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Abstract—Traditionally, Special Nuclear Material (SNM) 
at Sellafield has been stored in multi-layered packages, 
consisting of metallic cans and an over-layer of plasticized 
Polyvinyl Chloride (PVC) as an intermediate layer when 
transitioning between areas of different radiological 
classification. However, it has been found that plasticized 
PVC can break down in the presence of both radiation and 
heat, releasing hydrochloric acid which can corrode these 
metallic containers. Therefore, internal repackaging 
procedures at Sellafield have focused recently on the 
removal of these PVC films from containers, where as much degraded and often adhered PVC as possible is manually 
removed based on visual inspection. This manual operation is time-consuming and it is possible that residual 
fragments of PVC could remain, leading to corrosion-related issues in future. In this work, Hyperspectral Imaging (HSI) 
was evaluated as a new tool for detecting PVC on metallic surfaces. Samples of stainless steel type 1.4404 – also 
known as 316L, the same as is used to construct SNM cans – and PVC were imaged in our experiments, and Support 
Vector Machine (SVM) classification models were used to generate detection maps. In these maps, pixels were 
classified into either PVC or 316L based on their spectral responses in the range 954-1700nm of the electromagnetic 
spectrum. Results suggest that HSI could be used for an effective automated detection and quantification of PVC 
during repackaging procedures, detection and quantification that could be extended to other similar applications. 

Index Terms—Hyperspectral imaging, PVC, repackaging, special nuclear material 
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I. Introduction

ITHIN Sellafield’s Special Nuclear Material (SNM) 

inventory there is a population of multi-layered 

packages. The packages consist of a metallic inner can, 

containing the SNM, and an over-layer of plasticized Polyvinyl 

Chloride (PVC). The inner can and PVC layer are then packed 

within a metallic intermediate can and finally a (breathable) 

stainless steel outer can. SNM packages containing PVC may 

deteriorate in storage. The PVC layer can degrade as a result of 

thermal and radiolytic effects. The degradation products (e.g., 

hydrochloric acid HCl) can corrode the package materials of 

construction. Also, the packages can pressurize as a result of 

gas generation during storage [1]. Both these mechanisms 

potentially challenge packages’ structural integrity. Sellafield 

Ltd is currently constructing a new facility on-site, known as 

the Sellafield product and residue Retreatment Plant (SRP), to 

condition SNM packages for safe long-term storage. 

Sellafield Ltd considers that this potential degradation is a 

significant challenge and proposes to retrieve all the PVC 

containing packages from the store to undertake interim 

remediation. The operators take the plastic-coated can out of the 

overpack, remove as much PVC as possible, and then reseal it 
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in an external can. Fig. 1 shows images of an SNM can before 

and during the PVC removal process. The task is currently 

undertaken manually and a human visual inspector decides the 

point at which no PVC remains on the can and the cleaning 

process can be stopped. This translates into time-consuming, 

subjective, manual operations, where residual fragments of 

PVC could remain on the can surface with subsequent corrosion 

risks for the future. An automated inspection tool able to 

effectively detect PVC on stainless steel 316L surface to a 

determined, acceptable level will provide a more robust, 

quantitative means of determining whether a can is clean, and 

may reduce the potential for further HCl induced corrosion in 

future years, thus leading to increased storage confidence and 

the risk of future re-work.  

Hyperspectral Imaging (HSI) is a technology able to capture 

an image in hundreds of different contiguous wavelengths 

across the electromagnetic spectrum, providing fine spectral 

detail of the samples under study. HSI data usually covers part 

of the near-infrared spectrum and can be used to characterize 

several physical and chemical properties of the samples under 

inspection to detect features that would otherwise be invisible 

to the human eye. 

Each pixel in an HSI image contains the spectral response or 
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signature of the material captured by that pixel. In this context, 

a spectral signature, potentially unique for each material in 

nature, is a vector array made of hundreds of values 

representing the reflectance intensity for each wavelength or 

spectral band. With such comprehensive data, HSI technology 

has already been applied in a wide range of applications, 

including remote sensing [2], [3], food quality analysis [4], raw 

material classification [5], medical [6] [7], counterfeit detection 

[8], and others [9]-[11]. However, this technology is still 

expandable to many other fields. Particular applications of 

interest are the one proposed in [12], where HSI was used for 

plastic waste characterization, and the one in [13], where the 

same technology was used for the detection of fine metal 

particles in shredded electronic waste. In similar terms, HSI 

images could be used at Sellafield to detect PVC and residual 

PVC fragments on metallic surfaces, becoming a non-intrusive 

automated inspection tool if combined with appropriate signal 

and image processing algorithms and techniques. 

In this work, the potential use of HSI to detect the presence 

of PVC on stainless steel 316L was evaluated. Experiments 

used real PVC and 316L samples, where a machine learning 

classifier known as Support Vector Machine (SVM) [14] [15] 

was trained to classify the image pixels – based on the spectral 

information they contain – into PVC or 316L, leading to 

detection maps which could be used for decision support in the 

PVC removal process. Different scenarios were tested, which 

included PVC samples over a 316L background and vice versa. 

The results demonstrated the effectiveness of HSI in 

discriminating PVC from 316L, detecting and quantifying its 

presence. 

The rest of this manuscript is organized as follows: Section 

II describes the PVC and stainless steel 316L samples used in 

the experiments, along with the hyperspectral imaging system 

used for data acquisition and the SVM classifier implemented 

to obtain the detection maps. Then, Section III presents the 

different experiments undertaken with related results. Finally, 

conclusions are drawn in Section IV.  

II. MATERIALS AND METHODS

A. Samples

Three different types of plasticized PVC in the form of

flexible films were provided by Sellafield Ltd for this study. 

These included not only PVC films in apparent good condition 

(or at least non-thermally degraded) but also PVC films 

thermally degraded at temperatures of 85 ⁰C and 100 ⁰C. These 

PVC films (see Fig. 2) were cut down into smaller pieces of 

different sizes for the experiments. 

Stainless steel samples were also provided by Sellafield Ltd. 

These were sheets of austenitic stainless steel type 1.4404 

(known as 316L) in a mesh form. This mesh structure was 

preferred for the experiments simply because it is easier to 

handle (cutting down into small items required no machinery). 

A 2x2cm sample of 316L mesh is shown in Fig. 2d. 

B. Hyperspectral Imaging Systems

The system used to capture hyperspectral images was the

RedEye 1.7 from INNO-SPEC [16] (see Fig. 3a), a camera with 

InGaAs detector able to acquire spectral data in the Near 

Infrared (NIR) range. After discarding some noisy bands 

inherent to the camera operation, a final range of 954-1700nm 

was available, covered by a total of 236 spectral bands at a 

spectral resolution of around 3.2nm. A system covering this 

spectral range was selected for PVC detection as, according to 

the literature, plastics exhibit clear features across the NIR 

range [12], [17]-[19].

(a)   (b) 

Fig. 1.  Removal of PVC coating during repackaging operations at 
Sellafield: (a) plastic-coated can at the start of the procedure with 
characteristic yellow colour due to PVC degradation, and (b) can during 
the removal operation showing PVC residual fragments in some areas 
(credit: Sellafield Ltd). 

(a) (b)  (c)  (d) 

Fig. 2.  Types of samples used in the experiments: (a) PVC, (b) 
thermally degraded PVC (85 ⁰C), (c) thermally degraded PVC (100 ⁰C), 
and (d) stainless steel 316L mesh. 

(a)  (b) 

Fig. 3.  Hyperspectral system used in the experiments: (a) close look 
at camera with lens and halogen lamps (top), with translation stage to 
enable line scanning (bottom), and (b) overview of the system including 
movement direction for line scanning. 
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The stand-off distance between the camera and the samples 

was set at 50cm, leading to a spatial resolution of approximately 

1mm2 per pixel. The spatial size of the captured images varied 

depending on the experiment, between 60x60 and 110x190 

pixels after cropping to the area of interest, i.e., the size of the 

scenes undergoing inspection varied between 6x6cm and 

11x19cm. 

The system required two sets of halogen lamps with 

reflective boards (see Fig. 3a) as light source for homogeneous 

illumination of the samples, where reflectance intensity per 

pixel was obtained following a standard calibration procedure 

with dark and white reference images [20]. This calibration 

used a white tile made of Spectralon for white reference, 

normalizing reflectance in the range [0-1] (0-black and 1-

white). Images were captured by line scanning (push-broom 

technique [20] [21]), where the linear translational stage shown 

in Fig. 3 (Zolix TSA200-BF [22]) was used to introduce the 

relative movement between camera and samples. All images 

were captured indoors under the same conditions. It is worth 

mentioning here that deployment in the real-world would 

require a rotational stage applied to the can, rather than a linear 

stage, to line scan the surface of the cans. However, as the 

hyperspectral system works based on line scanning, the same 

approach and calibration procedure would apply.  

C. Data Classification

Detection maps indicating the presence or absence of PVC

were generated by SVM [14]. This machine learning technique 

exploits a margin-based criterion and has been widely used for 

hyperspectral data classification, avoiding the curse of 

dimensionality or Hughes phenomenon [23]. SVM is a 

supervised classifier, requiring labelled samples during the 

training process to build an SVM model, and can be 

implemented by several libraries that are publicly available 

[24]-[26]. In this work, the popular LibSVM library [24] was 

selected for SVM implementation. 

In the experiments, SVM used a Gaussian kernel, tuning the 

related ‘penalty’ and ‘gamma’ parameters by means of a grid 

search procedure, with an internal validation using two-fold 

cross-validation. An SVM model was obtained by supervised 

training on 316L and PVC extracted features, leading to a two-

class model able to classify the pixels in the images into either 

PVC or 316L. Visualization, processing and classification of 

data were implemented in MATLAB (version R2017b), using 

a computer with Windows 10 (64-bit), i7 2.8GHz, 4-core, and 

16GBRAM. With these specifications, the generation of 

detection maps required between 5-10 seconds. 

III. EXPERIMENTS AND RESULTS

A. Spectral Response of PVC and Stainless Steel 316L

The first experiment conducted was aimed at evaluating and

comparing the spectral response of PVC and 316L mesh in the 

NIR range to ensure it would be possible to characterize and 

differentiate these two materials. Fig. 4 shows plots which 

allow a comparison between the spectral responses of 316L and 

PVC (the hyperspectral system captured an image of a small 

piece of 316L on top of a PVC layer, see Fig. 4a and 4b). 

As can be seen in Fig. 4, the 316L response is relatively flat 

(no significant peaks) across the spectral range of the sensor, 

while PVC exhibits some curves around 1200nm, 1400nm, and 

1650nm, which can be used to differentiate it from 316L. These 

findings correlate with literature, where a similar spectral 

response for PVC was reported [12], [17], [18], and [19], while 

in other work no apparent features were found for stainless steel 

[27]. 

B. Processing Data for Amplifying Discriminative
Features

Based on the spectral responses shown in Fig. 4 of the 

previous section, there are some clear spectral features that 

could be used to distinguish PVC from stainless steel 316L. 

Data processing for feature extraction was implemented to 

exploit and amplify these features effectively, improving 

subsequent data analysis and automated classification by SVM. 

The feature extraction proposed in this work was based on 

two different techniques: (i) Singular Spectrum Analysis (SSA) 

[28], and (ii) first derivative computation. SSA is a technique 

traditionally used for time-series analysis, which can 

decompose a 1D signal into: (i) main trend, (ii) periodic 

components, and (iii) noise [29]-[31]. Therefore, SSA was 

selected in order to remove the noise and high-frequency 

content from the original spectral responses [28], extracting 

only their main trends. 

(a)  (b)  (c) 

Fig. 4.  Evaluating the spectral response of 316L and PVC: (a) conventional RGB image of the samples, (b) a single spectral band of the captured 
HSI image (at 1268nm, size of 60x60 pixels) highlighting two areas of 10x10 pixels (blue – stainless steel, red - PVC), and (c) spectral response 
of 316L and PVC from a random pixel within each area. 
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SSA was configured based on [28] (window size of 10 

elements, selecting the first component in the Eigenvalue 

decomposition). After that, the first derivative of the SSA main 

trends was computed to obtain the final features (this was 

implemented using the MATLAB ‘gradient’ function). The first 

derivative is expected to intensify those regions in which PVC 

and 316L become more distinct. This procedure was applied to 

all the pixels before undergoing classification. 

Fig. 5a shows the resulting spectral responses after feature 

extraction for both PVC and 316L. While the 316L features are 

relatively flat across the NIR spectrum, PVC features present 

some peaks which are clearly identifiable. Fig. 5b shows a 

conventional RGB image containing PVC samples on top of a 

316L layer (top) alongside respective spectral images from our 

HSI dataset at 1380nm (middle), and 1651nm (bottom) after 

feature extraction. As can be seen, the processed spectral 

images show significantly higher contrast between the 316L 

background and the PVC samples when compared to the RGB 

data. In fact, while seeing some of these PVC samples in the 

RGB image can be difficult (see highlighted area), they are 

easily visible in the spectral images. 

C. Detection Maps

The resulting spectral responses after feature extraction were

used to train and validate an SVM model able to classify any 

pixel in a hyperspectral image into either 316L or PVC. A single 

image (see Fig. 4) was used for training, where a 10x10-pixel 

area for 316L and another 10x10-pixel area for PVC were 

selected (after feature extraction) to train and generate the SVM 

model. A total of 200 pixels is a relatively small amount of 

training data; however, this modest training was selected to 

demonstrate the capabilities of the model. Significantly more 

training data can be gathered in future should there be a desire 

to adopt this technology for practical use.  

Two validation experiments were carried out after training 

the model. In these experiments, new hyperspectral images, 

unseen during the training, were evaluated by the model. 

(a)  (b) 

Fig. 5.  Feature extraction: (a) obtained features for 316L and PVC responses, and (b) conventional RGB image of a given scene (top), with 
spectral images after feature extraction (size of 35x135 pixels) at 1380nm (middle), and 1651nm (bottom) to show the contrast between 316L and 
PVC. In these images, PVC looks darker than 316L due to the feature extraction. 

(a)  (b)  (c) 

Fig. 6.  Results for Experiment #1: (a) conventional RGB image for reference, (b) a spectral band (at 1268nm, size of 97x93 pixels) from the 
hyperspectral data, and (c) detection map (size of 97x93 pixels) where the three 316L samples were clearly detected. 
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In Experiment #1, a total of three 316L samples were placed 

on top of a layer of PVC (several individual PVC sheets were 

used to form this layer), making the PVC the background of the 

image acquired. In Experiment #2, 316L was used as the 

background of the image, where small pieces of PVC (a total of 

eight) were placed on top of the 316L sample. The detection 

maps obtained in both experiments are shown in Fig. 6 and Fig. 

7. 

As shown in the figures, the SVM model was able to detect 

the three 316L stainless steel samples in Experiment #1 (Fig. 6) 

and the eight PVC samples in Experiment #2 (Fig. 7), with 

some classification statistics available in Table I. Regardless of 

the size of the samples, all of them were clearly detected. 

D. Spectral Response of Thermally Degraded PVC

One of the reasons why PVC coatings are being currently

removed from the metallic cans is that thermal degradation of 

PVC under heat could be considered a corrosion agent. 

Therefore, during removal procedures, operators are expected 

to find PVC at different stages of thermal degradation. In this 

section, the spectral response of PVC in good condition or at 

least non-thermally degraded (as used in previous sections) is 

compared to the response of PVC thermally degraded at 

different temperatures (85 ⁰C and 100 ⁰C). 

Fig. 8c shows the spectral response of non-thermally 

degraded and thermally degraded PVC, from a random pixel 

within each highlighted area. As can be seen, the spectral 

response in the NIR range (954-1700nm) is almost identical for 

the three cases. Only small variations in the spectral intensity 

were found, but these are likely to be due to the different spatial 

location of the samples in the image, which slightly affects the 

amount of reflectance light received by the camera. 

E. Detection Maps Including Thermally Degraded PVC

Final experiments included thermally degraded PVC to

assess the performance of the SVM model in the presence of 

these degraded samples. The same model used in Experiment 

#1 and #2 was also used here, i.e., the model was not further 

trained with any thermally degraded PVC samples. The reason 

for this is that, according to Section III.D, the responses for 

thermally degraded and non-thermally degraded PVC (as used 

in training) are nearly identical. 

In Experiment #3, a total of four 316L samples were placed 

on a background of PVC (layer made of several PVC sheets), 

and in Experiment #4, 316L was used as the background of the 

image again, placing small pieces of PVC (a total of eleven) on 

top of the 316L. Therefore, the number of samples was 

increased with relation to previous experiments, while the size 

of them was reduced to challenge the detection. PVC used here 

included the non-thermally degraded and thermally degraded 

types (at 85 ⁰C and 100 ⁰C).

Fig. 7.  Results for Experiment #2: (top) conventional RGB image for 
reference, (middle) a spectral band (at 1268nm, size of 35x135 pixels) 
from the hyperspectral data, and (bottom) detection map (size of 
35x135 pixels) where eight PVC samples (some of them overlapped) 
were detected. 

TABLE I 
DETECTION MAP EXPERIMENTS 

Experiments 
Samples 

detected 
PVC surface 316L surface 

1 
316L samples on 

top of PVC layer 
3/3 

80.4%  

(7251 pixels) 

19.6%  

(1770 pixels) 

2 
PVC samples on 
top of 316L layer 

8/8  

(overlapped) 

25.4%  

(1201 pixels) 

74.6% 

(3524 pixels) 

(a)  (b)  (c) 

Fig. 8.  Comparison of the spectral response for PVC and thermally degraded PVC: (a) conventional RGB image showing different PVC samples, 
(b) a spectral band (at 1268nm, size of 111x192 pixels) showing three areas in each PVC sample, and (c) spectral response from a random pixel 
within each area.
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Detection maps in Fig. 9 and Fig. 10 demonstrate the 

robustness of the proposed method, where all samples were 

detected (see Table II), even the smallest one occupying only a 

few pixels in the whole image (sample #1 in Experiment #4). 

The detection of PVC samples presented no difference 

regardless of their thermal degradation. 

From all the detection maps (Fig. 6-7 and Fig. 9-10), it is 

clear that all PVC samples were detected and highlighted, 

which is the main purpose of this application. However, the 

exact quantification of the detection accuracy in terms of 

number of pixels was not possible, as the available ground truth 

was subjective and based on human observation. Thus, a visual 

comparison of input and output is provided as opposed to more 

quantitative analysis, e.g., accuracy, precision, recall, etc., 

which will be the focus of future work. One of the challenges 

associated to this application is the spatial resolution of the 

hyperspectral images and the related pixel mixing effect in the 

boundaries of the samples. Lower resolution implies that the 

exact shape of the samples may be not captured accurately. 

However, as long as the size of the PVC samples is above the 

limit of detection, they will be highlighted. The resolution in 

this application was ~1mm2 per pixel, which covers samples 

that small. Smaller limit of detection could be achieved by 

reducing the stand-off distance between camera and samples. 

IV. CONCLUSIONS

The SNM packages containing plasticized PVC have been 

used at Sellafield Ltd for decades. However, when this 

plasticized PVC is exposed to radiation and/or heat, it degrades 

releasing corrosive chloride products (e.g., HCl), and Sellafield 

Ltd is undertaking procedures for the removal of this PVC 

coating. At present, these removal operations are conducted 

manually with the risk of missing residual PVC fragments 

through human visual inspection. In this work, HSI combined 

with intelligent signal processing has been evaluated as 

potential tool for automated and effective PVC detection using 

the spectral features of both stainless steel 316L and PVC 

materials for their detection and differentiation. 

A hyperspectral imaging system capturing data in the NIR 

range (954-1700nm) was used to investigate potential features 

able to discriminate PVC from 316L, where key differences 

were found in the regions around 1200nm, 1400nm and 

1650nm. These key features were processed and amplified by a 

feature extraction method based on the first derivative of the 

SSA main trend. Then, a two-class SVM model, trained on the 

processed features, was proven effective in distinguishing 

between PVC and 316L samples under diverse conditions. 

These conditions included different number of samples, 

different sample size, random location of samples, and different 

PVC state (non-thermally degraded PVC and thermally 

degraded PVC at 85 ⁰C and 100 ⁰C).

TABLE II 
DETECTION MAP EXPERIMENTS INCLUDING THERMALLY DEGRADED PVC 

Experiments 
Samples 

detected 
PVC surface 316L surface 

1 
316L samples on 

top of PVC layer 
4/4 

76.8%  

(6223 pixels) 

23.2%  

(1877 pixels) 

2 
PVC samples on 
top of 316L layer 

11/11  

(overlapped) 

13.9%  

(672 pixels) 

86.1% 

(4152 pixels) 

(a)  (b)  (c) 

Fig. 9.  Results for Experiment #3: (a) conventional RGB image for reference, (b) a spectral band (at 1268nm, size of 90x90 pixels) from the 
hyperspectral data, and (c) detection map where four 316L samples were detected. 

Fig. 10.  Results for Experiment #4: (top) conventional RGB image for 
reference, (middle) a spectral band (at 1268nm, size of 36x134 pixels) 
from the hyperspectral data, and (bottom) detection map showing a 
total of eleven PVC samples (some of them overlapped), regardless of 
their thermally degradation. 
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These results show that HSI could be used for effective PVC 

detection, quantification, and decision support in the PVC 

removal process. Next steps include: (i) a quantitative 

evaluation of the accuracy of detection (pixel-wise), (ii) moving 

from lab-based experiments to on-site evaluation before 

implementation for industrial validation, and (iii) optimizing 

the data acquisition and analysis processes for real-time 

operation. 
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