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A B S T R A C T   

Maritime risk research often suffers from insufficient data for accurate prediction and analysis. This paper aims to 
conduct a new risk analysis by incorporating the latest maritime accident data into a Bayesian network (BN) 
model to analyze the key risk influential factors (RIFs) in the maritime sector. It makes important contributions 
in terms of a novel maritime accident database, new RIFs, findings, and implications. More specifically, the latest 
maritime accident data from 2017 to 2021 is collected from both the Global Integrated Shipping Information 
System (GISIS) and Lloyd’s Register Fairplay (LRF) databases. Based on the new dataset, 23 RIFs are identified, 
involving both dynamic and static risk factors. With these developments, new findings and implications are 
revealed beyond the state-of-the-art of maritime risk analysis. For instance, the research results show ship type, 
ship operation, voyage segment, deadweight, length, and power are among the most influencing factors. The new 
BN-based risk model offers reliable and accurate risk prediction results, evident by its prediction performance 
and scenario analysis. It provides valuable insights into the development of rational accident prevention mea
sures that could well fit the increasing demands of maritime safety in today’s complex shipping environment.   

1. Introduction 

The rapid development of the shipping industry stimulates global 
trade prosperity, which also poses challenges to maritime safety [1]. 
Shipping has the characteristics of large transportation capacity, long 
haulage distance and low cost, which contribute to its ability to carry 
more than 90% of the international trade in volume [2,3]. However, the 
increase in maritime transportation demand has led to the rapid 
development of large-scale and high-speed ships, high maritime traffic 
density, and intense traffic situations [4]. In addition, due to the impact 
of complex marine navigation environments and severe weather, mari
time accidents often lead to serious consequences, including channel 
blockage, economic loss, environmental pollution, and/or even death 
[5]. For example, the giant container ship ‘Ever Given’ ran aground in 
the Suez Canal on 23rd Mar. 2021 due to strong winds and human error, 
which caused a disruption in the canal, a serious backlog of ships, and 
losses of hundreds of billions of dollars in trade [6]. Therefore, it is 
particularly imminent to prevent maritime accidents and ensure safety 
at sea for the sustainable development of the shipping industry, along 
with the primary goal of the International Maritime Organization (IMO). 

The relevant studies in the existing literature have shown that the 
task is challenging as the safety of maritime transport is affected by (1) a 

combination of factors of high uncertainty such as ship conditions, 
environmental conditions, human error, and management issues [7] and 
(2) dynamic features of the factors whose impact on maritime safety 
changes with time. To address them, it is necessary to collect and 
investigate the newest data derived from recent maritime accidents, 
analyze the causes of the accidents, extract the key risk influential fac
tors (RIFs) in different scenarios, and then predict the associated risk. 
Although classical risk analysis methods (e.g. probabilistic risk analysis) 
have been widely applied in the maritime industry, they often fail to 
address inherent problems in maritime risk analysis, such as incomplete 
historical data and complicated interdependency among the risk factors. 
These problems stimulate the development of advanced risk analysis 
methods using primary uncertainty theories (e.g. fuzzy logic (FL), the 
D-S theory, and the Bayesian probabilistic theory). 

Among the advanced maritime risk analysis methods, a Bayesian 
network (BN) has attracted much attention due to its ability to capture 
RIFs and their interrelationships efficiently in recent years. Fan et al. [8] 
selected the Naïve Bayesian network (NBN) to model maritime accident 
risk analysis and extracted 16 RIFs based on the 161 accident reports 
collected from 2012 to 2017. Wang and Yang [9] applied an augmented 
naïve BN (ABN) method to model the waterway accident data and 
analyze the RIFs related to the severity based on the data collected from 
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China’s Maritime Safety Administration (MSA). 229 accident reports 
with 350 vessels were screened from 1979 to 2015 to identify the 20 
RIFs to construct the risk model. Jiang and Lu [10] proposed a dynamic 
Bayesian network (DBN) model for assessing dynamic contingencies in 
Indian Ocean sea lanes based on the incident data from 2007 to 2018. 
Zhao et al. [11] applied a Bayesian-based network training method to 
study the potential causes of maritime accidents for autonomous ships in 
the Yangtze River based on the collected 160 accident reports from the 
China Maritime Safety Administration from 2013 to 2019. 19 RIFs were 
recognised from the accident information. Although showing some 
attractiveness, these studies have revealed their applications in a 
regional water and/or without a full set of all relevant RIFs because of 
the data limitations. 

The Marine Casualties and Incidents in the Global Integrated Ship
ping Information System (GISIS) database of the IMO is the world’s most 
authoritative accident investigation dataset. Lloyd’s Register Fairplay 
(LRF) database stores the official global static data of ships. In this paper, 
we develop a new maritime accident dataset with all the datasets con
taining comprehensive records against all the IMO regulated RIFs from 
the GISIS dataset and survey reports for the 2017–2021 period. In the 
process of the dataset development, the incompleted and missing ship- 
related data in the GISIS database are complemented by the LRF data
base. Along with the new maritime accident database, the other main 
contributions of this paper are as follows:  

(1) The latest maritime accident data from 2017 to 2021 is collected 
from the GISIS and LRF to develop a new accident database in 
which each dataset contains comprehensive information on all 
the relevant static and dynamic RIFs.  

(2) By incorporating all the IMO regulated RIFs into a new BN-based 
risk analysis model, it improves the accuracy of maritime risk 
prediction and diagnosis analysis.  

(3) Thanks to the comprehensive datasets, all the RIFs are, for the 
first time, defined by the multiple states recommended by the 
IMO. It aids in improving the standardisation of maritime risk 
analysis, which in the current literature is presented in diversified 
ways and hammers the comparative analysis and benchmarking 
across different analysis results  

(4) The development of a data-driven BN model based on global 
maritime accidents stimulates maritime accident analysis from a 
global perspective. The result can be used as a benchmark for 
regional maritime accident analysis.  

(5) It explores the newest characteristics of marine accidents through 
various sensitivity and scenario analysis. The results can guide 
the rational development of new accident prevention measures 
that fit today’s complex maritime environment. 

The rest of the paper is structured as follows. Section 2 describes a 
detailed literature review of maritime accident research and the state-of- 
the-art of using BN in maritime risk analysis. Section 3 presents the 
development of a new accident database and the identification of the 
RIFs. The methodology consisting of BN structure learning, model 
validation, and sensitivity analysis is presented in Section 4. Section 5 
reveals the results and discusses the impact of the most important RIFs 
through sensitivity analysis for drawing useful implications. It also es
timates accident risks in different situations through scenario simula
tion. Finally, Section 6 concludes the paper. 

2. Literature review 

2.1. Studies of maritime risk analysis 

To assess risks and ensure maritime safety, a systematic and struc
tured methodology, Formal Safety Assessment (FSA), was proposed by 
the IMO. Ship conditions, organisational management, hardware 
equipment, and environmental factors are taken into account in the FSA 

method to provide reference and support for maritime stakeholders to 
make decisions [9]. Within the context of the FSA methodology, a lot of 
maritime risk studies, including qualitative and quantitative assess
ments, have been carried out worldwide [12]. Qualitative assessments 
provide detailed observations by analysing small samples. The 
commonly used qualitative evaluation methods in shipping risk analysis 
include Functional Resonance Analysis Method (FRAM), Root Cause 
Analysis (RCA) and Risk Rating Scales, etc. In particular, qualitative 
methods such as Human Factors Analysis and Classification System 
(HFACS) and Accident Analysis Mapping (AcciMap) are used to analyze 
human factors in maritime accidents. Arslan and Turan [13] investi
gated the marine casualties for shipping safety based on a Strength, 
Weakness, Opportunity and Threat (SWOT) analysis and AHP (analytic 
hierarchy process) method at the Strait of Istanbul. Chen et al. [14] 
utilized an HFACS method to investigate and classify human factors in 
maritime accidents. Salihoglu and Beşikçi [15] applied a FRAM method 
to assess the risk of shipping operations qualitatively. However, quali
tative assessment methods could not quantify risks, thus often being 
criticised for their reliability and validity [2]. 

To address these drawbacks, scholars have used Quantitative Risk 
Assessments (QRA) to quantitatively measure the causal relation be
tween marine accidents and the relevant influential factors. Many QRA 
models have been proposed and widely used in the maritime safety field, 
such as FL, Evidence Reasoning (ER), Event Tree Analysis (ETA), Fault 
Tree Analysis (FTA) and BN [16,17]. Balmat et al. [18] proposed a fuzzy 
approach to evaluate maritime risk based on a decision system. Zhang 
et al. [19] adopted a Belief Rule Base (BRB) methodology to evaluate the 
safety management performance of the Maritime Safety Administration 
(MSA). Raiyan et al. [20] utilized an ETA method to explore the impact 
of a single risk factor or a combination of different factors on accident 
occurrence. Wu et al. [21] put forward a disposal method for ships 
without command by incorporating ER and Technique for Order of 
Preference by Similarity to Ideal Solution (TOPSIS) in emergency 
decision-making. QRA methods can effectively deal with the uncertainty 
related to risk. However, the lack of maritime accident data impedes 
QRA applications, and as a result, some influencing factors have to be 
overlooked in the analysis. Therefore, the hybrid methods that combine 
qualitative and quantitative evaluation are proposed and applied to 
investigate the risk of maritime transportation [7]. For instance, Kum 
and Sahin [22] explored previous maritime accidents in the Arctic re
gion, applied an RCA method to explain the causes, and applied a fuzzy 
FTA to make suggestions to decrease the probability of maritime acci
dents. Sotiralis et al. [23] proposed a method based on the Technique for 
Retrospective and Predictive Analysis of Cognitive Errors (TRACEr) and 
BN to explore human factors in the quantitative analysis of ship opera
tional risk. 

Among all the QRA methods used in maritime transport, BN shows 
unique advantages with its powerful modelling capabilities on data 
tolerance and bi-directional risk diagnosis and prediction analysis. 
Compared to FL and ER, BN is superior in modelling causal relationships 
between the influential factors [2]. Compared with FTA, BN can tackle 
multiple-state variables and multiple outputs. In addition, compared to 
the other QRA methods, BN has shown its capacity to model and 
accommodate human and organisational factors together with other 
RIFs [24]. These characteristics make BN a suitable method for maritime 
accident modelling in this study. 

2.2. BN in maritime risk analysis 

In this section, the advantages of BN in risk modelling are further 
demonstrated by a systematic review of its applications in maritime 
accident/risk analysis. Hänninen [25] conducted an in-depth study on 
the benefits and challenges of BN applied to maritime transport risk 
assessment. The results showed that BN significantly fits maritime safety 
management and decision-making. BN can identify the most significant 
influential factors and explicitly reveal the probabilistic dependency and 
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causal relationship among RIFs. It also has the ability to forward analysis 
and reverse reasoning, incorporate new information or evidence to up
date risk inference, and deal with missing data [7]. Therefore, BN has 
witnessed increasing popularity in the field of maritime safety, including 
illustrative studies on inland waterway congestion [26], pirate attack 
risk analysis [27], and marine accident risk analysis in the Arctic water 
[28], etc. 

When applying BN in maritime accident analysis, the first step is to 
establish a BN structure. Generally, literature review, expert knowledge, 
data learning, or their combination are the main methods for BN 
structure learning [16]. Bouejla et al. [29] utilised qualitative knowl
edge provided by maritime experts and the data from the IMO to 
construct a BN structure to assess the risk of piracy attacks on ships and 
oil fields. Pristrom et al. [27] built a BN model based on the GISIS data 
and expert judgement to estimate the probability of a ship being 
hijacked by pirates in the West Indies or East Africa. Zhang et al. [16] 
integrated statistical data and expert knowledge to establish a BN model 
for predicting the consequences of maritime accidents in Tianjin Port. 
Expert knowledge remains an essential data source for maritime acci
dent modelling when essential data becomes unavailable or incomplete 
from relevant investigations [30]. However, expert knowledge is argued 
to be subjective and uncertain [5]. 

To avoid the subjectivity and incompleteness introduced by subjec
tive data in BN modelling, many scholars have developed data-driven 
BN for maritime risk analysis. The results of these studies show that 
the data-driven BN is an effective tool for maritime accident prevention 
and safety management [31]. There are a number of algorithms for the 
data-driven approach, such as Naïve Bayesian Networks (NBN), 
Augmented naive Bayesian Networks (ABN), K2 algorithm, and TAN. 
Fan et al. [8] applied NBN to construct a network model to stimulate the 
interdependence among risk factors and quantify the impact of different 
factors on various maritime accidents. However, an NBN model requires 
that the influential factors are independent, which is not in line with the 
actual situation of maritime accidents. Wang and Yang [9] selected an 
ABN model through a comparative study with the NBN model to analyze 
the key risk RIFs affecting the severity of waterway accidents. However, 
the network structure of this model was relatively complex, requiring 
the artificial adjustments of unreasonable causal relationships among 
RIFs. Friedman et al. [32] pointed out that TAN is superior to NBN. TAN 
not only maintains the robustness and computational simplicity of NBN 
but also improves the result accuracy. Among data-driven network 
construction methods, the TAN method has been shown to be more 
competitive and accurate [24,33,34]. Therefore, this study extends the 
TAN method by the integration of information entropy to construct a BN 
model of maritime accidents. The new model can avoid subjective in
ferences, explore the hidden cause among different RIFs, and improve 
risk prediction accuracy. 

Data-driven BN requires a large amount of historical accident data. 
Although the existing marine accident databases provide a large number 
of datasets, many of them only focus on a certain selected value for 
specific purposes they serve [5], and hence none has comprehensive 
maritime accident data against all the dynamic and static information of 
the RIFs by the IMO. The maritime accident investigation reports pro
vide navigation conditions, environmental information, human opera
tions and causes of an accident, while indicating in detail the potential 
risks and causal relationships among various factors [24]. However, 
there are few studies using accident reports for accident analysis because 
extracting data from each report is costly. Furthermore, the number of 
accident reports containing comprehensive information on all the RIFs is 
scanty, often resulting in cross-references among multiple reports from 
different sources. It is evident by the fact that (1) the existing research 
using marine accident reports replies on a selected number of RIFs due to 
the limitation of the data availability, and (2) in most cases, the research 
scopes are constrained to a national/regional area. 

2.3. Our contribution to maritime accident risk analysis 

In this work, we combine the two most established maritime accident 
databases (i.e. GISIS and LRF) to develop a new database to address the 
data incompleteness issues in the existing studies. In total, 402 accident 
data records are derived using the criteria against which every single 
accident has to be complete and comprehensive. Meantime, each dataset 
must contain all the information against the regulated RIFs by the IMO. 
All the data also have to be recent and fall in the period of 2017–2021 to 
capture the latest characteristics of maritime accidents. The new data- 
driven BN complements the previous studies in the field by investi
gating all the 23 RIFs by the IMO and their joint impact on maritime 
accidents for the first time. Because of the amount of data obtained, this 
paper does not necessarily compromise the abstraction of the states used 
to describe all the 23 RIFs. In other words, all the states/grades used to 
model each RIF are kept consistent with the ones by the IMO, which will 
significantly stimulate the standardisation of maritime risk analysis and 
result benchmarking. Finally, from the perspective of practical impli
cations, the new findings from this paper aid in capturing the evolution 
of maritime accident risk characteristics in the recent five years, which 
is, to the authors’ best knowledge, absent from the existing literature. 

3. Data collection and processing 

3.1. Data collection 

This study establishes a new maritime accident database for the 
period 2017–2021 based on the IMO GISIS and LRF databases. The 
maritime casualties and incidents information is collected and described 
under the requirements of the IMO, while some complete investigation 
reports from the IMO are also provided and listed in the GISIS casualty 
module. among them, the incident information contains the time and 
place of an accident, the involved ships and a simple description of the 
cause, etc. Meantime, the accident reports contain more detailed infor
mation on the ship’s navigation, the external environmental condition, 
the process of the accident, and the root cause analysis. Furthermore, the 
normalised ship data provided by the LRF are used to complete the 
missing ship information (i.e. ship type, ship age, hull construction, hull 
type) in the IMO GISIS accident database. The ship’s Maritime Mobile 
Service Identity (MMSI) number and IMO number are used to bridge the 
relevant information from the two different databases to ensure the 
consistency and accuracy of the collected data. 

The original accident database is generated through a comprehen
sive statistical analysis of marine accidents recorded in the above da
tabases. The data records are collected from the IMO GISIS database. 
The ship type, hull type, ship age, length, breadth, gross tonnage, 
deadweight, and hull construction are incomplete in many records. 
Then, the static information is searched from the LRF database based on 
the MMSI and IMO number of each ship to complete the data. The 
completed data is also checked in the LRF database to ensure their ac
curacy, integrity, and validity. It costs six months for data collection and 
verification before further data screening. In total, 1105 accident data 
records are extracted from the IMO GISIS database from 1st Jan. 2017 to 
31st Dec. 2021 against the two criteria set in Section 2.3. The detailed 
data screening process is shown below. 

Step 1. Data cleansing. 
Accidents involving fishing vessels contain incomplete data, and in 

some cases, only ship static information is recorded. It is difficult, if not 
impossible, to use other accident databases to complement such accident 
reports against all 23 RIFs. Hence they are removed from our newly 
developed database. Similarly, after a careful investigation, accident 
reports involving domestic ferries and navy ships are also removed for 
the same reason. Finally, 462 accident data records are reserved after 
the data cleansing. 

Step 2. Data completion. 
For the remaining 462 accident records, the LRF database is applied 

H. Li et al.                                                                                                                                                                                                                                        



Reliability Engineering and System Safety 230 (2023) 108938

4

to supplement the missing data when necessary, such as the information 
on the ship type, hull type, ship age, breadth, length, gross tonnage, 
deadweight, and hull construction based on IMO number and MMSI. 
Eventually, 428 accident data records have a full set of data supporting 
all the identified RIFs in Section 3.2. 

Step 3. Data screening. 
To ensure integrity and validity, data screening is further conducted 

to remove inaccurate data by manually checking each remained record 
and report. Accident records that fail to explain the cause of the involved 
accident, ship equipment, and environmental information are discarded. 
At last, 402 accident records are reserved in the new database in this 
study. 

3.2. RIF identification 

Factors affecting the safety of maritime transport are defined as RIFs. 
Based on the constructed maritime accident database, this paper iden
tified RIFs using the relevant literature and existing marine accident 
records guidance from the IMO. The relevant literature is obtained by 
searching the keywords ‘Bayesian network’ and ‘Maritime accident’ on 
the Web of Science. There are 129 related journal papers found by the 
research. After further screening of their abstracts and contents, 16 
typical journal papers that described the risk factors are selected for 
further analysis. Then, the RIFs are analyzed against each of the 16 
retrieved results, and the visualisation of all the 22 RIFs is shown in 
Fig. 1. It is evident that ship type (12), ship age (11), weather condition 
(10), length (9), time of the day (9), sea condition (9), gross tonnage(8) 
and ship speed (8) are the top eight RIFs in the previous research. 

To better understand the RIF difference in the previous studies, the 

sources of different RIFs based on the retrieved results and the new 
database are presented and compared. Furthermore, according to the 
new maritime accident dataset, 23 RIFs are finally identified and listed 
in Table 1 by the frequency of occurrence of each risk factor. As shown in 
Table 1, numbers 1–23 denote the 23 RIFs, ‘A’ means this RIF is applied 
in the related reference, ‘GL’ indicates that the RIF data is from the IMO 
GISIS and LRF databases. ‘G’ expresses that the RIF data is only from the 
IMO GISIS database. It further reveals the necessity and effectiveness of 
the combination of the IMO GISIS and LRF databases. The overlaps and 
gaps among the RIFs highlight the new contributions of this paper in the 
sense that it pioneers a comprehensive BN-based maritime risk model 
without the need to overlook some RIFs due to data limitation. 
Compared with the previous studies, the RIFs in this study consist of a 
new variable (i.e. hull construction). Hull construction is deemed as a 
risk factor for maritime accidents for the first time as it closely links with 
RIFs such as ship type and accident type. It is generally divided into 
double hull, single hull, and double bottom. Double-hull vessels tend to 
have better stability and manoeuvrability than single-hull vessels [35]. 

After identifying the RIFs, the previous studies in the field normally 
need to simplify the definition of their states in order to reduce the high 
data demand in the process of quantifying their interdependencies (e.g. 
conditional probability tables – CPT in BN). Obviously, it will make it 
difficult to compare and benchmark the risk analysis results across 
different waters or periods of time. For example, for the ‘voyage 
segment’ of an accident, the IMO gives a more detailed classification, 
including anchorage, archipelagos, at berth, canal, channel, coastal 
waters, inland waters, open sea, port, port approach, and river. The new 
database records detailed ship type information for the variable ‘ship 
type’. To make full use of the information in the data, we add two new 

Fig. 1. Frequency of RIFs in the retrieved literature.  
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Table 2 
Definition and Status of RIFs.  

Number RIFs Description States 
Ship-related factors 

1 Ship type Bulk carrier, cargo ship, 
container ship, dredger, 
fishing ship, offshore ship, 
passenger ship, RORO, 
tanker or chemical ship, 
tug, others 

1,2,3,4,5,6,7,8, 
9,10,11 

2 Hull type Aluminium alloy, 
composite materials, GRP, 
light alloy, steel, wood, NA 

1,2,3,4,5,6,7 

3 Ship age 
(years) 

(0,5], [6,10], [11,15], 
[16,20], >20, NA 

1,2,3,4,5,6 

4 Length 
(meters) 

(0,100], (100,200], >200 1,2,3 

5 Breadth 
(meters) 

(0,20], (20,30], (30,40], 
>40 

1,2,3,4 

6 Gross 
tonnage (GT) 

(0,3000], (3000,10,000], 
(10,000,20,000], >20,000 

1,2,3,4 

7 Deadweight 
(DWT) 

(0,5000], (5000,15,000], 
(15,000,30,000], >30,000 

1,2,3,4 

8 Draught 
(meters) 

(0,6], (6,9], >9 1,2,3 

9 Power (kW) (0,3000], >3000 1,2 
10 Hull 

construction 
Double bottom, double hull, 
single hull 

1,2,3 

11 Vessel 
condition 

Good condition of ships or 
the vessel condition has 
nothing to do with the 
accident; 
Poor condition of ships (e.g. 
ship design errors, failure of 
ship equipment) 

good, bad 

Environment-related factors 
12 Time of day Day (07:00 to 19:00), night 

(other) 
day, night 

13 Wind 
(Beaufort 
scale) 

0 to 5, greater than 6 high, low 

14 Visibility 
(nm) 

2 or less, greater than 2 good, bad 

15 Weather 
condition 

Good or bad, considering 
wind, rain, fog, visibility, 
and extreme weather 

good, bad 

16 Sea condition Good or bad, considering 
falling or rising tide, 
current, waves, and sea 
state 

good, bad 

Navigation-related factors 
17 Ship 

operation 
At anchor, fishing, loading/ 
unloading, on passage, 
manoeuvring, pilotage, 
towing, others 

1,2,3,4,5,6,7,8 

18 Voyage 
segment 

anchorage, archipelagos, at 
berth, canal, channel, 
coastal waters, inland 
waters, open sea, port, port 
approach, river 

1,2,3,4,5,6,7,8,9,10,11 

19 Ship speed 
(knots) 

Low (0–6), middle (6–12), 
high (>12) 

low, middle, high 

20 Equipment Equipment on board is in 
good condition and 
operated correctly; 
Failure or incorrect 
operation of equipment on 
board (such as failure of 
propulsion machinery, 
failure of electrical 
installation, the alarm 
system turned off or not 
noticed, etc.) 

good, bad 

21 Ergonomic 
design 

Friendly ergonomic design 
or has nothing to do with 
the accidents; 
Unfriendly ergonomic 

good, bad 

(continued on next page) 
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types, offshore ships (including supply ships, drill ships, production 
platforms and diving vessels, etc.) and dredgers based on common ship 
types. In addition, the existing norms, such as Beaufort Wind Scales, Sea 
State Scales, and Visibility Scales, are used to define the status of 
environment-related RIFs. Finally, the definitions of all RIFs in this study 
and their status are shown in Table 2. 

Further, the effect of the 23 RIFs on different types of maritime 

accidents will be investigated. The total accident numbers of the acci
dents due to ‘electrical problems’ and ‘falling into cargo’ are very small, 
and lack critical mass in this study when compared to the other ten 
accident types. The two accident types are therefore merged and pre
sented as ‘others’, which forms the new classification of 11 accident 
types (i.e. capsize, collision, grounding, contact/crush, fire/explosion, 
flooding, occupational accident, overboard, ship/equipment damage, 
sinking, and others (electrical problems, falling into cargo, etc.). 

4. Methodology 

Maritime risk analysis studies using BN are usually conducted 
through several established steps, including data collection, variable 
identification, structure learning, model validation and sensitivity 
analysis [42]. The methodology in this paper is not an exception, con
sisting of four parts: database generation, model construction, model 
validation, and model output, as shown in Fig. 2. However, the new 
methodological contributions are seen from the detailed supporting 
methods and analysis in each step. 

The BN structure learning is used for model construction to create the 
network. Model validation includes two important parts: sensitivity 
analysis and model evaluation. Three indexes are applied to analyze the 
sensitivity of the constructed model, including mutual information, joint 
probability, and True Risk Influence (TRI). Four different model vali
dation methods (i.e. correctness, prediction performance, consistency, 
and real case verification) are applied to test the effectiveness of the 
proposed model. Finally, the model output provides valuable implica
tions for preventing maritime accidents and reducing maritime risk. 

The methodological contributions include (1) generating a new 
database in step 1; (2) taking into account new RIFs and their states in 
step 2; (3) proposing novel prediction and real case validation methods 

Fig. 3. The structure of an NB network (a) and a TAN network (b).  

Table 2 (continued ) 

Number RIFs Description States 
Ship-related factors 

design (such as poor bridge 
ergonomics, insufficient 
stability, etc.) 

22 Information Providing updated and 
effective information; 
Lake of updated and 
effective information (such 
as inadequacy of 
navigational equipment, 
poor and unreliable chart 
data, failure to send signals 
or respond appropriately, 
etc.) 

good, bad 

Human-related factors 
23 Human factor Human factors have 

nothing to do with the 
accident; 
Human violations or errors 
(such as fatigue, stress, 
error in judgement, lack of 
familiarity or training, 
management and 
supervision, etc.) 

no, yes  

Fig. 2. The proposed methodology.  
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in step 3; and (4) providing new scenario analysis and drawing insightful 
implications in step 4. 

BN has been proven to be a powerful tool for uncertainty knowledge 
expression and reasoning [9] and has been widely used in maritime 
safety fields such as ship accident analysis, decision-making, and risk 
assessment [33], as described in Section 2. The kernel of a data-driven 
BN risk model that is constituted by the method for BN structure 
learning and the sensitivity analysis for implications, will be elaborated 
in the ensuring sections. 

4.1. BN structuring learning 

BN structure learning aims to specify the dependencies between 
variables to build a Directed Acyclic Graph (DAG) mechanism. Data- 
driven is the process of using machine learning algorithms to learn 
and construct a BN structure from a dataset. Common data-driven 
methods include the K2 algorithm, NBN, ABN, and TAN. 

The TAN method is an improvement of the NBN method. It deletes 
the attribute independence assumption of NBN to accommodate the 
dependencies between attributes. Therefore, TAN not only maintains the 
robustness of NBN but also makes the network structure more realistic 
[29]. In the TAN network, each attribute only depends on the class 
variable and another attribute. The structure of the NBN model and the 
TAN model is shown in Fig. 3. 

TAN learning is essentially an optimisation problem, and its math
ematical description is well documented in [24,42,43]. 

After obtaining the qualitative structure of the TAN network, 
parameter learning is required to determine the CPT of each node. The 
commonly used methods for learning parameters from data samples 
include maximum likelihood estimation and Bayesian estimation for 
complete data sets, as well as an Expectation-Maximisation algorithm 
for incomplete data sets [44]. Given that the database constructed in this 
study is complete, and the Bayesian estimation is more accurate than the 
maximum likelihood estimation [45], the Bayesian estimation method is 
selected for parameter learning in this study. 

4.2. Sensitivity analysis 

Sensitivity analysis is a commonly used uncertainty analysis method. 
Within the context of BN-based maritime risk analysis, its essence is to 
identify the RIFs that have a significant impact on the target variable 
‘accident type’, so that cost-effective measures with respect to the crit
ical factors can be implemented to reduce the risk [16]. To have a 
comprehensive evaluation, mutual information, joint probability, and 
TRI methods are applied to conduct sensitivity analysis from the per
spectives of individual and combined variables, respectively. Specif
ically, the mutual information value can be used to identify the 
importance and priority of RIF impact on the target node ‘accident type’. 
It describes the amount of information about another variable obtained 
through other variables and measures the interdependence between two 
variables. The larger the mutual information value, the stronger the 
correlation between the variables. Then additional sensitivity methods 
(i.e. joint probability and TRI) are applied to explore the detailed effects 
and interaction of these RIFs. Specifically, the joint probability is used to 
measure the effect of each state of important RIFs on different types of 
accidents. TRI is an effective method to test the sensitivity of multiple 
variables. Furthermore, ordering the RIFs of the 11 accident types based 
on the TRI value can effectively help obtain the degree of influence of 
important RIFs on each accident type. Due to their effectiveness, they 
have been applied in the existing literature in this field individually or 
jointly [8,19,24,42,46]. 

4.2.1. Individual variable sensitivity analysis 
This study aims to analyze the impact of RIFs on different types of 

maritime accidents. Therefore, taking ‘accident type’ as a fixed variable, 
the mutual information value between RIFs and ‘accident type’ is 

defined as follows: 

I(C,Xi) = −
∑

c,i
P
(
C,Xij

)
logb

P
(
C,Xij

)

P(C)P
(
Xij

) (2)  

where C is the accident type, Xi indicates the ith RIF, Xij expresses the jth 
state of the ith RIF, and I(C,Xi) represents the mutual information value 
between the accident type and the ith RIF. By calculating the mutual 
information value, it is possible to prioritise the RIFs in an order of their 
impact on the target node ‘accident type’. 

4.2.2. Multiple variables sensitivity analysis 
Scenario simulation can explore the impact of these RIFs. The 

traditional way is to assign different values to the states of the investi
gation node, and observe the probability change of each state of the 
target node, when all other nodes are locked [27,33,47]. However, this 
method is suitable for variables with two states. For variables with 
multiple states, when the value of one state is modified, it is difficult to 
determine how other states can change to respond to the modification. 
Therefore, this study adopted the joint probability and new method 
(TRI). Joint probability can measure the influence of different RIFs on 
the target node ‘accident type’ [48]. TRI is put forward by Alyami et al. 
[49], which is an effective method to test the sensitivity of multiple 
variables. In this study, the RIFs closely related to the ‘accident type’ are 
generated from mutual information calculations. When analysing the 
impact of a chosen RIF, the method raises the probability of its state that 
has the greatest impact on a certain accident type (e.g. collision) to 
100% to get the High Risk Inference (HRI). Then the probability of the 
state with the least impact on the same accident type is increased to 
100% to obtain the Low Risk Inference (LRI). The average of HRI and 
LRI is calculated to get the TRI of the RIF on collision. The application of 
a similar process to all other accident types and other RIFs can help 
obtain the corresponding TRI values. The greater the TRI, the greater the 
impact of the corresponding RIF on the accident type. Therefore, the 
effect of the above essential RIFs on the target node ‘accident type’ can 
be observed in more detail. 

4.3. Model evaluation 

The proposed data-driven BN risk model needs to be validated before 
using it for risk diagnosis and/or prediction. This section describes the 
multiple model validation methods used in this paper. It firstly validates 
whether the constructed BN model is correct based on two theorems. 
Then the confusion matrix, overall accuracy, precision, and other in
dicators are used to evaluate the prediction accuracy and reliability of 
the model. Finally, the Kappa coefficient is applied to examine the 
consistency of the model. 

4.3.1. Model correctness verification 
To test the comprehensive effects of multiple RIFs on ‘accident type’ 

and verify the correctness of the BN model, the following two theorems 
must be at least satisfied in the reasoning process of sensitivity analysis 
[46,50]. 

Axiom 1. A slight increase or decrease in the prior probabilities of 
each test node should contribute to the correspondence increase or 
decrease in the posterior probability of the target node. 

Axiom 2. The real influence of the combination of the probability 
variations of the evidence should be no smaller than the one from a 
subset of the evidence. 

4.3.2. Predictive performance of the model 
This study adopts a confusion matrix and several predictive perfor

mance evaluation indexes to evaluate the prediction accuracy and reli
ability of the BN model. A training dataset and a testing dataset are 
randomly assigned from the new database used in this study. The model 
is constructed using the training dataset, while the testing dataset is 
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utilised for model evaluation. 
The overall accuracy is a simple and effective indicator to assess the 

prediction accuracy of the constructed model, which is defined as the 
percentage of the total sample that is correctly predicted. However, it is 
not suitable for measuring results with unbalanced samples. To avoid 
these problems, precision, recall, F-measure, specificity, and False Pos
itive Rate (FPR) are selected to verify the reliability and robustness of the 
model. Precision is the probability of a positive sample among all pre
dicted positive samples. Recall denotes the probability of being pre
dicted to be positive among actual positive samples, and is also called 
sensitivity. Precision can evaluate the accuracy of the model, while 
recall can assess the consistency of the model. Nonetheless, they are 
mutually restrictive. The F-measure is twice the harmonic mean of 
precision and recall. The meaning of harmonic mean is to measure the 
overall average distribution. F-measure should be a balance between 

precision and recall, and can evaluate the performance of the con
structed model more comprehensively. Specificity represents the pro
portion of all negative samples that are correctly predicted to all actual 
negative samples. The higher the value of specificity, the better. The 
smaller the FPR value, the better. The confusion matrix is presented in 
Table 3. 

4.3.3. Model consistency verification 
In this study, the sample distribution of accident types is uneven, 

evidenced by the fact that the accident type ‘flooding’ only accounts for 
less than 1%. Cohen’s Kappa statistic is introduced in this study to verify 
the model consistency of the prediction performance for each accident 
type. The calculation of the Kappa statistic is based on the confusion 
matrix (see Table 3), and the formula is defined as follows: 

k =
po − pe

1 − pe
(3)  

where k is the Kappa statistic, and po indicates the overall accuracy. The 
calculation pe is described as follows: 

Assuming that the total number of samples in the test dataset is n, the 
number of real samples of each accident type is a1, a2,…, ak respectively, 
and the number of each accident type in the prediction result is b1, b2,… 

Table 3 
The confusion matrix.   

Actual Positive Actual Negative 

Predicted Positive True Positive(TP) False Positive(FP) 
Predicted Negative False Negative(FN) True Negative(TN)  

Fig. 4. The final TAN-based BN for the global maritime risk model.  
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, bk respectively, then the value of pe is defined as follows: 

pe =
a1 ∗ b1 + a2 ∗ b2 + ⋯ + ak ∗ bk

n ∗ n
(4) 

The calculation result of the Kappa statistic is k ∈ [ − 1,1]. The closer 
it is to 1, the stronger the consistency of the model. Scholars [51,52] 
have demonstrated that the model is almost perfect when k ∈ [0.81,1]. 

4.3.4. Real case analysis 
To fully demonstrate the effectiveness of the constructed data-driven 

BN risk prediction model, a real accident just occurred in 2022 that is 
not included in the database of 402 records is selected for further veri
fication testing. The real case test can verify the prediction performance 
and applicability for future accidents. 

5. Results, discussion, and implications 

5.1. TAN modelling 

The conditional mutual information value between each pair of the 
attribute nodes (i.e. RIFs) is calculated by Eq. (2). Then, the TAN 
network structure is initially constructed based on the conditional 
mutual information value of RIFs. The Bayesian estimation method for 
parameter learning is applied to establish the CPTs of all the nodes with 
the help of Netica software. The final maritime accident risk BN model is 
shown in Fig. 4. 

It is evident that the posterior probability distribution of the nodes in 
Fig. 4 provides some initial findings. Collision (19.6%), occupational 
accident (17.6%), and grounding (16.1%) are the most frequent mari
time accident types. From the perspective of ship factors, the ship types 
involved in the most accidents are cargo ships (18.5%), followed by bulk 
carriers (18.4%). The length of the ships involved in accidents is most 
likely between 100 and 200 m (38.4%), and the gross tonnage has 36.2% 
belonging to ‘greater than 20,000 tons’. In addition, 40.5% of the ships 
involved in accidents are in ‘poor condition’. 

In terms of the natural environment factors, it is found that 35.7% of 
the incidents occur in adverse weather conditions and 34% in poor sea 
conditions. Furthermore, strong wind and low visibility are two 
important factors, accounting for 32.3% and 20.8%, respectively. 

In terms of sailing status, 39.5% of ships involved in accidents are on 
passage. Most of the accidents occur in coastal waters, accounting for 
20.8%, followed by open sea and port with 25.3% and 20.1%, respec
tively. 28.0% of the ships fail to convey effective information during the 
voyage, 47.5% are in equipment failures, and 13.3% have ergonomic 
design problems. Additionally, 67.2% of accidents are related to human 
factors. 

5.2. Sensitivity analysis 

5.2.1. Mutual information 
The mutual information between the target node ‘accident type’ and 

RIFs is calculated. The mutual information value and the corresponding 
variation are shown in Fig. 5. The corresponding variation presents the 
difference between two adjacent mutual information. The greater the 
mutual information value, the more significant the impact of the cor
responding RIF on the ‘accident type’. Furthermore, the mutual infor
mation value, entropy reduction percentage, and variance of beliefs are 
listed in Table 4. It can be seen that ‘ship type’ has the greatest impact on 
‘accident type’, with a mutual information value of 0.35607, followed 
by ‘ship operation’ and ‘voyage segment’ with 0.324 and 0.24345, 
respectively. 

Fig. 5. The visualisation of mutual information value and the variation.  

Table 4 
Mutual information between ‘accident type’ and RIFs.  

Node Mutual 
Information 

Entropy Reduction 
Percent 

Variance of 
Beliefs 

Type of accident 3.10454 100 0.754458 
Ship type 0.35607 11.5 0.010569 
Ship operation 0.324 10.4 0.015278 
Voyage segment 0.24345 7.84 0.007116 
Deadweight 0.20238 6.52 0.003863 
Length 0.16351 5.27 0.002755 
Power 0.16333 5.26 0.002567 
Gross tonnage 0.15894 5.12 0.002763 
Human factor 0.15882 5.12 0.002877 
Draught 0.14317 4.61 0.002811 
Breadth 0.13508 4.35 0.002691 
Wind 0.12375 3.99 0.002735 
Ship age 0.11741 3.78 0.003285 
Sea condition 0.11074 3.57 0.002579 
Hull 

construction 
0.10592 3.41 0.002022 

Visibility 0.10536 3.39 0.003895 
Weather 

condition 
0.10134 3.26 0.002142 

Ship speed 0.09095 2.93 0.002071 
Hull type 0.08871 2.86 0.001992 
Information 0.07952 2.56 0.004605 
Vessel condition 0.07851 2.53 0.00173 
Ergonomic 

design 
0.06257 2.02 0.002799 

Equipment 0.06143 1.98 0.001286 
Time of day 0.05857 1.89 0.002381  
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The blue line is the result of the mutual information value, while the 
orange line indicates the variation between the two adjacent mutual 
information values in Fig. 5. It is evident that the 6th, 7th, and 8th 
mutual information values do not change much from the comparison of 
the two grey boxes. Furthermore, the variation of the 6th and 7th, 7th 
and 8th, and 8th and 9th mutual information values is 0.00018, 
0.00439, and 0.00012, respectively. According to the mutual informa
tion value and the rate of change, the first six RIFs are the factors with 
the greatest influence and the most obvious rate of change. Therefore, in 
the model correctness verification, the first six important risk identifi
cation factors are selected as the judgement criteria to verify the 

correctness of the model based on the TRI value, as listed below. 
Ship type > Ship operation > Voyage segment > Deadweight > 

Length > Power 
It is proved that ‘deadweight’ and ‘hull construction’ have significant 

effects on ‘accident type’ by calculating the mutual information, which 
also illustrates the correctness of introducing ‘deadweight’ and ‘hull 
construction’ as RIFs in global maritime accident risk analysis. 

5.2.2. Joint probability 
For the most important variables screened from mutual information 

calculations, additional sensitivity methods are used to explore the 

Table 5 
The joint probability (100%).   

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 
Initial 5.98 19.62 6.97 12.68 0.77 16.15 17.64 9.45 3.50 4.49 2.75 
Ship type 

bulk carrier 0.25 29.16 1.52 8.04 0.16 14.61 30.46 9.24 3.75 1.45 1.37 
cargo ship 3.97 17.30 11.51 4.15 2.60 21.09 22.39 7.89 1.40 7.47 0.23 
container ship 2.02 16.24 5.34 15.98 0.21 14.36 26.69 8.93 3.47 0.32 6.44 
dredger 35.49 3.45 3.31 3.41 2.07 3.44 20.25 3.37 3.10 19.12 2.99 
fishing vessel 21.91 12.76 2.38 18.64 0.25 10.67 2.48 22.39 0.37 6.06 2.11 
offshore vessels 1.14 1.20 12.65 13.06 0.72 43.26 1.19 7.08 6.46 12.20 1.04 
passenger vessel 4.83 13.74 33.86 5.13 0.52 18.06 5.05 0.84 8.49 8.74 0.74 
RORO 0.92 10.68 14.91 44.02 0.58 10.65 5.86 0.95 5.22 5.37 0.84 
tanker 0.32 28.88 1.94 16.95 0.20 10.33 18.84 6.90 6.30 1.85 7.50 
tug 16.35 17.30 1.50 17.09 0.94 9.44 1.56 24.34 1.41 8.71 1.36 
others 22.18 29.38 1.08 1.11 0.67 29.25 6.79 6.53 1.01 1.04 0.97 
Ship operation 
at anchor 2.06 2.56 7.38 11.35 0.81 23.91 21.02 19.84 3.38 4.52 3.18 
fishing 34.38 4.15 3.46 18.08 1.05 7.65 3.94 16.92 2.74 3.09 4.54 
loading/unloading 4.15 5.54 2.43 16.93 0.74 2.90 55.69 2.55 5.37 2.17 1.52 
manoeuvring 5.63 35.86 19.73 4.81 0.47 20.91 3.30 4.63 2.33 1.38 0.96 
on passage 2.88 29.60 1.47 16.30 0.60 11.55 19.08 6.12 3.61 6.04 2.75 
others 13.43 9.44 7.87 9.05 2.40 9.37 8.96 16.01 6.24 12.30 4.92 
pilotage 4.98 12.20 20.08 3.23 0.86 38.57 3.20 8.43 2.23 2.51 3.72 
towing 14.76 19.51 5.94 12.47 1.81 13.13 6.76 11.89 4.71 5.30 3.71 
Voyage segment 
anchorage 1.74 11.26 4.67 10.60 0.50 26.22 20.17 15.73 1.55 6.44 1.12 
archipelagos 7.52 15.71 13.69 4.67 0.97 31.26 4.31 13.08 3.02 3.58 2.18 
at berth 2.65 3.88 11.32 20.09 0.76 4.10 39.96 6.84 5.91 2.79 1.70 
canal 5.12 25.01 18.84 7.06 1.47 16.52 6.51 6.21 4.56 5.41 3.30 
channel 4.98 7.30 5.51 6.86 1.43 39.91 15.07 6.04 4.44 5.26 3.21 
coastal waters 12.66 32.13 2.49 10.84 0.18 19.31 1.90 9.39 3.48 4.98 2.63 
inland waters 13.21 7.44 13.66 6.99 1.45 7.85 6.45 29.79 4.52 5.36 3.27 
open sea 2.91 21.99 2.06 21.13 0.61 4.24 28.76 6.38 3.11 4.97 3.83 
port 3.97 10.38 11.85 9.72 0.77 20.27 25.83 8.95 3.54 1.96 2.76 
port approach 10.10 34.60 11.30 3.65 3.10 20.33 3.37 3.21 2.36 6.27 1.71 
river 3.01 19.42 12.18 9.08 0.86 19.17 3.83 17.55 6.17 29.79 1.94 
Deadweight 
1 12.83 14.27 10.86 10.55 1.34 23.79 3.92 10.88 2.03 8.08 1.45 
2 1.77 24.90 4.90 17.85 0.38 13.32 22.51 5.23 4.72 3.98 0.43 
3 4.68 7.72 10.31 13.46 1.00 16.80 28.83 7.76 4.20 1.23 4.00 
4 0.45 25.90 2.58 11.67 0.26 8.19 28.90 10.93 4.36 1.11 5.67 
Length 
1 13.98 14.72 9.79 10.06 1.53 23.69 4.28 11.79 1.03 8.18 0.94 
2 1.70 20.92 6.01 13.83 0.27 13.27 25.22 8.08 5.09 2.90 2.74 
3 0.70 24.91 4.27 14.78 0.41 9.40 25.77 8.10 4.71 1.46 5.47 
Power 
1 13.51 16.90 10.36 11.11 1.47 21.81 5.52 10.35 0.96 7.14 0.88 
2 0.42 21.63 4.47 13.83 0.25 11.97 26.60 8.79 5.37 2.53 4.14  

Table 6 
TRI of RIFs for all accident types.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Average 

Ship type 17.62 14.09 16.39 21.46 1.22 19.91 14.64 11.75 4.06 9.40 3.64 11.66 
Ship operation 16.16 16.65 9.31 7.42 0.96 17.83 26.24 8.64 2.01 5.46 1.98 10.24 
Voyage 

segment 
5.74 15.36 8.39 8.74 1.46 17.91 19.03 13.29 2.31 13.91 1.36 9.77 

Deadweight 6.19 9.09 4.14 3.65 0.54 7.80 12.49 2.85 1.34 3.49 2.62 4.93 
Length 6.64 5.09 2.76 2.36 0.63 7.14 10.75 1.86 2.03 3.36 2.27 4.08 
Power 6.54 2.37 2.95 1.36 0.61 4.92 10.54 0.78 2.21 2.30 1.63 3.29  
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detailed effects of these RIFs on ‘accident type’. The probability of each 
state of each variable is sequentially increased to 100% to obtain the 
joint probabilities [9], as shown in Table 5. For clear illustration, the 

states of ‘accident type’ (i.e. capsize, collision, contact/crush, fire/
explosion, flooding, grounding, occupational accident, overboard, shi
p/equipment damage, sinking, and others) are sequentially expressed as 
S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, and S11 in this section. 

Fig. 6. The top six important RIFs for all accident types.  

Table 7 
The result of minor changes in RIFs.  

Power  +2% +2% +2% +2% +2% +2% 
Length   +2% +2% +2% +2% +2% 
Deadweight   +2% +2% +2% +2% 
Voyage segment    +2% +2% +2% 
Ship operation     +2% +2% 
Ship type       +2% 

S1 5.98 6.24 6.51 6.76 7.01 7.73 8.47 
S2 19.62 19.72 19.92 20.29 20.94 21.48 22.20 
S3 6.97 7.09 7.20 7.36 7.70 8.44 8.89 
S4 12.68 12.73 12.83 12.98 13.33 14.25 14.61 
S5 0.77 0.79 0.82 0.84 0.90 0.96 1.01 
S6 16.15 16.35 16.63 16.94 17.66 18.09 18.91 
S7 17.64 18.06 18.49 18.99 19.79 20.40 21.51 
S8 9.45 9.48 9.56 9.67 10.20 10.67 11.04 
S9 3.50 3.59 3.67 3.72 3.82 4.00 4.09 
S10 4.49 4.58 4.72 4.85 4.95 5.32 5.58 
S11 2.75 2.82 2.91 3.01 3.07 3.23 3.32  

Table 8 
Confusion matrix of the predicted results.  

Predicted S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 Actual total Accuracy rate (%) 

S1 5 0 0 0 0 0 0 0 0 0 0 5 100 
S2 0 15 0 0 0 0 1 0 0 0 0 16 93.75 
S3 0 0 4 0 0 0 1 0 0 0 0 5 80 
S4 0 0 0 8 0 0 2 0 0 0 0 10 80 
S5 0 0 0 0 2 0 0 0 0 0 0 2 100 
S6 0 0 0 0 0 10 0 1 1 0 0 12 83.33 
S7 0 0 0 0 0 0 14 0 0 0 0 14 100 
S8 0 0 0 0 0 0 0 7 0 1 0 8 87.5 
S9 0 0 0 0 0 0 1 0 2 0 0 3 66.67 
S10 0 0 0 0 0 0 0 0 0 3 0 3 100 
S11 0 0 0 0 0 0 0 0 0 0 2 2 100 
Total 5 15 4 8 2 10 19 8 3 4 2 80 90  

Table 9 
Performance results for each accident type.   

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

Precision 1 1 1 1 1 1 0.737 0.875 0.667 0.75 1 
Recall 1 0.938 0.8 0.8 1 0.833 1 0.875 0.667 1 1 
F-measure 1 0.968 0.889 0.889 1 0.909 0.848 0.875 0.667 0.857 1 
Specificity 1 0.987 0.987 0.972 1 0.971 1 0.987 0.987 1 1 
FPR 0 0.013 0.013 0.028 0 0.029 0 0.013 0.013 0 0  

Table 10 
The details of one real accident in 2022.  

RIFs State RIFs State RIFs State 

Ship type Bulk 
carrier 

Power 1192 Ship 
operation 

On 
passage 

Hull type Steel Hull 
construction 

NA Voyage 
segment 

Inland 
waters 

Ship age 10 Vessel 
condition 

Good Speed 9.3 

Length 98 Time of day Night Equipment Good 
Breadth 19.8 Wind Low Ergonomic 

design 
Good 

Gross 
tonnage 

3807 Visibility Good Information Bad 

Deadweight NA Weather 
condition 

Good Human 
factor 

Yes 

Draught NA Sea condition Good    
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The results of each state in different variables on accident types are 
displayed in Table 5. A comparison with the raw probabilities in the 
initial row of Table 5 shows how the probability of each accident type 
changes when a chosen RIF is set in a particular state. In particular, it 
shows the states where each variable has the greatest and least impact 
(in bold value) on different accident types. 

Therefore, new findings are revealed for useful insights. For example, 
the probability of capsizing is the largest when the ship is fishing and the 
smallest when the ship is at anchor. For passenger ships, it is most likely 
to be engaged in an overboard accident and the least likely to have a 
contact accident. When ships are larger, manoeuvring or sailing in wa
ters close to ports, the probability of collision accidents is greatly 
increased. 

5.2.3. True risk influence 
Based on the original probability and bold values in Table 5, the TRI 

value of the top six critical RIFs for the target node ‘accident type’ can be 
calculated. Taking the calculation of the TRI value of ‘ship operation’ to 
‘collision’ (S3) as an example, it is found that according to the proba
bility value of ‘collision’ in the second column of Table 5 ‘manoeuvring’ 
is the state that has the greatest impact on ‘collision’. At this time, the 
probability of ‘collision’ is 35.86 (100%), and the difference between 

35.86 and the original probability value of 19.62 is HRI (i.e. 16.24). 
While ‘at anchor’ is the state with the least impact on ‘collision’ with the 
probability of 2.56, the difference between 2.56 and the original prob
ability value is LRI (i.e. 17.06). Then the average of HRI and LRI is 
calculated as 16.65 to get the TRI value of ‘ship operation’ to ‘collision’. 
The same process is applied to other RIFs and accident types to calculate 
the TRI values of all the RIFs for each accident type, as shown in Table 6. 

It is clear that the influence of the RIFs on maritime accident risk 
varies with different accident types. According to the TRI values, the 
importance of RIFs for 11 accident types is sorted from 1 (i.e. the most 
important) to 6 (the least important), as displayed in Fig. 6. It is evident 
that ‘ship operation’ has a greater impact on ‘flooding’, ‘overboard’, and 
‘sinking’ than on other types of accidents. ‘Voyage segment’ is the most 
important RIF for ‘collision’ but the least important RIF for ‘Ship/ 
equipment damage’. 

5.3. Model evaluation 

5.3.1. Model correctness verification 
To verify the model correctness, another sensitivity analysis is per

formed to test the comprehensive effects of multiple variables. When 
taking take the top six important RIFs as a set of variables, we make 

Fig. 7. Real case verification.  
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small changes in the prior probability of these variables, and observe the 
probability changes of the target node ‘accident type’. The change value 
is set as an increase of ‘2%’. The probability of a chosen node is increased 
by 2% towards its two extreme states that hava the most and least 
impact on ‘collision’, respectively. Then this process is repeated from the 
first to the last investigated nodes. As a result, the updated cumulative 
change values in the order of power, length, deadweight, voyage 
segment, ship operation, and ship type are obtained. Similarly, the 
above procedure is applied to other accident types, and the results are 
calculated and listed in Table 7. The first column in Table 7 shows the 
original probability value of each accident type, and the remaining 
columns express the updated cumulative change values of the result. The 
combined effects of these important RIFs on the ‘accident type’ can be 
calculated by comparing changes in probability values. 

According to Tables 6 and 7, the increase or decrease of the prior 
probability of the variable node will lead to the increase or decrease of 
the posterior probability of the target node, which tests Axiom 1. From 
Table 7, the probability value of the target node gradually increases with 
the continuous updating of the change of the investigated RIFs, and 
therefore Axiom 2 is tested. The proposed model in this study conforms 
to Axiom 1 and Axiom 2, verifying its correctness. 

5.3.2. Predictive performance of the model 
For testing the prediction performance, 80 accident records (20%) 

are randomly selected, reserved, and used as the testing datasets. The 
test results are displayed in a confusion matrix, as shown in Table 8. The 
overall accuracy of the model calculated from the confusion matrix is 
90% (72/80). According to the accuracy rate in Table 8, it is evident that 
the prediction accuracy rates are 100% in S1 (capsize), S5 (flooding), S7 
(occupational accident), S10 (sinking), and S11 (others). The accuracy 
rates of S2 (collision), S6 (grounding), and S8 (overboard) are 93.75%, 
83.33%, and 87.5%, respectively. 

According to Section 4.3.2, five prediction performance indicators of 
each accident type are calculated, as shown in Table 10. The precision of 
the proposed BN model is captured to be 100% in S1 (capsize), S2 
(collision), S3(contact/crush), S4 (fire/explosion), S5 (flooding), S6 
(grounding), and S11 (others). The recall of the model is calculated to be 
100% in S1 (capsize), S5 (flooding), S10 (sinking), and S11 (others). It is 
apparent that the F-measure values of the constructed model are higher 
than 0.8. The higher the value of specificity, the better. The smaller the 
FPR value, the better. From Table 9, the specificity values of all accident 
types are more than 97%, while the FPR values are less than 3%. The 
comparison results of five prediction indexes further demonstrate the 
excellent performance and reliability of the constructed model. 

Fig. 8. Scenario for adverse environmental conditions.  
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5.3.3. Model consistency verification 
According to Eq. (4) and the confusion matrix (see Table 9), pe =

0.132 can be calculated. The value of po is the overall accuracy rate, i.e. 
0.9. According to Eq. (13), the Kappa coefficient is calculated to be 
0.8848. It is well known that the model is almost perfect when k ∈ [0.81,
1]. The verification further indicates that the constructed model has 
strong consistency. 

5.3.4. Real case verification 
To further demonstrate the validity of the model, a marine accident 

that just occurred in 2022 (excluded from the database of 402 records) is 
selected for testing. On 4th Jan. 2022, the bulk carrier ‘Tian XXXX8′

collided with a fishing vessel in an inland waterway in China. According 
to the accident report record, the parameters of 23 RIFs are shown in 
Table 10. The information on deadweight, draught, and ship construc
tion is missing from the accident records and hence treated as ‘unknown 
– without any locked evidence in Fig. 7’. The accident is simulated with 
the constructed BN risk prediction model, as shown in Fig. 7. Despite the 
three unknown nodes, it is clear that the probability of ship collision is as 
high as 91.4%. The real case verification further demonstrates the 
effectiveness of the constructed BN model in this paper. It can be used 
with confidence in a proactive way to avoid the reoccurrence of a similar 

accident in future when a high probability is calculated and observed 
proactively. 

5.4. Scenario analysis 

Scenario analysis explores the impact of specific conditions on 
various accident types by modifying the states of nodes. Through the 
analysis of some concerning scenarios, the risk of different accidents, 
specific scenarios, and the combination of multiple RIFs can be revealed, 
thereby effectively assisting maritime authorities in formulating rational 
and effective accident prevention countermeasures. 

5.4.1. Scenario one: adverse environmental conditions 
Scenario one simulates the occurrence likelihood of various acci

dents under adverse environmental conditions. In this situation, the 
setting is given as ‘time of day’ as night, ‘wind’ as high, ‘visibility’ as 
bad, ‘weather condition’ as bad, and ‘sea condition’ as bad. As shown in 
Fig. 8, the risk probability of ‘grounding’ and ‘sinking’ increase signifi
cantly, especially the result of ‘grounding’ changes from 16.1 to 46.5%. 
This finding shows that when the natural environment is unfavourable, 
grounding and sinking accidents are more likely to occur. Weather 
routing is important in maritime safety. It provides a valuable 

Fig. 9. Scenario for collision.  
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implication for transportation authorities and shipowners to pay more 
attention to grounding and sinking accidents in a bad navigation envi
ronment. Meantime, the decision-makers should formulate some regu
lations for navigating under bad weather. Furthermore, the shipbuilders 
should also improve the stability during the design process. 

5.4.2. Scenario two: the most likely scenario for collision 
When the state of ‘collision’ is set as 100%, it can reveal the most 

likely scenario of a collision accident. The scenario results are shown in 
Fig. 9. The probabilities of a few nodes significantly increased, including 
the bulk carrier or tanker in ‘ship type’, on passage and manoeuvring in 
‘ship operation’, coastal waters and open sea in voyage segment and at 
night in ‘time of day’. It uncovers that collision accidents are likely to 
occur in the situation composed of the above node states. These findings 
provide useful insights for relevant authorities that when bulk carriers or 
tankers navigate or manoeuvre in coastal waters at night, ship collision 
risk is very high. Effectively traffic control such as better traffic lanes and 
only day-time operation for high-risk coastal areas should be 
implemented. 

5.4.3. Scenario three: the combined impact of important RIFs 
Scenario analysis can explore the combined impact of the top six 

important RIFs (i.e. ship type, ship operation, voyage segment, dead
weight, length, and power) on the target node ‘accident type’. For 
instance, each RIF is assigned a 100% probability to the state that 
generates the highest joint probability with ‘collision’ to demonstrate 
the riskiest scenario of ‘collision’. As shown in Fig. 10, the probability of 
‘collision’ significantly increases from 19.62 to 94%. This finding in
dicates that there is an extremely high risk of collision when large bulk 
carriers are manoeuvring in the port approach area. Therefore, relevant 
departments should take measures against these critical factors to avoid 
ship collision, such as improving the manoeuvrability of bulk carriers, 
strengthening the monitoring and lookout when entering or leaving a 
port, and ensuring the correct operation of the crew when manoeuvring 
the ship. 

Similarity, the most likely scenario for ‘grounding’ is displayed in 
Fig. 11, with the probability increasing from 16.15 to 96.8%. It indicates 
that the probability of grounding is exceptionally high when small 
offshore ships pass through a strait under pilotage. Due to the harsh 
traffic conditions in the strait and possible pilot errors, ship groundings 
still occur frequently. This finding provides valuable implications for 
different maritime stakeholders to take regulations and reduce the 
grounding risk. Maritime authorities should strengthen traffic manage
ment in a strait. Ships should choose the correct routes when passing 

Fig. 10. The most likely scenario for collision.  
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through a channel and be equipped with advanced navigation equip
ment and electronic charts to assist navigation. In addition, pilots should 
also improve their operational level and safety awareness. 

5.5. Implications 

From the perspective of ship types, it reveals that tankers have the 
highest risk on collision, RORO on fire/explosion, cargo ships on 
grounding, and fishing vessels on capsizing and overboard. Further
more, small ships are more likely to have grounding accidents, while 
larger ships are more prone to collisions and occupational accidents. 

Regarding ship operation, the highest risk for capsizing is in fishing 
operation, occupational accidents in loading/unloading, collision is on 
passage, and grounding in pilotage. 

As far as the voyage segment is concerned, collision accidents mostly 
likely occur in coastal waters and port approach, occupational in port, 
and grounding in a channel. 

The top six important RIFs are ship type, ship operation, voyage 
segment, deadweight, length, and power. Accordingly, decision-makers 
in maritime stakeholders can gain valuable insights on how to prevent 
maritime accidents, plan routes, prioritise emergency optimisation re
sources, and reduce risk. Besides, the accident types in different voyage 

segments vary, indicating maritime authorities should enhance coop
eration with other stakeholders to formulate safety policies and regu
lations for maritime transportation, especially for collision, 
occupational accidents, grounding, and fire/explosion. 

Based on the complete and incomplete information listed in the 23 
RIFs, different stakeholders can apply this risk prediction model to make 
optimal decisions to prevent accidents. The insurance companies can 
evaluate the quota and make various pricing strategies for different 
shipowners. Simultaneously, maritime authorities can provide an early 
warning based on scenario analysis results. 

Especially, hull construction is the first time introduced to explore its 
influence on maritime accidents. The detailed states (i.e. double hull, 
single hull, and double bottom) of the hull construction can provide 
useful insights for shipbuilders to consider the comprehensive perfor
mance of ships. As a result, the findings become insightful for the 
development of safety for design in the shipbuilding market. 

Furthermore, the real case verification also demonstrates the pre
diction accuracy is up to 91.4%. This study leads to the advanced risk 
prediction model for preventing accidents. 

Finally, the scenario analysis of collision and grounding provides 
useful suggestions for bulk carriers, tanker ships, and offshore vessels to 
take effective measures when navigating specific segments. 

Fig. 11. The most likely scenario for grounding.  
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6. Conclusion 

This paper uses a data-driven BN network to construct a risk analysis 
model to quantify the impact of 23 RIFs on different maritime accident 
types. To solve the problems of insufficient and outdated risk data, a new 
database with comprehensive records against all the IMO regulated RIFs 
is built by using the GSIS and LRF databases in the past five years. 
Referring to the literature review and the IMO guidance materials, 23 
RIFs are identified to construct the BN-based risk model. Sensitivity 
analysis and different scenario simulations are carried out to identify the 
most important influential factors, investigate their combined effects 
and reveal the risk in different situations. 

The findings in this paper provide valuable implications for maritime 
accident prevention.  

(1) The top six influential RIFs for maritime accidents are ship type, 
ship operation, voyage segment, deadweight, length, and power.  

(2) This study uncovers the combined influence of different RIFs and 
explores the combined effects of their different states, enabling 
the simulation results of different scenarios against real cases.  

(3) This study improves the methodology of developing a data-driven 
BN risk model and can predict maritime accident risk accurately. 
The real case prediction accuracy is 91.4%, and hence the model 
can be used for accident prevention.  

(4) It is apparent that the three scenario analysis revealed critical 
information about ship type and navigation conditions in colli
sion and grounding. Meantime, the typical accident features are 
mined for different stakeholders to make economic trans
portation plans and trajectories. 
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