Φ f ◦ Φ, f ∈ L2(U),

(ii) a map IΦ on the space of Schwartz vertical densities that extends to an isometry of
L1(|Λ|V(GM))

(IΦκ)x(z) := JΦ(x)κΦ(x)(PDxΦ(z)), ∀(x, z) ∈ U ×G.

We are interested in the properties of the operator UΦ◦Opε(σ)◦U−1
Φ , in particular in the asymptotics

in ε of its semi-classical pseudodifferential symbol. The structure of the latter and the way it can
be deduced from σ will give information of the geometric nature of the objects. Indeed, Φ induces
several geometric transformations:

(i) Φ induces a map on representations

ĜΦ :

{
U × Ĝ −→ Φ(U)× Ĝ
(x, π) 7−→

(
Φ(x), π ◦ (PDxΦ)

−1
)

(ii) The generalized canonical transformation ĜΦ induces a pull-back on symbols

(ĜΦ)∗σ(x, π) := σ(ĜΦ(x, π)).

The maps ĜΦ and IΦ are intertwined by the group Fourier Transform: If σ(x, π) = κ̂x(π) for all

x ∈ U ⊂M and π ∈ ĜxM , then for any filtration preserving differmorphism Φ : U →M

(3.5) (ĜΦ)∗σ(x, π) = ÎΦκx(π), x ∈ U ⊂M, π ∈ Ĝ = ĜxM.

These two maps are involved in the description of the first term of the expansion of the semi-classical
symbol of the operator UΦ ◦Opε(σ) ◦ U−1

Φ :
15



Theorem 3.4 ([16]). Assume that Φ is filtration preserving on U . Then in L(L2(U)),

UΦ ◦Opε(σ) ◦ U−1
Φ = Opε

(
(ĜΦ)∗σ

)
+O(ε).

Remark 3.5. Theorem 3.4 establishes the geometric invariance of the semi-classical calculus by
filtration preserving differmorphisms Φ. In particular, Φ does not need to preserve the action of G
on M , or even preserve the gradation.

The results of this section suggest that the semi-classical symbols we defined in Section 2.1 ought
to be the natural generalization of symbols for arbitrary filtered manifolds. So defined, the semi-

classical symbols are invariant under generalized canonical transformations of ĜM associated to
differmorphisms preserving the filtration on M .

4. Technical tools

This section is devoted to several technical results used in the proof of Theorem 2.4.

4.1. Some C∗-algebras and their properties.

4.1.1. The von Neumann algebra L∞(M×Ĝ). A measurable symbol σ = {σ(x, π) : (x, π) ∈M×Ĝ}
is said to be bounded when there exists a constant C > 0 such that for dxdµ(π)-almost all (x, π) ∈
M × Ĝ, we have ‖σ(x, π)‖Hπ ≤ C. We denote by ‖σ‖L∞(M×Ĝ) the smallest of such constant C > 0

and by L∞(M × Ĝ) the space of bounded measurable symbols. We check readily that ‖ · ‖L∞(M×Ĝ)

is a norm on L∞(M×Ĝ) which is a C∗-algebra. We will later use the fact that it is a von Neumann
algebra.

4.1.2. The C∗-algebra A and its topological dual. Clearly, A0 is a subspace of L∞(M × Ĝ). Its

closure denoted by A for the norm ‖ · ‖L∞(M×Ĝ) is a sub-C∗-algebra of L∞(M × Ĝ). Its topological
dual A∗ is isomorphic to the Banach space of operator-valued measures Mov(M × Ĝ) via

Mov(M × Ĝ) ∋ Γdγ 7→ ℓΓdγ ∈ A∗, ℓΓdγ(σ) :=

∫

M×Ĝ
Tr (σ(x, π)Γ(x, π)) dγ(x, π).

Moreover, the isomorphism is isometric:

‖ℓΓdγ‖A∗ = ‖Γdγ‖Mov(M×Ĝ), where ‖Γdγ‖Mov :=

∫

M×Ĝ
Tr |Γ(x, π)| dγ(x, π),

and the positive linear functionals on A are the ℓ = ℓΓdγ ’s with Γdγ ≥ 0.

4.1.3. The C∗-algebra B and its topological dual. Let B0 be the subspace of A0 of symbols com-

muting with L̂. Clearly B0 contains all the symbols of the form a(x)ψ(L̂), a ∈ C∞(M), ψ ∈ S(R),
by Hulanicki’s theorem (see [26]):

Theorem 4.1 (Hulanicki). The convolution kernel of a spectral multiplier ψ(LG) of LG for a

Schwartz function ψ ∈ S(R) is Schwartz on G.

We denote by B the closure of B0 for the norm ‖·‖L∞(M×Ĝ). Property (2) of L̂ recalled in Section

1.3.4 implies that B is the subspace of A of symbols commuting with every P̂ζ , ζ > 0. We check
readily that B is a sub-C∗-algebra of A and that B0 = A0 ∩ B. The next statement identifies the
topological dual of B:

16



Proposition 4.2. Via Γdγ 7→ ℓΓdγ |B, the topological dual B∗ of B is isomorphic with the closed

subspace Mov(M × Ĝ)(L̂) of operator valued measures Γdγ ∈ Mov(M × Ĝ) such that the operator Γ

commutes with P̂ζ for all ζ > 0, in the sense that

∀ζ > 0 π(Pζ)Γ(x, π) = Γ(x, π)π(Pζ) for γ − almost all (x, π) ∈M × Ĝ.

Proof. Step 0. We observe that if two pairs (Γ, γ) and (Γ1, γ1) are equivalent and one of them

satisfies the commutative condition with P̂ζ for all ζ > 0, then so does the other. Hence, Mov(M ×
Ĝ)(L̂) is a well defined subset ofMov(M×Ĝ). One checks that it is a closed subspace ofMov(M×Ĝ).

Step 1. Let ℓ ∈ B∗. By the Hahn-Banach theorem, this functional extends to ℓ̃ ∈ A∗, i.e. ℓ̃|B = ℓ.

Denote by Γdγ ∈ Mov(M × Ĝ) the corresponding operator-valued measure: ℓ̃ = ℓΓdγ . Now set

Γ1(x, π) :=
∑

ζ∈sp(π(L))

π(Pζ)Γ(x, π)π(Pζ).

The operator-valued measure Γ1dγ is a well defined element of Mov(M×Ĝ) satisfying the condition

of commutativity with L̂ so Γ1dγ ∈ Mov(M × Ĝ)(L̂). Let us show that it coincides with ℓΓdγ on B.
Let σ ∈ B. Since ∑

ζ∈sp(π(L)) π(Pζ) is the identity operator on Hπ, we have

ℓΓdγ(σ) =

∫

M×Ĝ

∑

ζ∈sp(π(L))

Tr (σ(x, π)Γ(x, π)π(Pζ )) dγ(x, π)

=

∫

M×Ĝ

∑

ζ∈sp(π(L)−

Tr (σ(x, π)π(Pζ)Γ(x, π)π(Pζ)) dγ(x, π), )

since π(Pζ) = π(Pζ)
2 commutes with σ(x, π). We recognise ℓΓ1dγ(σ) on the right-hand side. We

have obtained that any ℓ ∈ B∗ may be written as the restriction to B of ℓΓ1dγ , for some Γ1dγ ∈
Mov(M × Ĝ)(L̂).

In other words, we have proved that Γdγ 7→ ℓΓdγ |B maps Mov(M × Ĝ)(L̂) onto B∗. This map is
continuous and linear. It remains to show that it is injective.

Side step. Let us open a parenthesis. The von Neumann algebra L∞(M × Ĝ) is a C∗ algebra
containing A and we denote by vNA the von Neumann algebra generated by A. This means that

vNA is the closure of A for the strong operator topology in L∞(M × Ĝ). We are going to use this
von Neumann algebra by considering the natural unique extension of ℓ = ℓΓdγ ∈ A∗ to a continuous
linear functional on the von Neumann algebra vNA of A.

Since B ⊂ A, we also have vNB ⊂ vNA where vNB denotes the von Neumann algebra generated

by B. Moreover, vNB is the subspace of the symbols σ ∈ vNA commuting with P̂ζ dxdµ(π)-almost
everywhere for every , ζ > 0.

Finally, we observe that for ζ > 0 and σ ∈ A, the symbol π(P̂ζ)σπ(P̂ζ) is in vNA. Indeed, using
Hulanicki’s theorem (Theorem 4.1) together with S(G) ∗ S(G) ⊂ S(G), we obtain that if σ ∈ A0

then for any ψ1, ψ2 ∈ S(R), the symbol ψ1(L̂)σψ2(L̂) is in A0. Taking limits for suitable sequences

of σ, ψ1, ψ2 implies that the symbol π(P̂ζ)σπ(P̂ζ) is in vNA for any σ ∈ A.

Step 2. Let us now consider Γdγ ∈ Mov(M × Ĝ)(L̂) such that ℓ := ℓΓdγ vanishes on B. We want
to show ℓ = 0. We extend ℓ to a functional L on vNA. This functional vanishes on vNB. We set

Lζ(σ) :=

∫

M×Ĝ
Tr (σ(x, π)π(Pζ)Γ(x, π)) dγ(x, π), ζ > 0.

17



We check readily that ζ 7→ Lζ(σ) defines a complex measure on [0,∞) with total mass that is

smaller or equal to ‖σ‖
L∞(M×Ĝ)

‖Γdγ‖Mov . Moreover, ℓ(σ) =
∫ +∞
0 Lζ(σ) since

∑
ζ∈sp(π(L) π(Pζ) is

the identity operator on Hπ.
Using P2

ζ = Pζ and the commutation of Γ with π(Pζ) dγ-a.e., together with trace property, we
obtain

Lζ(σ) =

∫

M×Ĝ
Tr (π(Pζ)σ(x, π)π(Pζ)Γ(x, π)) dγ(x, π) = Lζ(π(Pζ)σ(x, π)π(Pζ ))

with π(Pζ)σ(x, π)π(Pζ) ∈ vNB. Arguing as above (in the side step), we deduce Lζ = 0, whence

L = 0 and ℓ = 0. This implies the injectivity of Γdγ 7→ ℓΓdγ |B on Mov(M × Ĝ)(L̂). �

The proof above has an important consequence regarding the restriction of symbols to M × Ĝ1,
a notion we now explain.

4.1.4. Restriction of symbols to M × Ĝ1. The restriction σ|M×Ĝ1
of σ ∈ A with kernel κx(y), to

M × Ĝ1 is given by

σ|M×Ĝ1
(x, ω) = σ(x, πω) = Fv

∫

z

κx(·, z)dz(ω), (x, ω) ∈M × v∗,

having identified Ĝ1 with v∗. Moreover, we can therefore identify

A|
M×Ĝ1

:= {σ|
M×Ĝ1

, σ ∈ A}
with a sub-space of C0(M × v∗). In fact, we can show

Lemma 4.3. We have C0(M × v∗) = A|
M×Ĝ1

.

Proof. Any element of C0(M × v∗) may be viewed as a limit for the supremum norm on M × v∗

of Fvκ
(j)
x (ω) for a sequence of kernels κ(j) ∈ C∞(M,S(v)). We then consider the sequence of

symbols σj(x, π) = π(κ
(j)
x η) with η ∈ S(z) satisfying Fzη(0) =

∫
z
η(Z)dz = 1. We check readily

that σj|M×Ĝ1
(x, ω) = Fvκ

(j)
x (ω). �

For a subspace S of A, we denote by

S|M×Ĝ1
:= {σ|M×Ĝ1

, σ ∈ S}
the resulting subspace in A|M×Ĝ1

. The proof of Lemma 4.3 shows that if S̄ denotes the closure of

S in the C∗-algebra A, then S̄|
M×Ĝ1

is the closure of S|
M×Ĝ1

in C0(M × v∗), that is, given by the

supremum norm on M × v∗. Hence S̄|M×Ĝ1
⊂ A|M×Ĝ1

.

We will need the following property regarding the restriction of the symbols in A0 and B0 to

M × Ĝ1; its proof relies on the proof of Proposition 4.2:

Corollary 4.4. The following commutative C∗ algebras coincide:

B̄0|M×Ĝ1
= B|

M×Ĝ1
= Ā0|M×Ĝ1

= A|
M×Ĝ1

= C0(M × v∗).

Proof. Clearly, B̄0|M×Ĝ1
= B|

M×Ĝ1
⊂ Ā0|M×Ĝ1

= A|
M×Ĝ1

= C0(M × v∗). It remains to show the

converse inequality.
Let ℓ be a continuous linear functional on C0(M × v∗). This is given by integration against a

complex Radon measure γ1. Consider the operator-valued measure Γdγ ∈ Mov(M × Ĝ) defined by
1M×Ĝ∞

Γdγ = 0 and 1M×Ĝ1
Γdγ = γ1, that is,

ℓΓdγ(σ) =

∫

M×v∗
σ|

M×Ĝ1
(x, πω) dγ1(ω), σ ∈ A.
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We observe that Γ commutes with P̂ζ , ζ > 0. Hence, if ℓ = 0 on B|
M×Ĝ1

then ℓΓdγ ≡ 0 on B and

therefore also on A by Proposition 4.2, or rather Step 2 of its proof; this implies Γdγ = 0 thus
γ1 = 0 and ℓ = 0. By the Hahn-Banach theorem, this shows that B|

M×Ĝ1
= C0(M × v∗). �

4.1.5. Some elements of vNA and vNB. We will need the following properties:

Lemma 4.5. If σ ∈ A0 then 1M×Ĝ1
σ and 1M×Ĝ∞

σ are in vNA. Similarly, if σ ∈ B0 then 1M×Ĝ1
σ

and 1M×Ĝ∞

σ are in vNB.

Proof. We consider ση as in Lemma 2.5 with a sequence of functions η ∈ S(z∗) satisfying η(0) = 1
and with support shrinking to {0}. We check readily that if σ ∈ A0 then the limit of these ση for
the strong operator topology will be 1M×Ĝ1

σ which is therefore in vNA. It will also be the case

for 1M×Ĝ∞

σ = σ − 1M×Ĝ1
σ. The case of B0 follows. �

4.2. The lowering and raising operators associated with H(λ).

4.2.1. Preliminaries. Before proving several useful identities, we introduce some notations. If π1, π2
are two representations of g, and A : v → v is a linear morphism, then we set

(Aπ1(V )) · π2(V ) =
∑

j,k

Aj,kπ1(Vk)⊗ π2(Vj) ∈ Hπ1
⊗Hπ2

where (Aj,k) is the matrix representing A in the orthonormal basis (Vj). We can check that this is
independent of the orthonormal basis (Vj). If the context is clear, we may allow ourselves to omit
the notation for the tensor product ⊗ and may swap the order in the tensor product.

With A = idv, π1 being the regular representation of g on L2(M) and π2 = π ∈ Ĝ, this yields

the super-operator V · π(V ) acting on A0. If we restrict this to M × Ĝ1, i.e. π2 = πω ∈ Ĝ1, this
defines ω · V acting on C∞(M,S(v∗)) ∼ A0|M×Ĝ1

.

4.2.2. Technical computations. Here, we assume that k = 0 and consider λ ∈ Ω0. Following
Appendix B in [15], instead of the basis P λ

j , Q
λ
j , 1 ≤ j ≤ d, we will use the fields

(4.1) W λ
j :=

1

2
(P λ

j − iQλ
j ) and W

λ
j :=

1

2
(P λ

j + iQλ
j ).

Direct computations show using equation (1.7), π(P λ
j ) =

√
ηj(λ)∂ξj and π(Qλ

j ) = i
√
ηj(λ)ξj, so

we obtain

πλ(W λ
j ) =

√
ηj(λ)

2
(∂ξj + ξj) and πλ(W

λ
j ) =

√
ηj(λ)

2
(∂ξj − ξj).

In particular, these new fields coincide up to normalisation with the lowering and raising operators
of the harmonic oscillators (−∂2ξj + ξ2j ). Consequently, the family of Hermite functions (hα)α∈Nd

given by

hα(ξ1, . . . , ξd) = hα1
(ξ1) . . . hαd

(ξd), where hn(ξ) =
(−1)n√
2nn!

√
π
e

ξ2

2

d

dξ
(e−ξ2), n ∈ N,

is an orthonormal basis of L2(Rd) that satisfies:

(4.2) πλ(W λ
j )hα =

√
ηj(λ)

2

√
αjhα−1j

πλ(W
λ
j )hα = −

√
ηj(λ)

2

√
αj + 1hα+1j

.

Here, 1j denotes the multi-index with j-th coordinate 1 and 0 elsewhere. We also have extended

the notation hα to α ∈ Zd with hα = 0 if α /∈ Nd. We then deduce easily

(4.3)
[
πλ(W λ

j ), π
λ(−L)

]
= 2ηj(λ)π

λ(W λ
j ) and

[
πλ(W

λ
j ), π

λ(−L)
]
= −2ηj(λ)π

λ(W
λ
j ).
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and that both the operators P̂ζπ(W
λ
j )P̂ζ and P̂ζπ(W

λ
j )P̂ζ are zero. Consequently, we also have

(4.4) P̂ζπ(P
λ
j )P̂ζ = 0 and P̂ζπ(Q

λ
j )P̂ζ = 0, ∀λ ∈ z∗ \ {0}, ∀j ∈ {1, · · · , d}, ∀ζ ∈ R,

Following the ideas and notation from Section 4.2.1, we define the operator

T =
i

2
(B(λ)−1V · πλ(V )), λ ∈ Ω0,

acting on the space of symbols in A0 restricted to M × Ω0. This may also be viewed as acting on
the space of symbols in A0 which are supported in M × Ω0. The properties above imply:

Lemma 4.6. (1) For any σ ∈ A0, we have on M ×Ω0:

[Tσ, π(−L)] = π(V ) · V σ
(2) For any λ ∈ Ω0 and ζ > 0, using the shorthand π(Pζ) for idL2(G) ⊗ π(Pζ), we have

πλ(Pζ)
(
V · πλ(V )) ◦ T

)
πλ(Pζ) =

1

4
L− i

4

d∑

j=1

(2αj + 1)[P λ
j , Q

λ
j ]π

λ(Pζ).

Proof. Since P λ
j =W

λ
j +W λ

j , and Q
λ
j = 1

i (W
λ
j −W λ

j ), we deduce for π = πλ, λ ∈ Ω0,

V · π(V ) = 2
d∑

j=1

(
W λ

j π(W
λ
j ) +W

λ
j π(W

λ
j )

)
.

As B(λ)Qλ
j = ηj(λ)P

λ
j and B(λ)P λ

j = −ηj(λ)Qλ
j , we obtain

(B(λ)−1V ) · π(V ) =
d∑

j

1

ηj

(
−P λ

j π(Q
λ
j ) +Qλ

j π(P
λ
j )

)
=

2

i

d∑

j=1

1

ηj

(
W

λ
j π(W

λ
j )−W λ

j π(W
λ
j )
)
.

By (4.3), we check readily Part (1).

For Part (2), we may assume that πλ(Pζ) 6= 0, that is, ζ is in the spectrum of the harmonic

oscillator πλ(L), or in other words ζ =
∑

j ηj(λ)(2αj + 1) for some α ∈ Nd. For any such index α

and for an arbitrary vector w1 ∈ S(G), by the computations above and (4.2), we see with π = πλ:

π(Pζ)
(
V · π(V )

)
◦
(
B(λ)−1V · π(V )

)
w1 ⊗ hα

=
4

i

∑

j1,j2

η−1
j2
π(Pζ)

(
W λ

j1π(W
λ
j1) +W

λ
j1π(W

λ
j1)

)(
W

λ
j2π(W

λ
j2)−W λ

j2π(W
λ
j2)

)
w1 ⊗ hα

=
2

i

∑

j

(
W

λ
jW

λ
j (αj + 1)−W λ

j W
λ
j αj

)
w1 ⊗ hα.

We can simplify each term in the sum above with:

W
λ
jW

λ
j (αj + 1)−W λ

j W
λ
jαj =

1

4
((P λ

j )
2 + (Qλ

j )
2)− i

4
(2αj + 1)[P λ

j , Q
λ
j ].

Part (2) follows �

We recall that the maps λ 7→ ηj(λ), j = 1, . . . , d, are smooth in Λ0. Moreover, if λ0 ∈ Λ0, one

can choose the vectors P λ
j , Q

λ
j , j = 1, . . . , d, so that they depend smoothly on λ in a neighborhood

of λ0. We then have the following result.

Lemma 4.7. Let P λ
j , Q

λ
j , j = 1, . . . , d, be smooth eigenvectors in an open subset U of U . Then we

have

[P λ
j , Q

λ
j ] = ∇ληj(λ) ∈ z, j = 1, . . . , d, λ ∈ Λ0.
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Proof of Lemma 4.7. The differentiation of the equality B(λ)Qλ
j = ηj(λ)P

λ
j with respect to λ gives

∀λ′ ∈ z∗ B(λ′)Qλ
j +B(λ)λ′ · ∇λQ

λ
j = λ′ · ∇ληj(λ)P

λ
j + ηj(λ)λ

′ · ∇λP
λ
j .

Taking the scalar product with P λ
j and using B(λ)t = −B(λ) with −B(λ)P λ

j = ηj(λ)Q
λ
j , we obtain:

(B(λ′)Qλ
j , P

λ
j ) + ηj(λ)(λ

′ · ∇λQ
λ
j , Q

λ
j ) = λ′ · ∇ληj(λ)(P

λ
j , P

λ
j ) + ηj(λ)(λ

′ · ∇λP
λ
j , P

λ
j ).

Now, (Qλ
j , Q

λ
j ) = 1 = (P λ

j , P
λ
j ). Differentiating this with respect to λ yields (λ′ · ∇λQ

λ
j , Q

λ
j ) = 0 =

(λ′ · ∇λP
λ
j , P

λ
j ), and we have for all λ′ ∈ z∗

(B(λ′)Qλ
j , P

λ
j ) = λ′ · ∇ληj(λ).

Since the left-hand side is equal to λ′([Qλ
j , P

λ
j ]) by definition of B(λ′), the conclusion follows. �

The two lemmata above imply readily:

Corollary 4.8. Using ζ = ζ(α, λ) =
∑d

j=1 ηj(λ)(2αj + 1), we deduce that for the choice of or-

thonormal basis of Lemma 4.7, we have

πλ(Pζ)
(
V · πλ(V )) ◦ T

)
πλ(Pζ) =

1

4
L− i

4
∇λζ.
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