
Li, Peiran, Zhang, Haoran, Li, Wenjing, Yu, Keping, Bashir, Ali Kashif OR-
CID logoORCID: https://orcid.org/0000-0001-7595-2522, Ali Al Zubi, Ahmad,
Chen, Jinyu, Song, Xuan and Shibasaki, Ryosuke (2022) IIoT based trust-
worthy demographic dynamics tracking with advanced Bayesian learning.
IEEE Transactions on Network Science and Engineering. ISSN 2327-4697

Downloaded from: https://e-space.mmu.ac.uk/630877/

Version: Accepted Version

Publisher: Institute of Electrical and Electronics Engineers

DOI: https://doi.org/10.1109/TNSE.2022.3145572

Please cite the published version

https://e-space.mmu.ac.uk

https://e-space.mmu.ac.uk/630877/
https://doi.org/10.1109/TNSE.2022.3145572
https://e-space.mmu.ac.uk


1

IoT based Trustworthy Demographic Dynamics
Tracking with Advanced Bayesian Learning

Peiran Li, Haoran Zhang, Wenjing Li, Keping Yu, Ali Kashif Bashir, Ah-
mad Ali AlZubi, Jinyu Chen, Xuan Song, and Ryosuke Shibasaki

Abstract—Tracking demographic dynamics for the built envi-
ronment is important for a smart city. As a kind of ubiquitous
Internet of Things (IoT) device, portable devices (e.g., mobile
phones) afford a great potential to achieve this goal. Tracking
the demographic dynamics illuminates two things: population’s
mobility (where do people go) and the related demographics (who
are they). Many past studies have investigated the tracking of
population dynamics; however, few of them tried tracking the
demographic dynamics. In this context, our study proposed a
ubiquitous IoT based trustworthy approach for built environment
demographic dynamics tracking. First, we employed a meta-
graph-based data structure to represent users’ life patterns
and projected them into a low-dimension space as uniform
features. Then, based on the life-pattern features, we derived
a variation-inference-based advanced Bayesian model to infer
the demographics. Finally, taking a region in Tokyo as a case
study, we compared our methods with baseline methods (heuristic
algorithm, deep learning), and the result proved a superior
accuracy (the MAPE improved by 0.07 to 0.28) as well as
reliability (0.78 Pearson correlation coefficient with survey data).

Index Terms—IoT, demographics, variation inference, GPS
trajectory.

I. INTRODUCTION

A. Background

TRACKING demographic dynamics for the built environ-
ment is important in many fields, such as smart building,

railway station planning, placement of commercial advertising,
emergency management and so on [1, 2]. As a kind of
ubiquitous Internet of Things (IoT) [3, 4], portable devices
(e.g., mobile phones) afford a great potential to instantly track
the built environment demographic dynamics, especially GPS
records. To achieve this goal, two factors have to be known:
population’s mobility (where do people go) and the related
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demographic information (who are they). Many past studies
have investigated the tracking of population dynamics (which
only reflects people’s mobility) but few of them tried tracking
the corresponding demographic dynamics (which also contains
people’s demographic information). In this context, our study
proposed a ubiquitous IoT based trustworthy approach for
built environment demographic dynamics tracking. As Figure
1 shows, the underlying problem of this study is labeling
the anonymous users with demographic information (age and
gender) based on GPS trajectory data and census data so that
further tracking of fine-time-interval and variable-range built
environment demographic dynamics could be achieved.
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Fig. 1: Ubiquitous IoT based Instant Monitoring for Built
Environment Demographic Dynamics.

The GPS sensor on portable IoT devices could conve-
niently provide the mobility information but barriers were
posed on how to infer the demographic information (mainly
the age/gender characteristics) based on GPS trajectory data.
Although there have been many GPS trajectory data-based
studies, mining demographic information from GPS trajectory
data is not trivial since a single data source could barely afford
enough information [5]. Most past studies chose to combine
other types of data, such as mobile usage data[6] (e.g., social
media [7]) and individual-level user profile data, to enhance the
performance in data inference. However, those additional data,
especially some highly sensitive data such as user profiles, is
not readily accessible due to privacy risks, etc.

To address the above barriers, we proposed a trustworthy
approach based on variation inference theory to perform the
demographic inference with only GPS trajectory data and
census data.

B. Literature Review
Understanding the mobility patterns of different demo-

graphic groups is important; furthermore, it could be more
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significant to capture the differences of mobility patterns from
different demographic groups. Lu et al. analyzed the correla-
tion between travel behavior and socio-demographics [8], and
many studies proved thereafter the high correlation between
human mobility behavior and the corresponding demographic
information [9, 10]. However, inferring demographic informa-
tion only through mining GPS trajectory data can be nontrivial;
as an alternative, most studies employed multi-source data
to infer demographic information for better performance.
Wang et al. developed a tensor factorization-based method
to infer the demographic information of mobile device users
from their AP-trajectories by utilizing prior knowledge such
as users’ social networks [11]. Wu et al. inferred demo-
graphic information from GPS trajectories combined with
the geographic context [12]. They extracted spatiotemporal
features from GPS trajectory data and obtained the land-
use data associated with the GPS trajectories. Then both
spatiotemporal and semantic features were integrated as the
input to supervised classification models implemented to infer
demographic information. Xu et al. proposed a deep learning
model named Semantic-enhanced Urban Mobility Embedding
(SUME) which learns density vectors for user demographic
inference that was achieved through jointly modeling physical
mobility patterns (from GPS trajectories data) and semantics
of urban mobility (from POI data) [7]. Studies that attempted
to infer demographic information using single-source data on
individual level also exist though in a limited number. Roy
et al. tried to adopt a machine learning approach to predict
demographic information [13]; Solomon et al. employed the
word2vec approach to construct a GPS-trajectory-based de-
mographic information inference model [5]. Moreover, multi-
source data (which is utilized by most studies) is not easy
to collect; for some highly sensitive information such as
individual-level user profiles, even a single-source dataset is
often not accessible. As a consequence, it is imperative that a
trustworthy inference method [14, 15] utilizing less sensitive
data, such as census data, is developed. This gives rise to the
proposal of our approach.

C. Motivation

It has been reported that people’s life patterns are related to
their demographic information [16]; in the meantime, mining
users’ life-patterns solely from GPS trajectory data could be
feasible [17]. Therefore, a basic idea for our goal - trustworthy
demographic dynamics tracking - is to model the relationship
between life-pattern features (mined from GPS trajectory data)
and demographic information.

There are two key subjects to be addressed: 1) How to
mine useful life-pattern features from heterogeneous GPS
trajectory data? In this regard, we employed a meta-graph
structure to homogenize GPS trajectory data and reduce the
high-dimension meta-graph to a low-dimension space so as
to form life-pattern features (high-dimension data structure
is difficult to deal with). 2) How to model the relationship
between life-pattern features and demographic information?
For an inference-type problem, statistical maximum likelihood
estimation and deep learning (mainly neuron network) are

normally used; however, a neuron network (being a high-
parameter method) is not suitable due to the limited amount of
census data. On the other hand, if low-parameter methods are
to be considered, since it is a complex conditional probability
distribution problem (see equation (3)), solving the poste-
rior possibility could also be troublesome using maximum
likelihood estimation e.g., a heuristic optimization algorithm.
Therefore, variation inference is alternatively an appropriate
way to deal with the task.

D. Contributions

The goal of this paper is to formulate a trustworthy ubiqui-
tous IoT based instant tracking approach for built environment
demographic dynamics. To this end, an effective variation-
inference-based model was derived to estimate the demograph-
ics solely from GPS trajectory data; then a trustworthy tracking
of demographic dynamics was performed (no individual-level
information was utilized but precise aggregated information
could be obtained in any scale). Taking a region in Tokyo as a
case study, we compared the results of our methods with those
of baseline methods (heuristic algorithm, deep learning) and
proved a superior accuracy (the MAPE improved by 0.07 to
0.28) as well as reliability (0.78 Pearson correlation coefficient
with survey data). To summarize, the contributions of this
study are:

1) the first trustworthy tracking of built environment demo-
graphic dynamics based on large-scale GPS trajectory
data,

2) demonstrating the strong correlation between user’s life-
pattern and demographics, and

3) deriving an effective demographics inference model
based on variation inference theory.

E. Organization

The remaining sections of this paper are organized in the
following structure: in Section II, a mathematical formulation
of our problem was introduced. Section III proposed the
methodology framework, variation inference theory, and the
model derivation based on the theory. Taking a region in Tokyo
as a case study, we conducted and evaluated our method in
Section IV. Lastly, we summarized our work in Section V.

II. PRELIMINARY

A. Definition

First, we developed the mathematical formulation of this
inference problem. Suppose the number of mobile phone users
is n; the number of grids obtained through dividing the target
area is a; the number of time intervals obtained through
dividing the period under consideration is T ; the number of
demographic groups is m. Define the number of ground-truth
demographic samples (of an individual user) r = a× T .

Definition 2.1 (Mobility Record): A mobility record for
a user is a triplet (u, t, l), which denotes that user u visits
location l at time t, where l stands for the gridded location
(each gird is a 500m*500m square) determined by latitude and
longitude.
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Definition 2.2 (User Spatio-Temporal Matrix): The mobility
sequence for a user is a vector {s0, . . . , sr | s ∈ {0, 1}}, which
indicates ui is present or absent at a specific time t and location
l. Then, the user spatio-temporal mobility matrix could be
defined as Sr·n = {−→s0 , . . . ,−→sn} which includes all users’
spatio-temporal sequence.

Definition 2.3 (User Demographic Characteristics Matrix):
The user demographic characteristics could be defined as
{p0, . . . , pm | p ∈ [0, 1]}, which indicates the possibility that
a user belongs to a specific age/gender group. Then, the
user demographic characteristics matrix is a matrix Am·n =
{p⃗0, . . . , p⃗n} which includes all users’ demographic charac-
teristics.

Definition 2.4 (Built Environment Demographics Ma-
trix): Built environment demographics is a vector s⃗a =
{sa0, · · · , sam | sa ∈ [0, 1]} which indicates the proportion of
different demographic groups in a certain area (i.e., the built
environment) at certain time. Built environment demographics
matrix is a matrix SAr·m = {−→sa0, . . . ,−→sar} including all
areas and all time.

Definition 2.5 (Built Environment Demographics Dynam-
ics): Given a built environment area (a range of location,
denoted as la), and the monitoring period T , the built en-
vironment demographics dynamics is a matrix Dla·T ={−−−−−→
SAtstart,la, . . . ,

−−−−−→
SAtend,la

}
including built environment demo-

graphics in la during tstart, . . . , tend.

B. Solving Barriers

Thus, SAr·m could be calculated by Am·n and Sr·n:

SAr·m = Sr·n ·Am·n
T (1)

The ground-truth demographic data can afford the exact value
of SAr·m. Left multiply the inverse matrix of Sr·n simulta-
neously on both sides of equation (1), we obtain:

Am·n
T = Sr·n

−1 · SAr·m (2)

At first glance, Am·n could be solved by simply utilizing
equation (2);however, daunting barriers stand in the way
of computing Sr·n

−1. Specifically, the barriers embody two
subproblems:

Problem 2.1: In most cases, Sr·n should be an ill-
conditioned matrix that has a large condition number – most
individuals’ GPS information is sparsely distributed in a large
spatio-temporal space. As a result, the solution could be highly
unrobust due to the sensitive inverse operation of the matrix
Sr·n.

Problem 2.2: A purely mathematical approach limits the
generality – it is prone to yield an over-fitted result: solving a
specific formula can well afford the demographic information
of specific people within the current GPS trajectory dataset,
but it may degenerate when applied with another dataset that
is unseen.

Based on the above considerations, solving Am·n through
brute force should not be a good choice. Hence, our goal is
redirected to find:

Aopt |MAE
(
SAr·m,SAr·m | Aopt

)
≤

MAE
(
SAr·m,SAr·m | A

) (3)

Then, the built environment demographic dynamics is:

Dl·T =
{
Sr·n ·Aopt

T | where S in T and l
}

(4)

III. METHODOLOGY

A. Framework

First, users’ life-pattern features were mined from hetero-
geneous GPS trajectory data. We identified significant places
(e.g., home, workplaces and others.) by clustering from tra-
jectories for each user and generated an individual graph
that reflected his/her location by each hour within one day.
Then we constructed support trees with a uniform structure
for all users - in the support graph, each edge is assigned
with a unique index in an ascending manner from top to
bottom and from left to right. Finally we generated a topology-
attribute matrix (T-A matrix) to incorporate the user’s life-
pattern feature (Figure 2).

Second, based on the extracted life-pattern features, a
variation-inference-based demographics inference method was
derived, which only requires the GPS trajectory data and
census data. For each user, we reduce the dimension of the
T-A matrix by NFM (Non-negative matrix factorization) to
project it into a 3-dimension space (a meta-graph space),
so that the spatial locations in the meta-graph space could
represent the user’s life-patterns. We could assume that the
possibility distribution of a certain demographic group in the
meta-graph space is a Gaussian distribution (life-pattern is
related to one’s demographic information). Then, we employed
variation inference theory to infer the optimal parameters of
the Gaussian distribution of all demographic groups. Once the
parameters have been determined, we could infer each user’s
demographic characteristics by calculating the joint probability
of all demographic Gaussian distributions.

Lastly, taking a region in Tokyo as a case study, we com-
pared the accuracy of variation inference with those achieved
by other baseline methods (heuristic algorithm, deep learning).
Also, by comparing the daily time-use estimation from our
results with survey data, and by comparing the regional
demographic dynamics from our results with the ground-truth
data, we evaluated the effectiveness of the variation inference
method against other baseline methods.

B. Variation Inference Theory

In Bayesian statistics, unknown quantities inference could
be considered as the calculation of posterior probabilities,
which are often difficult to conduct. To tackle this problem,
one of the solutions is MCMC (Markov Chain Monte Carlo),
but it works slowly when confronted with a large size of
data (which is expected in our task). Alternatively, Variation
Inference (VI) method could serve as a powerful tool for
achieving approximate possibility inference from a large size
of big data [18]. The implementation of the VI method is
discussed as follows.

Suppose the input observation variables are x⃗ =
x1, x2, . . . , xn, and the latent variables inside the model are
z⃗ = z1, z2, . . . , zn. Approximating a conditional density of
latent variables z⃗ is the aim of VI. The basic idea of VI is to
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Fig. 2: The framework of methodology.

take it as an optimization problem: propose at first a family
of approximate probability distribution Q which is related to
latent variables z⃗, and the goal is to find a distribution among
Q, which has a minimal KL-Divergence (Kullback-Leibler
Divergence) from the true posterior possibility distribution
[18], that is:

q∗(z⃗) = argmin ·KL(q(z⃗)||p(z⃗ | x⃗)) q(z⃗) ∈ Q (5)

where the optimized distribution q∗ (z⃗) could be regarded as
the approximate posterior possibility distribution p (z⃗|x⃗).

Since KL (q (z⃗) ||p (z⃗|x⃗)) is difficult to compute directly,
it is usually replaced by a constructed item named Evidence
Lower Bound (ELBO) within the VI method:

ELBO = E [log p (z⃗, x⃗)]− E [log q (z⃗)] (6)

It could be demonstrated that minimizing the KL-
Divergence KL(q (z⃗) | |p (z⃗|x⃗)) is equivalent to maximizing
the ELBO. Therefore, equation (5) could be transformed to
be (7):

q∗(z⃗) = argmaxELBO(qz, pz, x)q(z) ∈ Q (7)

Choosing an appropriate form of approximate probability
distribution Q could facilitate the optimization. A common,
simple and effective variational family is the mean-field vari-
ational family which assumes that the latent variables are
independent of each other:

q(z⃗) =

m∏
j=1

qj (zj) (8)

Based on equation (6) and (8), and by combining the CAVI
(Coordinate Ascent Variational Inference) method [18, 19], the
rule of coordinate ascent could be derived to be (the derivation
is shown in Appendix):

q∗ (−→zk) ∝ eE−k(logp(−→zk|Z−k,x⃗)) (9)

According to expression (9), fixing other coordinates of
z⃗ allows computing the updates of current parameters, as is
shown in the following procedure:

Input: A model p (z⃗|x⃗), observations x
Output: A variational density q (z⃗) =

∏m
j=1 qj(zj)

Initialize: Variational factors qj(zj)
While the ELBO do not meet the termination criterion do

for j ∈ {1, . . . ,m} do
set qj (zj) ∝ eE−j(logp(−→zj |Z−j ,x⃗))

end
Compute ELBO (q) = E (log p (z, x))− E (log q (z))

end
return q(z)

C. Variation Inference Model Construction

Parameters to be optimized. There are so numerous
users that taking all users’ demographic characteristics as the
input parameters could be impractical. To construct an input
parameter form that could be solvable, we assume that each
demographic group is Gaussian distributed in the life-pattern
space (as is shown in Figure 2) so that only four parameters
will be needed to describe each demographic group (totally
4 ×m parameters for m demographic groups). Once one set
of Gaussian distribution parameters is determined, all users’
demographic characteristics could be calculated and could then
be used to iterate based on the census data to obtain a new
set of Gaussian distribution parameters until the convergence
of demographic characteristics.

Suppose there are m demographic groups, the parameters
to be optimized could be defined as:

xi =

[
µx1, µy1, µz1, σ1, µx2, µy2, µz2, σ2,

. . . , µxm, µym, µzm, σm

]
(10)



5

where µx, µy, µz stands for the coordinate of the center
of a demographic group’s Gaussian distribution in the life-
pattern space; σ denotes the standard error of this Gaussian
distribution. Then the possibility that a specific user belongs
to each demographic group could be calculated as:

p⃗i =


1

σ
√
2π

e
−((x−µx1)2+(y−µy1)

2+(z−µz1)2)
2δ2 , · · · ,

1

σ
√
2π

e
−((x−µxm)2+(y−µym)2+(z−µzm)2)

2δ2

 (11)

and the demographic characteristics matrix of all users U
should be:

A = {−→p0, . . . ,−→pn} (12)

Considering equation (3), we define the cost function f as:

f (xi) = MAE
(
SA,S ·AT | A

)
(13)

Mathematical Derivation. Based on the VI theory and
CAVI algorithm shown above, we derived the algorithm for
our task as follows:

Let
p (x, z) = ef(x,z) (14)

where:
f is the same as the cost function f in equation (13)
x stands for the observations, i.e., the life-pattern coordi-

nate (x, y, z) of each user in the life-pattern space.
z stands for the parameters for mixed Gaussian distri-

bution, which are the same as the parameters used in
equation (5)

where:
qj stands for a Gaussian possibility density function, and

m stands for the number of demographic groups.
For equation (11), let qj stands for a Gaussian possibility

density function (similar as equation (7) ), and m stands for
the number of demographic groups. Hence, qj (zj) should be:

qj (zj) ∝ eE−j(log
p(Zj |Z−j ,x))

=e

(
E−j

[
log ef(x,zj)|z−j

])
=e(E−j [f(x,zj)|z−j ]) ∝ E−j [f (x, zj) | z−j ]

(15)

And ELBO should be:

ELBO (q) = f(z, x) (16)

The overall flow is shown as below:

Input: A model p (z⃗|x⃗), observations x
Output: A variational density q(z⃗) =

∏m
j=1 qj (zj)

Initialize: Variational factors

qj (zj) =
1

σj
√
2π

e
−((x−µxj)

2+(y−µyj)
2+(z−µzj)

2)
2δj2

where x, y, z belongs to x⃗
While the ELBO do not meet the termination criterion do

for j ∈ {1, . . . ,m} do
Set qj (zj) ∝ E−j [f (x, zj) | z−j ]

end
Compute ELBO (q) = f(z, x)

end
return q(z)

With the optimized q(z), we can calculate Aopt and formu-
late the built environment demographic dynamics as:

Dla·T =
{
Sr·n ·AT

opt | where S in T and la
}

(17)

IV. CASE STUDY: EXPERIMENT IN TOKYO, JAPAN

A. Data Description

This study employed only 2 datasets for demographic
(age/gender) inference: a large-scale GPS trajectory dataset
and a census population data. In addition, a life-pattern statis-
tical dataset is used for evaluation:

Human Mobility Data.
Human Mobility Data. This study employed a human mo-

bility dataset named “Konzatsu-Tokei (R)” Data. “Konzatsu-
Tokei (R)” Data refers to people flows data collected by
individual location data sent from mobile phone under users’
consent, through Applications provided by NTT DOCOMO,
INC. Those data is processed collectively and statistically in
order to conceal the private information. Original location data
is GPS data (latitude, longitude) sent in about every a mini-
mum period of 5 minutes and does not include the information
to specify individual. ※Some applications such as “docomo
map navi” service (map navi · local guide). In this study, we
selected users who passed Tokyo in the corresponding period
with demographic dataset. In this study, we selected users who
passed Tokyo (23 wards) in the corresponding period with
demographic dataset.

Time-series Demographic Dataset. A demographic data
named ‘Mobaku data’ was taken as the ground-truth statistical
data. It is generated by the DoCoMo (i.e., NTT DoCoMo,
Inc.) cell phone network - the number of cell phones can
be counted and the population can be estimated considering
the penetration rate of DoCoMo within each area. Since its
users covered 80 million among the total of 126 million
population in Japan, the estimation could achieve a signifi-
cantly high statistical precision. The demographic data was
selected to be consistent with the human mobility data in
terms of the period as well as areas of record. As shown in
figure 1, every grid (500m*500m) contains the population of
different demographic groups: male/female with age falling
into 8 groups: 0∼15, 15∼20, 20∼30, 30∼40, 40∼50, 50∼60,
60∼70, 70∼80.

Dataset of Time Use and Leisure Activities. To further
evaluate the result of our inference, the ‘Survey on Time Use
and Leisure Activities’ (conducted by the Statistics Bureau of
Japan) statistical data were utilized. This survey is conducted
once every five years to observe the daily time use of different
activities for Japanese people [20]. It contains the average
time use in a single day on different types of activities (e.g.,
working, studying, sleeping and etc.) for populations with
different ages (including four age groups: < 35, 35∼44,
45∼64 and > 65, male and female).

B. Baseline Settings

For an inference problem, statistical maximum likelihood
estimation (usually a low-parameter method) and deep learning
(mainly neuron network, a high-parameter method) are usually
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used. Among low-parameter methods, we also employed an
optimization method – PSO (Particle Swarm Optimization)
as a baseline in addition to the proposed VI-based method
in Section 3.4. Among high-parameter methods, we used a
deep learning approach to fit the life-pattern feature with
demographic characteristics i.e., to construct a point-to-point
relationship between one’s life-pattern feature and one’s de-
mographic characteristics. Specifically, we implemented two
models: one was Fully Connected Neuron Network (FCN)
which directly yielded demographic characteristics for each
user; the other one was Multi-Task Fully Connected Neuron
Network (Multi-Task FCN) – branches of different demo-
graphic groups were generated, with each branch representing
the possibility for the user of belonging to that demographic
group.

Base Baseline: Persistence Algorithm To further confirm
the effectiveness of all inference models, we introduced a
common baseline - persistence algorithm (the “naive” forecast)
where regional demographics of the previous day are used for
the estimation of the value of the current day.

Fig. 3: Loss-epoch of model training.

Fig. 4: Relative error distribution comparison of different
methods.

More Work

Fig. 5: Illustration of life-pattern space.

C. Evaluation Metrics

Evaluation by Daily Time Use. We estimated daily time
use from the inferred demographic characteristics combined
with human mobility data and compared the result with the
statistical data ‘Survey on Time Use and Leisure Activities’
(conducted by the Statistics Bureau of Japan).

First, for each demographic group (e.g., male aged 30 40),
we performed min-max normalization for each demographic
group aggregating all the users; then we selected users whose
normalized possibility was above 0.8 as the representatives
of this demographic group. Second, we exploited the average
‘daily home time’, ‘daily work time’, ‘daily other time’ for
every demographic group from GPS trajectory data (we have
identified users’ homes, workplaces, and other significant
places by clustering GPS trajectory data). Third, we counted
the occurrence of the same values in the dataset ‘Survey on
Time Use and Leisure Activities’. Then, we resampled the
results into the same age interval. Lastly, we made a regression
between survey’s daily time use result and our GPS-derived
daily time use result. The Pearson correlation coefficient of
regression was taken as the metric to evaluate the model
performance.

r =

∑
(x−mx) (y −my)√∑

(x−mx)
2 ∑

(y −my)
2

(18)

Evaluation by Built Environment Demographics. Taking
a built environment as a case study, we evaluated our results
from another view. As the Figure 8 shows, we choose an
exhibition hall area with about 700m length and 300m width
from Tokyo, which has 3-day ground-truth built environment
demographic dynamics. The ground-truth data were utilized
to evaluate the estimation of built environment demographic
dynamics through VI and other 4 baselines. First, we detected
stay points from GPS trajectory by clustering; then, we labeled
the GPS trajectory with the inferred demographic characteris-
tics for each user to obtain the built environment demographic
dynamics of the period consistent with the ground-truth data.
Lastly, we calculated the MAPE (Mean Absolute Percentage
Error) to evaluate the performance of different methods.

MAPE =
100

n

n∑
t=1

∣∣∣∣At − Ft

Ai

∣∣∣∣ (19)
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VI

PSO

FNN

Multitask-FNN

Fig. 6: Illustration of possibility distribution of different de-
mographic groups in life-pattern space.

D. Overall Results

VI achieved the highest accuracy with comparable time cost
against other baselines. As Figure 3 shows, VI achieved an
MAE of 0.0123, while that of PSO, FCN, and MultiTask-
FCN are 0.013, 0.0126, and 0.0126, respectively. On the other
hand, VI converged within 3000 epochs, which was close to

Fig. 7: Daily time use regression between government survey
and GPS trajectory data

the epoch of the deep learning approach (FCN and MultiTask-
FCN), and was much faster than the heuristic algorithm (PSO)
which took more than 8000 epochs.

Further, we compared the relative error distribution of dif-
ferent demographic groups. From this aspect, VI also achieved
better results compared with other baselines. Figure 4 shows
that all of the methods performed relatively better when
inferring targets aged from 15∼70, but relatively worse when
the age was under 15 (the younger group) and above 70
(the elder group). The discrepancy resulted from the lower
penetration of mobile phones among these two groups; as a
result, their GPS trajectory data covered only a small portion
of our dataset, leading to the difficulty in performing a fine
fitting. Despite this obstacle, we still found the superiority of
VI compared with heuristic algorithm and deep learning model
– VI inferred the younger and the elder groups far better than
the other two methods even though their relative errors were
similar when estimating demographic groups between 15 ∼
70-year-old.

E. Evaluation by Time Use Survey Data

Although results of training loss and relative errors indicated
the superior performance of VI, it is yet to be demonstrated
whether our method evidently reveals the underlying life-
pattern of different demographic groups. This section is ded-
icated to investigating and evaluating the life-pattern features
extracted from the inference of demographic groups.

The life-pattern tendencies of different demographic
groups. As is mentioned above, we employed a metagraph-
based data structure to illustrate users’ life-pattern, with
the high-dimensional data being reduced to a 3-dimensional
space, i.e., the life-pattern space. Additionally, our previous
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Fig. 8: Scatter graph between estimated demographics and ground-truth demographics.

work has informed that the three axes of the life-pattern
space represented three different life-pattern tendencies: work-
preferred, home-preferred, and other-preferred [17], as shown
in Figure 5). To reveal the life-pattern tendencies of different
demographic groups, we mapped the normalized possibility
distribution of different demographic groups aggregating all
users into the life-pattern space (Figure 6).

In general, VI and PSO methods successfully distinguished
different life-pattern tendencies of different demographic
groups which could be reflected by the probability densities in
the life-pattern space. On the other hand, FCN and MultiTask-
FCN method failed to discern the tendencies as the probability
density were almost uniform for all demographic groups.

If we also focus on the major demographic groups (i.e.,
males and females of 15∼50-year-old), better rationality could
be reached from the VI method than from the PSO method.
According to the result obtained by the VI method, a 15∼20-
year-old person (regardless of the gender) tends to stay at home
or other places as opposed to the workplace; a 20∼50-year-
old male prefers spending more time at his workplace, while
a 20∼50-year-old female is more likely to stay at home or
other places. By contrast, results obtained by the PSO method
indicate that a 20∼30-year-old male tends to stay at home,
while a 30∼40-year-old female would prefer the workplace.

Nevertheless, neither of these two methods can reveal the
tendencies for the younger and the elder group (users whose
ages are under 15 or above 70-year-old).

Quantitative validation of extracted life-pattern features.
To quantitatively evaluate whether the estimations are consis-
tent with the practical data or not, we compared the daily
time use data derived from the inferred users’ demographic
characteristics with the statistical data ‘Survey on Time Use
and Leisure Activities’ (conducted by Statistics Bureau of
Japan).

As Figure 7 shows, the results of VI matched the govern-
ment survey data better than other baselines, reaching a 0.78
r-square while Multi-task FCN shows the worst matching with
a 0.22 r-square. The results show that the inference result from
VI well mined the life-pattern difference between different
demographic groups.

F. Evaluation by Built Environment Demographics

In terms of the estimation results of built environment demo-
graphics, VI also shows superior performance than baselines.
The MAPE of different methods are 0.23 for VI, 0.51 for
Base, 0.40 for PSO, 0.30 for FCN, and 0.31 for multitask
FCN, meaning the MAPE is improved by 0.07 ∼ 0.28. If we
investigate the scatter graph between estimation and ground-
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truth, VI better performance could be observed especially
when estimating the minor demographic groups, as Figure 8
shows.

V. CONCLUSION

This paper proposed a variation-inference-theory-based ap-
proach to perform the demographics inference sorely using
GPS trajectory data and census data, which could serve as an
effective way for trustworthy demographic dynamics tracking.

We demonstrated the feasibility to infer demographics
sorely by using GPS trajectory data and census data. The
overall MAE between the inferred demographics and census
demographics reached 0.0123. The Pearson correlation coeffi-
cient between the estimated daily time use and the government
survey data reached 0.78. Also, taking a region in Tokyo as a
case study, we evaluated the estimation of built environment
demographics: the MAPE obtained based on ground-truth data
reached 0.23.

Further, we concluded the efficiency of our VI-based
method in terms of the convergence rate - the VI method
consumed less than half of the time to converge compared to
the PSO method. Also, through different evaluation metrics,
the VI method demonstrated a superior accuracy against
other baselines - MAPE of built environment demographics
estimation was improved by 0.07 ∼ 0.28.

Despite the performance of our proposed VI method, sev-
eral uncertainties that could further complicate the inference
problem remain untreated in our experiment. This study only
considered the proportion of different demographic groups
instead of using a set of scaling factors to calculate the absolute
population of different demographic groups. In addition, the
generality of our method may be limited as we only selected
a region of 23 wards in Tokyo to conduct the case study.

REFERENCES

[1] M. N. Alverti, K. Themistocleous, P. C. Kyriakidis, and
D. G. Hadjimitsis, “A Study of the Interaction of Human
Smart Characteristics with Demographic Dynamics and
Built Environment: The Case of Limassol, Cyprus,”
Smart Cities, vol. 3, no. 1, pp. 48–73, feb 2020.
[Online]. Available: https://www.mdpi.com/2624-6511/
3/1/4/htmhttps://www.mdpi.com/2624-6511/3/1/4

[2] Q. Zhang, J. Wu, M. Zanella, W. Yang, A. K. Bashir, and
W. Fornaciari, “Sema-iiovt: Emergent semantic-based
trustworthy information-centric fog system and testbed
for intelligent internet of vehicles,” IEEE Consumer
Electronics Magazine, 2021.

[3] W. Z. Khan, Y. Xiang, M. Y. Aalsalem, and Q. Arshad,
“Mobile phone sensing systems: A survey,” IEEE Com-
munications Surveys Tutorials, vol. 15, no. 1, pp. 402–
427, 2013.

[4] M. Thejaswini, P. Rajalakshmi, and U. B. Desai, “Novel
sampling algorithm for human mobility-based mobile
phone sensing,” in IEEE Internet of Things Journal,
vol. 2, no. 3. Institute of Electrical and Electronics
Engineers Inc., jun 2015, pp. 210–220.

[5] A. Solomon, A. Bar, C. Yanai, B. Shapira, and
L. Rokach, “Predict demographic information using
Word2vec on spatial trajectories,” in UMAP 2018
- Proceedings of the 26th Conference on User
Modeling, Adaptation and Personalization, vol. 18.
Association for Computing Machinery, Inc, jul 2018, pp.
331–339. [Online]. Available: https://doi.org/10.1145/
3209219.3209249

[6] Z. Yu, E. Xu, H. Du, B. Guo, and L. Yao, “Inferring user
profile attributes from multidimensional mobile phone
sensory data,” IEEE Internet of Things Journal, vol. 6,
no. 3, pp. 5152–5162, jun 2019.

[7] F. Xu, Z. Lin, T. Xia, D. Guo, and Y. Li, “SUME:
Semantic-enhanced Urban Mobility Network Embedding
for User Demographic Inference,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 4, no. 3, sep 2020. [Online]. Available:
https://doi.org/10.1145/3411807

[8] X. Lu and E. I. Pas, “Socio-demographics, activity par-
ticipation and travel behavior,” Transportation Research
Part A: Policy and Practice, vol. 33A, no. 1, pp. 1–18,
jan 1999.

[9] A. Almaatouq, F. Prieto-Castrillo, and A. Pentland,
“Mobile communication signatures of unemployment,” in
Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 10046 LNCS. Springer Verlag,
nov 2016, pp. 407–418. [Online]. Available: https://link.
springer.com/chapter/10.1007/978-3-319-47880-7 25

[10] F. Luo, G. Cao, K. Mulligan, and X. Li, “Explore
spatiotemporal and demographic characteristics of human
mobility via Twitter: A case study of Chicago,” Applied
Geography, vol. 70, pp. 11–25, may 2016.

[11] P. Wang, F. Sun, D. Wang, J. Tao, X. Guan, and
A. Bifet, “Inferring demographics and social networks
of mobile device users on campus from ap-trajectories,”
in 26th International World Wide Web Conference 2017,
WWW 2017 Companion, 2017, pp. 139–147. [Online].
Available: http://dx.doi.org/10.1145/3041021.3054140

[12] L. Wu, L. Yang, Z. Huang, Y. Wang, Y. Chai, X. Peng,
and Y. Liu, “Inferring demographics from human tra-
jectories and geographical context,” Computers, Environ-
ment and Urban Systems, vol. 77, p. 101368, sep 2019.

[13] A. Roy and E. Pebesma, “A machine learning approach
to demographic prediction using geohashes,” in Pro-
ceedings - 2017 2nd International Workshop on Social
Sensing, SocialSens 2017 (part of CPS Week), 2017, pp.
15–20.

[14] J. Chen, J. Wu, H. Liang, S. Mumtaz, J. Li, K. Kon-
stantin, A. K. Bashir, and R. Nawaz, “Collaborative trust
blockchain based unbiased control transfer mechanism
for industrial automation,” IEEE Transactions on Indus-
try Applications, vol. 56, no. 4, pp. 4478–4488, 2019.

[15] F. Qiao, J. Wu, J. Li, A. K. Bashir, S. Mumtaz, and
U. Tariq, “Trustworthy edge storage orchestration in
intelligent transportation systems using reinforcement
learning,” IEEE Transactions on Intelligent Transporta-
tion Systems, 2020.

https://www.mdpi.com/2624-6511/3/1/4/htm https://www.mdpi.com/2624-6511/3/1/4
https://www.mdpi.com/2624-6511/3/1/4/htm https://www.mdpi.com/2624-6511/3/1/4
https://doi.org/10.1145/3209219.3209249
https://doi.org/10.1145/3209219.3209249
https://doi.org/10.1145/3411807
https://link.springer.com/chapter/10.1007/978-3-319-47880-7_25
https://link.springer.com/chapter/10.1007/978-3-319-47880-7_25
http://dx.doi.org/10.1145/3041021.3054140


10

[16] C. Kang, S. Gao, X. Lin, Y. Xiao, Y. Yuan, Y. Liu,
and X. Ma, “Analyzing and geo-visualizing individual
human mobility patterns using mobile call records,” in
2010 18th International Conference on Geoinformatics,
Geoinformatics 2010, 2010.

[17] W. Li, H. Zhang, J. Chen, P. Li, Y. Yao, M. Shibasaki,
X. Song, and R. Shibasaki, “Effective Metagraph-based
Life Pattern Clustering with Big Human Mobility Data,”
apr 2021. [Online]. Available: http://arxiv.org/abs/2104.
11968

[18] D. M. Blei, A. Kucukelbir, and J. D. Mcauliffe, “Varia-
tional Inference: A Review for Statisticians,” Tech. Rep.,
2018.

[19] A. Y. Zhang and H. H. Zhou, “Theoretical and
computational guarantees of mean field variational
inference for community detection,” Annals of Statistics,
vol. 48, no. 5, pp. 2575–2598, oct 2020. [Online].
Available: https://doi.org/10.1214/19-AOS1898

[20] Statistics Burea of Japan, “Survey on Time Use and
Leisure Activities,” 2011. [Online]. Available: http:
//www.stat.go.jp/english/data/shakai/2011/gaiyo.html

[21] M. Clerc, “Particle Swarm Optimization,” Particle
Swarm Optimization, pp. 1942–1948, 2010.

Peiran Li Peiran Li is now a Ph.D. candidate of
the Center for Spatial Information Science, at The
University of Tokyo. He has experience in the field
of remote sensing, and currently his work focuses
on urban computing and energy issues based on big
data and AI tools.

Haoran Zhang Haoran Zhang is a researcher in
the Center for Spatial Information Science at the
University of Tokyo, and also works as a researcher
at the Future Energy Center at Mälardalen University
in Sweden, and Senior Scientist at Locationmind Inc.
in Japan. His research includes smart supply chain
technologies, GPS data in shared transportation,
urban sustainable performance, GIS technologies in
renewable energy systems, and smart cities.

Wenjing Li Wenjing Li obtained an M.S. degree
in the Graduate school of Frontier Sciences, the
University of Tokyo. She obtained a B.E’ from
the Department of Landscape Architecture, Harbin
Institute of Technology. She participates in sev-
eral research works of spatial analysis and urban
computing as a member of the Center for Spatial
Information Science, the University of Tokyo. Her
research focuses on human mobility, spatial science
and data-driven urban studies.

Keping Yu Keping Yu received the M.E. and Ph.D.
degrees from the Graduate School of Global In-
formation and Telecommunication Studies, Waseda
University, Tokyo, Japan, in 2012 and 2016, respec-
tively. He was a Research Associate and a Junior Re-
searcher with the Global Information and Telecom-
munication Institute, Waseda University, from 2015
to 2019 and 2019 to 2020, respectively, where he is
currently a Researcher.

Ali Kashif Bashir ALI KASHIF BASHIR is a
Senior Lecturer at the Department of Computing and
Mathematics, Manchester Metropolitan University,
United Kingdom. He is a senior member of IEEE
and Distinguished Speaker of ACM. His past as-
signments include Associate Professor of Informa-
tion and Communication Technologies, Faculty of
Science and Technology, University of the Faroe Is-
lands, Denmark; Osaka University, Japan (71 in QS
Ranking 2020); Nara National College of Technol-
ogy, Japan; the National Fusion Research Institute,

South Korea; Southern Power Company Ltd., South Korea, and the Seoul
Metropolitan Government, South Korea.

Ahmad Alzubi Ahmad Alzubi received the Ph.D.
degree in computer networks engineering from the
National Technical University of Ukraine (Ukraine),
in 1999. He is currently a Professor with King
Saud University (KSU). His current research in-
terests include computer networks, grid computing,
cloud computing, big data, and data extracting. He
also served for three years as a consultant and a
member of the Saudi National Team for measuring
e-Government in Saudi Arabia.

Jinyu Chen Jinyu Chen is currently a PhD can-
didate in Center for Spatial Information Science,
the University of Tokyo. He has published over
12 academic papers in peer-reviewed journals and
conferences of both SCI and EI including Applied
Energy and Advances in Applied Energy. He covers
various fields including GPS trajectory data mining,
deep learning and big data analysis.

Xuan Song Xuan Song received the Ph.D. degree
in signal and information processing from Peking
University in 2010. In 2017, he was selected as
Excellent Young Researcher of Japan MEXT. He
served as Associate Editor, Guest Editor, Program
Chair, Area Chair, Program Committee Member
or reviewer for many famous journals and top-tier
conferences, such as IMWUT, IEEE Transactions
on Multimedia, WWW Journal, Big Data Journal,
ISTC, MIPR, ACM TIST, IEEE TKDE, UbiComp,
ICCV, CVPR, ICRA and etc.

Ryosuke Shibasaki Ryosuke Shibasaki received the
MS and PhD degrees in civil engineering from the
University of Tokyo in 1982 and 1987, respectively.
From 1982 to 1988, he was with the Public Works
Research Institute, Ministry of Construction. From
1988 to 1991, he was an associate professor in the
Civil Engineering Department, University of Tokyo.
In 1991, he joined the Institute of Industrial Science,
University of Tokyo. In 1998, he was promoted to
a professor in the Center for Spatial Information
Science, University of Tokyo. His research interest

covers three-dimensional data acquisition for GIS, conceptual modeling for
spatial objects, and agent-based microsimulation in a GIS environment.

http://arxiv.org/abs/2104.11968
http://arxiv.org/abs/2104.11968
https://doi.org/10.1214/19-AOS1898
http://www.stat.go.jp/english/data/shakai/2011/gaiyo.html
http://www.stat.go.jp/english/data/shakai/2011/gaiyo.html


11

APPENDIX A
BASELINE1: PSO BASED METHOD

Particle swarm optimization (PSO) is a powerful optimiza-
tion algorithm family, it defines the set of candidate solutions
as a swarm of particles that may flow through the parameter
space, driven by their own and neighbors’ best performances
[21].

Basic Idea. To solve our problem by using the PSO algo-
rithm, the definitions of ‘particle’ – the input parameters to be
optimized, and ‘aim’ – the cost function to evaluate the input
parameters should be given. In terms of input parameters, as

mentioned above, there are so numerous users that we could
not take all user’s demographic characteristics as the input
parameters. To construct a solvable input parameter form, we
assume that each demographic group is Gaussian distributed
in the life-pattern space (Appendix Figure A.1), thus, we only
need four parameters to describe each demographic group (64
parameters in total for 16 demographic groups). Once the
parameters of Gaussian distribution have been given, all users’
demographic characteristics could be calculated. Through a
series of iterations, we can achieve the best parameters (Ap-
pendix Figure A.1).
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Fig. A.1: Illustration of PSO-based method.

Mathematical Description. According to the PSO theory,
we define our problem as follows:

Suppose there are m demographic groups, the particles
could be defined as:

xi =

[
µx1, µy1, µz1, σ1, µx2, µy2, µz2, σ2, . . . ,

µxm, µym, µzm, σm

]
(A.1)

where µx, µy, µz stands for the center coordinate of a demo-
graphic group’s Gaussian distribution in the life-pattern space,
σ stands for this Gaussian distribution’s standard error.

And N candidate solutions constitute the swarm:

X = {x1,x2, . . . ,xN} (A.2)

Then, for each user, the demographic characteristics could
be calculated as:

p⃗i =


1

σ
√
2π

e
−((x−µx1)2+(y−µy1)

2+(z−µz1)2)
2δ2 , · · · ,

1

σ
√
2π

e
−((x−µxm)2+(y−µym)2+(z−µzm)2)

2δ2

 (A.3)

and the age/gender state matrix of all the users U should be:

A = {p⃗0, . . . , p⃗n} (A.4)

Considering equation (3), we define the cost function f as:

f (xi) = MAE
(
SA,S ·AT | A

)
(A.5)

So far, we have completed the problem construction, and
the fake code is shown as follow:

for each particle i = 1, . . . , S do
Initialize the Gaussian distributions’ parameters of
demographic groups: xi ∼ U (blo,bup)
Initialize the particle’s best-known parameters to its
initial parameters: pi ← xi

if f (pi) < f(g) then
update the swarm’s best-known parameters: g← pi

Initialize the particle’s velocity:
vi ∼ U (− |bup − blo| , |bup − blo|)

while a termination criterion is not met do:
for each particle i = 1, . . . , S do

for each dimension d = 1, . . . , n do
Pick random numbers: rp, rg ∼ U(0, 1)
Update the particle’s velocity: vi,d ← ωvi,d+
φprp (pi,d − xi,d) + φgrg (gd − xi,d)

Update the particle’s parameters: xi ← xi + lrvi

if f (xi) < f (pi) then
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Fig. A.2: Flow of Deep Learning based method.

Update the particle’s best-known parameters:
pi ← xi

if f (pi) < f(g) then
Update the swarm’s best-known parameters:
g←− pi

Finally, once the optimal parameters for Gaussian distribu-
tions of all demographic groups are determined, we can cal-
culate the demographic characteristics of all users by equation
(A.3).

APPENDIX B
BASELINE2: DEEP LEARNING BASED METHOD

Recent years have witnessed the magnificent booming of
deep learning technology. Here, we employed an FCN and
Multi-Task FCN to model the relationship between life-pattern
features and users’ demographic characteristics.

For FCN, we trained a model by taking life-pattern features
(e.g. the x, y, z coordinates) as input and output a vector of
possibilities that a user belongs to each demographic group.
For Multi-Task FCN, the input is the same with FCN, but
we used different output branches for different demographic
groups. Each branch generates the possibility for the user of
belonging to the corresponding demographic group, as A.2
shows.


	Introduction
	Background
	Literature Review
	Motivation
	Contributions
	Organization

	Preliminary
	Definition
	Solving Barriers

	Methodology
	Framework
	Variation Inference Theory
	Variation Inference Model Construction

	Case Study: Experiment in Tokyo, Japan
	Data Description
	Baseline Settings
	Evaluation Metrics
	Overall Results
	Evaluation by Time Use Survey Data
	Evaluation by Built Environment Demographics

	Conclusion
	Biographies
	Peiran Li
	Haoran Zhang
	Wenjing Li
	Keping Yu
	Ali Kashif Bashir
	Ahmad Alzubi
	Jinyu Chen
	Xuan Song
	Ryosuke Shibasaki

	Appendix A: Baseline1: PSO based method
	Appendix B: Baseline2: Deep Learning based method

