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Abstract

We performed 2D magnetohydrodynamical numerical experiments to study the response of the coronal magnetic
configuration to the newly emerging magnetic flux. The configuration includes an electric-current-carrying flux
rope modeling the prominence floating in the corona and the background magnetic field produced by two separated
magnetic dipoles embedded in the photosphere. Parameters for one dipole are fixed in space and time to model the
quiet background, and those for another one are time dependent to model the new flux. These numerical
experiments duplicate important results of the analytic solution but also reveal new results. Unlike previous works,
the configuration here possesses no symmetry, and the flux rope could move in any direction. The non-force-free
environment causes the deviation of the flux rope equilibrium in the experiments from that determined in the
analytic solution. As the flux rope radius decreases, the equilibrium could be found, and it evolves quasi-statically
until the flux rope reaches the critical location at which the catastrophe occurs. As the radius increases, no
equilibrium exists at all. During the catastrophe, two current sheets form in different ways. One forms as the
surrounding closed magnetic field is stretched by the catastrophe, and another one forms as the flux rope squeezes
the magnetic field nearby. Although reconnection happens in both the current sheets, it erases the first one quickly
and enhances the second simultaneously. These results indicate the occurrence of the catastrophe in asymmetric
and non-force-free environment, and the non-radial motion of the flux rope following the catastrophe.

Unified Astronomy Thesaurus concepts:Magnetohydrodynamical simulations (1966); Solar coronal mass ejections
(310); Solar filament eruptions (1981); Solar magnetic flux emergence (2000)

1. Introduction

The prominences floating in the solar corona contain cool
and dense plasma (Mackay & van Ballegooijen 2009). Coronal
mass ejections (CMEs)—the most violent eruptive process on
the Sun—are considered strongly related to the eruptive
prominence (Gopalswamy et al. 2003; Jing et al. 2004).
Revealing the nature of the magnetic structure surrounding
eruptive prominence is therefore important for studying
observational behaviors of CMEs. Three well-accepted models
of the magnetic configuration process related to the eruptive
prominence were proposed, namely, the sheared arcade model
(e.g., Kippenhahn & Schlüter 1957; Antiochos et al. 1994;
Mikić & Linker 1994; DeVore & Antiochos 2000), the flux
rope model (e.g., Kuperus & Raadu 1974; Lin & Forbes 2000;
Gibson et al. 2004; Amari et al. 2014; Liu 2020), and the
breakout model (Antiochos et al. 1999).

Since the coronal magnetic configuration that includes the
prominence anchors in the photosphere with their footpoints,
the unceasing motion of the photospheric plasma brings the
footpoints of the coronal configuration to move together

continually, changing the state of the equilibrium in the
configuration successively. Eventually, the configuration loses
its mechanical equilibrium and the eruption is invoked. The
transition from the equilibrium to the loss of equilibrium
constitutes the catastrophe. This process consists of two stages.
First, the system accumulates the energy as the magnetic
structure in the corona is deformed owing to the motion of the
footpoints, and then the excess magnetic energy is released as
the loss of equilibrium in the system takes place. According to
the catastrophe model of the solar eruption, the loss of the
equilibrium in the system thrusts the flux rope that is used to
model the prominence rapidly outward, stretching severely the
magnetic field lines passing around the flux rope with their two
ends anchored in the photosphere. A current sheet develops
below the flux rope, separating magnetic fields of opposite
polarity; magnetic reconnection takes place in the current sheet
and helps the flux rope escape from the Sun smoothly (e.g., Lin
& Forbes 2000; Lin 2002; Lin et al. 2003). In the framework of
this model, the magnetic configuration possesses symmetry
with respect to the direction perpendicular to the solar surface
(also known as the radial direction) either before or after losing
equilibrium.
In reality, on the other hand, the eruptive prominence does

not necessarily escape ideally in the radial direction of the Sun.
Gopalswamy et al. (2003) statistically studied 186 events of the
eruptive prominence and classified them into radial events and
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transverse ones depending on the ejecta trajectory. Here, for
radial events the ejecta moves radially, and for the transverse
ones the motion is roughly tangential to the solar limb. The
Gopalswamy et al. (2003) study found that 82% of the events
were radial and 18% were transverse. McCauley et al. (2015)
studied 904 events of high spatial resolution and found that
75% of events were radial, 12% were oblique, 11% were
transverse, and the remaining were ambiguous. These results
suggest that the motion patterns of the ejecta in reality are
apparently more complex than those described in a simple
model given by Lin & Forbes (2000), Lin (2002), Lin (2004),
Lin & Soon (2004), and Lin et al. (2004).

When looking into the triggering of the catastrophe due to
the newly emerging magnetic flux, Lin et al. (2001) suggested
that the asymmetry in the magnetic configuration might be able
to account for the complex motion patterns of the eruptive
prominences and/or CMEs, although their model could be
considered simple. For the system that they studied, on the
other hand, Lin et al. (2001) could not determine whether the
loss of equilibrium of system would develop to a successful
eruption, or what the motion of the flux rope would look like.
This is because the consequent evolution following the
catastrophe in an asymmetric configuration is already beyond
the scope of the analytic solution, and a numerical approach
should be considered instead.

On the basis of the work of Lin et al. (2001), we performed
numerical experiments in the present work to look into the
detailed evolution in the coronal magnetic configurations
driven by the newly emerging magnetic flux. An electric-
current-carrying flux rope is included in the configuration. We
present the quasi-static evolution in the system, and we also
briefly discuss the dynamic behavior of the system after the
catastrophe. In the next section, we introduce the magnetic
configuration constructed by Lin et al. (2001) and the
numerical method used in this work. In Section 3 we present
the numerical results, in Section 4 we give a discussion about
this work, and in Section 5 we summarize this work and give
our conclusions.

2. Descriptions of Numerical Approach

The dynamical evolution of the physical system being
investigated is governed by the magnetohydrodynamics
(MHD) equations given below:
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where ρ, v, e, p, B, and, g are mass density, plasma velocity,
total energy density, gas pressure, magnetic field, and gravity,
respectively. The total energy e= ε+ ρv2/2+ B2/2μ includes

the thermal energy ε, the kinetic energy, and the magnetic
energy; τ= νd [∇v+ (∇v)T− 2(∇ · v)I/3] is the stress tensor,
where νd= ρ νk is the dynamic viscosity and νk= 107 m2 s−1 is
the kinematic viscosity. Assuming that the system of interest
follows the ideal gas law and that the plasma is the completely
ionized hydrogen plasma, we then have p= (γ− 1)ε, with
γ= 5/3 being the ratio of the specific heats. The physical
magnetic diffusivity η= 5× 107 m2 s−1 is set for the whole
simulation domain for simplicity.
This value of η is apparently large compared to that of the

true corona in order to match the grid size used for the
calculations in the present work. For the large-scale activities
occurring in the corona, like eruptive prominences and CMEs,
the values of the Alfvén speed, vA, and the length scale, L0, are
typically 103 km s−1 and 105 km, respectively, which leads to
the magnetic Reynolds number Rm= vAL0/η= 2× 104 for the
above η value. To justify this result, we estimate the effective
Rm after considering the impact of the grid size as below.
In the true corona, because of the low diffusivity and the

large scale, both the Reynolds number, Re=UL/νk, and Rm

possess huge values, say, up to 1012. In numerical simulations,
on the other hand, the values of Re and Rm cannot reach such a
high value owing to the finite size of the grid. This is because
any fine structure of size less than the grid size is inevitably
diffused, which is equivalent to introducing an extra (artificial)
diffusive process into calculations. Therefore, the effective
value of Re and/or Rm in simulations is somehow governed by
the grid size. In MHD simulations, the impact of the finite size
on the effective Rm could be evaluated in the following way.
Normalizing η to vAL0 gives Rm= 1/η. According to Forbes

& Priest (1983), the grid size δx should be less than the
Kolmogorov dissipation scale lk= (η3/ò)1/4, with ò being the
rate of the energy dissipation. All parameters here are
dimensionless. For the system with given η, lk depends on ò,
which reaches maximum, say, 0.1, in the fast reconnection
process and yields the smallest lk. Therefore, to avoid apparent
numerical diffusion, δxmax= (10η3)1/4. Conversely, if δx is
selected, then η related to the numerical diffusion is conse-
quently determined, η= (0.1δx4)1/3, which yields the effective
Rm= (0.1δx4)−1/3. Thus, for the grid used in the present work,
δx= 10−3, we have the effective Rm= 2.15× 104, which is
consistent with the value of Rm associated with η mentioned
above. The effective Re could be estimated in the same way.

2.1. The Initial Configuration

We start with the magnetic configuration that was analyti-
cally derived by Lin et al. (2001). The analytic solution
provides the information of the evolution in the equilibrium
location of the flux rope in response to the gradual change in
the bottom boundary, which is used to model the surface of the
photosphere. The flux rope is used to model the filament or the
prominence floating in the corona. Interested readers may refer
to Lin et al. (2001) for details of the analytical description of
the related magnetic configuration that is used as the initial
condition in the present work.
Figure 1 displays the sketch of the initial magnetic

configuration. The background magnetic field is produced by
two magnetic line dipoles beneath the photosphere, accounting
for the preexisting magnetic field (namely, Dipole 1) and the
newly emerging magnetic flux (Dipole 2). In the present work,
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Dipole 1 remains unchanged and provides an unchanged
background field, and Dipole 2 changes its location or strength
to model the newly emerging magnetic field. To describe the
initial magnetic structure easily, we duplicate some works of
Lin et al. (2001) and write down the total magnetic field as
follows:
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where M and (0, −d), S and (xd, −yd), J and (xh, yh), and− J
and (xh, − yh) represent the dimensionless strengths and the
positions of Dipole 1, Dipole 2, the center of the electric current
inside the flux rope, and its mirror image, with d fixed at
d= 4× 107 m. We note here that the magnetic field governed
by Equations (6) and (7) is valid for the magnetic configuration

with a thin flux rope required for the validity of the analytic
solution. For the case studied here, the flux rope possesses
finite radius r, and a smooth distribution of the electric current
should be included inside the flux rope in a more realistic
fashion. Following the strategy of Forbes (1990), we take the
profile of the electric current density jz inside the flux rope as

( ) ( ) ( )= < - D- -j R j J R r, 0 2 , 8z 0
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where j0 has the dimension of electric current density, J is the
electric current intensity inside the flux rope in units of I0,
I0= j0[π(r

2+Δ2/4− 2Δ2/π)], j0J is the electric current density at
the center of the flux rope, Δ= r/5 is the width of the thin shell

around the edge of flux rope, and ( ) ( )= - + --R x x y yh h
2 2 .

To perform numerical experiments, we rewrite the magnetic
field governed by Equations (6) and (7) as follows by including
the electric current distribution given by Equations (8)–(10):
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2.2. Gravitationally Stratified Atmosphere

The 2D simulation in this work is performed in the region
(− 5L0� x� 7L0, 0� y� 12L0) with L0= 108 m. The bottom
of the photosphere lies on y= 0. The gravitationally stratified
atmosphere is divided into three layers: the photosphere
(0� y� hp), the chromosphere (hp� y� hc), and the corona
(hc� y� 12L0), where hp= hc= 106 m. We set the temper-
ature of the photosphere as Tp= 4300 K and that at the bottom
of the corona as Tc= 1.06× 106 K at y= hp+ hc. The
temperature distribution in the chromosphere via a simple

Figure 1. A sketch of the initial magnetic configuration. The flux rope floating
in the corona is utilized to model the prominence, and Dipole 1 and Dipole 2
are responsible for the photospheric background field. The image of the flux
rope beneath the photosphere generates the surface current associated with
inertial line tying of the magnetic field at the photosphere. ParametersM and (0,
−d), S and (xd, −yd), J and (xh, yh), and − J and (xh, − yh) are strengths and
positions of Dipole 1, Dipole 2, electric current intensity inside the flux rope,
and the location of the flux rope center, as well as those associated with the
mirror image of the flux rope, respectively.
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interpolation follows the practice of Mei et al. (2012a):
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Combining with the hydrostatic equilibrium equation,
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and the equation of state for the ideal gas,
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we find the pressure and the density distribution in the photosphere
and the chromosphere, where k= 1.38× 10−23 J K−1

is the Boltzmann constant, mp= 1.67× 10−27 kg is the proton
mass, and ˆ ( )= - +g g y y R10

2
 , with Re= 6.961× 108 m

and the gravity near the solar surface g0= 274 m s−2. Here ŷ is the
unit vector in the y-direction. For the extended corona, we describe
the plasma density through the S&G model (Sittler & Guhatha-
kurta 1999) in the form of ρ(y)= ρ0f (y), where ρ0= 1.67× 10−11

kg m−3 is the plasma density at the bottom of the corona and f (y)
is given as
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where z(y)= 1/(1+ y/Re), a1= 0.001292, a2= 4.8039,
a3= 0.29696, a4=−7.1743, and a5= 12.321. Then, we have
the initial temperature and density distribution in the whole
domain by using Equations (15)–(17).

In our simulations, the temperature in the flux rope is
Tf= 5× 104 K, and that in the ambient plasma is
Tamb= 2× 106 K. We assume that the cold material inside
the flux rope comes from the chromosphere (Mackay & van
Ballegooijen 2009) and that the flux rope includes a thin and
smooth layer for temperature:
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2.3. Boundary Conditions

The boundary conditions in our simulation are as follows.
On the three boundaries (x=−5L0, x= 7L0, and y= 12L0), the
simple extrapolation method is utilized to realize the outflow
boundary condition. Specifically, the zero-gradient boundary
condition is used to extrapolate the density, magnetic field, and
pressure, and we force the plasma at the aforementioned three
boundaries to flow outside. We note here that the extrapolation
of the magnetic field in this paper is realized via the magnetic
vector potential, A, instead of magnetic field, B. According to
Ye et al. (2019), if the B-field is extrapolated, the motion of the
flux rope, especially in the eruptive stage, would be eventually

ceased at the upper boundary as a result of the boundary effect.
If the A-field is used instead, the flux rope could pass through
the top boundary smoothly. This indicates that utilizing
extrapolation of the A-field would help elude the boundary
effect.
For the bottom boundary, on the other hand, we follow the

practice of Mei et al. (2012a) to realize the line-tied condition
for the photospheric magnetic field. We fix all the parameters at
the bottom and utilize two dense layers to approximate the line-
tied condition described by Forbes (1990) and Shen et al.
(2011). The boundary conditions are thus given as follows:
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where pc= 2ρ0kTc/mp= 0.29 Pa is the pressure at y= hp+ hc
The velocity at the bottom follows the no-slip and the wall
conditions. As discussed in Mei et al. (2012a), it is a challenge
to realize the line-tied condition with small plasma β at the
bottom boundary. Here two dense layers yield the plasma
β= 900 at y= 0, and the motions of the magnetic field lines are
mainly dominated by the bulk flow of the no-slip plasma.
Consequently, the magnetic field lines are rooted at the bottom
and the line-tied condition can be handled.

3. Results of Experiments

We are now ready to perform numerical experiments to look
into the evolution of the location of the flux rope in response to
the change in the background field that is governed by the
behavior of Dipole 2. A root grid of dimension 480× 480 spans
the simulation domain, with the largest grid size being
δx= δy= 0.025L0. Static mesh refinement is used in two
regions: the bottom layer that possesses a sharp gradient in
density, and the region above that layer that covers the rest of the
simulation domain. Six levels of the refinement are performed in
the bottom layer, such that refinement of level 6 is performed for
the region y� 0.01L0, that of level 5 for 0.01L0< y� 0.02L0,
that of level 4 for 0.02L0< y� 0.03L0, that of level 3 for
0.03L0< y� 0.04L0, that of level 2 for 0.04L0< y� 0.06L0, and
that of level 1 for 0.06L0< y� 0.1L0. In addition, three rectangle
regions including the flux rope are selected as follows: the level
4 refinement is conducted for region (xh− 0.12L0� x� 1.8L0,
yh− 0.12L0� y� 2.3L0), level 3 for (xh− 0.24L0� x� 2.5L0,
yh− 0.13L0� y� 2.5L0), and level 2 for (xh− 0.4L0� x� 3L0,
yh− 0.14L0� y� 3L0), which yields the finest grid size of
δx= δy= 1.5625× 10−3L0.

4

The Astrophysical Journal, 933:148 (14pp), 2022 July 10 Chen et al.



3.1. Impact of the Initial Radius of the Flux Rope on the System
Evolution

The NIRVANA code 3.8 (Ziegler 2004, 2005, 2008, 2011)
is used to carry out the calculation for solving MHD
Equations (1)−(5) associated with Equations (6)−(27).
Accordingly, the Godunov scheme, HLL Riemann solver,
and mesh refinement technique are turned on in calculations to
capture fine structures in the magnetic reconnection region.

According to Lin et al. (2001), the equilibrium curve of the
flux rope is apparently affected by the initial radius r00. To
investigate the dependence of the system evolution on the
initial radius, we perform several simulations for r00= 0.01d,
r00= 0.04d, and r00= 0.08d, respectively, while keeping the
other parameters fixed. The initial location of the flux rope and
the related parameters are taken from the equilibrium curve
given by analytic solutions (see, e.g., Lin et al. 2001). For each
value of r00, we check the change in the flux rope location from
its initial location for S taking values of 1, 2, 3, 4, 5, and 6,
respectively. As expected, behaviors of the flux rope vary from
case to case. For the case of r00= 0.01d, the flux rope quickly
leaves the initial locations in the simulations and soon finds its
new equilibrium near the initial location. For the case of
r00= 0.04d, the flux rope duplicates its behavior in the case of
r00= 0.01d when S takes values from 1 to 5, but the flux rope
cannot find an equilibrium position, as it leaves the initial
location when S= 6. For any case of r00= 0.08d, the flux rope
can never find equilibrium after leaving the initial location.
Therefore, in the rest of our work, we shall not look into the
case of r00= 0.08d since no equilibrium configuration could be
reached at least for S taking the values of our interest. Here we
just show one simulation with r00= 0.08d and S= 3 for
illustration (see Figure 2). The relevant results with r00= 0.01d
and r00= 0.04d will be discussed in the following sections.

Figure 3 displays the location (xh, yh) of the flux rope in
equilibrium. Solid curves in Figures 3(a) and 3(b) are for the
analytic results, and the separated circles are for the numerical
results when r00= 0.01d and 0.04d, respectively. As we
mentioned before, the flux rope could always find equilibrium
after leaving the initial location if r00= 0.01d, and no
equilibrium could be found if r00= 0.04d and S= 6. So
Figures 3(a) and 3(b) include six circles for r00= 0.01d and
five circles for r00= 0.04d. This indicates that the magnetic
configuration of interest could remain equilibrium, as the
strength of the newly emerging flux, S, varies in a large range
in the case of thin flux rope, and that when the configuration
includes a flux rope of medium size, it still can find equilibrium
as S varies within a certain range, but no equilibrium could be
reached as S goes beyond this range. Considering the fact that
the coronal magnetic configuration evolves slowly prior to the
eruption in response to the gradual variation in the photosphere,
we conclude that the behavior of the flux rope in the case of
r00= 0.01d displayed in Figures 3(a) and 3(b) could describe
the evolutional feature of a true prominence. Furthermore, the
behavior of the flux rope in the case of r00= 0.04d suggests
that the newly emerging flux could indeed drive the coronal
magnetic structure to the catastrophe point through a set of
equilibrium states in a quasi-static fashion.

We note here that the deviation of the numerical results from
the analytic ones is apparent. This mainly results from the
existence of the gravity in the present work. We point out here
that the gravity impacts all aspects of the system, including
stratification of the atmosphere, shape of the flux rope, and the

way the Alfvén speed varies with the altitude. Previous works
either did not consider the gravity at all (see, e.g., Lin &
Forbes 2000), or just considered the gravity acting on the flux
rope only (see, e.g., Reeves & Forbes 2005), or considered the
atmosphere stratified by the gravity but did not include the
gravity in the force acting on the flux rope (see, e.g., Lin 2002;
Lin et al. 2004), or considered the impact of the gravity on both
the atmosphere and the flux rope independently (Lin 2004).
Therefore, the impact of the gravity was just considered by
these works in an approximate fashion. In the present work,
obviously, the impact of the gravity on the whole system is
considered comprehensively, and the deviation of the results
obtained here from previous ones is thus expected.
In order to quantitatively describe the gravity effect on the

evolution, we follow the methodology of Reeves & Forbes
(2005) by imposing the gravity on the flux rope, and we rewrite
the equation for the global equilibrium in the y-direction given
by Lin et al. (2001):
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with m= 1.98× 104 g cm−1 being the mass per unit length in
the flux rope, a = =c mg d I 0.0292

0 0
2 being the ratio of the

gravity fg=mg0 to the Lorenz force fb= b0I0/c, and
b0= I0/(cd)= 2.2 G. As an example, we select one point with
r00= 0.04d and S= 5 to perform the test because this point
appears to be far from the analytic equilibrium curve.
Combining Equation (28) and the flux-frozen condition at the
surface of the flux rope given by Lin et al. (2001), we get the
new equilibrium position with the effect of gravity: (xhg= 0.50,
yhg= 1.87). Comparing with the result of Lin et al. (2001), in
which case no gravity is included, (xh0= 0.31, yh0= 1.46), one
can easily see the difference. Interesting enough, for the same
setting of the other parameters, the numerical experiments give
(xh= 0.58, yh= 2.08), which is consistent with the analytic
result determined by Equation (28).
The red triangles in Figure 3 indicate the equilibrium

positions deduced analytically as the gravity is included.
Apparently, analytic and numerical approaches yield the same
result at least for the parameters that we used here. The
deviation is due to ignoring gas pressure in the analytic
solution. Therefore, the equilibrium positions of the flux rope
obtained here differ from those deduced by Lin et al. (2001)
apparently because of the existence of the gravity.
In addition to the impact of the non-force-free environment

occurring in the numerical experiment, the asymmetric feature
of the configuration plays an important role in yielding the
deviation. Xie et al. (2017) performed a similar experiment for
the evolution in a symmetric system. Their results did show
deviation from the analytic ones, but the symmetry allows the
impact of various physical parameters to compensate one
another easily, so that the deviation is not very large. In the
case of asymmetry, on the other hand, the system possesses
more dimensions in which changes may happen, relations
among these parameters to one another become much more
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complicated, and the compensations of the impact of them on
the system behavior get more difficult simultaneously. This
directly causes the numerical results to deviate from the
analytic ones apparently. Fortunately, the present numerical
experiments show that the coronal magnetic configurations
could find stable equilibrium states under the influence of the
newly emerging flux and that the catastrophe could occur in
some specific situations as well. This allows us to investigate
the dynamic evolution in the system after the catastrophe in a
self-consistent fashion.

Before we turn to the dynamic episode, we realize that
Figure 3 reveals more information of interest. First of all,
positions of the flux rope in equilibrium manifest a similar
evolution trend in both the x- and y-direction for both cases of
r00= 0.01d and r00= 0.04d (Figures 3(a) and 3(b)), and the
corresponding radius of the flux rope displays similar behavior
for the two cases (Figure 3(c)). However, the electric currents
inside the flux rope in these two cases show different trends
such that J decreases much faster in the case of small radius
(Figure 3(d)). Looking carefully into the detailed behavior of
the flux rope interior, we realized that it is the numerical
diffusion that should account for the evolutionary feature of J
in the case of r00= 0.01d. This is because the region where the
flux rope is located includes fewer grid lines as the radius of the
flux rope gets smaller for the given grid size. In our case, about
100 grid lines are included as r00= 0.04d, and only about 10
grid lines are included as r00= 0.01d. The impact of the
numerical errors on the case of small radius is apparent and is

presented by the unexpected decrease in J versus S, which
indicates the extra diffusion of the electric current inside the
flux rope by the numerical resistivity.
We also noticed that, on the other hand, the global

evolutionary behavior of the flux rope is not affected apparently
by its internal behavior. Such a behavior of the system has been
pointed out and discussed by Lin et al. (2001). The internal
distribution and change of the electric current may alter the
magnetic field around the flux rope, but the interaction between
the magnetic field produced by the flux rope and that produced
by the other sources allows the flux rope to find the new
equilibrium via adjusting the flux rope position and the internal
current in a certain range. This confirms that the global
behavior is the main issue that dominates the overall
evolutionary property of the system.

3.2. Internal Equilibrium of the Flux Rope

The equilibrium in the system is reached as the net force
acting on the flux rope vanishes. The total force includes both
the internal and the external forces. In the analytic framework,
the radius of the flux rope is small compared to the global scale
of the system, so that the external magnetic field could be
regarded invariant on the cross section of the flux rope in the
evolution; the equilibrium can be divided into two parts, the
external (global) equilibrium and the internal (local) equili-
brium; and the two equilibria could be realized separately (see,
e.g., Forbes & Isenberg 1991; Isenberg et al. 1993; Forbes et al.

Figure 2. The evolution of the plasma density and the magnetic field with r00 = 0.08d and S = 3. As shown in Figures 2(a)−2(d), the flux rope cannot adjust itself to a
new equilibrium near the initial location, which is similar to other simulations as S takes different values.
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1994). Consequently, the global equilibrium yields the
dependence of the flux rope location on the background field,
and the local equilibrium relates the radius of the flux rope to
the total electric current intensity inside the flux rope. The two
equilibria connect to each other via J since the magnetic field
associated with the flux rope and that produced by the image of
the flux rope are governed by J. For the force-free case,
Isenberg et al. (1993) improved the solution given by Parker
(1974) for describing the internal equilibrium of the flux rope
and presented the accurate relation of the flux rope radius to J.
But the expression is implicit and is not easy to use. Lin et al.
(1998) obtained a simplified relation as follows:

( )=r r J, 290 00

which turns out to be a good approximation to the exact
solution of Isenberg et al. (1993). In the numerical experiment,
the requirement for the small radius of the flux rope to decouple
the two equilibria is lifted, and it is not necessary to decouple
them any longer. The dependence of r0 on J could be obtained
directly from the simulation results.

Figure 4 plots variations of r0 versus J as S varies from 1 to 6
for r00= 0.01d and from 1 to 5 for r00= 0.04d. In addition, the
results given by Equation (29) are also plotted (solid curves) for
comparison. We notice that both analytic and numerical results
show that r0 decreases with J, but values of r0 obtained
numerically are always larger than those obtained analytically.
This is because the requirement of small radius of the flux rope
in the analytic solution is lifted in the numerical solution, and r0
could be any value determined by both internal and external
conditions in the simulation as a result of the self-adjustment in

both the global and local magnetic fields. However, the self-
adjustment does not always work, and the catastrophe in the
system occurs as long as the self-adjustment fails. For example,
in the case of r00= 0.01d, it works well in the range of S that
we selected; in the case of r00= 0.04d, on the other hand, the

Figure 3. The evolution of the flux rope that describes the equilibrium state, including the (a) horizontal position, (b) vertical position, (c) radius of the flux rope, and
(d) electric current inside the flux rope. The cyan curves are analytical solutions, and the cyan circles represent the simulation results for r00 = 0.01d. The black curves
and circles are the corresponding results for r00 = 0.04d. The red triangles correspond to the analytic solutions including the gravity effect with S = 5.

Figure 4. The relationship of the electric current and the radius of the flux rope
for both r00 = 0.01d and r00 = 0.04d. The curves and the circles are results
given by analytical solutions and simulations, respectively.
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self-adjustment works well at S� 5 and fails at S� 6 (more
accurate calculations indicate that the turning (critical) point at
which the self-adjustment fails occurs at S= 5.75); and no
equilibrium exists in the system at all for r00= 0.08d, where the
function of the self-adjustment to help keep the system in
equilibrium vanishes completely. This seems to suggest that the
coronal magnetic configuration including a thick flux rope
(prominence) will lose the equilibrium more easily triggered by
the newly emerging flux than that including a thin flux rope.
We need to find the observational evidence to confirm this
result in the future.

3.3. Evolution in the System after the Catastrophe

In this part of work, we look into the detailed evolution in
the system for the flux rope with the initial radius r00= 0.04d.
Correspondingly, the initial value of the electric current density
inside the flux rope is J= 1, and six cases for different
strengths of Dipole 2 are used to model the process of the flux
emergence. The other parameters for the initial configuration of
these cases are listed in Table 1. For all the cases, we set
j0= 1.07× 10−2 A m−2, M= 1, xd/d= 8, and yd/d= 4.7.

As mentioned earlier, the system manifests similar evolu-
tionary behavior for S taking values of 1−5. Figure 5 displays
the distribution of the plasma density and the magnetic field for
S= 3 and the initial position (xh/d= 0.09, yh/d= 1.06). We
notice that when the simulation starts, the flux rope leaves the
initial position (marked by a black plus sign) and adjusts itself
to a new equilibrium location within 4000 s (Figures 5(a)
−5(d)), and the displacement between these two positions is
quite small as shown in Figure 5(d). Overall, we find that the
global configuration does not show apparent variation. To
illustrate the adjustment in the flux rope position more clearly,
Figures 5(e)−5(h) display a time sequence of an area around
the flux rope marked by the black box in Figure 5(a). We can
see easily that the flux rope initially oscillates around the
equilibrium location and that the equilibrium location is soon
reached. This occurs for all the cases with S between 1 and 5.

So far we have demonstrated that the system could evolve
through a set of quasi-static states to the critical point in
response to the newly emerging flux. Figure 6 displays the
aforementioned evolution of the plasma density and the
magnetic field. Figures 6(a)−6(e) show the magnetic config-
urations as the flux rope reaches the position of the new
equilibrium. These panels display a process of the quasi-static
evolution and the deformation of the magnetic configuration
during the magnetic emergence. Figure 6(f) presents magnetic
configuration with S= 6; no equilibrium in the configuration
could be found after the flux rope leaves the initial location in
this case, and the consequent evolution of the system is
dynamic.

Evolutionary behaviors in the system for S= 5 and S= 6
implies that a critical point or state exists between S= 5 and
S= 6. After several runs of calculations, we locate the critical
point at S= S* = 5.75. When the simulation commences at this
point, the flux rope also duplicates an oscillating feature with
the amplitude getting larger and larger and eventually leaves
the initial location far away, which suggests the occurrence of
the catastrophe. Unlike the flux rope in the symmetrical system
that moves in the y-direction only, the flux rope studied here
moves in both x- and y-directions because of the asymmetry. In
this case, the catastrophe means the loss of equilibrium of the
flux rope in both the x- and y-directions. Figure 7 describes the
equilibrium state of the flux rope from the quasi-static
evolution process (S changes from 1 to 5) to the catastrophe
(S= 5.75), where the solid curves are from analytic solutions,
the circles are simulation results in the quasi-static evolution
process, the black asterisks are the initial position of the flux
rope as the catastrophe commences, and the red asterisks
indicate the location of the flux rope in the new equilibrium.
The existence of the new equilibrium suggests that the loss of
equilibrium does not evolve to a plausible eruption, though
magnetic reconnection takes place following the catastrophe.
We note here that the failure of the eruption is not a

geometric artifact. Instead, it is indeed due to the true
stabilizing factor provided by the complex magnetic structure
studied in this work. Lin & Forbes (2000) and Lin (2002)
pointed out that the magnetic configuration including the
detached flux rope still suffers from the Aly-Sturrock paradox
such that the catastrophe cannot develop to a plausible eruption
if reconnection is prohibited or even if the rate of reconnection
is not fast enough. This implies that the flux rope cannot escape
from the confinement of the background field if the background
is not erased fast enough by reconnection. Here the meaning of
“the background is not erased fast enough by reconnection” is
twofold: First, it means that the reconnection process is indeed
slow and the magnetic tension that prevents the flux rope from
escaping does not decrease fast enough. Second, the back-
ground field itself is very strong, and reconnection cannot erase
it and weaken the magnetic tension at a reasonably fast rate.
Hence, we argue that the failure of the eruption suggested by
Figure 7 corresponds to the second case. Unlike the magnetic
configuration studied by Lin & Forbes (2000) and Lin (2002),
in which the background magnetic field is due to one source
only, the background field in the configuration studied here is
of the combination of two sources. So the confinement of the
background field to the flux rope is apparently stronger than
that of Lin & Forbes (2000) and Lin (2002). This is why
successful development of the catastrophe to the eruption is not
guaranteed here. From another perspective, the analytic
solutions shown in Figure 7 more or less imply such a result
since a couple of equilibrium curves exist in the same region in
which the loss of equilibrium occurs in the numerical
experiments.
Figure 8 shows the dynamic evolution in the magnetic

configuration after the flux rope loses its equilibrium. The
colored shading represents the density distribution, and the
black solid lines are the magnetic field lines. Unlike previous
cases in which the flux rope continues to move after leaving the
equilibrium (see, e.g., Mei et al. 2012a; Ye et al. 2019), the flux
rope in the present case eventually stops at a new position
between Dipole 1 and Dipole 2 with different (xh, yh) from the
initial one. This is a so-called failed eruption, in which the

Table 1
Initial Parameters for the Magnetic Configuration

S xh/d yh/d
(1) (2) (3)

1 0.05 0.60
2 0.06 0.90
3 0.09 1.06
4 0.19 1.19
5 0.31 1.44
6 0.81 2.31
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overall background magnetic field configuration is not
destroyed by magnetic reconnection to a certain level, so that
the magnetic tension that prevents the flux rope from escaping
is still strong enough. During the fast evolution, on the other
hand, the flux rope continues to expand and the radius reaches
maximum of r0= 0.46 when the system realizes the global
equilibrium at (xh/d= 3.15, yh/d= 4.06).

At the earlier stage of the dynamic process, the flux rope is
launched, generating a fast disturbance propagating at a speed
of 220 km s−1 in front of the flux rope, which is consistent with
the results of Xie et al. (2019). The difference between our
results and those of Xie et al. (2019) is that the disturbance in
the case of Xie et al. (2019) is symmetric about the y-axis and
the disturbance in the present case is asymmetric. In addition,
the disturbance to the environment caused by the catastrophe in
the present case is also weaker than previous cases (see, e.g.,
Mei et al. 2012b; Xie et al. 2019) because the background field

is produced by two dipoles in the present case, and the
magnetic tension that prevents the flux rope from moving
quickly is apparently stronger than that in previous cases.
Figure 9 displays variations of the flux rope displacements in

both the x- and y-directions (Figure 9(a)), as well as the
corresponding velocities (Figure 9(b)). We notice that, at the
early stage following the loss of equilibrium, the flux rope
undergoes fast acceleration and quickly reaches the maximum
speeds of 15.4 and 22 km s−1 in the x- and y-directions,
respectively, and then the flux rope decelerates and experiences
oscillation. Eventually, it reaches a new equilibrium. The
average speeds before oscillation are 8.7 and 11.2 km s−1 in
two directions, which is low compared to those of CMEs
detected by LASCO during solar cycle 24 (≈300–400 km s−1)
according to Lamy et al. (2019), but quite close to those of the
transverse event (9.7 km s−1) reported by Gopalswamy et al.
(2003). Since the catastrophe taking place in this case does not

Figure 5. The evolution of the plasma density and the magnetic field for the quasi-static case of S = 3 and r00 = 0.04d. The black plus sign in all panels is the initial
position of the flux rope. Panels (a)−(d) display the overall evolution in the system to show the stability of the related magnetic configuration in response to the change
in the background. The black box in panel (a) outlines the region that is enlarged in the bottom panels. Panels (e)−(h) show details of the evolution in the flux rope,
with the white plus sign representing the center of the flux rope and the black horizontal line marking the equilibrium location of the flux rope in the y-direction.
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develop to a plausible eruption, it is necessary to invest more
efforts in the future in looking into the validity to explain the
transverse event according to the present work.

In addition, we also notice that two current sheets form
during the catastrophe process, as shown in Figure 10. It is
interesting to note that the first current sheet (CS1) is produced
as the flux rope moves upward and stretches the magnetic field
lines around the flux rope and that the second current sheet
(CS2) is formed as the flux rope moves to the right and
squeezes the magnetic field nearby. Apparently, CS1 results
from the motion of the flux rope in the y-direction, and CS2
results from that in the x-direction. Magnetic reconnection
obviously occurs in both CS1 and CS2, but the loss of
equilibrium in the flux rope does not eventually develop to a
successful eruption, at least for the case of r00= 0.04d.

4. Discussion

The catastrophe studied here is due to the ideal loss of
mechanical equilibrium of the flux rope (see, e.g., discussions
in Aulanier 2014) although magnetic reconnection does take
place in the stage of the quasi-static evolution of the system in
response to the slow (compared to the local Alfvénic speed and
sound speed) change in the photosphere. Lin et al. (2001)
pointed out that the evolution in the photosphere is so slow that

any coronal current sheet would have plenty of time to
dissipate by means of slow reconnection. In this case,
reconnection occurring at any X-point plays a role in helping
rearrange the magnetic structure in the global configuration
only, not in triggering the eruption (comparing with the case of
Mikić & Linker 1994). Lin & van Ballegooijen (2002) further
noted that if the rate of reconnection in the system is faster than
the rate of evolution in the photosphere, the catastrophe is
considered nonideal; otherwise, the catastrophe is ideal.
Generally, in our numerical experiments, on the other hand,

it is difficult to achieve such slow evolution without dissipating
the flux rope and the surface currents associated with the line
tying. Therefore, experiments that evolve the boundary
conditions in time may also create current sheet near the
X-points, and these currents might alter the subsequent
evolution of the system. To elude this dilemma, we evolve
the system by changing the boundary condition step by step:
we allow the system to relax for a while each time the boundary
changes. We observed that the system could eventually reach
the new equilibrium if the variation of the boundary is within a
given range, although a couple of X-points do exist in the
configuration. Hence, the catastrophe occurring in the system
studied here is due to the ideal loss of mechanical equilibrium
according to Lin et al. (2001) and Lin & van Ballegooi-
jen (2002).

Figure 6. The evolution of the plasma and the magnetic field from the quasi-static equilibrium (S varies from 1 to 5) to the onset of the catastrophe (S = 6) in response
to the flux emergence. Figures 6(a) through 6(e) show the stable equilibrium when the simulations end, and the Figure 6(f) displays the initial state where the flux rope
cannot keep stable anymore.
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Feynman & Martin (1995) reported that the magnetic flux
that emerges outside the filament channel and possesses the
reconnection-favorable orientation (namely, the orientation of
the magnetic field supports the formation of the X-line between
the preexisting and newly emerging fluxes) would usually
result in a successful eruption (with some exceptions).
Numerical experiments of Chen & Shibata (2000) seem to
support this conclusion. A 3D and self-consistent simulation
performed by Roussev et al. (2012) found that the magnetic
reconnection between the emerging flux and the preexisting
field would not only decrease the magnetic tension but also
lead to the formation of the flux rope. Although their results
suggested the simple rule that the emerging flux with the
reconnection-favorable orientation would trigger the solar
eruption, they indeed revealed a more complex physical
process during the emerging and implied the complexity of
the effect of the newly emerging field. The results that we
obtained here clearly indicate that the polarity of the emerging
flux is not the only issue that governs the eventual evolutionary
behavior of the system; the physics behind the rule that
determines whether a successful eruption can be triggered by
the emerging flux could be very complex, which is consistent
with theoretical (e.g., Lin et al. 2001) and observational (e.g.,
Zhang et al. 2008) results.

Furthermore, the existence of CS1 and CS2 allows the
process of magnetic reconnection to take place, as indicated by
Figure 10, which directly suggests the occurrence of the flare in
the related coronal magnetic configuration. However, the fact
that the flux rope eventually fails to escape implies that in this
case no CME can be expected. This may help explain why the
solar active region AR 12192 was a flare-rich one, although a

CME-poor one. This active region possessed very complex
magnetic structure, hosted the largest sunspot group, and
produced the most violent solar flare in solar cycle 24 among
six X-class flares and 29 M-class flares within 12 days (Chen
et al. 2015), but only six jet-driven CMEs with velocities
ranging from 200 to 300 km s−1 (Panesar et al. 2016). Sun et al.
(2015) listed three issues that may account for the unexpected
behavior of AR 12192 as follows: weaker nonpotentiality,
strong overlying field, and small flare-related field changes.
Looking into the characteristics of the magnetic configuration
shown in Figure 8 or Figure 10, we pointed out that although
the magnetic configuration in the present work might not be
very complex, its features somehow fit these three issues well.
As a follow-up of Lin et al. (2001), the present work aims at

confirming via numerical experiments that the catastrophe in
reality does occur in the configuration with a complex
background field. Our experiments indicate that within a given
scope of parameters for the photosphere, stable equilibria do
realize in the magnetic configuration of our interest, and the
catastrophe indeed occurs as the system evolves to the critical
point, although the difference between analytical results and
numeric ones exists. As discussed earlier, Figure 5 confirms
that the stable equilibrium in the magnetic configuration could
be realized in the coronal environment, and Figure 6 indicates
that the catastrophe could occur in such a configuration through
a set of equilibria in response to the change in the background
magnetic field. As for whether or not the catastrophe happening
here would smoothly develop to a plausible eruption eventually
is beyond the scope of the present work and will be studied in
the future.

Figure 7. The evolution of the flux rope of r00 = 0.04d that describes the equilibrium state including the (a) horizontal position, (b) vertical position, (c) radius of the
flux rope, and (d) current inside the flux rope. The black curves are analytical solutions. The black circles represent the stable simulation results. The black asterisks
show the initial location where the flux rope loses its equilibrium, and the red asterisks present the final equilibrium after the catastrophe process.
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5. Conclusions

On the basis of the analytic model developed by Lin et al.
(2001), we performed a set of numerical experiments in order to
investigate the evolution in the coronal magnetic configuration in
response to the newly emerging flux. Unlike previous cases in
which the background magnetic field was produced by a single
source and the system possessed symmetry, the background field
in the present case results from two sources and no symmetry
exists in the system. As expected, on the other hand, the flux rope
in the present system can still find equilibrium positions, as in the
analytical case, and the configuration may evolve gradually
through a set of equilibrium states when the background field
changes in the fashion used to describe the newly emerging flux
as done by Lin et al. (2001). Deviations of the numerical results
from the analytical ones exist obviously as a result of the non-
force-free environment in the simulation, but they are apparently
larger than those occurring in previous cases with symmetry (e.g.,
Xie et al. 2017). For the flux ropes of the given sizes, however, it
may not find equilibrium locations, as the parameters for the
background field take values beyond specific ranges. This
suggests that the catastrophe may indeed happen in the system
we studied here.
The main results of this work can be summarized as follows:

(1) The size of the flux rope affects the evolutionary behavior
of the system in an important way; the larger the radius of

Figure 8. The evolution of mass density and magnetic field for the catastrophe case with S = 6.

Figure 9. The horizontal position, vertical position, horizontal velocity, and
vertical velocity of the flux rope during its dynamic evolution, which are
represented by the black line, red line, black dashed line, and red dashed line,
respectively.
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the flux rope is, the more easily the system loses the
equilibrium. In the analytic solution, the radius of the flux
rope is assumed to be small compared to the global scale
of the system so that the external magnetic field over the
cross section of the flux rope could be treated uniformly,
and vanishing of the force due to the external field at the
center of the flux rope gives rise to the equilibrium of the
whole flux rope. In reality, on the other hand, the radius
of the flux rope is not necessarily small compared to its
length, and the uniformity of the external field over the
cross section of the flux rope is not easy to realize. Hence,
vanishing of the force at a given location over the cross
section of the flux rope cannot guarantee the whole flux
rope force-free. This indicates that it is hard for the
configuration including a thick flux rope to find an
equilibrium state.

(2) In reality, or for the magnetic configuration including a
flux rope of finite radius, the internal and external
equilibria of the flux rope couple to one another and
cannot be dealt with separately. However, the basic
equilibrium behavior of the system is mainly governed by
the external equilibrium of the flux rope, and the
disturbance to the internal equilibrium could be absorbed
by the flux rope itself via adjusting its radius.

(3) The asymmetry in the magnetic configuration studied in
this work provides the flux rope one more dimension to
move. The motion of the flux rope could be in both the x-
and y-directions no matter whether the evolution of the
system is quasi-static or dynamic. This allows us to gather

much richer information about the evolutionary pattern of
the system and implies more possible styles of the
catastrophe, as suggested by the analytic solution (see,
e.g., Lin et al. 2001), which suggests that the catastrophe is
easier to occur than that in the symmetric configuration.

(4) In the case of r00= 0.04d, the equilibrium in the system
is lost and the catastrophe takes place at S= S* = 5.75
after evolving through a set of equilibrium states in the
quasi-static fashion as the strength of dipole increases.
The motion of the flux rope displays an apparent
transverse component, as shown by many events (see,
e.g., McCauley et al. 2015). However, the catastrophe
does not develop to a plausible eruption in the present
work and may account for the failed eruptive event (see,
e.g., Ji et al. 2003 for the observational event).

(5) Two current sheets form during the catastrophe; one
(CS1) results from stretching of the closed magnetic field
due to the loss of equilibrium of the flux rope in the y-
direction, and another one (CS2) from squeezing of the
magnetic field due to the loss of equilibrium in the x-
direction. Magnetic reconnection obviously takes place
inside both current sheets, which tends to help the loss of
equilibrium develop to a successful eruption. But, at least,
the eruption fails in the case of r00= 0.04d. This implies
that no simple and universal rule exists in this case that
may relate the likelihood for an eruption to the orientation
of the emerging flux (see discussions in theory by Lin
et al. 2001 and those in observations by Zhang et al. 2008
for more details).

Figure 10. The evolution of the current and magnetic field for the catastrophe case. “CS1” and “CS2” represent two different current sheets that have opposite polarity.
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