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Abstract 

 

The present study focuses on the plane strain problem of medium-to-high strain-rate 

loading of an idealized brittle material with random microstructure. The material is 

represented by an ensemble of “continuum particles” forming a two-dimensional 

geometrically and structurally disordered lattice. Performing repeated lattice simulations 

for different physical realizations of the microstructural statistics offers possibility to 

investigate universal trends in which the disorder and loading rate influence mechanical 

behavior of the material. The dynamic simulations of the homogeneous uniaxial tension 

test are performed under practically identical inplane conditions although they span nine 

decades of strain rate. The results indicate that the increase of the dynamic strength with 

the loading-power increase is also accompanied with a significant reduction of the 

strength dispersion. At the same time increase in the loading rate results in transition 

from random to deterministic damage evolution patterns. This ordering effect of kinetic 

energy is attributed to the diminishing flaw sensitivity of brittle materials with the 
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loading-rate increase. The uniformity of damage evolution patterns indicates an absence 

of the cooperative phenomena in the upper strain-rate range, in opposition to the 

coalescence of microcracks into microcrack clouds, which may represent the dominant 

toughening mechanism in brittle materials not susceptible to dislocation activities.      

 

Keywords:  Brittle solids; Dynamic tensile strength; Damage patterns; Ordering effect; 

Microcrack clouds   
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1. Introduction 

 

The practical and scientific significance of deformation processes evolving at high 

strain rates is exceeded only by their complexity; the considered thermodynamic 

processes are non-stationary, non-local, and far from equilibrium. Despite the truly 

enormous progress in experimental analysis, there are inherent difficulties, if not 

limitations, when it comes to extreme loading rates (≥ 1710 s ). It is especially difficult to 

characterize the damage evolution and failure mechanisms due to the difficulty in 

recovering tested samples. The numerical experiments presented in this study cover the 

strain-rate range from medium to high, which are commonly explored by the Hopkinson 

bar and plate-impact experiments. The former is performed (up to 143 1010  s ) under 

uniaxial stress conditions while the latter (up to 1710 s ) under uniaxial strain conditions. 

The objective of this investigation is to elucidate the effect of material micro-texture on 

fracture of dynamically-loaded brittle materials. The numerical simulations of the 

uniaxial tension test, the most common of all mechanical tests for structural materials, 

appear to be a useful tool for extrapolation of the experimental results.  

The idealized brittle material is approximated by a two-dimensional triangular lattice: 

a Delaunay simplical graph dual to the irregular honeycomb system of Voronoi polyhedra 

representing, for example, grains of a ceramic material (Krajcinovic, 1996).
1
 Grain 

boundaries, the most common examples of weak interfaces in brittle materials, are known 

to have a profound effect on their structure-sensitive properties such as the dynamic 

                                                
1 For a detailed discussion of the Voronoi tessellation, see, for example, Espinosa and 

Zavattieri, 2003, and references therein. 
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strength. The primary mechanism of damage evolution in polycrystalline ceramic 

materials is widely reported to be the intergranular microcracking. According to Lawn 

(1993), grain boundaries “are especially weak in ceramics because of the stringent 

directionality and charge requirements of covalent-ionic bonds.” Furthermore, as the 

regions of lower atomic density, grain boundaries act as sources of, and sinks for, 

structural defects. Finally, sintering and hot pressing at high temperatures followed by 

cooling causes residual stresses due to the anisotropy of grains (Davidge and Green, 

1968; Curtin and Scher, 1990). Therefore, in the present lattice model, the microstructural 

texture is represented by a network of grain boundaries; the cracking is assumed to be 

intergranular; and the local stress and strain fluctuations on a scale shorter than the grain 

facet size are neglected (Krajcinovic, 1996). In more general terms, we may think of 

lattice models as ”a discretization of higher than one-dimensional materials by a network 

of one-dimensional elements characterized by element constitutive equations, and a 

breaking condition,” (Jagota and Bennison, 1994). The model incorporates both 

variability and uncertainty in a straightforward manner.  Variability, also termed 

randomness or aleatory variability, is the natural randomness in the process.  Uncertainty, 

also termed epistemic uncertainty, is the uncertainty in the model; it is due to limited 

knowledge or limited availability of data or both. The mesoscale material texture is an 

example of the aleatory variability. The disorder may be topological (unequal 

coordination number), geometrical (unequal length of bonds), or structural (unequal 

strength and stiffness of bonds). The disorder is further enhanced by damage evolution, 

which is governed (to an extent depending on the deformation rate) by the local 
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fluctuations of the energy barriers quenched within the material, and the local 

fluctuations of stress.  

Finally, although the lattice models are used often in modeling the fracture behavior 

of inhomogeneous or multi-phase systems, it is important to recognize their deficiencies 

and limits of their applicability. The two-dimensional systems exhibit inherent 

topological limitations; and the extreme geometrical disorder, which is intentionally used 

in this study, causes additional side effects. Nonetheless, we believe that the most notable 

numerical artifacts of lattice models (Jagota and Bennison,1994; Monette and Anderson, 

1994) do not have a first-order effect on universal trends observed in this investigation, 

keeping in mind that we are dealing with relatively large geometrical and structural 

disorder and the nucleation-dominated damage evolution modes.  

 

2. Details of the simulation 

 

The approximation of a material by a particle lattice is inspired by the mesoscale 

morphology of a certain class of brittle materials, and successes of molecular dynamics 

method as a tool of solid mechanics (for overview of molecular dynamics, see, for 

example, Hoover, 1986; and Allen and Tildesley, 1994). Within this framework, 

continuum can be defined as a collection of discrete elements, known as “continuum 

particles” (Wiener, 1983). Assuming that positions and momenta of particles are known 

in the reference state, determination of all subsequent states is a problem of Hamiltonian 

mechanics. A number of numerical techniques are available to accomplish this task, 

including the most widely used the Verlet, Störmer, and Gear predictor-corrector 
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algorithms. The choice of the solution technique is largely a matter of preference since all 

of these methods are stable as long as the time step is carefully selected (Allen and 

Tildesley, 1994).   

Since the lattice model used in this study is described in detail elsewhere (Mastilovic 

and Krajcinovic, 1999, 1999a) only a brief summary is presented herein. The average 

distance between two neighboring particles ( ) is the model resolution length (lc). 

(Hence, the effect of all defects smaller than the resolution length and the residual stress 

along the grain boundary must be introduced through the strength distribution.) The 

particles located in lattice nodes interact through the central-force links with their nearest 

neighbors. The properties of these bonds are approximated by a nonlinear force-

elongation relation (the Hook potential in tension and the Born-Meyer inspired potential 

in compression).   

The size of grains and strength of grain boundaries are stochastic parameters in 

polycrystalline ceramic materials. Consequently, the lattice morphology is random as 

well; it is defined by the coordination number z and link length . In the pristine state, all 

lattices used in this study are topologically ordered by selecting z = 6 for all bulk-

particles. The lattices are geometrically disordered since the equilibrium distances 

between particles (initial link lengths  0) are sampled from the normal distribution 

within the range     2 . The geometrical-order parameter ,  10  , is 

the model parameter that defines bandwidth of the geometrical disorder of the material 

(for example, the distribution of grain sizes). The lattice is also structurally disordered. 

The link stiffnesses are uniformly distributed within the range   kkk   2 , 

where , (0    1), is the structural-order parameter defining the stiffness distribution, 
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which takes into account the inherent or induced flaw structure of the material (e.g., flaw 

types, flaw spacing, flaw size, etc.). The link-rupture criterion is defined in terms of the 

critical link elongation. That is, the link between particles i and j ruptures (as its force-

carrying capacity in tension is permanently lost) when the link elongation reaches the 

critical value ij = ij / 0ij = cr = const.. 

The parameters recorded through the entire process are: the position and velocity of 

each particle, number of ruptured links, and force in each link. Calculation of the 

deformation and kinetic energy, knowing the position and velocity of each particle, is 

straightforward. The density of isotropic damage is defined by the fraction of broken 

bonds D=n/N, where n and N are the number of broken bonds and the total number of 

bonds, respectively. The statistical mechanics expressions for the components of the 

stress and effective stiffness tensors are adopted from the molecular dynamics (Vitek, 

1996).  

In the molecular dynamics, it is common practice for the systems consisting of just 

one type of molecule to set the mass of the molecule as a fundamental unit, and to use the 

reduced units in simulations. For the simple pair potentials, the relations between reduced 

and physical units are defined by analytical expressions (Allen and Tildesley, 1994). For 

the lattice simulations performed in this study, the conversion of the reduced units into 

the physical (SI ) units is estimated in the following manner. Assuming that the brittle 

material of our choice is alumina Al2O3  with average grain diameter mlD c 10  

and velocity of elastic longitudinal wave propagation CL  10 km s  (Straburger and 

Senf, 1995), the ratio     sCClltt LLcc

8*** 10  between the time interval  t   

in SI  unit and corresponding non-dimensional time interval  *t  is defined in terms of 
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the physical lc , CL  and non-dimensional  2.7,1 **  Lc Cl  material properties. (The 

non-dimensional velocity of the elastic wave propagation is estimated from the 

simulation; see Fig. 2a.) The ratio 18** 10  stt &&  between the strain rate in SI  

unit and non-dimensional strain rate is inversely proportional to the corresponding time 

interval ratio. 

The computer simulations of the homogeneous uniaxial tension test are conceptually 

very simple. The problem of the uniform distribution of load within a sample is solved by 

imposing an initial velocity field to the lattice at t=0. The velocity, 2Lv yH & , at the 

top (+) and bottom (-) surface of the sample is defined in the terms of the prescribed 

strain rate, LLy
&&  , where L is the length of the sample (Fig. 1a). A homogeneous 

velocity gradient is imposed to all other particles in the loading direction according to the 

linear form yy y&&  . Subsequently, only the velocity of the particles located at the 

boundary is controlled, while the motion of the other particles is governed by equation of 

motion (Fig. 1b). A similar approach was used by Holian and Grady (1988) to simulate 

the homogeneous adiabatic expansion. The lateral inertia is overcome in a similar way, 

by applying a velocity xx y &&
0
  to all particles in the lattice. The plane strain 

Poisson’s ratio 310  , which is characteristic of the two-dimensional triangular lattice, 

corresponds to the Poisson’s ratio 0  1 4  of a pristine material.  

The effectiveness of this loading procedure is illustrated by Figs. 2 and 3. In Fig. 2, 

the longitudinal stress (the normal stress in y-direction) is plotted vs. time for the 

displacement controlled test at the loading rate 1100  s& . The controlled displacement 

is applied at both the top and bottom surface of the model. The “local” stresses presented 
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in Fig. 2a are recorded at points P1  and P3  along the symmetry axis (Fig. 1b). The solid 

line represents the average (“global”) strain in the sample. The curves representing the 

evolutions of the local stress are of the staircase form. Each step marks one complete 

wave transit through the sample. A qualitatively identical behavior is observed during the 

Hopkinson bar experiments (Nicholas and Bless, 1985). If only few wave transits occur 

before the specimen fails the stress state within the sample is not uniform and the volume 

averaging of the stress and strain is not appropriate. On the other hand, if, the previously 

described, velocity fields are imparted to the lattice at t  0 , the local values of both 

strain and strain rate are almost the same as the value obtained by averaging over the 

entire volume of the sample (Fig. 2b). 

As a consequence of the initial velocity (strain rate) field applied perpendicular to the 

loading (y-) direction, the stress in the lateral (x-) direction is approximately zero 

regardless of the strain rate of the external load applied in longitudinal direction (Fig. 3). 

It is worth emphasizing that simulations of the uniaxial tension test cannot be 

performed at all at high strain rates unless the initial velocity (strain rate) field is applied. 

The reason for this is that, in the present lattice model, the fracture criterion is defined in 

terms of a relatively small critical link extension cr  0.1%; hence, at rapid loading 

rates the top- and bottom-boundary particles, to which the prescribed displacement is 

directly applied, separate from the rest of the lattice. 

The 30 physical realizations are performed repeatedly at 5 different strain rates: 1 s
-1

, 

10 s
-1

, 1×10
3
 s

-1
, 1×10

5
 s

-1
, 1×10

7
 s

-1
. For the reason of computational economy only a 

single realization is performed at other loading rates (see Fig. 5 for the complete list). 
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2.1. Lattice parameters 

 

The uniaxial tension simulations are performed on the 192×227 lattice. This lattice 

size ensures the size-independency of the results, according to comparison of results 

obtained for four different lattices (288×339, 192×227, 96×115, 48×61). 

The reduced-units geometric and structural parameters of the lattice are: the average 

(mean) link stiffness 50k , the structural-order parameter 5.0 , the average 

equilibrium distance between particle sites 1 cl , the geometrical-order parameter 

02.0 , and the rupture strain of the links  cr  0.1% (Mastilovic and Krajcinovic, 

1999, 1999a).  

The chosen value of the geometrical-order parameter ensures, within topological 

limitations of the model, reasonable similarity between the lattice texture and typical 

grain structures of ceramics (for example, Lawn, 1995; Sarva and Nemat-Nasser, 2001; 

Espinosa and Zavattieri, 2003). In hindsight, cr  0.1% proves to be an underestimate in 

combination with  02.0  and 5.0 , since it results in too small quasi-static macro-

failure strain. 

The size of the reduced-unit computational time step was investigated beforehand by 

Mastilovic and Krajcinovic (1999); it was estimated, again based on the molecular 

dynamics analogy, that the use of any time step equal to or smaller than 01.0* t  leads 

to the stable and time-step-insensitive results. (Note that 01.0* t  corresponds to the 

physical value of psst 1001001.0 8   .) It should be emphasized, though, that for 

the extremely high strain-rate simulations the “accuracy” of the strength estimate may 
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depend on the selected output frequency of the data collection, which is limited by the 

computational time step. This is not an issue for the medium strain-rate simulations 

where the time averaging is performed over a large number of computational cycles. 

Consequently, the medium strain-rate simulations, from 0.1 s
-1

 to 1×10
4
 s

-1
, are 

performed at the non-dimensional computational time step 01.0* t  ( ps100 ); while 

0001.0* t  ( ps1 ) is used for the simulations within the strain-rate range [1×10
5
 s

-1
, 

2×10
6
 s

-1
]. The two highest strain rate simulations (1×10

7
 s

-1
 and 1×10

8
 s

-1
) are performed 

with 00001.0* t  ( ps1.0 ). 

 

3. Results 

 

3.1 Dynamic tensile strength 

 

The stress-strain curves obtained for 30 realizations at strain rates 1 s
-1

 and 1×10
7
 s

-1 

are presented in Fig. 4. Three qualitative observations can be made:  

 the response is nearly linear up to failure for moderate and the highest strain rates, but 

not for the transient strain rates characterized by the rapid strength increase,  

 the loading-rate increase results in increase of the dynamic tensile strength ( m );  

 the loading-rate increase results in decrease of the strength dispersion.  

The maximum dynamic tensile strength is more than twice the minimum one at 1 s
-1

 

(Fig. 4a, Table 1), while the stress-strain curves for 30 different realizations are barely 

distinguishable at 1×10
7
 s

-1
 (Fig. 4b). It should be emphasized that the strength scatter is 

dependent strongly on the level of microstructural disorder that is arbitrarily selected to 
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be rather pronounced in this study: 02.0  and 5.0 . The increase of the 

microstructural-disorder parameters reduces the data scatter. 

Table 1 presents statistics of the dynamic tensile strength describing these qualitative 

observations. The increase of the dynamic strength over the seven decades of the strain 

rate is sixteen times
2
. This general trend is well documented for wide range of 

engineering materials over the past three decades (Klopp et al., 1985; Zhou and Clifton, 

1997; Grady, 1998; Sarva and Nemat-Nasser, 2001;  Brara et al., 2001). Additionally, the 

strength increase is qualitatively similar to the strain-rate dependence of both the upper 

yield strength (calculated for ductile metals by Gillis (Gilman, 1969)) and the failure 

stress (modeled for ceramics under compression by Nemat-Nasser and Deng, 1994). It is 

interesting to note that, although the simplicity of the present model makes any 

quantitative comparison with experimental results a tentative undertaking, the ratio of the 

dynamic strength and the modulus of elasticity for the high loading rates 

3

0 101 Em  agree well with the ratio of the spall strength
3
 and the modulus of 

elasticity 5001150010 Esp  compiled by Grady (1998) for several ceramic 

materials. 

                                                
2 The strength increase is dependent strongly on the level of microstructural disorder and 

the degree of nonlinearity of the link force under compression. The increase of   and   

reduces the ratio between the upper- and lower-strength asymptotes, and so does the 

reduction of the repulsive wall steepness (see Mastilovic and Krajcinovic, 1999). 

3 The dynamic tensile strength under uniaxial strain. 
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The most important observation that can be made from Table 1 is the ordering effect 

of the kinetic energy on structure-sensitive properties, such as the dynamic strength. 

Specifically, the standard deviation of the dynamic strength, as a measure of the data 

scatter, reduces almost by an order of magnitude from 1 s
-1

 to 1×10
7
 s

-1
. This observation 

suggests that level of influence of the flaw structure of the brittle material on its dynamic 

behavior depends on the loading rate. In other words, the ordering effect of kinetic energy 

implies reduction of the microstructural sensitivity with the increase of the loading rate.  

The stress-strain curves at 13 loading rates for the same statistical realization (i.e., for 

the same pseudo-random number generator seed) are plotted in Fig. 5; the corresponding 

dynamic tensile strengths are presented in Fig. 6. (The modulus of elasticity difference, 

evident in Fig. 5, is an artifact of the extreme geometrical and, to a lesser extent, 

structural disorder.) It is obvious from Fig. 5b that the dynamic strength reaches an upper 

limit for 17101  s& . Indicatively, the ultimate strength ( 3

0 101 Em ) 

corresponds to the macro-strain of 0.1% that is identical to the failure micro-strain (i.e., 

the critical link extension, cr  0.1%). Obviously, the more appropriate choice of the 

critical link extension (i.e., %1.0cr ) would result in increase of failure macro-strains. 

The scatter of the strength data for the five loading rates, presented in Table 1, is 

depicted by rectangular boxes in Fig. 6. The scatter box for 17101  s&  is transformed 

into a horizontal dash, which is indicative of the substantial reduction of the 

dynamic-strength scatter at the high loading rates. This suggests that the theoretical 

strength, defining the upper strength asymptote, is a deterministic property defined 

primarily by the chemical bonding and relatively insensitive to the subtle features of the 

material texture. 
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The bilinear log-log plot presented in Fig. 6b is obtained by mapping the simulation 

data from Fig. 6a. The first linear region, corresponding to data points preceding the 

upper plateau (the upper strength asymptote), is described by the following scaling 

relationship between the uniaxial dynamic strength and the strain rate 

 

 &m  (1) 

 

where   , and    and   are parameters defined in Fig. 6b.   

The lattice simulations, for different physical realizations of the microstructural 

statistics defined in Section 2.1, resulting in Fig. 6, suggest that 

 

6
1

 &m  (2) 

 

The lower plateau (the quasi-static strength asymptote) is just hinted in Fig. 6a since 

the quasi-static simulations are beyond the scope of this study. This asymptote is, 

obviously, parallel to the upper strength asymptote (i.e., 1  ). It should be noticed 

that the relatively small value of the scaling exponent, 61 , is due to the rather 

protracted region of the rapid strength increase (the transient region). On the other hand, 

the diminishing effect of the microstructural subtleties on the dynamic strength would 

imply that 0  with increase of the microstructural order (within the present model 

nomenclature, as 1  and 1 ).  

In a more sophisticated spall-strength analysis of Grady and co-workers (presented in 

Grady, 1995) a distinction is made between two strain-rate ranges. In the first range 
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(which extends roughly from quasi-static to moderate loading rates) the spall strength is 

governed by the critical flaw size. In the second range the critical flaw, due to the loading 

rate increase (approximately 1510  s& ), “no longer responds in a quasi-static manner to 

the time-varying stress field” (Grady, 1995), consequently, spall strengths are predicted 

to become dependent on the loading strain rate and independent of the critical flaw size: 

 

th

o

sp 




3

1











&

&
   (3) 

 

In Eq. (3), o&  is the critical strain rate and th  is the theoretical strength (see Grady, 

1995, for details). If the surface energy, which must be overcome by the elastic 

deformation energy to initiate fracture growth, is denoted by  ; the excess surface energy 

parameter 1 th  defines contribution of additional dissipation through plasticity 

and comminution processes on the theoretical surface energy th . Grady stipulates that 

  can be expected to depend on the strain rate. Assuming that the scaling 

relationship (1) holds for the spall strength, the scaling relationship between the excess 

surface energy parameter and the strain rate may be suggested in the following form: 

 

13  &  (4) 

 

For example, 2
1

 & , for simulation results represented by relationship (2).
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3.2 Damage evolution  

 

The micro-mechanisms of damage evolution observed in the present simulations are 

the nucleation, propagation, and clustering of microcracks. As the damage evolves the 

effective macro-stiffness reduces. The rate of the effective-stiffness reduction, the level 

of the effective stiffness at failure, and the primacy of a particular damage micro-

mechanism, are closely connected characteristics of material behavior that are strongly 

strain-rate dependent.  

Two typical damage patterns are presented in Fig. 7. The snapshot in Fig. 7a is 

obtained from the 14101  s&  simulation. The damage pattern in Fig 7b is obtained 

from the 17101  s&  simulation, which practically corresponds to the strength 

saturation at the upper strength asymptote.  

The damage patterns at high loading rates (represented by Fig. 7b) are characterized 

by a uniform microcrack distribution. The preferable microcrack surface orientation is, as 

expected, perpendicular to the loading direction. The typical microcrack cluster, at the 

onset of softening phase, consists of only a couple of broken links (e.g., from one to five), 

which are uniformly distributed throughout the sample. At that time, the characteristic 

distance between the clusters is commensurate with their size. The final sample rupture is 

preceded by a relatively protracted softening phase (Fig. 5b). The sample’s load-carrying 

capacity is reduced to zero ( 0  and 0& ) after a period of time that is a couple of  

times longer than the duration of the hardening phase. (This inelastic behavior is a 

contrast to the moderate-strain-rate failure that is characterized by almost complete 

absence of the softening phase (Fig. 4a).) The fraction of broken links at the time of the 
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sample failure asymptotically approaches the total fraction of links that are loaded in 

tension; this, within the limitations of the present model, resembles comminution of the 

material. The kinetic energy of the sample, at this loading rate level, exceeds its potential 

energy by a few orders of magnitude. The snapshot presented in Fig. 7b and the 

observation that the externally supplied energy overwhelms the cohesive energy of the 

material, suggest that: (i) the dominant mechanism of damage evolution is the microcrack 

nucleation resulting in a comminution, and (ii) the role of cooperative phenomena in the 

damage evolution is unimportant. 

The change in the 14101  s&  damage pattern (Fig. 7a) compared to the high 

strain-rate results presented in Fig. 7b can be interpreted by an increasing influence of the 

microstructural disorder (the initial and induced flaw microstructure of the material) on 

the macroscopic material response. The microcrack clouds, which dominate the damage 

patterns at the softening-phase end of the 14101  s&  simulation, consist of a large 

number of broken links.  The clusters are elongated predominantly perpendicular to the 

loading direction; their length, in that direction, is typically between ( 4030  ) lc. The 

clusters are uniformly distributed throughout the sample. The mutual distance between 

the largest clusters is commensurate with their size. This cluster map suggests the typical 

fragment size, which is larger substantially that the one corresponding to the 

17101  s&  simulation. This observation agrees with the prediction by Grady and 

Kipp (Grady, 1982) regarding the fragment size dependence on the strain rate (see also, 

Sarva and Nemat-Nasser, 2001). With the further reduction of the loading rate the 

number and size of, and mutual distance between, the dominant microcrack clouds 

reduces as well, implying further reduction of the fragment size. For example, for the 
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13101  s&  simulation, the size of the dominant clusters is somewhat smaller for the 

damage patterns at the end of the narrow softening-phase (at the onset of failure) from 

their 14101  s&  counterparts, but the mutual distance between the clusters is 

increased notably.  

An insight into the microscale damage dynamics leading to the damage patterns 

observed for 13101  s&  and 14101  s&  is offered by the energy time-histories, 

such as those of Fig. 8. In both cases, the kinetic energy and the potential (deformation) 

energy are, roughly, of the same order of magnitude; but the total (externally supplied) 

energy is higher for the higher loading rate. As a consequence, the initial phase of 

relatively uniform microcrack nucleation, characterizing the hardening phase of 

material’s response, is followed by a more extended damage localization for the higher 

loading rate compared to the lower one. Since there is no enough energy for the 

widespread clustering observed at the 14101  s&  simulation, the 13101  s&  

clustering occur only at the most favorable locations while comparably large number 

microcracks remain isolated and inactive. Consequently, the softening phase of the stress-

strain curve corresponding to the 14101  s&  simulation is more pronounced than the 

one for the 13101  s&  simulation (Fig. 5a). The cooperative phenomena (reflected in 

the growth and coalescence of microcrack clouds) plays an essential role in the fracture 

process and the final sample-disintegration mode. In both cases, the kinetic energy and 

the potential (deformation) energy are of the same order of magnitude, but for the lower 

strain rate simulation the constant kinetic energy is relatively early exceeded by the 

potential energy (the quadratic parabola). In other words, the externally supplied energy 

is converted primarily into the sample potential energy. 
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With further reduction of the input energy (that is, further decrease of the loading 

rate) the dynamic response of the material is distinguished by the localization of 

microcracks in only a couple of clusters; in the quasi-static case – in a single dominant 

cluster (Mastilovic and Krajcinovic, 1999). The quasi-static tensile strength is, thus, 

controlled by a critical weak link (flaw, defect), and the failure macro-strain is an order of 

magnitude smaller than the critical micro-strain (cr  0.1%). This marks transition from 

deterministic to random damage evolution patterns.        

Finally, the two phases of the damage accumulation, hardening and softening, are 

reflections of the primary mechanism of damage growth.  

In the hardening phase the specimen is statistically homogeneous regardless of the 

loading rate. The nucleation of microcracks at weak links (and hot spots, in general) is 

the paramount mechanism of damage evolution; the distances among microcracks are 

unlikely to be small, and the amplifying interaction effect of microcracks is insignificant. 

In the softening phase the specimen is, with notable exception of the upper-plateau 

loading rates, random heterogeneous. The damage process depends on the formation and 

interaction of large clusters, which is driven by the loading energy. 

Signatures of the phase transition, close to the peak of the stress-strain curve, are the 

damage localization and the reduction of the effective stiffness.    

 

4. Summary 

    

The objective of this work is to investigate universal trends in which the disorder and 

strain rate influence dynamic behavior of the idealized brittle material, by performing 
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repeated lattice simulations for different physical realizations of the microstructural 

statistics. The dynamic simulations of the uniaxial tension test,  181 101,1.0   ss& , 

are performed under practically identical stress conditions. The results reveal the ordering 

effect of the kinetic energy on the dynamic response of the idealized brittle material 

reflected by transition from the random to deterministic behavior. This transition is 

evident in the reduction of the strength dispersion (Fig. 9) and damage evolution patterns. 

The ordering effect of kinetic energy may be attributed to the diminishing flaw-sensitivity 

of brittle materials with the loading-rate increase. The flaw structure of the material 

(inherent and induced) is crucial in determining the dynamic tensile strength at low 

loading rates. With the loading-rate increase, the dynamic strength is becoming 

increasingly a deterministic property defined by the chemical bonding. 

At high loading rates, the external energy overwhelms the cohesive energy of the 

material resulting in the pulverization. The corresponding uniformity of damage 

evolution patterns indicates an absence of the cooperative phenomena in opposition to the 

clustering of microcracks into microcrack clouds characteristic of the medium loading 

range. The evolution of the microcrack clouds may represent the dominant toughening 

mechanism in brittle materials not susceptible to dislocation activities. The effect of this 

process is reflected by the pronounced inelastic behavior not only in the softening but 

also in the hardening phase. These observations are reminiscent of Anderson’s (1958) 

conclusions that: (1) localization is impossible in the absence of disorder and (2) the 

localization range depends on the frequency and energy of electron waves. 
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Fig. 1. Schematic representation of the uniaxial tension test setup: (a) application of the 
initial strain rate field, and (b) displacement-controlled tension. 
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Fig. 2. The effect of initially applied strain-rate fields on transient, local and global 
(averaged), strain evolution during the uniaxial tension test (100 s

-1
); (a) without, and (b) 

with application of the initial strain-rate fields. 
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Fig. 3. Stress components vs. longitudinal strain for two widely different strain rates: (a) 
11.0 s , and (b) 18101  s . 
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Fig. 4. Normal stress in longitudinal direction plotted vs. normal strain in the same 

direction for 30 statistical realizations at two different loading rates: (a) 1 s
-1

,  
(b) 1×10

7
 s

-1
. 
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Fig. 5. Normal stress plotted vs. normal strain (in the loading direction) for thirteen 
different strain rates of loading of the same physical realization of microstructural 

statistics. 
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Fig. 6. Dynamic tensile strength vs. strain rate: (a) original plot, (b) scaled plot. 
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Fig. 7. Damage patterns at two different loading rates: (a) 1×10

4
 s

-1
, (b) 1×10

7
 s

-1
. Both 

snapshots are recorded in the softening phase of deformation and correspond to 

( %0658.0,8.65  ynst  ) and ( %104.0,104.0  ynst  ), respectively. (Dashes 

represent broken links.) 
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Fig. 8. Schematic energy time-history at two different loading rates: (a) 1×10
3
 s

-1
, (b) 

1×10
4
 s

-1
 characterized by a notable effect of cooperative phenomena (EP, EK, and DE 

correspond to potential, kinetic, and damage energy, respectively). 
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Fig.  9. Schematic representation of the dynamic strength dependence on the strain rate 
indicating the ordering effect of kinetic energy 
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Table 1.  Statistics of the dynamic tensile strength statistics at four different loading rates 

 

&   [1/s] 1 10 1×103 1×105 1×107 

 

0Em    

  [×10-3] 

MEAN 0.0649 0.0887 0.235 0.482 1.07 
STANDARD DEVIATION 0.0147 0.0155 0.0115 0.00209 0.00185 
MAXIMUM 0.0975 0.112 0.252 0.487 1.07 
MINIMUM 0.0409 0.0615 0.204 0.478 1.07 

MAXIMUM / MINIMUM 2.55 1.94 1.32 1.08 1.07 
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