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Abstract 

Since its advent in 1972, the Landsat satellites have witnessed consistent improvements in 

sensor characteristics, which have significantly improved accuracy. In this study, a comparison 

of the accuracy of Landsat OLI and OLI-2 satellites in land use land cover (LULC) mapping has 

been made. For this, image fusion techniques have been applied to enhance the spatial resolution 

of both OLI and OLI-2 multispectral images, and then a support vector machine (SVM) 

classifier has been used for LULC mapping. The results show that LULC classification from 

OLI-2 has better accuracy (83.4%) than OLI (92.4%). The validation of classified LULC maps 

shows that the OLI-2 data is more accurate in distinguishing dense and sparse vegetation as well 

as darker and lighter objects. The relationship between LULC maps and surface biophysical 

parameters using Local Moran’s I also shows better performance of the OLI-2 sensor in LULC 

mapping than the OLI sensor. 

Keywords: Landsat datasets; Land use land cover; Surface biophysical parameters; Moran's I; 

Support vector machine. 

1. Introduction 

Land use land cover (LULC) mapping is critical for assessing the current status of the 

landscape and how it changes over time (Stephens et al., 2019; Ellis et al., 2021).  The LULC 

mapping has become essential in measuring various features and processes on the earth's 

surface, like modelling urban extent and expansion (Rahman et al., 2010; Das et al., 2021), land 

and water quality monitoring (Ritchie et al., 2003), environmental vulnerability and impact 

assessments (Shahfahad et al., 2020), natural disaster and hazard assessment (Adnan et al., 

2020), etc. As a result, monitoring of LULC changes is highly warranted, especially when 

population and economy are rapidly growing in the developing countries (Winkler et al., 2021; 

Naikoo et al., 2022). The landscape undergoes transformation, and the quantification and 

management of these transformations are the central theme of the LULC studies (Lambin and 

Meyfroidt, 2011). However, the LULC classification and its quantification are time and money 

consuming exercises requiring high precision and accuracy, which are difficult to achieve in 

terrestrial or field-based mapping (Chen et al., 2017; Talukdar et al., 2020).   

With the advent of satellite remote sensing technology in the early 1970s, it became easy to 

map and monitor the earth's surface in a short time (Congalton, 2010; Fu et al., 2020). Since 

then, a number of satellites have been launched to monitor the various characteristics of the 
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earth’s surface, such as Landsat, SPOT, IRS Resourcesat, MODIS, etc. (Bauer, 2020; Fu et al., 

2020). The Landsat data series is the first medium-resolution and longest-running continuous 

satellite system that is being widely used in remote sensing studies (Wulder et al., 2016; Dwyer 

et al., 2018). The Landsat data series started with the launch of Landsat 1 in 1972, and since then 

the data collection has been continuous with at least one Landsat satellite in orbit (Wulder et al., 

2019). The Landsat sensors have undergone perpetual evolution in their resolution over time, 

from 4 broad bands to numerous well-positioned wavelength ranges (Masek et al., 2020). The 

Multispectral Scanner (MSS) mounted on Landsat 1, 2, and 3 had spectral bands of visible and 

infrared wavelengths that collected data at 60 m resolution at 6-bit quantization (Egorov et al., 

2019). The bit quantization increased to 8 and the spectral bands to 7 in the case of Thematic 

Mapper (TM), which was installed on Landsat 5 and collected data at 30 m (Arvidson et al., 

2006). The enhanced thematic mapper (ETM+) installed on Landsat 7 had an additional 15 m 

panchromatic band and a 60 m thermal infrared band (Goward et al., 2001). The Landsat 8 has 

a thermal infrared sensor (TIRS) and operational land imager (OLI), which have facilitated the 

retrieval of atmospheric aerosol properties and cirrus cloud detection as well as improved 

backward radiometry (Roy et al., 2014; Wulder et al., 2019). Landsat 9 was launched in 

September 2021 with OLI-2 and TIRS 2, which is an improved version of Landsat 8. The 

improvements in TIRS 2 include overcoming the 1- to 2-week reprocessing lag incurred while 

measuring accurate geolocation, as seen in Landsat 8, as well as enhancements in absolute 

radiometric accuracy, especially in the longest wavelengths (Masek et al., 2020). Landsat 9 

OLI-2 has a 14-bit quantization compared to the 12-bit of Landsat 8 OLI, which enables 

improved signal to noise for darker objects like coastal waters (Masek et al.,  2020).  

Although both Landsat 8 and 9 are medium-resolution multispectral satellites with 30 m 

spatial resolution, resolution can be further increased by merging the multispectral bands with 

the panchromatic band (Hemati et al., 2021). The fusion of multispectral images with 

panchromatic images increases the spatial resolution of the multispectral image (Malleswara 

Rao et al., 2020). For example, the spatial resolution of the multispectral image of Landsat 

data is 30 m, which increases to 15 m after its fusion with the panchromatic image (Mallick et 

al., 2021). Researchers have applied image fusion techniques like intense hue saturation (IHS), 

Brovey, wavelet HIS, etc. to improve the spatial resolution of multispectral images through 

panchromatic bands (Oldoni et al., 2021; Mallick et al., 2021; Talukdar et al., 2021a). In this 

research, the wavelet-principal component analysis (W-PCA) image fusion technique has been 
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applied for the improvement of multispectral images of Landsat 8 OLI and Landsat 9 OLI-2 

data using panchromatic images. 

In recent decades, the application of machine learning for LULC classification has gained 

significance (Abdi, 2020; Talukdar et al., 2020; Shih et al., 2021). The machine learning 

techniques used for LULC classification include both supervised techniques like random forest 

(RF), support vector machine (SVM), decision tree, etc., as well as unsupervised techniques 

like K-means clustering, iterative self-organizing data (ISODATA), etc. (Talukdar et al. 2020). 

Several studies on LULC classifications have been done using machine learning algorithms in 

recent times (Shahfahad et al., 2022; Zhou et al., 2021; Singh et al., 2021; Chachondhia et al., 

2021; Talukdar et al., 2020). Further studies have been done to compare the performance of 

different satellite sensors in LULC classification such as Sentinel-2 and Landsat 8 (Ghayour et 

al., 2021), TerraSAR-X, Radarsat-2 and Envisat-ASAR datasets (Hütt et al., 2016), 

ResourceSat-1, Landsat 5 and Landsat 7 (Chander et al., 2008) etc. for exploring different 

aspects of LULC and its changes for planning. Recently, NASA launched the Landsat 9 OLI-

2/TIRS-2 earth observation satellite, which is an advanced version of the Landsat 8 OLI/TIRS 

satellite in terms of radiometric resolution (Lulla et al., 2021; Choate et al., 2022). None of the 

studies compared the performances of Landsat 8 OLI and Landsat 9 OLI-2 in LULC 

classification. As per the Landsat 9 User Handbook, the OLI-2 sensor can detect dark objects 

like water bodies, and vegetation more precisely than the OLI sensor due to its higher 

radiometric resolution (USGS, 2021). At the same time, Landsat 8 and 9 together can provide 

a new dimension of research for long-term planning and management purposes. Hence, a 

comparison of its performance with that of Landsat 8 OLI in LULC classification may help 

future researchers find suitable datasets for LULC mapping. Therefore, the aim of this study is 

to compare the accuracies of Landsat 8 OLI and Landsat 9 OLI-2 data for LULC mapping over 

heterogeneous surfaces, i.e. Mumbai, the most populated city of India. 

2. Material and method 

2.1 Experimental study area 

For this experimental study, Mumbai city has been selected as the study area, which is a 

maritime city located in the western part of India along the Arabian Sea coast (fig. 1). The city 

has a complex and mixed land use pattern with large-scale heterogeneity, from planned 

residential and industrial areas to informal slum settlements (Pethe et al., 2014; Rihan et al., 

2021). The population of Mumbai has grown from about 3 million in 1951 to more than 18 

million in 2011, making it the largest city in India in terms of population (Census of India, 
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2011). Due to this rapid and continuous increase in population, the city has experienced a very 

fast transformation of its LULC pattern in the last few decades. Mumbai is a maritime city, 

surrounded by the Arabian Sea from the south and west, Thane Creek from the east, and the 

mainland of India from the north. Mumbai has a tropical moist climate (Koppen–Af), with a 

temperature variation of between 44 °C (June) and about 10 °C (January). The mean annual 

precipitation of the city is about 250 cm (1901–2015), most of which falls during June–August 

(Praveen et al., 2020). The city has a large reserved forest over the central ridge, which extends 

from the central parts to the northern edge of the city. Furthermore, it also has sparse mangrove 

vegetation in the western parts along the Malad and Gorai creeks. It has three major lakes in the 

central parts of the city (over the central ridge part of the city), which are the main sources of 

water for domestic use in the city.   

2.2 Details of the satellite data used  

Since its advent in the 1970s, the Landsat satellite of the National Aeronautics and Space 

Administration has emerged as the most utilized satellite data in earth surface mapping (Roy et 

al., 2014; Wulder et al., 2019; Masek et al., 2020). In this study, two of the most recent satellite 

data sets of the Landsat program, i.e. Landsat 8 and 9, downloaded from the United States 

Geological Survey (USGS) website Earth Explorer (https://earthexplorer.usgs.gov/), have been 

utilized for the LULC mapping (table 1). Over Mumbai, cloud cover is mostly seen due to its 

tropical–maritime location. Hence, to avoid cloud cover and haze-like conditions, the satellite 

data of February has been used in this study. Both Landsat 8 and 9 have two sensors, i.e., an 

operational land imager (OLI) and a thermal infrared sensor (TIRS), and have eleven bands, 

which comprise eight multispectral bands (with 30 m spatial resolution), two thermal bands (100 

m spatial resolution), and a panchromatic band (15 m spatial resolution). Landsat 8 is the eighth 

satellite of the Landsat program (the seventh to reach orbit), which was launched on February 

11, 2013. Landsat 9 is the ninth satellite of the Landsat program (the eighth to reach orbit), 

which was launched on September 27, 2021. Both Landsat 8 and 9 have a temporal resolution 

(revisiting time) of sixteen days. Landsat 9 has been placed in orbit in such a way that, together 

with Landsat 8, it has increased the revisiting period to eight days (Masek et al., 2020). Although 

both Landsat 8 and 9 have similar band composition and revisiting periods, the main difference 

is in the radiometric resolution. The OLI sensor of Landsat 8 has 12-bit radiometric resolution, 

while the OLI-2 sensor of Landsat 9 has 14-bit radiometric resolution, making it more accurate 

for mapping the spatial differences, especially over the darker objects. With 12-bit data, the 

Landsat 8 OLI sensor can differentiate 4096 color shades, while with 14-bit data, the Landsat 9 
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OLI-2 sensor can differentiate 16384 color shades of a given wavelength (USGS, 2021). In 

addition, both sensors provide nine spectral bands with the same wavelength and two TIRS 

bands (Band 1 Visible (0.43 - 0.45 µm) 30-m, Band 2 visible (0.450 - 0.51 µm) 30-m, Band 3 

visible (0.53 - 0.59 µm) 30-m, Band 4 Red (0.64 - 0.67 µm) 30-m, Band 5 Near-Infrared (0.85 - 

0.88 µm) 30-m, Band 6 SWIR 1 (1.57 - 1.65 µm) 30-m, Band 7 SWIR 2 (2.11 - 2.29 µm) 30-m, 

Band 8 Panchromatic (PAN) (0.50 - 0.68 µm) 15-m, Band 9 cirrus (1.36 - 1.38 µm) 30-m). The 

function of the bands is the same in both OLI and OLI-2 sensors. Overall, the OLI and OLI-2 

sensors are almost similar and will provide consistent images of the earth’s surface with similar 

spatial, spectral, geometric, and radiometric qualities. The only difference is the ability of OLI-2 

to detect more objects and more precisely because of the higher number of color shades due to 

better radiometric resolution.   

 

 

2.3 Method for the satellite data pre-processing and image fusion 

Though the Landsat data used in this study were cloud-free, it is still recommended that the 

satellite data be pre-processed before classification because it may be influenced by atmospheric, 

topographic, geometric, and sensor errors (Wentz et al., 2014; Young et al., 2017; Phiri et al., 

2018). Furthermore, the problems of haze and noise are very common in the tropical maritime 

regions. Thus, it is highly recommended to perform the pre-processing steps like atmospheric 

and radiometric corrections, histogram equalization, and the removal of uncertain pixels, such as 

pixels with cloud cover (Song et al., 2001). The downloaded Landsat datasets, i.e., OLI and 

OLI-2, were first stacked to get the multispectral images. Further, the haze and noise reduction 

techniques were performed using the ATCOR extension tool in the ERDAS Imagine software to 

enhance the quality of the multispectral images as well as to remove atmospheric and 

radiometric errors from them. Another important pre-processing technique is the image fusion 

technique, which is used for improving the visual and analytical quality of satellite imageries 

(Mallick et al., 2021). It is capable of retaining essential information by retrieving all relevant 

information from photos without causing errors in the resulting image. The fusion of 

multispectral pictures with panchromatic images is a method of enhancing the resolution of 

multispectral images by merging the low-resolution MS bands of the same satellite with the 

high-spatial-resolution Pan band (Mahyari and Yazdi, 2011). The most frequently applied image 
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fusion techniques are intensity-hue-saturation (IHS), Brovey transform, wavelet transform, 

Gram–Schmidt (GS) transform, etc. (Mallick et al., 2021). 

Among all the image fusion techniques, W-PCA is a better technique than others (Amolins 

et al., 2007; Talukdar et al., 2021a) because this technique produces a better result than other 

techniques like HIS, GS, and PCA. Further, being an integrated model of wavelet and PCA, this 

model reduces the error of the basic wavelet and PCA techniques (Kaur et al., 2021) (Fig. 2). 

Hence, in this study, the W-PCA image fusion technique has been applied to improve the visual 

and analytical quality of the OLI and OLI-2 multispectral images using ERDAS Imagine 

software (Fig. 3). 

A wavelet transform is a mathematical tool that can be applied to fuse images following the 

concept of multi-resolution analysis (Yunhao et al. 2006). The wavelet-PCA transform method 

combines the traditional PCA method with the wavelet transform. PCA is initially applied to the 

MS image, and the first principal component (PC1) is obtained. In the wavelet decomposition, 

wavelet coefficients are used for each PC1 and new PAN image to generate a half-resolution 

approximation image with wavelet coefficient images corresponding to horizontal 

decomposition (HD), vertical decomposition (VD), and diagonal decomposition (DD). Then, the 

coefficients of the PAN image representing the spatial detail information are injected into the 

PC1 image through the inverse multi-resolution wavelet decomposition. The new PC1 

component is obtained by performing wavelet reconstruction, and then the inverse transform is 

applied to the image to construct a fused RGB image (Mhangara et al., 2020). 

2.4 Method for the LULC classification and accuracy assessment 

Several machine learning algorithms have been applied for the LULC classification on 

satellite data, such as the spectral angle mapper (SAM), the artificial neural network (ANN), the 

RF, the SVM, etc. Based on a comprehensive review of the application of machine learning 

algorithms and comparing six machine learning algorithms i.e. SVM, RF, ANN, Fuzzy 

ARTMAP, SAM and Mahalanobis distance (MD) in LULC classification, Talukdar et al. (2020) 

found that SVM and RF are the best algorithms for LULC classification. Therefore, in this 

study, SVM is used to make LULC classification using the OLI and OLI-2 datasets. The SVM is 

founded on the idea of structural risk mitigation (SRM), which divides data points into different 

classifications using a hyper-spectral plane. The vectors in this procedure assure that the size of 

the margin is maintained (Noble, 2006). The SVM may incorporate various continuous and 

categorical variables along with linear and non-linear samples with varying class labels. Support 
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vectors are the surrounding samples that designate the boundary or hyperplane of SVM (Yılmaz 

et al., 2022; Talukdar et al., 2020). The SVM model has been utilized to classify the LULC 

based on the training sample and layer-stacked input variables. To run the mode, the C-support 

vector has been applied in this study. The SVM is executed with the following parameters of; the 

penalty parameter (C) of 1, Nu of 0.5, P of 0.5, the radial basis function-based kernel, the 

coefficient 0 of 1, the degree of 0.5, and the gamma of 1. Based on this optimized parameter, the 

LULC has been classified for two Landsat images. For the LULC classification, 724 training 

samples were randomly selected in proportion to the area of each LULC class in the study area. 

Separate training samples were collected for both the OLI and OLI-2 datasets using the ArcGIS 

software. The LULC has been classified into six classes, water bodies, dense vegetation, sparse 

vegetation, built-up areas, cropland, and open land, based on the NRSC (1995) classification 

scheme. 

The classified LULC maps are subject to accuracy assessment, as for planning and policy 

framing purposes, high precision LULC maps are required. Thus, the validation of classified 

LULC maps is considered a significant step in the LULC classification, which describes the 

precision/correctness of the LULC maps. For the validation of LULC maps, scholars have used 

different techniques such as root mean square error (RMSE), Kappa coefficient, error matrix, 

etc. (Adam et al., 2014; Phan et al., 2021; Talukdar et al., 2021b; Naikoo et al., 2022). In this 

study, the Kappa coefficient was used to assess the accuracy of the LULC classification from the 

Landsat OLI and OLI-2 datasets.  

2.5 Land discrepancy analysis between the LULC maps of OLI and OLI-2 

The LULC mapping has been done from the OLI and OLI-2 multispectral images to examine 

the efficiency of the object detection ability of the sensors. Thus, to examine the object detection 

ability of the OLI and OLI-2 sensors, a Markovian transition matrix has been applied. This 

method has often been utilized to compute the land use change analysis among several land use 

classes for the LULC of two different time periods. Hence, it has been applied to investigate the 

land discrepancy among different LULC classes between two LULC maps. If the discrepancy 

among land use classes is greater, it can be stated that both sensors have different object 

detection abilities at high magnitude. The Markovian transition matrix was used to assign LULC 

changes from t to t+1. It implies that the range of pixels was expected to convert from any 

LULC class to any other at some point throughout the specified range of pixel units. The 

following matrix p was proposed for the depiction of chances (eq. 1). 
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      (

         

         

         

)       [1]

 

where, p represents the probability of transition from i to j. 

 

 

2.6 Extraction of surface biophysical parameters 

The surface biophysical parameters (normalized difference spectral indices) have been 

widely used as indicators of the LULC pattern in different parts of the world. Seven surface 

biophysical parameters were made using the multispectral bands of Landsat 8 and 9 satellites as 

indicators of LULC pattern as well as to analyze the accuracy of LULC classification. The 

normalized difference vegetation index (NDVI) is used to assess the distribution and density of 

vegetation cover in a region (Shahfahad et al., 2020). It is calculated using the near infrared 

(NIR) and red (R) bands (Kriegler et al., 1969), i.e., band 5 and band 4 of the Landsat 8 and 9 

(eq. 2). 

     {
       
       

}         [2] 

Soil adjusted vegetation index (SAVI) is a replacement for NDVI that is calculated using 

NIR and red (R) bands with a soil adjustment factor L as shown in equation 3 (Huete, 1988).  

                 
         

        [3] 

The normalized difference built-up index (NDBI) is used to assess the built-up surfaces and 

is calculated using NIR and short-wave infrared (SWIR) bands (Zha et al., 2003) as given in 

equation 4.  

     {
          

         
}        [4] 

With the help of short-wave infrared (SWIR) and thermal infrared (TIR) bands, Chen et al. 

(2006) used equation 5 to figure out how to calculate the normalized difference bareness index 

(NDBaI). 

      {
          
         

}        [5] 
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 To analyze the surface water bodies and delineate it from other land use types, the 

normalized difference water index (NDWI) was calculated by using green and NIR bands 

(McFeeters, 1996) as given in equation 6. 

     {
           
          

}        [6] 

 Further, the modified normalized difference water index (MNDWI) is calculated using the 

Green and SWIR bands (Xu, 2006) as given in equation 7. 

      {
            
           

}       [7] 

 For the analysis of soil moisture content, the normalized difference moisture index (NDMI) 

was calculated using NIR and SWIR bands (Jin and Sader, 2005) as given in equation 8. 

     {
          
          

}        [8] 

2.7 Relationship between LULC and surface biophysical parameters using bivariate local 

Moran’s I  

The bivariate Moran's I have been applied to investigate the relationship between LULC and 

surface biophysical characteristics in terms of clustering (positive) and dispersion (negative) at a 

spatial scale. Two kinds of bivariate Moran's I techniques have been widely used for calculating 

spatial clustering analysis: global bivariate Moran's I and local bivariate Moran's I (bivariate 

LISA). The bivariate Moran’s I provide a measure of the influence of one variable on the 

occurrence of another variable in its proximity, while the bivariate LISA examines the status of 

spatial clustering as well as outliers (Anselin et al., 2002). The local bivariate Moran's method 

was utilized in this work to depict spatial correlations within distinct units per pixel in two 

LULC maps (Overmars et al., 2003). The LISA was calculated using equation 9. 

1

N

e u

eu i ij j

j

I Z W Z



           [9] 

where, 
e u

I  is the local bivariate Moran’s I for LULC and surface biophysical parameters. 

i j
W  is defined as n N-by-N weight matrix at spatial scale between the spatial unit of i

th
 and j

th
, 

which have been produced using queen contiguity weight based on the neighbour of first order 

in a 3 3 matrix. e

i
Z denotes the value of LULC for i

th
 spatial unit, while u

j
Z  refers to the value 

of biophysical parameters at j
th

 spatial unit. However, the value of 
e u

I  varies from -1 to 1. The 

cluster maps, which show positive and negative spatial relationships, were divided into four 
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kinds of spatial correlation, including two cluster categories: high–high and low–low. If the 

same high observed values surround a pixel with a high value, the result will be high–high, and 

if neighbours surround a pixel with a low value with low values, the result will be low–low. 

Furthermore, the outputs included two outlier categories, which implied negative spatial 

connection and arose when low values surrounded a high value (high–low) or vice versa (low–

high). For example, the positive values denote the positive spatial relationship between LULC 

and surface biophysical parameters, which implies that a pixel having a high value of LULC in 

terms of built-up area (if the target is built-up, the value will be 1 and 0 for others; the target 

variable changes with the changes of surface biophysical parameters) is likely to be surrounded 

by the high positive value of surface biophysical parameters (NDBI). In contrast, a pixel with a 

low value, like 0, of LULC for target built-up is likely to be surrounded by the negative value of 

surface biophysical parameters, like NDBI. Similar conditions will exist for vegetation and other 

land use features. After modelling the spatial clustering with bivariate local Moran’s, I, the 

statistical significance has also been evaluated through permutation tests. We used 999 

permutations (default setting for modelling) for the analysis. For the achieved pseudo value, the 

statistical significance value for spatial correlation has been set to 0.05. The detailed 

methodology has been presented in the flow chart (Figure 4). 
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3. Results 

3.1 Analysis of the LULC classification using OLI and OLI-2 

Based on the National Remote Sensing Centre's (NRSC, 1995) level-I classification scheme, 

six LULC classes were identified in Mumbai i.e. open land, sparse vegetation (scrubs and 

grasslands), cropland, vegetation cover, built-up area, and water bodies. The analysis of LULC 

classification shows that, although the built-up area and water bodies had almost similar patterns 

in the LULC maps classified from both OLI and OLI-2 data, a marked difference has been noted 

in the pattern of vegetation cover, scrubland, open land, and croplands (Fig. 5).  

The classified LULC map of Landsat 8 OLI shows a large proportion of area under open 

land in the central and northern parts of Mumbai. However, in the LULC map of Landsat 9 OLI-

2, the area under open land is smaller in the central and northern parts. While comparing the 

results from Google Earth imagery, it is seen that a large proportion of built-up area has been 

misclassified as open land in the central parts of the LULC map of Landsat 8 OLI. At the same 

time, in the LULC map of Landsat 9 OLI-2, a large proportion of open land has been 

misclassified as built-up area, especially in the northern parts of Mumbai. Similarly, a significant 

proportion of the densely vegetated areas were misclassified as sparse vegetation in the LULC 

map of OLI data (Fig. 6). On the other hand, the vegetation cover has been classified accurately 

in the LULC map while using OLI-2 data (Fig. 6). This may be due to the higher radiometric 

resolution of OLI-2 than OLI, which enables it to differentiate and detect darker objects more 

accurately (Masek et al., 2020; Hemati et al., 2021). It can be seen that at several places, the 

cropland has been misclassified as scrublands, especially in the central, western, and south-

eastern parts of the city.  

Mumbai city has a significant proportion of mangrove vegetation, especially along the Malad 

and Gorai creeks in the western parts and Thane creek in the eastern part (Azeez et al., 2022). 

The mangrove vegetation in the northern and western parts of Mumbai has been classified as 

sparse vegetation in the LULC map of OLI data. However, in the LULC maps classified from 

OLI-2 data, the mangrove vegetation has been clearly differentiated from the sparse vegetation. 

Similarly, the open land in the form of sand bars in the eastern part of Mumbai city has been 

classified as the built-up area in the LULC map of OLI data, while it has been clearly classified 

as open land in the LULC map of OLI-2 data. 
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3.2 Land detection discrepancy between Landsat 8 and Landsat 9 

In the present study, a land detection discrepancy analysis has been conducted to explore the 

differences in the ability of the sensors of Landsat 8 OLI and Landsat 9 OLI-2 to detect objects. 

The Markovian transition matrix along with change detection at the spatial scale have been 

applied for the land detection discrepancy analysis. Figure 7 shows the land use discrepancy 

values at varying magnitudes. The diagonal value (both on the x and y axes) between the 

particular land use classes shows the magnitude of the detection ability of the same land use by 

the two sensors. For example, the diagonal value of the water body (both in the x and y axes) is 

0.8, which indicates that 80% of the water body of the study area has been clearly detected by 

the sensors, while 20% of the water body has been allocated to the built-up areas (Fig. 7). 

Similarly, both the sensors have correctly detected all the land use features within 80% of the 

study area. Therefore, 20% of all features have discrepancies. It indicates that both sensors have 

some difference in their object detection abilities. To quantify the difference in LULC 

classification, the detection technique was applied (Fig. 8).    

 

Figure 8 shows the change detection analysis at a pixel-by-pixel scale between the LULC 

maps of the OLI and OLI-2 sensors. Some discrepancies have been observed in dense 

vegetation, cropland, and sparse vegetation. For example, the OLI image has detected the body 

of water by 11.86 sq. km., while OLI-2 has detected 11.33 sq. km. Nevertheless, the change 

analysis shows that 9.74 sq. km of water body areas are common for both sensors (Fig. 9). In the 

case of OLI, it has detected 1.85 sq. km of the built-up area as a water body, followed by a 0.14 

sq. km area of dense vegetation. On the other hand, the OLI-2 sensor has detected 1.35 sq. km of 

the built-up area as a water body, followed by 0.22 sq. km of sparse vegetation. Therefore, it can 

be stated that the OLI-2 sensor can detect dark pixels better than Landsat 8. However, in the case 

of built-up areas, the OLI and OLI-2 sensors have detected 281.49 sq. km and 258.34 sq. km, 

respectively. In comparison, the average size of the built-up area for both sensors is 220.98 sq. 

km. This means that both sensors have picked up a large portion of the area differently. For 

instance, about 19.37 sq. km of open land and 15.91 sq. km of sparse vegetation have been 

classified as built-up areas in OLI-2. Similarly, in OLI-2, 27.77 sq. km of sparse vegetation have 

been classified as the built-up area. Hence, it can be stated that OLI-2 detected a significant 

amount of open land as built-up area. This is because, in many open lands, some kind of 

construction may be going on; therefore, the spectral values are pretty similar. Moreover, 

Mumbai has a significant proportion of open land in the form of bare rocky surfaces, especially 
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in the northern parts (Rihan et al., 2021), which generally exhibits spectral values that are pretty 

similar to the built-up land (Kotthaus et al., 2014; Kamaraj et al., 2021). Furthermore, the sparse 

vegetation along the open land and the fringe of the built-up area has been detected as built-up 

area because of the similar spectral values. In contrast, OLI detected most of the discrepant land 

as having sparse vegetation. Therefore, OLI-2 has more object detection ability than OLI, which 

can help propose robust management plans for water resources, especially urban management. 

 

3.3 Analysis of the surface biophysical parameters 

Figure 10 shows the surface biophysical parameters of Mumbai city calculated using 

Landsat 8 OLI and Landsat 9 OLI-2 images. The analysis of figure shows that all the indices 

have an almost identical pattern in both OLI and OLI-2 except NDWI and MNDWI, which show 

a significant difference, especially in the south-eastern and east central parts. On the other hand, 

both NDVI and SAVI showed a similar pattern of vegetation cover in Mumbai. In both NDVI 

and SAVI, the vegetation cover has been detected very high over the central ridge of Mumbai 

city, which extends from the central part to the northern extreme of the city. At the same time, it 

varies from low to moderate in the southern parts of Mumbai and very low in the central parts, 

particularly over the Vihar, Tulsi, and Powai Lakes. The NDBI shows that the built-up area is 

high throughout the city except in the northwestern and eastern parts, where it is very low. 

Further, it is also low over the central ridge, as this part of Mumbai is covered with dense forest. 

Similarly, NDBaI also shows high bareness throughout the city except in the north-western and 

eastern parts. Furthermore, the analysis of NDWI and MNDWI shows that the city has very few 

water bodies in its central, eastern, and northern parts (Fig. 10). Moreover, the NDMI shows that 

the soil moisture is low throughout Mumbai, except in the central, eastern, and north-western 

parts. 

 

3.4 Validation of the LULC maps 

To analyze the reliability and accuracy of the LULC classification from OLI and OLI-2 

multispectral images, the accuracy assessment has been done using the kappa coefficient (table 2 

& 3). The overall accuracy of LULC classification from OLI and OLI-2 was 87.00% and 94.1%, 

respectively. According to Anderson (1976), for successful and trustworthy LULC mapping and 

modeling, a minimum accuracy value of 80% is required. The total accuracy of the classification 

attained in this investigation meets the minimal accuracy criteria. The user and producer 

accuracies of the urban and water body classes, which are the classes of most significant interest 

in this research, are 84% and 93.2%, respectively, in OLI and 95% and 97.2% in OLI-2 (table 2). 
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Generally, water body detection using Landsat 8 is easy and has a high degree of accuracy, but 

the study area is predominated by built-up area and characterized by scanty water bodies. 

Therefore, using an OLI sensor, 84% accuracy is achieved, but it may be > 90% in other areas. 

A closer examination of the error matrix shows that distinguishing croplands from thick and 

sparse vegetation is difficult. The user and producer accuracies of urban areas for the LULC of 

OLI-2 in table 3 are comparable to the LULC of OLI (97.2%), which are reasonably precise 

metrics. It is vital to remember that the accuracy of both the user and the producer is affected by 

various variables, including the number of random points created and the sampling technique 

used. The Kappa coefficient, which is a measure of agreement, may also determine 

categorization accuracy (Congalton, 1991). The Kappa coefficient might seem to be low, giving 

the appearance that the value considers the actual agreement in the error matrix and the chance 

agreement (Congalton, 1991). For the OLI and OLI-2 land cover maps, the Kappa coefficient 

was estimated to be 0.834 and 0.924, respectively. Therefore, based on the land discrepancy 

analysis and accuracy assessment, it can be stated that the LULC of the OLI-2 sensor 

outperformed the LULC of the OLI sensor, especially to detect dark objects like water bodies, 

dense vegetation, and sparse vegetation. 
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3.5 Relationship between biophysical parameters and LULC of Landsat 8 and 9  

The bivariate local Moran’s I (BiLISA cluster) has been used to detect the association 

between the LULC and surface biophysical parameters for Landsat 8 and 9 sensors. The results 

of the BiLISA cluster showed that the association between the LULC pattern and three surface 

biophysical parameters, i.e. NDMI, NDBaI, and NDWI, was not significant. Therefore, we 

removed these parameters from the final analysis. The NDMI is used to assess the soil moisture 

condition (Jin and Sader, 2005), and it does not have a direct link with the LULC pattern. Hence, 

it does not have a significant association with the LULC pattern. The NDBaI is used to assess 

bare land (Chen et al., 2006), but in Mumbai city, the proportion of bare land is very low. 

Therefore, the association between NDBaI and LULC was also not significant. Moreover, the 

NDWI also does not show a very good association with LULC in comparison to the MNDWI. 

Therefore, it was also excluded from the final analysis. 

The BiLISA map shows four different kinds of spatial correlations between LULC and 

surface biophysical parameters in Mumbai city (Fig. 11 & 12). The result shows a striking 

agreement in the clustering pattern of LULC and NDVI spatial distributions of vegetation (dense 

and sparse vegetation combined) for Landsat 8. The high-high (HH) regions of NDVI are mainly 

predicted along the outskirts of the city (Fig. 11b & 11f and 12b & 12f), while the area coverage 

is greater than SAVI (Fig. 11c & 11g and 12c & 12g). The SAVI offers a clearer vegetation 

index image, while the NDVI catches certain water bodies. As a result, the geographical 

coverage of NDVI is greater since it takes into account aquatic bodies. The low-high (LH) 

regions were widely scattered across the city, with few exceptions. For Landsat 8, the high-low 

(HL) regions were spread throughout a reasonably small area for NDVI, MNDWI, and SAVI. 

while HH areas are concentrated in the core of the city in the case of built-up regions. The HL 

area is concentrated throughout Mumbai, whereas the LH area is concentrated on the outskirts of 

the city. In the case of Landsat 9, the MNDWI, NDVI, SAVI, and NDBI have all detected the 

highest concentration of HH near the water bodies, vegetation, and built-up areas. Furthermore, 

in the case of vegetation, HH regions cover more minor areas than Landsat 8 since it recognizes 

certain sections of bodies of water and built-up areas as vegetation. The same is true for built-up 

regions because Landsat 9 can find dark pixels better, so we can say that LULC and surface 

biophysical parameters can be accurately found. 

4. Discussion 
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Although a number of satellite data sets have been used for the LULC mapping in different 

parts of the world, the Landsat data series is the most commonly used satellite data for the 

LULC mapping (Alam et al., 2020; Chaves et al., 2020). Landsat 9 OLI-2/TIRS-2, launched in 

September, 2021 from the Vandenberg Air Force Station in California, is the ninth satellite of 

the Landsat program, which is an upgraded version of the earlier Landsat satellite 8 OLI/TIRS, 

(Lulla et al., 2021). Although, both Landsat 8 OLI/TIRS and Landsat 9 OLI-2 have similar 

geometric and spatial characteristics, together they have increased the temporal resolution 

(revisit time) of the OLI sensor to 8 days. In this study, we have tried to compare the 

performance of the Landsat 8 OLI and Landsat 9 OLI-2 datasets in the LULC mapping. 

Although previously scholars have compared the performance of different satellite sensors 

(Forkuor et al., 2018; Ghayour et al., 2021) and techniques (Abdi, 2020; Talukdar et al., 2020) in 

LULC mapping, no such study has been done for the OLI-2 data. Moreover, as per the authors' 

knowledge, this is the first study in which the LULC mapping has been done for the OLI-2 

multispectral dataset. 

The LULC classification from OLI and OLI-2 sensors has been done using the SVM 

machine learning algorithm. Further, the accuracy assessment has been done using the kappa 

coefficient. The study shows that the classification accuracy of both sensors is satisfactory 

(overall accuracy > 90%), but the OLI-2 data (overall accuracy > 98.00%) has outperformed the 

OLI data (overall accuracy > 91.7%). The accuracy of LULC classification from satellite 

datasets depends on a number of factors, like the resolution of the satellite data (Ullah et al., 

2017), the approaches and techniques used (Talukdar et al., 2020; Balha et al., 2021), the 

training data (Shang et al., 2018), etc. In this study, the SVM has been applied for LULC 

classification using the same number of training samples. Further, the sensor characteristics of 

both OLI and OLI-2 are similar except for their radiometric calibration, which is higher for OLI-

2 (14-bit) than OLI (12-bit). The accuracy over dark objects like dense vegetation cover was 

found to be higher for the OLI-2 (90.9%) than that of the OLI data (86.6). At the same time, the 

accuracy of the built-up area was almost similar for both datasets. This illustrates that, the OLI-2 

data is able to map the dark objects more precisely than the OLI data, which supports the 

assumption that OLI-2 has higher accuracy over darker objects due to its higher radiometric 

calibration (USGS, 2021). However, the accuracy of a classified LULC map also depends on the 

spatial resolution of the satellite data, the quality of training samples, and the technique and 

software used for the LULC classification. 
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The surface biophysical parameters were also calculated from the multispectral bands of the 

OLI and OLI-2 datasets for the visual analysis and comparison of LULC classification with 

them. The surface biophysical parameters have been used as an indicator of LULC in a number 

of studies (Xue and Su, 2017; Rasul et al., 2018; Shahfahad et al., 2020; Nandam and Patel, 

2021). In this study, we calculated seven biophysical parameters, but only four ctral bands of the 

OLI and OLI-2 datasets for the visual analysis and comparison of LULC classification with 

them. The surface biophysical parameters have been used as an indicator of LULC in a number 

of studies (Xue and Su, 2017; Rasul et al., 2018; Shahfahad et al., 2020; Nandam and Patel, 

2021). In this study, we calculated seven biophysical parameters, but only four (i.e., MNDWI, 

NDBI, NDVI, and SAVI) showed a significant relationship with the LULC pattern. Two 

parameters, i.e. NDBaI and NDMI, did not show any relationship with the LULC as the bare 

surface is very low in Mumbai and the moisture content is not retrieved in the LULC 

classification. The study showed that the MNDWI has better accuracy in showing water bodies 

than the NDWI in both OLI and OLI-2, hence, the NDWI was removed from the final analysis. 

Zhai et al. (2015) also noted a higher capability of the MNDWI for water detection from Landsat 

5 TM and Landsat 7 ETM+ images. Among SAVI and NDVI, although SAVI was found to be 

more accurate in detecting the vegetation cover from both OLI and OLI-2 sensors. The object 

detection capability of NDVI was also high from both sensors. Moreover, the vegetation 

detection capability of SAVI has been noted to be higher for the OLI-2 sensor than OLI. The 

SAVI had shown a better vegetation detection capability than NDVI in several studies (Xue and 

Su, 2017; Barati et al., 2011). The study also showed that the NDBI, SAVI, and MNDWI were 

found to be the best indices for the mapping of built-up area, vegetation cover, and water bodies, 

respectively, as they showed a significant relationship with the LULC classification in both 

Moran’s I and cluster-dispersion analysis. 

The study further showed that although both OLI and OLI-2 sensors have produced reliable 

results in the LULC mapping with satisfactory accuracy, the accuracy of the OLI-2 sensor is 

comparatively higher. Therefore, it may be stated that the Landsat 9 OLI-2 data have increased 

the performance of the Landsat data series in monitoring the earth's surface features. Hence, the 

application of OLI-2 images in LULC mapping may increase its accuracy, which may be better 

for preparing land use plans at various levels. For future studies, it is suggested to make a 

comparison of different LULC classifiers for LULC mapping using the OLI-2 dataset. 

Previously, Talukdar et al., (2020) did the same for OLI data and noted that SVM and RF were 

the best classifiers for LULC mapping using OLI data. Hence, a comparison of different 
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classifiers for LULC mapping from OLI-2 data may help in finding the best classifier for LULC 

mapping from OLI-2 data. 

5. Conclusion 

In the present study, an evaluation of the performance of the Landsat 8 OLI and Landsat 9 

OLI-2 multispectral datasets has been done for the LULC mapping over a heterogeneous urban 

surface. For the LULC classification, the SVM technique has been applied using QGIS software. 

Seven surface biophysical parameters (NDVI, SAVI, NDBI, NDBaI, NDWI, MNDWI, & 

NDMI) were extracted from the multispectral bands of both satellites for a comparative analysis. 

The study shows that the LULC classification from both OLI and OLI-2 sensors exhibited 

similar LULC patterns and has produced reliable accuracy in LULC mapping (overall accuracy 

of 83.4% and 92.4%, respectively). The accuracy of the OLI-2 LULC map is comparatively 

higher. The comparison of classified LULC maps from Google Earth imageries also shows some 

portions of vegetation cover and built-up areas have been classified as open land in the LULC 

map of the OLI image while they have been correctly classified in the LULC map of OLI-2. 

Moreover, the LULC classification from OLI-2 also showed some errors, as some portions of 

open land have been classified as the built-up area in the LULC map of OLI-2. The land 

detection discrepancy using the Markovian transition matrix describes that although the OLI and 

OLI-2 sensors have some difference in their capability of object detection, both of them have 

detected the LULC features with about 80% accuracy. The change detection between the LULC 

of the OLI and OLI-2 sensors also showed some variation in the area under each LULC class. 

The comparison of surface biophysical parameters (spectral indices) using bivariate local 

Moran’s I and BiLISA clusters shows that only four biophysical parameters (NDVI, SAVI, 

NDBI, and MNDWI) have a significant relationship with the LULC maps in both OLI and OLI-

2. Furthermore, in the case of OLI-2, the relationships of SAVI and MNDWI with LULC maps 

were found to be stronger, whereas NDVI and NDBI showed a similar relationship with LULC 

maps in both sensors. Based on this analysis, it can be concluded that the Landsat 9 (OLI-2) data 

is better for precise mapping of the earth's surface features.  
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Figure 1 Locational aspect of the experimental study area 
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Figure 2 The schematic diagram of the process of wavelet-PCA for generating the high-resolution 

multispectral images 
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Figure 3 False color composite after fusion of (a) Landsat 8 OLI and (b) Landsat 9 OLI-2 data  
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Figure 4 Methodological flow chart for the study 
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Figure 5 Classified LULC maps using multispectral bands of (a) Landsat 8 OLI and (b) Landsat 9 OLI-2 
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Figure 6 Comparison of the LULC classification with google earth Acc
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Figure 7 Land discrepancy analysis between Landsat 8 and 9 using Markovian transition matrix 

 

 
Figure 8 Visualization of spatial discrepancy of land detection between Landsat 8 and Landsat 9 
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Figure 9 Quantification of land detection discrepancy between the LULC of Landsat 8 OLI and Landsat 9 

OLI-2 
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Figure 10 Surface biophysical parameters calculated from Landsat 8 OLI and Landsat 9 OLI-2 data sets 

Figure 6 Comparison of the LULC classification with google earth 
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Figure 11 Significance analysis using bivariate local Moran’s I for (a) LULC-MNDWI, (b) LULC-NDVI, 

(c) LULC-SAVI, and (d) LULC-NDBI, and cluster-dispersion analysis for I LULC-MNDWI, (f) LULC-

NDVI, (g) LULC-SAVI, and (h) LULC-NDBI for Landsat 8 
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Figure 12 Significance analysis using bivariate local Moran’s I for (a) LULC-MNDWI, (b) LULC-NDVI, 

(c) LULC-SAVI, and (d) LULC-NDBI, and cluster-dispersion analysis for I LULC-MNDWI, (f) LULC-

NDVI, (g) LULC-SAVI, and (h) LULC-NDBI for Landsat 9 
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Table 1 Details of the Landsat satellite data used 

Satellite Sensor 
Date of 

Acquisition 

Path/ 

ROW 

Spatial 

Resolution 

Radiometric 

Resolution 

Temporal 

Resolution 

Cloud 

Cover  

Landsat 

8 
OLI/TIRS 13-02-2022 148/47 30/100 12 bit 16 days 0.03% 

Landsat 

9 

OLI-

2/TIRS-2 
21-02-2022 148/47 30/100 14 bit 16 days 0.00% 

 

Table 2 Validation of LULC map of Landsat OLI 

LULC 

classes 

Water 

body 

Dense 

vegetation 

Sparse 

vegetation 

Built-

up area 
Cropland 

Open 

land 
Total 

User’s 

Accuracy 
Kappa 

Water 

body 
32 4 2 0 0 0 38 0.84 - 

Dense 

vegetation 
0 29 4 0 2 0 35 0.828 - 

Sparse 

vegetation 
0 4 43 0 3 0 50 0.86 - 

Built-up 0 0 0 109 0 8 117 0.932 - 

cropland 0 0 6 0 32 0 38 0.842 - 

Open land 0 0 0 7 0 25 32 0.781 - 

Total 32 37 55 116 37 33 310 0 - 

Producer’s 

Accuracy 
1 0.784 0.782 0.939 0.864 0.581 0 0.87 - 

Kappa - - - - - - - - 0.834 

 

Table 3 Validation of LULC map of Landsat OLI-2 

LULC 

classes 

Water 

body 

Dense 

vegetation 

Sparse 

vegetation 

Built-up 

area 
Cropland 

Open 

land 
Total 

User’s 

Accuracy 
Kappa 

Water 

body 
38 2 0 0 0 0 40 0.95 - 

Dense 

vegetation 
1 37 2 0 0 0 40 0.925 - 

Sparse 

vegetation 
0 0 41 0 2 0 43 0.953 - 

Built-up 0 0 2 116 0 2 120 0.972 - 

cropland 0 0 3 0 32 0 35 0.967 - 

Open land 0 0 0 3 1 28 32 0.875 - 

Total 39 39 48 119 35 30 310 0 - 

Producer’s 

Accuracy 
0.974 0.948 0.854 0.975 0.914 0.933 0 0.941 - 

Kappa - - - - - - - - 0.924 
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