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Abstract Hydrodynamic journal bearings are used
in many applications which involve high speeds and
loads. However, they are susceptible to oil whirl insta-
bility, which may cause bearing failure. In this work, a
flexible Jeffcott rotor supported by two identical journal
bearings is used to investigate the stability and bifurca-
tions of rotor bearing system. Since a closed form for
the finite bearing forces is not exist, nonlinear bearing
stiffness and damping coefficients are used to repre-
sent the bearing forces. The bearing forces are approx-
imated to the third order using Taylor expansion, and
infinitesimal perturbation method is used to evaluate
the nonlinear bearing coefficients. The mesh sensitiv-
ity on the bearing coefficients is investigated. Then,
the equations of motion based on bearing coefficients
are used to investigate the dynamics and stability of
the rotor-bearing system. The effect of rotor stiffness
ratio and applied load on the Hopf bifurcation stability
and limit cycle continuation of the system are investi-
gated. The results of this work show that evaluating the
bearing forces using Taylor’s expansion up to the third-
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order bearing coefficients can be used to profoundly
investigate the rich dynamics of rotor-bearing systems.
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List of symbols

c Journal bearing radial clearance (m)
ci j First-order damping Coefficients

(Ns/m),
i, j = x, y

ci jk Second-order damping Coefficients
(Ns/m2), i, j, k = x, y

ci jkl Third-order damping Coefficients
(Ns/m3), i, j, k, l = x, y

Ci j Dimensionless linear damping coef-

ficients Ci j = ci j c �

W
Ci jk Dimensionless second-order damp-

ing coefficients Ci jk = ci jk c2 �

W
Ci jkl Dimensionless third-order damping

coefficients Ci jkl = ci jkl c3 �

W
e Radial eccentricity (m)
Fx , Fy Bearing force components in Carte-

sian coordinates (N )

F̄X , F̄Y Dimensionless bearing force compo-
nents F̄X = Fx

W , F̄Y = Fy
W
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h Thickness of the fluid film (m)
H Fluid film dimensionless thickness

H = h
c

ki j First-order stiffness coefficients (N/m),
i, j = x, y

ki jk Second-order stiffness coefficients
(N/m2), i, j, k = x, y

ki jkl Third-order stiffness coefficients (N/m3),
i, j, k, l = x, y

Ki j First-order dimensionless stiffness

coefficients Ki j = ki j c
W

Ki jk Second-order dimensionless stiffness

coefficients Ki jk = ki jk c2

W
Ki jkl Third-order dimensionless stiffness

coefficients Ki jkl = ki jkl c3

W
m Total mass of the disc and shaft (kg)
md Sum of disc and shaft around disc

mass (kg)
m j Mass of shaft around the journal (kg)

M̄ dimensionless mass M̄ = m c �2

W

M̄th Threshold mass M̄th = mc�2
th

W
p Fluid film pressure (N/m2)

P Dimensionless pressure P = p
6μ�

( c
R

)2

P0 Dimensionless steady-state pressure
Pζ First-order pressure gradients ζ =

X,Y, X ′, Y ′
Pζη Second-order pressure gradients ζ, η =

X,Y, X ′, Y ′
Pζηγ Third-order pressure gradients ζ, η, γ =

X,Y, X ′, Y ′
R Bearing radius (m)
S Sommerfeld number
T Dimensionless periodic time
X, Y Dimensionless displacements
X ′,Y ′, X ′′, Y ′′ Cartesiandimensionless velocities and

accelerations.
z Axial coordinate
ε Eccentricity ratio (e/c)
ε Percentage error
η Vector of initial conditions
θ Attitude angle
δθ Small perturbation of attitude angle
κ Iteration number
λi Theeigenvalues of the Jacobianmatrix

μ lubricant viscosity (Ns/m2)

ρ j The eigenvalues of the Monodromy
matrix

ρ Lubricant density (kg/m3)

τ Dimensionless time (τ = � t)

φ The angular coordinate
� The rotational speed of the journal

rad/s

1 Introduction

Journal bearing is one of the crucial elements used
in industry. It has many applications in heavy-duty
machinery whether moderate or high speed such as
reciprocating engines [1,2], turbomachines [3,4], cen-
trifugal pumps [5,6] and turbocharger [7–9]. Many of
these machines are required to spin at very high speeds
to improve their efficiency. Therefore, it is important to
investigate and evaluate the threshold whirling speed,
because above this speed oil whirl may be occurred
[10,11]. However, some applications are reported to
operate at speeds higher than this threshold value in
the stable condition [12]. In addition, the experimen-
tal work of Muszynska [13], Deepak and Noah [14]
showed that a stable whirling is occurred after thresh-
old speed. Therefore, it is important to investigate the
nonlinear dynamics behavior of journal bearings to
improve the future design of rotating machinery.

The dynamic modelling of journal bearings requires
the evaluation of the bearing forces. Since the fluid film
pressure distribution inside the journal bearing can be
described by Reynolds equation, the bearing forces can
be obtained from the integration of the bearing fluid
film pressure distribution. In case of short and long
bearings, Reynolds equation can be approximated and
simplified so that the bearing forces can be obtained
analytically, see for example [6,15,16]. Nishimura et
al. [6] investigated the nonlinear dynamics and stabil-
ity of a vertical flexible rotor supported by short jour-
nal bearing. Castro et al. [15] investigated the nonlinear
dynamics of rotors supported by journal bearings based
on short bearing approximation. They investigated two
types of instability, which are ‘oil whirl’ and ‘oil whip’
during run-up and run-down. In case of finite length
bearings, where the analytical solution for Reynolds
equation is not available, the bearing forces can be
obtained by direct integration of Reynolds equation.
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In dynamic analysis, this integration is required to be
done each time step, which is computationally expen-
sive especially if very fine mesh is considered [17–19].

Alternatively, and more commonly is to represent
the bearing forces using stiffness and damping coef-
ficients. These coefficients are used to evaluate the
bearing forces and to investigate the system dynam-
ics. These coefficients are simply based on the Taylor
expansion of the bearing forces. Much research con-
siders only the linear first-order approximations, while
others consider higher-order approximation [20–22].
There are differentmethods to obtain the bearing coeffi-
cients, such as experimental [23,24] analytical [25–27],
finite difference method(FDM) [28–30], finite element
method (FEM) [31–33], meshless method with radial
basis (MMRB) [34] and computational fluid dynamics
(CFD) [35,36].

Investigating the Hopf bifurcation stability is impor-
tant because it represents the transformation from spin
motion to periodic whirl motion. Although the bear-
ing forces based on linear first-order approximation
coefficients are sufficient to obtain the threshold speed,
they are not sufficient to judge the stability of periodic
solution and whether it is subcritical or supercritical
bifurcation. In the case of subcritical bifurcation, if the
amplitude of perturbation is located outside the limit
cycle, the stability of the rotor bearing system is lost and
the perturbation will trigger oil whip; subsequently, the
system becomes unstable. If the perturbation is located
inside the limit cycle, the rotor will stabilize at a point
and the system will remain stable. In the case of super-
critical bifurcation and above the threshold speed, the
limit cycles are stable and they attract the rotor centre
if the perturbation was inside or outside the limit cycle,
which physically means that the rotor will whirl in this
limit cycle [14,37]. This motivates the researchers to
use analytical solution for bearing forces where possi-
ble or to use higher-order bearing coefficients.

Dake et al. [38] investigated the nonlinear dynam-
ics and stability of a rotor supported by hydrodynamic
journal bearings. They investigated the stability based
on both linear bearing coefficients and on bearing
forces from the analytical solution. Smolik et al. [39]
investigated the stability of rotor bearing system based
on the threshold stability curves. They used different
approaches to calculate the bearing forces, infinitely
short, infinitely short approximation with correction
factor for finite length bearing, finite difference, and

finite element. They also investigated the run-up time
and acceleration.

Miraskari et al. [40] investigated the nonlinear
dynamics of flexible rotor supported by journal bear-
ings. The second-order nonlinear bearing coefficients
are obtained using the perturbation method. Then, they
used a shooting method to evaluate the stability of
the periodic solution. Chasalevris [41] investigated the
Hopf bifurcation of flexible rotor supported by journal
bearings. Chasalevris investigated the lemon bore and
partial arc types of bearings. Chasalevris used Hopf
bifurcation theory introduced by Hassard et al. [42] to
investigate the stability of periodic solution.

The previous literature shows that many studies for
the nonlinear dynamics of journal bearing are based on
the analytical solutionwhich is only available in case of
short or long bearings. Little studies are done based on
the second-order linear coefficient. Moreover, very lit-
tle studies havebeendoneonhigher-order bearing coef-
ficients. The main purpose of this study is to evaluate
the third-order bearing coefficients using infinitesimal
perturbationmethod.Theobtained coefficients are used
to investigate the stability of a flexible rotor/disc sup-
ported on two symmetric hydrodynamic journal bear-
ings.

After this introduction, the numerical steps to obtain
the journal bearing third-order bearing coefficients are
presented on the mathematical model section. Then,
the dynamic model of flexible rotor supported on two
symmetric journal bearings is presented. The results of
journal bearing coefficients and their verification and
mesh sensitivity are presented on the results and dis-
cussion section. Moreover, the stability and continu-
ation analysis of the dynamical model are discussed
at the dynamical results subsection. Finally, the most
important outcomes and conclusions are presented in
the conclusion section.

2 Analytical model

In this section, the pressure distribution of the journal
bearing is evaluated and then used in the calculations
of the stiffness and damping coefficients of the oil film
journal bearing. Then, these coefficients are used in the
dynamic modeling of the elastic rotor-bearing system.
The model is for full circular journal bearing ob is the
center of the bearing, o js is the center of the journal
or shaft at the equilibrium position and o j is the per-
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turbed journal center. R is the radius of the bearing and
R j is the radius of the journal. The radial clearance is
c = R − R j . The height of the oil film between the
journal and the bearing at any angle is h. e0, θ0 are the
eccentricity and the attitude angle at the steady-state
equilibrium. Ojs is the center of the journal or shaft
at the equilibrium position in terms of dimensionless
coordinates and Oj is the perturbed journal center in
terms of dimensionless coordinates , see Fig. 1c.

The pressure distribution inside the fluid film can be
described by Reynolds equation as follows:

1

R2

∂

∂φ

(
ρh3

12μ

∂p

∂φ

)
+ ∂

∂z

(
ρh3

12μ

∂p

∂z

)

= �

2

∂ (ρh)

∂φ
+ ρ

∂h

∂t
, (1)

where h and p are the oil film thickness and pressure,
respectively. φ is the angular coordinate with respect
to vertical axis, t is the time in sec., � is the rotational
speed of the shaft in rad/sec.. x and y are the sectional
bearing coordinates as shown in Fig. 1a. z is the axial
coordinate as shown in Fig. 1b. The fluid film viscosity
and density are μ in Ns/m2 and ρ in kg/m3, respec-
tively.

Reformulating the Reynolds equation Eq. (1) for the
dimensionless representation, it can be written as:

∂

∂φ

(
H3 ∂P

∂φ

)
+ ∂

∂Z

(
H3 ∂P

∂Z

)
= ∂H

∂φ
+ 2

∂H

∂τ
, (2)

where H is the oil film dimensionless thickness, P =
p

6μ�

( c
R

)2 is the dimensionless pressure, Z = z
R

is dimensionless location in the axial direction. The
dimensionless time is τ = �t . To evaluate the bearing
coefficients, a small perturbation is introduced from
the steady-state point as shown in Fig. 1c. The height
in dimensionless can be presented as in Eq. (3). After
perturbation, the eccentricity ratio, attitude angle and
dimensionless height can be obtained fromEqs. (4), (5)
and (6), respectively. Since the analysis in the present
article is based on the third-order approximation, all the
differences with order higher than three are omitted.

H = 1 + ε cos (φ − θ) = 1 + ε cos (ϕ), (3)

for which ε is the eccentricity ratio and θ is the attitude
angle, for a small perturbation

ε = ε0 + δε , (4)

θ = θ0 + δθ, (5)

H = 1 + (ε0 + δε ) cos (ϕ0 − δθ)

= 1 + (ε0 + δε ) [cos (ϕ0) cos (δθ)

+ sin (ϕ0) sin (δθ )] , (6)

For small δθ , substitute cos (δθ ) = 1− δθ2

2 and

sin (δθ ) =δθ − δθ3

6 , then Eq (6) can be written as

H = 1 + (ε0 + δε )

[
cos (ϕ0)

(
1 − δθ2

2

)

+ sin (ϕ0)

(
δθ − δθ3

6

) ]
. (7)

Equation (7) can be expanded as follows:

H = 1 + ε0 cos (ϕ0) + ε0δθ sin (ϕ0)+δε cos (ϕ0)

+ δε δθ sin (ϕ0)

− 1

2
ε0δθ

2 cos (ϕ0) − δθ2

2
δε cos (ϕ0)

− ε0
δθ3

6
sin (ϕ0) − δε δθ3

6
sin (ϕ0)

= H0 + H1 + H2 + H3 + O
(
δθ4

)
,

(8)

for which

H0 = 1 + ε0 cos (ϕ0), (9)

H1 = ε0δθ sin (ϕ0)+δε cos (ϕ0), (10)

H2 = δε δθ sin (ϕ0) − 1

2
ε0δθ

2 cos (ϕ0), (11)

H3 = −δθ2

2
δε cos (ϕ0) − ε0

δθ3

6
sin (ϕ0). (12)

Now it is important to transform the oil film height
Eq. (8) frompolar coordinates toCartesian coordinates.
From the geometry, Fig. 1c, the components δX and δY
can be written as:

δX = (ε0 + δε) sin (θ0 + δθ) − ε0 sin θ0, (13)

δY = (ε0 + δε) cos (θ0 + δθ) − ε0 cos θ0. (14)

Expanding Eqs. (13–14) and reducing higher-order
terms, we get the following relation:
{
δX
δY

}
=

[
sin θ0 cos θ0
cos θ0 − sin θ0

] {
δε

ε0δθ

}
. (15)

Reordering Eq. (15), we can obtain the following :
{

δε

ε0δθ

}
=

[
sin θ0 cos θ0
cos θ0 − sin θ0

]−1 {
δX
δY

}
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(a) (b) (c)

Fig. 1 Full circular journal bearing: a schematic of the journal bearing coordinates, b journal bearing mesh, c perturbed journal bearing
in dimensionless coordinates X and Y

=
[
sin θ0 cos θ0
cos θ0 − sin θ0

]{
δX
δY

}
. (16)

Substituting the transformation relations in Eq. (16)
into Eqs. (9–12) results in

H0 = 1 + ε0 cos (ϕ0), (17)

H1 = δX sin φ + δY cosφ, (18)

H2 = δX2

2 ε0

(
2 sin θ0 cos θ0 sin ϕ0 − cos2 θ0 cosϕ0

)

+ δX δY

ε0
(sin θ0 cos θ0 cosϕ0

+ cos2 θ0 sin ϕ0 − sin2 θ0 sin ϕ0

)

+ δY 2

2 ε0

(
−2 sin θ0 cos θ0 sin ϕ0 − sin2 θ0 cosϕ0

)
.

(19)

The dimensionless pressure distribution P(X,Y,

X ′,Y ′) in the fluid film can be expanded using Tay-
lor expansion as follows:

P = P0 + PXδX + PY δY + PX ′δX ′ + PY ′δY ′

+0.5PXX δX2 + 0.5PYY δY 2

+PXY δXδY + PXX ′δXδX ′ + PXY ′δXδY ′

+PY X ′δY δX ′ + PYY ′δY δY ′

+1

6
PXXX δX3 + 1

6
PYYY δY 3

+1

2
PXXY δX2δY + 1

2
PXYY δXδY 2

+1

2
PXXX ′δX2δX ′

+1

2
PXXY ′δX2δY ′ + 1

2
PYY X ′δY 2δX ′

+1

2
PYYY ′δY 2δY ′ + PXY X ′δXδY δX ′

+PXYY ′δXδY δY ′, (20)

where X = x
c , Y = y

c ,
′ = d

dτ , τ = �t, X ′ =
ẋ

�c ,Y
′ = ẏ

�c , δX = X − X0, δY = Y − Y0, for which
(X0,Y0) is the steady-state equilibrium position, and
PX = ∂P

∂X , PXX = ∂2P
∂X2 , PXXX = ∂3P

∂X3 , PXYY ′ =
∂3P

∂X∂Y ∂Y ′ and so on.
To obtain the steady-state pressure P0 the Reynolds

equation in Eq. (2) is solved using finite difference rela-
tions. The derivation of the first-, second- and third-
order pressure gradients of Eq. (20) is discussed in
“Appendix A”.

2.1 Nonlinear bearing forces

As the induced fluid film pressure, the dimensionless
bearing forces F̄X and F̄Y are approximated to the third
order using Taylor series, for which F̄X = Fx

W and

F̄Y = Fy
W , where Fx is the bearing force in the x direc-
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tion, Fy is the bearing force in y direction andW is the
bearing load.

F̄ζ = F̄ζ0 + ∂ F̄ζ

∂X
δX + ∂ F̄ζ

∂Y
δY + ∂ F̄ζ

∂X ′ δX
′ + ∂ F̄ζ

∂Y ′ δY
′

+ 0.5
∂2 F̄ζ

∂X2 δX2

+ 0.5
∂2 F̄ζ

∂Y 2 δY 2 + ∂2 F̄ζ

∂X∂Y
δXδY + ∂2 F̄ζ

∂X∂X ′ δXδX ′

+ ∂2 F̄ζ

∂X∂Y ′ δXδY ′ + ∂2 F̄ζ

∂Y ∂X ′ δY δX ′

+ ∂2 F̄ζ

∂Y ∂Y ′ δY δY ′ + 1

6

∂3 F̄ζ

∂X3 δX3 + 1

6

∂3 F̄ζ

∂Y 3 δY 3

+ 0.5
∂3 F̄ζ

∂X2∂Y
δX2δY

+ 0.5
∂3 F̄ζ

∂X∂Y 2 δXδY 2 + 0.5
∂3 F̄ζ

∂X2∂X ′ δX
2δX ′

+ 0.5
∂3 F̄ζ

∂X2∂Y ′ δX
2δY ′

+ 0.5
∂3 F̄ζ

∂Y 2∂X ′ δY
2δX ′ + 0.5

∂3 F̄ζ

∂Y 2∂Y ′ δY
2δY ′

+ ∂3 F̄ζ

∂X∂Y ∂X ′ δXδY δX ′ + ∂3 F̄ζ

∂X∂Y ∂Y ′ δXδY δY ′

(21)

where ζ = X or Y .
The bearing forces in X, Y directions in Eq. (21) can

be written using the bearing first-, second- and third-
order coefficients as shown below:

F̄ζ = F̄ζ0 + Kζ XδX + KζY δY

+ Cζ XδX ′ + CζY δY ′

+ 0.5Kζ XX δX2

+ 0.5KζYY δY 2 + Kζ XY δXδY

+ Cζ XXδXδX ′ + Cζ XY δXδY ′

+ CζY XδY δX ′ + CζYY δY δY ′

+ 1

6
Kζ XXX δX3 + 1

6
KζYYY δY 3

+ 0.5Kζ XXY δX2δY

+ 0.5Kζ XYY δXδY 2 + 0.5Cζ XXX δX2δX ′

+ 0.5Cζ XXY δX2δY ′

+ 0.5CζYY XδY 2δX ′ + 0.5CζYYY δY 2δY ′

+ Cζ XY XδXδY δX ′ + Cζ XYY δXδY δY ′

(22)

for which X = x
c and Y = Y

c are the dimensionless
coordinates, c is the radial clearance.

Ki j = ki j c
W and Ci j = ci j c �

W are the dimensionless
linear stiffness and damping coefficients, respectively,
where (i, j = X,Y ). ki j and ci j are stiffness and damp-
ing dimensional coefficients, respectively.

Ki jk = ki jk c2

W and Ci jk = Ci jk c2�
W are the second-

order dimensionless stiffness and damping coefficients,
respectively, where i, j, k = X,Y . ki jk and ci jk are the
second-order stiffness and damping dimensional coef-
ficients, respectively.

Ki jkl = ki jkl c3

W and Ci jkl = Ci jkl c3�
W are the third-

order dimensionless stiffness and damping coefficients
where i, j, k, l = X,Y . ki jkl and ci jkl are the third-
order stiffness and damping dimensional coefficients.

The bearing forces can be calculated by integrating
the pressure over the area as shown below:

F̄X =
∫ L

R

0

∫ 2π

0
−P sin φ dφ dZ , (23)

F̄Y =
∫ L

R

0

∫ 2π

0
−P cosφ dφ dZ . (24)

Comparing Eqs. (20), (22) to (24), the steady-state
force can be obtained as:

F̄X0 =
∫ L

R

0

∫ 2π

0
−P0 sin φ dφ dZ , (25)

F̄Y0 =
∫ L

R

0

∫ 2π

0
−P0 cosφ dφ dZ . (26)

It is worth noting that through the present analysis
the only steady-state load in y direction is the weight
and no static load in x direction. Therefore, Fx0 = 0
and Fy0 = W which also means that

F̄X0 = 0, F̄Y0 = 1. (27)

Using this condition and by an iterative method, the
steady-state attitude angle can be obtained. Also, the
eight first-order coefficients can be obtained from the
following equations.

KXζ =
∫ L

R

0

∫ 2π

0
−Pζ sin φ dφ dZ , (28)

KY ζ =
∫ L

R

0

∫ 2π

0
−Pζ cosφ dφ dZ , (29)
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(b)(a)

Fig. 2 a Elastic rotor supported on two symmetric journal bearings. b Bearing coordinates

CXζ =
∫ L

R

0

∫ 2π

0
−Pζ ′ sin φ dφ dZ , (30)

CY ζ =
∫ L

R

0

∫ 2π

0
−Pζ ′ cosφ dφ dZ , (31)

where ζ = X or Y which means that by replacing ζ by
either X or Y the eight equations for the eight coeffi-
cients can be obtained from Eqs. (28–31). In addition,
the fourteen second-order coefficients can be calculated
from

KXζη =
∫ L

R

0

∫ 2π

0
−Pζη sin φ dφ dZ , (32)

KY ζη =
∫ L

R

0

∫ 2π

0
−Pζη cosφ dφ dZ , (33)

CXζη =
∫ L

R

0

∫ 2π

0
−Pζη′ sin φ dφ dZ , (34)

CY ζη =
∫ L

R

0

∫ 2π

0
−Pζη′ cosφ dφ dZ , (35)

where each of ζ and η can be either X or Y . This means
that Eqs. (32–35) represent sixteen equations. These
equations are reduced to fourteen equations because
KXY X = KXXY and KY XY = KYY X .

Similarly, the twenty third-order coefficients can be
evaluated from the following equations:

KXζηγ =
∫ L

R

0

∫ 2π

0
−Pζηγ sin φ dφ dZ , (36)

KY ζηγ =
∫ L

R

0

∫ 2π

0
−Pζηγ cosφ dφ dZ , (37)

CXζηγ =
∫ L

R

0

∫ 2π

0
−Pζηγ ′ sin φ dφ dZ , (38)

CY ζηγ =
∫ L

R

0

∫ 2π

0
−Pζηγ ′ cosφ dφ dZ , (39)

where each of ζ, η and γ can be either X or Y . This
means that thirty-two equations can be obtained from
Eqs. (36–39), but these equations are reduced to only
twenty because of similarity of several coefficients such
as KXY XX = KXXY X = KXXXY .

2.2 Rotor-bearing model

In this section, the analytical model for elastic rotor
supported on two symmetric journal bearings is inves-
tigated. The model is four degree of freedom in x and y
directions. In this model, both the mass of rotor inside
the journal m j and disk mass md are considered, as
shown in Fig. 2. A static load 2W is applied on the disc.
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The equations of motion for the presented system
can be presented as:

2m j ẍ j + ks
(
x j − xd

) = −2Fx

2m j ÿ j + ks
(
y j − yd

) = −2Fy

md ẍd + ks
(
xd − x j

) = 0

md ÿd + ks
(
yd − y j

) = 2W

(40)

For whichm j is the mass of shaft inside and around
the journal andmd is the sum of the disc and remaining
part of the shaft mass, ks is the shaft stiffness, Fx and
Fy are the bearing forces in x and y directions, respec-
tively,W is the bearing load and x j , y j , xd , yd are jour-
nalmass geometrical center anddisc geometrical center
current positionswith respect to the journal steady-state
position. m = md + 2m j is the total mass of the rotor.

Transforming the equations of motion Eq. (40) into
dimensionless form, we get the following equations:

2MJ X
′′
J + KS (X J − XD) = −2F̄X ,

2MJY
′′
J + KS (YJ − YD) = −2F̄Y ,

MDX
′′
D + KS (XD − X J ) = 0,

MDY
′′
D + KS (YD − YJ ) = 2,

(41)

where X J = x j
c ,YJ = y j

c , XD = xD
c , YD = yD

c , ′ =
d
dτ , ′′ = d2

dτ 2
, τ = �t

X ′′
J = ẍ j

�2c
, Y ′′

J = ÿ j
�2c

, X ′′
D = ẍd

�2c
,Y ′′

D =
ÿd

�2c
, KS = ks c

W , MJ = m j�
2c

W and MD = md�2c
W .

MJ and MD are the dimensionless masses of the
journal and disc, respectively. Through the current
paper, the followingmass ratios are considered 2MJ =
0.1M̄ and MD = 0.9M̄ , where M̄ is the dimensionless
totalmass of the rotor. The dimensionless shaft stiffness
is KS . The rotational speed is�, and the dimensionless
time is τ . The dimensionless static equilibrium forces
are F̄X0 = 0 and F̄Y0 = 1.

Substituting Eqs. (22) and (27) in Eq. (41), and con-
verting the resulting equations into the state space form,
the final resulting equations can be written as:

x ′
1 = x2,

x ′
2 = Ks (x5−x1)

2MJ
− 1

MJ

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

KXX x1 + CXX x2 + KXY x3 + CXY x4 + 0.5 KXXX x
2
1

+0.5 KXYY x
2
3 + KXXY x1x3 + CXXX x1x2 + CXXY x1x4

+CXY X x3x2 + CXYY x3x4 + 1

6
KXXXX x

3
1 + 1

6
KXYYY x

3
3

+0.5KXXXY x
2
1 x3 + 0.5KXXYY x1x

2
3 + 0.5CXXXX x

2
1 x2+

0.5CXXXY x
2
1 x4 + 0.5CXYY X x

2
3 x2 + 0.5CXYYY x

2
3 x4+

CXXY X x1x3x2 + CXXYY x1x3x4

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

,

x ′
3 = x4,

x ′
4 = Ks (x7−x3)

2MJ
− 1

MJ

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

1 + KY X x1 + CY X x2 + KYY x3 + CYY x4 + 0.5 KY XX x
2
1

+0.5 KYYY x
2
3 + KY XY x1x3 + CY XX x1x2 + CY XY x1x4

+CYY X x3x2 + CYYY x3x4 + 1

6
KY XXX x

3
1 + 1

6
KYYYY x

3
3

+0.5KY XXY x
2
1 x3 + 0.5KY XYY x1x

2
3 + 0.5CY XXX x

2
1 x2

+0.5CY XXY x
2
1 x4 + 0.5CYYY X x

2
3 x2 + 0.5CYYYY x

2
3 x4+

CY XY X x1x3x2 + CY XYY x1x3x4

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

,

x ′
5 = x6,
x ′
6 = Ks (x1−x5)

MD
,

x ′
7 = x8,
x ′
8 = 2+Ks (x3−x7)

MD
,

(42)
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where x1 = X J , x2 = X ′
J , x3 = YJ , x4 = Y ′

J , x5 =
XD, x6 = X ′

D, x7 = YD, x8 = Y ′
D .

Finally, Eq. (42) can be written as:

x′ = f
(
x, M̄

)
(43)

where x = [x1 x2 x3 x4 x5 x6 x7 x8], M̄ = MD +2MJ

and MJ
MD

= 1
18 .

The system of equations in Eq. (43) can have a peri-
odic solution x(τ ) = x (τ + T ). This is occurred above
what is called the threshold speed

(
M̄ ≥ M̄th

)
, where

T is the dimensionless periodic time of solution and
M̄th is the dimensionless threshold mass of the system.
This will be discussed in detail in the results section.

3 Results and discussion

In this section, the first-, second- and third-order bear-
ing coefficients are calculated using infinitesimal per-
turbation analysis. The bearing coefficients are pre-
sented and listed for full circular journal bearing. Per-
turbation analysis is used to investigate the validity
range of these coefficients. Afterwards, the bearing
coefficients are used to investigate the dynamics of flex-
ible rotor supported by two symmetric journal bearings.

3.1 Perturbation analysis

In this section, a perturbation analysis is used to vali-
date the obtained bearing coefficients. This analysis is
executed using un-grooved full circular journal bear-
ing with L/D ratio of 1. This is done by applying dis-
placement and velocity perturbations to the equilibrium
point and then evaluated the obtained forces using four
different methods. These methods are based on direct
integration of Reynolds equation (F̄Re.), first-order
coefficients (F̄1), second-order coefficients (F̄2) and
third-order coefficients (F̄3). The component of these
forces in X and Y directions is evaluated and plotted in
Fig. 3. To investigate the validity range of the bearing
linear and nonlinear coefficients in evaluating the non-
linear bearing forces around the equilibrium point, four
different values of perturbations are used. The first one
is (δX = 0.0001, δX ′ = 0.0001, δY = 0.0001 and
δY ′ = 0.0001), and its results are plotted in Fig. 3a.
In Fig. 3, the left column represents the X component
of the perturbation force and the right column repre-
sents the Y component of the perturbation force. All

the subfigures of Fig. 3 are drawn versus the Som-
merfeld number. Figures 3b, c and d are for pertur-
bations (δX = 0.001, δX ′ = 0.001, δY = 0.001 and
δY ′ = 0.001), (δX = 0.01, δX ′ = 0.01, δY = 0.01
and δY ′ = 0.01) and (δX = 0.1, δX ′ = 0.1, δY = 0.1
and δY ′ = 0.1) , respectively. The figure results show
that at low perturbations the forces evaluated using all
the four methods are approximately the same as shown
in Fig. 3a, b. However, by increasing the values of per-
turbation as in Fig. 3c, a significant deviation between
the forces evaluated based on the nonlinear coefficients
and that based on the direct Reynolds integration forces
(F̄Re.) is recognized. The last case in Fig. 3d shows that
at very low and high Sommerfeld number the deviation
between the forces is larger than when S ∈ [0.1 − 0.6].
Also, the x component of force approximation based
on the third-order coefficients was closer to the forces
based on direct integration of Reynolds equation at
S < 0.55 and y component of force approximation
was closer to the forces based on direct integration of
Reynolds equation when S < 0.3.

3.2 Journal bearing coefficients and mesh sensitivity

In this section, the bearing linear and nonlinear coef-
ficients based on first-, second- and third-order coef-
ficients are evaluated. This is done using infinitesimal
perturbation as discussed in the analysis section. The
presented results are for un-grooved full circular jour-
nal bearing with L/D ratio of 1. The linear bearing
coefficients are eight and plotted in Fig. 4 a. The nonlin-
ear second-order bearing coefficients are fourteen and
are plotted in Fig. 4b . The third-order coefficients are
twenty and are plotted in Fig. 5. The effect of mesh size
on the bearing coefficients is also investigated graph-
ically for all the coefficients. Several mesh sizes are
investigated, but only four cases are presented to avoid
over density of thefigures. Thepresentedmesh sizes are
selected to vary from coarse to fine mesh. These mesh
sizes are 50×100, 100×200, 150×600 and 200×800.
In both Figs. 4 and 5, the color is used to differentiate
the bearing coefficients and the line type is used to dif-
ferentiate the mesh size as shown in the subfigures leg-
end and the figure general legend. The results of Fig. 4
show that for the plotted coefficients the results ofmesh
100×400, 150×600 and 200×800 are identical over
the full range of Sommerfeld number. The results of
Fig. 5 show that the bearing coefficients obtained using
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Fig. 3 Semi-log plot for the
dimensionless force
components F̄X and F̄Y
resulted from journal
perturbation in X and Y
directions for ungrooved
journal bearing with
L/D = 1 a
(δX = 0.0001, δX ′ =
0.0001, δY = 0.0001 and
δY ′ = 0.0001), b
(δX = 0.001, δX ′ =
0.001, δY = 0.001 and
δY ′ = 0.001), c
(δX = 0.01, δX ′ =
0.01, δY = 0.01 and
δY ′ = 0.01) and d (δX =
0.1, δX ′ = 0.1, δY = 0.1
and δY ′ = 0.1)
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mesh 100× 400 converge with that 200× 800 in most
coefficients. However, for KXXXX ,CXXXX , KY XXX

and CY XXX mesh 100 × 400 is not sufficient. In addi-
tion, thefigure shows thatmesh150×600 and200×800
results are converged for all coefficients. Therefore,
mesh 150 × 600 was considered as minimum mesh
used in coefficients evaluation during the present paper.
Numerical values of the obtained parameters using
mesh size of 150×600 are presented in Tables 2 and 3.

3.3 Verification with previous results

Here, the first-, second- and third-order bearing coef-
ficients are compared with the results of Miraskari et
al. [27]. However, the reference coefficients are calcu-
lated based on Reynolds short bearing equation. Eigh-
teen selected bearing coefficients are used for the com-
parison. These are divided as follows: six first-order
bearing coefficients which are plotted in the first row of
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Fig. 4 (Color online)
Loglog plot for un-grooved
journal bearing stiffness and
damping
coefficients(absolute) versus
the Sommerfeld number.
L/D = 1, a First-order
bearing coefficients, b
second-order bearing
coefficients. In this figure
the dotted line for mesh
50 × 200, dashed line for
mesh 100 × 400, centerline
for mesh 150 × 600 and
solid line for mesh
200 × 800
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Fig. 6 and six second-order bearing coefficients located
in the second row of Fig. 6 and six third-order bear-
ing coefficients plotted at the last row of Fig. 6. The
finite bearing coefficients are obtained at L/D = 0.5
to approach the short bearing results, and these results
are plotted using solid lines. The results of Miraskari
et al. [27] are plotted using dashed lines. It is worth
noting that the reference results are processed before
plotting because the dimensionless parameters used in
the reference paper are not the same with that consid-
ered in that paper. Figure 6 shows that the results of
both methods are close to each other with a small devi-
ation. This deviation can be explained by the fact that
the short bearing Reynolds equation is a simplification
to the general Reynolds equation.

3.4 Dynamic results

3.4.1 Stability analysis

In this section, the calculated bearing coefficients are
used to investigate the dynamic analysis of the elastic
rotor system presented in Fig. 2. Initially, the stabil-
ity of the autonomous dynamical system in Eq. (42) is
investigated. This is done by evaluating the dimension-
less threshold mass M̄th = mc�2

th/W , which implic-
itly includes the threshold speed of the system. The
dimensionless threshold mass M̄th can be evaluated
using the eigenvalues of the Jacobian matrix J

(
x, M̄

)

in Eq. (44) at the fixed points. The fixed points can be
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Fig. 5 (Color online)
Loglog plot for un-grooved
full circular journal bearing
third-order stiffness and
damping coefficients
(absolute) versus the
Sommerfeld number. L/D
ratio is unity. In this figure,
the dotted line for mesh
50 × 200, dashed line for
mesh 100 × 400, centerline
for mesh 150 × 600 and
solid line for mesh
200 × 800
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Fig. 6 First-, second- and
third-order bearing
coefficients using present
finite bearing analysis at
L/D = 0.5(solid lines)
versus coefficients obtained
based on short bearing
approximation(dashed
lines) [27]
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obtained by equating Eqs. (43) to zero. This results in

x∗ = [
0 0 0 0 0 0 2/Ks 0

]T
.

J
(
x, M̄

)

= ∂x′

∂x
=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

0 1 0 0 0 0 0 0
J21 J22 J23 J24

Ks
2MJ

0 0 0
0 0 0 1 0 0 0 0
J41 J42 J43 J44 0 0 Ks

2MJ
0

0 0 0 0 0 1 0 0
Ks
MD

0 0 0 − Ks
MD

0 0 0
0 0 0 0 0 0 0 1
0 0 Ks

MD
0 0 0 − Ks

MD
0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

, (44)

where

J21 = − Ks

2MJ
− 1

MJ

(
KXX + KXXX x1 + KXXY x3

+ CXXX x2 + CXXY x4 + 1

2
KXXXX x

2
1

+ KXXXY x1x3 + 1

2
KXXYY x

2
3

+ CXXXX x1x2 + CXXXY x1x4

+ CXXY X x3x2 + CXXYY x3x4

)
,

J22 = − 1

MJ

(
CXX + CXXX x1 + CXY X x3

+ 1

2
CXXXX x

2
1 + 1

2
CXYY X x

2
3 + CXXY X x1x3

)
,

J23 = − 1

MJ

(
KXY + KXXY x1 + KXYY x3 + CXY X x2

+ CXYY x4 + 1

2
KXYYY x

2
3

+ 1

2
KXXXY x

2
1 + KXXYY x1x3 + CXYY X x3x2

+ CXYYY x3x4 + CXXY X x1x2 + CXXYY x1x4

)
,

J24 = − 1

MJ

(
CXY + CXXY x1 + CXYY x3

+ 1

2
CXXXY x

2
1 + 1

2
CXYYY x

2
3 + CXXYY x1x3

)
,

J41 = − 1

MJ

(
KY X + KY XX x1 + KY XY x3 + CY XX x2

+ CY XY x4 + 1

2
KY XXX x

2
1

+ KY XXY x1x3 + 1

2
KY XYY x

2
3 + CY XXX x1x2

+ CY XXY x1x4 + CY XY X x3x2 + CY XYY x3x4

)
,

J42 = − 1

MJ

(
CY X + CY XX x1 + CYY X x3

+ 1

2
CY XXX x

2
1 + 1

2
CYYY X x

2
3 + CY XY X x1x3

)
,

J43 = − Ks

2MJ
− 1

MJ

(
KYY + KY XY x1

+ KYYY x3 + CYY X x2 + CYYY x4 + 1

2
KYYYY x

2
3

+ 1

2
KY XXY x

2
1 + KY XYY x1x3

+ CYYY X x3x2 + CYYYY x3x4

+ CY XY X x1x2 + CY XYY x1x4

)
,

J44 = − 1

MJ

(
CYY + CY XY x1 + CYYY x3

+ 1

2
CY XXY x

2
1 + 1

2
CYYYY x

2
3 + CY XYY x1x3

)
.

Evaluating the Jacobian matrix at fixed points x =
x∗ results in

J
(
M̄

)
(x=x∗) =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

0 1 0 0 0 0 0 0

− Ks
2MJ

− KXX
MJ

−CXX
MJ

− KXY
MJ

−CXY
MJ

Ks
2MJ

0 0 0

0 0 0 1 0 0 0 0

− KY X
MJ

−CY X
MJ

− Ks
2MJ

− KYY
MJ

−CYY
MJ

0 0 Ks
2MJ

0

0 0 0 0 0 1 0 0
Ks
MD

0 0 0 − Ks
MD

0 0 0

0 0 0 0 0 0 0 1

0 0 Ks
MD

0 0 0 − Ks
MD

0

⎤

⎥
⎥⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

.

(45)

Evaluating the Jacobian matrix eigenvalues
(λ1, λ2, · · · , λ8 ) then reorder them in descending
order such as Re (λ1) ≥ Re (λ2) ≥ · · · ≥ Re (λn).
The value of the M̄ where Re (λ1) = 0 is the threshold
value M̄th. This analysis is repeated for the available
range of Sommerfeld number.

These results are presented in Fig. 7a, b. In Fig. 7 a,
the threshold mass is plotted versus the Sommerfeld
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Fig. 7 (Color online) Rotor stability curves: a Three-
dimensional stability plot. The z axis represents the threshold
mass, the x axis represents the Sommerfeld number and the y
axis represents the dimensionless shaft stiffness. b a section plot
of Fig. 7a at Ks = 1, 5, 10 and 20

number and the dimensionless shaft stiffness in the
range Ks ∈ [1−200]. Figure 7b is considered as assem-
bly of two-dimensional cross sections in Fig. 7a at four
values of Ks .

To investigate the stability of the periodic solution
when the rotor speed exceeds the threshold speed the
Monodromy matrix is evaluated from the Floquet mul-
tipliers [40,43,44]. For the details of the Monodromy
analysis, see Appendix D. If the eigenvalues of Mon-
odromy matrix is less than one, the periodic solution
is stable limit cycle, i.e., supercritical Hopf bifurca-
tion, and if the eigenvalue of the Monodromy matrix is
greater than one, the periodic solution is unstable, i.e.,
subcritical Hopf bifurcation. This is plotted in Fig. 7
using solid and dashed lines where the solid lines indi-

cate supercriticalHopf bifurcation, and the dashed lines
represent subcritical bifurcation solution. The results of
the figure show that for the present dynamical model
decreasing the stiffness of the rotor shaft increases the
possibility of subcritical Hopf bifurcation at large value
of Sommerfeld number(small load).

3.4.2 Time response comparative study

In this section, selected points from the stability dia-
grams I, II, III, IV, V andVI are investigated using orbit
plots of the shaft geometrical center. The input data
for these cases are shown in Table 1 and presented in
Fig. 7b.The comparative analysis is doneusing four dif-
ferent analyses. The first analysis is based on the linear
first-order approximation of the bearing forces (LA).
This analysis can be done using Eq. (42) while elim-
inating the second- and the third-order bearing coef-
ficients. The second analysis is based on the nonlin-
ear second-order approximation of the bearing forces,
and this is done while reducing the third-order coeffi-
cients to zero (NLA2). The third analysis is based on
the nonlinear third-order force approximation (NLA3)
as stated in Eq. (42). The last analysis is based on the
nonlinear force evaluated directly fromReynolds equa-
tion (RNL). In this analysis, the Reynolds equation is
solved every time step to evaluate the bearing forces.

The six selected operating points are listed in
Table 1. All the cases are for L/D = 1. The first two
cases I, II are at S = 0.148 and for Ks = 1, the second
two cases III, IV are at S = 0.507, Ks = 1 and the last
two cases V, VI are at S = 0.507 and Ks = 20. The
cases I, III and V are below the threshold speed, and
the cases II, IV and VI are above the threshold speed.

For case I and case III, where both of them are
below the threshold speed the four analyses give the
same response as shown in the first and third rows of
Fig. 8. Case II and case IV are above the threshold
speed for supercritical and subcritical cases according
to the Monodromy bifurcation analysis. For case II,
the response based on the linear analysis shows insta-
bility as the rotor hits the journal bearing. Both anal-
yses based on the second-order coefficients (NLA2)
and third-order coefficients (NLA3) show a stable limit
cycles. However, the analysis based on direct solu-
tion of Reynolds (RNL) shows bifurcation leads to
unstable limit cycle, then jumps to a larger stable limit
cycle. This behavior for journal bearings is previously
reported in [45,46].

123



Bifurcation analysis of rotor/bearing system 137

Table 1 Selected points for dynamical analysis init= [0 0 0 0.1 0 0 2/Ks 0.1]
Operating point Ks M̄ Sommerfeld number S Eccentricity ratio ε Bifurcation type

I 1 M̄th − 1 0.148 0.55 Supercritical

II 1 M̄th + 0.5 0.148 0.55 Supercritical

III 1 M̄th − 1 0.507 0.24 subcritical

IV 1 M̄th + 0.5 0.507 0.24 subcritical

V 20 M̄th − 1 0.507 0.24 Supercritical

VI 20 M̄th + 0.5 0.507 0.24 Supercritical
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Fig. 8 Orbit plot for the journal geometrical center at different operating points I, II, III and IV as shown in Table 1. For all cases a
first order (LA), b second order (NLA2), c third order (NLA3) d nonlinear (RNL). Ks = 1, I ni t = [0 0 0 0.1 0 0 2/Ks 0.1]
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Fig. 9 Orbit plot for the journal geometrical center at two operating conditions V and VI as shown in Table 1. For all cases a first order
(LA), b second order (NLA2), c third order(NLA3) d nonlinear (RNL). Ks = 20, I ni t = [0 0 0 0.1 0 0 2/Ks 0.1]

For case IV which is subcritical according to the
Monodromy analysis. The first-order analysis shows
unstable behavior above threshold speed, which is basi-
cally expected because analysis based on first-order
(LA) is insensitive to bifurcation type [40]. In this case,
the analyses based on NLA2 and NLA3 do not show
the same response. The analysis based on second-order
coefficients shows a stable limit cycle, while the anal-
ysis based on third-order coefficients shows unstable
limit cycle. In this case, the nonlinear analysis RNL
agrees with (NLA3) in showing unstable limit cycles.
However, the RNL response shows a jump from unsta-
ble limit cycle to bigger stable limit cycle as shown in
Fig. 8IV-d. The explanation for the difference between
the third-order coefficient and RNL can be explained
by the fact that the coefficients based onNLA3 are only
valid in the neighborhood of the steady-state point and
as the rotor receding from this point, these coefficients
become not accurate as shown in the perturbation anal-
ysis.

Another two cases, V and VI, having higher rotor
dimensionless stiffness are investigated, see Fig. 9. The
dimensionless stiffness in this condition is Ks = 20.
The stability diagram shows that all bifurcations for
this case are supercritical. The orbit plot for the journal
geometrical center is plotted at S = 0.507. The first

case V is below the threshold speed, and the second
case VI is above the threshold speed. The results show
that for case V below the threshold speed all the four
analyses show the same response. For case VI which is
higher than the threshold speed the analysis based on
first-order coefficients shows growing of the response
until the journal hits the bearing. The analyses NLA2,
NLA3 and RNL show stable limit cycles. The size of
the limit cycles is not the same for the three cases. This
can be explained by the fact that the bearing coeffi-
cients are evaluated to be correct in the vicinity of the
steady-state point.

3.4.3 Continuation analysis

In this section, numerical continuation is used to inves-
tigate the dynamics of the present model. The contin-
uation analysis is based on the equations of motion
based on the third-order nonlinear bearing coefficients.
MatCont module is used for the present study which
is a toolbox written in MATLAB language and it used
for continuation analysis [47]. The continuation anal-
ysis is used to investigate the effect of changing the
applied static load (Sommerfeld number) and the effect
of changing the rotor stiffness as shown in Figs. 10
and 11, respectively.
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Fig. 10 (Color online) Continuation analysis of flexible rotor
supported on two symmetric journal bearings Ks = 1, for dif-
ferent eccentricity ratios a ε = 0.24 (column one), b ε = 0.45
(column two), c ε = 0.55 (column three), d ε = 0.65 (column

four). The first row represents the limit cycle continuation, the
second row represents a section in limit cycle continuation plot
and the last row represents a top view of the limit cycle continu-
ation plot

To apply the continuation analysis, numerical inte-
gration is used to identify an equilibrium point below
the threshold curve. From this point, continuation anal-
ysis is applied at variable M̄ until reaching a Hopf
bifurcation point which represent the threshold speed.
From evaluating the Lyapunov exponent at this point,
the type of Hopf bifurcation can be identified whether
supercritical or subcritical. Then, limit cycle continua-
tion is applied to investigate the rotor dynamics behind
the threshold speed. MATCONT is used to identify the
stability of limit cycles based on themodulus of Floquet
multiplier [47]. If at least one multiplier has modulus
greater than one, then the limit cycle is unstable. In
Figs. 10 and 11, the stable limit cycles are presented by

solid lines and the unstable limit cycles are presented
by dotted lines.

In Fig. 10, the continuation analysis is applied at
four values of eccentricity ratios (a) ε = 0.24 (col-
umn one), (b) ε = 0.45 (column two), (c) ε = 0.55
(column three), (d) ε = 0.65 (column four). These val-
ues are corresponding to four different static loads with
Sommerfeld numbers 0.507, 0.216, 0.148 and 0.0983,
respectively, see the four blue vertical dotted lines 7 b.
The stiffness ratio of the rotor is Ks = 1. Increasing
the eccentricity ratio at the equilibrium is associated
with the increase in the applied load. From the four
selected cases, case a represents subcritical bifurcation
at M̄th = 3.35. The limit cycle continuation in that case
shows an unstable limit cycles with the decrease in M̄ .
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Fig. 11 (Color online) Continuation analysis of flexible rotor
supported on two symmetric journal bearings ε = 0.5, for dif-
ferent rotor stiffness ratios a Ks = 1 (column one), b Ks = 5
(column two), c Ks = 10 (column three), d Ks = 20 (column

four). The first row represents the limit cycle continuation, the
second row represents a section in limit cycle continuation plot
and the last row represents a top view of the limit cycle continu-
ation plot

At M̄=3.331, a limit point cycle is occurred (purple cir-
cle in Fig. 10) and the limit cycle becomes stable limit
cycles. Further increase of M̄ = 3.333 , another limit
point cycle is occurred, and unstable limit cycle con-
tinues with the decrease of M̄ . At cases b and c where
ε = 0.45 and ε = 0.55, supercritical bifurcation is
occurred followed by stable limit cycle continuation.
Further increase of M̄ results in limit point cycle (pur-
ple circle in Fig. 10) at M̄ = 3.664 and M̄ = 4.934 in
cases b and c, respectively. After this limit point cycle
unstable limit cycles continuation is started. For case d
which is supercritical bifurcation, a stable limit cycles
are occurred. No limit point cycle is monitored within
the investigated range.

In Fig. 11, a continuation analysis is done for four
cases having ε = 0.5 and four different values of rela-
tive rotor stiffness (a) Ks = 1, (b) Ks = 5, (c) Ks = 10
and (d) Ks = 20, see the red dotted vertical dotted line
in Fig. 7b. Results in Fig. 11 show the point of Hopf
bifurcation for the four cases is at M̄th= 3.576, 8.673,
10.47 and 11.66, respectively. This indicates that the
threshold speed increases with the increase of rotor
stiffness ratio. In Fig. 11, although the type of Hopf
bifurcation at the four different rotor stiffness ratio val-
ues is supercritical and the continuation analysis shows
that at Ks=1, 5 and 20, limit point cycles are monitored
with the increase of the dimensionless mass M̄ . These
limit point cycles are colored in purple. After these
limit point cycles, the continuation analysis shows that
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the limit cycles change from stable to unstable limit
cycles. However, at Ks = 10, no limit point cycle is
found within the investigated range. The continuation
results presented in Fig. 11 show that increasing the
rotor flexibility affects greatly the dynamics and stabil-
ity of the rotor-bearing system.

Conclusion

In the present paper, the linear first and nonlin-
ear second- and third-order bearing coefficients are
obtained using infinitesimal perturbation method and
finite difference method. The main conclusions from
the present work are as follows:

• Amesh of 150×600 is sufficient to obtain an accu-
rate third-order bearing coefficients.

• The perturbation analysis shows that the perturba-
tion force based on the third-order coefficients are
more accurate than that based on first- and second-
order coefficients.

• The rotor stiffness ratio and applied load are a cru-
cial parameters affecting the type of rotor-bearing
stability whether subcritical or supercritical. Addi-
tionally, they affect the continuation of limit cycles
behind the threshold speed.

• The orbit plot results show that the analysis based
on the third-order bearing coefficients is closer
to the analysis based on the complete solution of
Reynolds equation than the analyses based on the
first- and second-order bearing coefficients.

At the end of our conclusions, it is recommended to
experimentally validate the present analysiswith exper-
imental work and to investigate the integration of con-
troller to avoid the rotor-bearing instability.
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Appendix A: Derivative of dimensionless pressure
gradients

Toobtain thefirst-order pressure gradients theReynolds
Eq. (2) is differentiated with respect to X, Y, X ′ and
Y ′ and rearranged as shown in Eq. (A.1). Similarly, the
second-order pressure gradients can be obtained by dif-
ferentiating the Reynolds first derivative equations in
Eq. (A.1) with respect to X, Y, X ′ and Y ′ as shown
in Eq. (A.2). Likewise, the third-order pressure gradi-
ents in Eq. (20) can be obtained by differentiating the
second-order derivative of Eq. (A.2) with respect to
X, Y, X ′ and Y ′ as shown in Eqs. (A.3–A.12). Equa-
tions (A.1–A.12) are discretized using finite difference
over the bearingdomain, Fig. 1b, and then solved for the
first-, second- and third-order pressure gradients. It is
worth noting that during the solution of these equations
the first-, second- and third-order dimensionless height
derivation are required which are listed in Appendix B.
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Appendix B: Derivative of dimensionless oil-film
thickness

In this appendix, a list of important formulae for
evaluating the oil-film thickness derivation which are
required for first-, second- and third-order coefficients
evaluation.

∂H0

∂φ
= −ε0 sin ϕ0, (B.1)

HX = ∂H

∂X
= sin φ, (B.2)

HY = ∂H

∂Y
= cosφ, (B.3)

HφX = ∂2H

∂φ∂X
= cosφ, (B.4)
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HφXX = ∂3H

∂φ∂X2 = 1

ε0

(
2 sin θ0 cos θ0 cosϕ0

+ cos2 θ0 sin ϕ0

)
, (B.9)

HφYY = ∂3H

∂φ∂Y 2 = 1

ε0

(
− 2 sin θ0 cos θ0 cosϕ0

+ sin2 θ0 sin ϕ0

)
, (B.10)

HφXY = ∂3H

∂φ∂X∂Y
= 1

ε0

(
− sin θ0 cos θ0 sin ϕ0

+ cos2 θ0 cosϕ0 − sin2 θ0 cosϕ0

)
, (B.11)

HXXX = ∂3H

∂X3 = 1

ε20

(
− 3sin θ0 cos

2θ0 cosϕ0

− cos3 θ0 sin ϕ0

)
, (B.12)

HYYY = ∂3H

∂X3 = 1

ε20

(
sin3 θ0 sin ϕ0

− 3 sin2 θ0 cos θ0 cosϕ0

)
, (B.13)

HXYY = ∂3H

∂X∂Y 2 = 1

ε20

(
2 cos2 θ0 sin θ0 cosϕ0

− sin3 θ0 cosϕ0 − sin2 θ0 cos θ0 sin ϕ0

)
,

(B.14)

HXXY = ∂3H

∂Y ∂X2 = 1

ε20

(
2 sin2 θ0 cos θ0 cosϕ0

− cos3 θ0 cosϕ0 + cos2 θ0 sin θ0 sin ϕ0

)
,

(B.15)

HφXXX = ∂4H

∂φ∂X3 = 1

ε20

(
3sin θ0 cos

2θ0 sin ϕ0

− cos3 θ0 cosϕ0

)
, (B.16)
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HφYYY = ∂4H

∂φ∂Y 3 = 1

ε20

(
sin3 θ0 cosϕ0

+ 3 sin2 θ0 cos θ0 sin ϕ0

)
, (B.17)

HφXYY = ∂4H

∂φ∂X∂Y 2 = 1

ε20

(
− 2 cos2 θ0 sin θ0 sin ϕ0

+ sin3 θ0 sin ϕ0 − sin2 θ0 cos θ0 cosϕ0

)
,

(B.18)

HφXXY = ∂4H

∂φ∂Y ∂X2 = 1

ε20

(
− 2 sin2 θ0 cos θ0 sin ϕ0

+ cos3 θ0 sin ϕ0 + cos2 θ0 sin θ0 cosϕ0

)
.

(B.19)

AppendixC:Bearing first-, second- and third-order
coefficients
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Appendix D. Monodromy matrix derivation

In the current manuscript, the type of Hopf bifurcation
is investigated by evaluating the Floquet multipliers
which are the eigenvalues of the Monodromy matrix.
Shooting method is used to evaluate the Monodromy
matrix as in [43,44]. In this method the initial value
problem is converted to boundary value problem to
obtain a periodic solution. The initial conditions with
minimal period are searched as shown below.

The periodic solution of Eq. (43) at τ = 0 is

x(0) = x(T ) = η, (D.1)

for which η is a vector of initial conditions; both the
values of vector η and the period T are unknown yet.
According to the shooting method [43,44], an initial
guess value for η and T is selected such η = η0 and
T = T0; then, the deviations from the actual values can
be written as:

�η = η − η0, �T = T − T0. (D.2)

Substituting Eqs. (D.2) into (D.1) and using first-
order Taylor expansion results in, see ref. [43].
(

∂x
∂η

(T0, η0) − I
)

�η + ∂x
∂T

(T0, η0)�T

= η0 − x (T0, η0) . (D.3)

Equation (D.3) is a vector equation of dimension
8 for the system of Eq. (43). The terms ∂x

∂T (T0, η0)
and ∂x

∂η
(T0, η0) should be evaluated, the first term

∂x
∂T (T0, η0) is the slope of the trajectory x (T, η0) at
dimensionless time τ = T0 and must satisfy the differ-
ential Eq. (43), so
(
dx
dT

)

(T0,η0)
= ∂x

∂T
(T0, η0) = f

(
x (T0, η0) , M̄

)
.(D.4)

Using Eqs. (D.1), (D.2) and (D.4), the following equa-
tion can be obtained,

∂x
∂T

(T0, η0) = f
(
x (T0, η0) , M̄

) = f
(
x (0, η0) , M̄

)

= f
(
η0, M̄

)
. (D.5)

To evaluate the second term ∂x
∂η

(T0, η0), Eq. (43) is
differentiated with respect to η as follows:

∂

∂η

(
dx
dτ

)
= ∂

∂η

(
f
(
x, M̄

)) = ∂f
(
x, M̄

)

∂x
∂x (τ, η0)

∂η

= Dxf
(
x, M̄

) ∂x (τ, η0)

∂η
. (D.6)

Rearranging Eq. (D.6) results in
d

dτ

(
∂x
∂η

)
= Dxf

(
x, M̄

) ∂x (τ, η0)

∂η
= J

(
x, M̄

) ∂x
∂η

,

(D.7)

for which J
(
x, M̄

)
is the Jacobian matrix. Equa-

tion (D.4) indicates that x(0) = η, then
∂x (0)

∂η
= I. (D.8)

The function ∂x
∂η

(T0, η0) can be determined with
solving the ordinary differential Eqs. (D.7) with initial
conditions, Eq. (D.8) coupled with initial value prob-
lem, Eq. (43) with the assumed initial conditions as
follows:

x (0) = η0. (D.9)

Equation (D.7) is a 8×8matrix differential equation
which means 64 differential equation. These equations
are coupled with the eight differential equations in the
dynamical system of Eq. (43). These 72 coupled dif-
ferential equations should be integrated to τ = T0 to
evaluate ∂x

∂η
(T0, η0) and x (T0, η0). Equation (D.3) has

nine unknowns for the systemof equation (43), eight for
the vector�η and the ninth unknown is�T , so an addi-
tional equation is needed. Therefore, the orthogonality
condition fT . �η = 0 is imposed to enforce the pertur-
bations �η to be normal to the vector field. Therefore,
the complete set of equations can be written as[

∂x
∂η

(ηκ , Tκ) − I f
(
ηκ , M̄

)

fT
(
ηκ , M̄

)
0

]

κ

{
�ηκ+1
�Tκ+1

}

=
{

ηκ − x (Tκ , ηκ )

0

}

κ

. (D.10)

Initially, the values of η0 and T0 are assumed. After-
wards, Eq. (D.10) can be solved for�ηκ+1 and�Tκ+1.
Then, a new guess of ηκ = ηκ + �ηκ+1 and Tκ =
Tκ + �Tκ+1. For more details, see ref. [43].

The subscript κ in Eq. (D.10) is the iteration num-
ber. At each iteration κ , the coefficient of matrices is
solved using ordinary differential Eqs. (43) and (D.7).
The final solution is converged when the error (ε) is
small. At this instant, thematrix ∂x

∂η

(
ηk, Tk

)
is theMon-

odromy matrix. Finally, to evaluate the stability of the
periodic solution, the eigenvalues of the Monodromy
matrix are calculatedwhich are the Floquet multipliers.
If the modulus of all eigenvalues is less than or equal
to one, ‖ρ j‖ ≤ 1, the bifurcation type is supercritical,
else, the system bifurcation is subcritical. The steps for
evaluating the bifurcation analysis using Monodromy
matrix are summarized in Fig. 12.
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′

Fig. 12 Flow chart for stability analysis using monodromy matrix
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