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Abstract: Metabolomics is playing an increasingly prominent role in chemical ecology and in the discovery 
of bioactive natural products (NPs). The identification of metabolites is a common/central objective in both 
research fields. NPs have significant biological properties and play roles in multiple chemical-ecological in-
teractions. Classically, in pharmacognosy, NP chemical structure is determined after a complex process of 
isolating and interpreting spectroscopic data. With the advent of powerful analytical techniques such as liquid 
chromatography-mass spectrometry (LC-MS) the annotation process of the specialised metabolome of plants 
and microorganisms has improved considerably. In this article, we summarise the possibilities opened by these 
advances and illustrate how we harnessed them in our own research to automate annotations of NPs and target 
the isolation of key compounds. In addition, we are also discussing the analytical and computational challenges 
associated with these emerging approaches and their perspective.

Keywords: Bioactivity · Ecology · Metabolomics · Natural products · Structural elucidation 

Jean-Luc Wolfender (JLW) is Professor at the University of 
Geneva where he leads the phytochemistry bioactive natural prod-
uct (PBNP) group. In the 1990s he helped introduce LC-MS and 
LC-NMR for the profiling of natural extracts for dereplication for 
accelerating the discovery of novel bioactive compounds. He is cur-
rently developing innovative MS- and NMR-based metabolomics ap-
proaches in various aspects of natural products research. He is inter-
ested in NP-based drug discovery and evidence-based phytotherapy. 
His research also covers the search for inducible NPs in response to 
stimuli in microbial interactions and plant defense.

Arnaud Gaudry (AG) holds a MSc in pharmaceutical sciences 
from the University of Geneva (2018). He joined the PBNP group as 
a PhD candidate in 2018, under the supervision of Prof. Wolfender. 
As a pharmacist inspired about the potential of natural products, he is 
currently working on the development of computational methods for 

the efficient identification of bioactive compounds in natural extracts. 
The developed methods are applied to identify new antiparasitic com-
pounds in a collaborative project involving the Swiss Tropical and 
Public Health Institute (STPH) and the Drug for Neglected Diseases 
Initiative (DNDi). 

Adriano Rutz (AR) holds a PhD in pharmaceutical sciences from 
the University of Geneva (2022). He is now developing generic mass 
spectrometry-based metabolite profiling methods and tools to assess 
phytochemical and sensorial profiles of complex plant extracts. He 
is one of the founders of the LOTUS initiative for open knowledge 
management in natural products research.

Louis-Félix Nothias (LFN) is a researcher in the PBNP group 
since 2021. He received his PhD (2015) from the University of Corsica 
in co-direction with the Institut de Chimie des Substances Naturelles 
(CNRS, Université Paris-Saclay) where he studied metabolites from 
Mediterranean Euphorbia plants. In 2016, he joined the laboratory of 
Prof. Dorrestein (University of California San Diego) as a post-doctor-
al researcher to develop computational methods for mass spectrome-
try-based metabolomics analysis. He is also pioneering the use of in-
tegrative multi-omics approaches that can uncover microbially-related 
molecules in complex samples such as holobiont’s.

Luis Quiros-Guerrero (LMQG) is a chemist with a MSc in 
Chemistry (2015) from the University of Costa Rica. His work was 
focused on the development of chemotaxonomic models with LC-
MS. Since 2018 he has been part of the PBNP group, developing 
methodologies to discover chemical novelty in natural extracts librar-
ies through the development of bioinformatic tools. He actively par-
ticipates in several projects related to food and plant metabolomics, 
isolation of bio active natural products from diverse natural sources 
and chemical ecology.

doi:10.2533/chimia.2022.954  Chimia 76 (2022) 954–963 © J.-L. Wolfender et al.

10_Wolfender_11.indd   954 16.11.22   10:08



ChemiCal eCology CHIMIA 2022, 76, No. 11 955

Artemisinin is an interesting example of an NP that is of me-
dicinal interest but also plays a role in chemical ecology. This 
sesquiterpene lactone has been assumed to act both as a defence 
against insects (bitter principle) and as a phytotoxic allelochemi-
cal.[6] This interesting study illustrates the complexity associated 
with the elucidation of the metabolome’s functions in ecological 
systems. Indeed, even a single compound for which the structure is 
fully determined can be linked to multiple and confounded effects 
depending on the numbers and identity of the connected actors. 
The complexity of this research endeavour (chemical ecology) in-
creases, of course, when considering complete metabolomes for 
which structural, functional and relational indeterminations exist; 
the same reasoning applies to biotic interactions in ecological sys-
tems. Highlighting connections between these two deeply intricate 
networks (the chemical network on one side and the ecological net-
work on the other) is a fascinating task but also a major challenge 
that can only be facilitated by a finer description at both levels.

‘Bioactivity-guided isolation’ approaches were initially car-
ried out with no or limited prior information on the chemical 
constituents present in the extracts. From the 1980–90s onwards, 
analytical approaches have been introduced to rapidly highlight 
the presence of previously reported NPs, avoid the rediscovery 
of known active principles, and concentrate efforts on potential-
ly new bioactive molecules. Such chemical profiling carried out 
upstream of activity-targeted isolation approaches is known as 
‘dereplication’[7] and has mainly involved spectroscopic/spectro-
metric methods coupled to high-performance liquid chromatog-
raphy (HPLC), a versatile technique for extract analysis.[8] These 
hyphenated techniques allow to obtain structural information 
through the interpretation of mass (LC-MS), UV (LC-PDA) and 
even sometimes NMR spectra (LC-NMR) obtained on-line (Fig. 
1 A). In chemical ecology, similar approaches with bioactivity 
tests, e.g. on herbivores, have revealed NPs of fundamental eco-
logical importance and have also driven the development of novel 
analytical chemistry methods.[9,10] With the development of these 
methods, more comprehensive approaches emerged in the early 
2000s with the advent of so-called ‘omics’. In this context, me-
tabolomics, which aims at the most complete description (qualita-
tive and quantitative) of the endogenous metabolites of a biolog-
ical sample (metabolome), was defined by Fiehn.[11] Since then, 
this approach has become increasingly adopted in life sciences. 
Metabolomics allows the detailed metabolite profiling of a given 
natural extract and for this application, liquid chromatography 
hyphenated to mass spectrometry (LC-MS) is the primary tech-
nique used to generate the metabolite profiling of an extract, with 
currently unmatched sensitivity and dynamic range.[12] Since its 
development, metabolomics has thus become an essential tool in 
biomedical research for the analysis of biological fluids or for 
the search for biomarkers associated with pathologies.[13] This 
approach has also been widely adopted in NPs research and also 
more recently in several fields of ecology.[14–17]

As a result, the analytical approaches classically used for the 
dereplication of NPs in plant and microorganism extracts have 
evolved into high-throughput, high-resolution LC-MS metabolite 
profiling approaches that allow the annotation of NPs for derepli-
cation but also to obtain a global view of their composition. These 
approaches allow researchers to have a better view of the wide 
range of metabolites produced by a given organism and offer a 
new reading of mechanisms in functional ecology.[18] Using me-
tabolomic approaches, molecules of interest can be highlighted in 
a given extract prior to any preparative-scale separation process 
and then subjected to targeted isolation for de novo identification 
(Fig. 1B) and bioassay evaluation.

The applications of metabolomics are broad. Combined with 
the use of advanced multivariate data analysis (MVDA), they 
range from applied drug discovery objectives to more fundamental 
aspects such as chemical ecology studies, description of the me-
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1. Introduction
A precise estimate of the diversity of natural products (NPs) 

remains challenging to establish, and at present, at least 450,000 
specialised metabolites have been fully characterised and docu-
mented.[1] It is worth mentioning at this stage that the full structur-
al characterisation of any new NPs involves their isolation/puri-
fication and de novo structure determination by the interpretation 
of spectroscopic data (NMR, MS and when necessary, X-ray). 
NPs structures are reported in peer-reviewed articles which gives 
all the spectroscopic evidence for their identification. Such data 
are mainly compiled in the Dictionary Natural Product (DNP) 
(> 300,000 entries). The content of the DNP database and other 
chemical databases and the biological origin of all described NPs 
have been recently described by F. Ntie-Kang and D. Svozil.[1]

Although the biological functions of these NPs are not fully 
understood, many of these specialised metabolites play a key role 
in different types of interactions in chemical ecology.[2,3] They are 
also a historical source of medicines for humans, whether ingested 
as whole medicinal plants or preparations and or as purified sub-
stances in medication. Many of these NPs have been identified as 
a result of pharmacognosy studies aiming to describe, mainly in 
plants, the active principles responsible for a given biological ac-
tivity.[4] Numerous NPs have also been identified in microorgan-
isms during the antibiotics ‘golden era’. To this end, investigations 
were classically carried out using so-called ‘bioactivity-guided 
isolation’ approaches (Fig. 1A). This research led to the discovery 
of a large number of NPs, several of which are at the origin of 
some of the most widely used drugs (e.g. morphine (Q81225), tax-
ol (Q423762)). All structures can be found with their Wikidata Q 
identifiers. The effectiveness of bioactivity-guided drug discovery 
approaches was recently recognised when Prof. Tu Youyou was 
awarded the 2015 Nobel Prize in Medicine for her discovery of 
artemisinin (Q426921), an effective antimalarial compound from 
Artemisia annua (Q1308044).[5]
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tra-high-performance liquid chromatography (UHPLC). UHPLC 
uses columns containing micrometric particles allowing high 
resolution analytical separations in a high throughput manner. 
The coupling of UHPLC with high-resolution mass spectrome-
try (UHPLC-HRMS) has quickly established itself as the gold 
standard for acquiring metabolomics data.[22] Additionally, mass 
spectrometers are working with increasingly higher acquisition 
frequencies, which allows for single MS (MS1) analysis to be per-
formed concomitantly with MS/MS (MS2) spectral acquisitions in 
an untargeted manner.[23] The fragments observed in fragmenta-
tion spectra provide key structural information that can be used 
to improve molecular formula determination and structural anno-
tation.[21]

Starting from limited amounts of crude extracts (typically in 
the range of 1–10 µg on column), such analysis generates sever-
al thousands of features (LC-MS1 peaks characterised by their 
mass-over-charge ratio at a given retention time - m/z @ Rt) per 
sample. When grouping the LC-MS features produced by a given 
molecule (including isotopologues, adducts, in-source fragments, 
and multimers),[24] the number of compounds can decrease by an 
order of magnitude.[25]

To assist the reader, a glossary of the most commonly used 
terms and concepts in MS metabolomics is presented in Table 1.

The first step of metabolomic data analysis is to process the 
‘raw’ LC-MS data and convert it into an m-by-n feature table, 
where m is the number of features and n the number of samples. 
This step is often done with open-source software like XCMS,[27] 

tabolome of a studied organism or chemotaxonomy studies.[19,20] 

Analytical platforms now routinely generate large volumes of 
spectral data in an untargeted manner for most detected mole-
cules. Compared to more established omics sciences, such as 
genomics or proteomics, metabolomics deals with much more 
complex objects (non-polymeric molecules with no amplification 
step possible), which explains the additional challenges faced by 
researchers in this field. This is especially true for the annotation 
of metabolites and establishing clear links to other omics sciences, 
such as genetics, transcriptomics, and proteomics. Some of these 
challenges will be discussed below.

In this paper we aim to address the challenges in NP metab-
olomics from both a drug discovery and an ecology perspective. 
In particular, we will summarise the most recent developments 
of tools for metabolome annotation and specifically specialised 
metabolites identification. Different applications of metabolom-
ics from our own research have been selected to illustrate some 
of the diverse topics that can be addressed with such holistic 
approaches.

2. Challenges in the Mining of Metabolite Profiling 
Data

The metabolite profiling of natural extracts is mainly done 
by LC-MS methods.[21] Modern spectrometers are capable 
of high-throughput acquisition of mass spectra with high ac-
curacy, high resolution, high sensitivity, and a wide dynamic 
range. Together with these developments, HPLC evolved to ul-

Fig. 1. Overview of the process for NPs identification/annotation and links between A, the bioguided isolation approach, and B, the approach for 
metabolome analysis and search for biomarkers. In A, after obtaining extracts of various polarities, their bioactivity is evaluated. The isolation is 
done by combining different preparative chromatography techniques. Fractions are screened for bioactivity until obtaining pure bioactive NPs. 
Dereplication is performed upfront by a combination of hyphenated methods. The isolated NPs are fully characterised by de novo structure eluci-
dation, notably with 1D and 2D NMR and additional techniques. In B, metabolite profiles are acquired on many extracts (e.g. organisms obtained 
under diverse experimental conditions, biological replicates, or biodiverse sets) with untargeted UHPLC-HRMS/MS. HRMS (MS1) and MS/MS (MS2) 
data are used either to build MN for chemical exploration of the data set or for MVDA analysis for searching features that can be linked to chemical 
markers responsible for changes in the metabolome. Metabolites are annotated based on comparison with MS/MS experimental spectral libraries 
and completed by matching with in silico MS/MS libraries. If unambiguous structure identification or new NP determination is needed based on the 
annotation, targeted isolation based on metabolites profiles is conducted and led, as in A, to the de novo structure identification of 5. Both A and B 
feed structural DBs of identified NPs. Similarly, efforts to populate the experimental libraries of unambiguously identified NPs following the FAIR prin-
ciples (Findable, Accessible, Interoperable, Reusable) must be made to improve annotation tools and efficiency.
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however, is by far the most complex task in metabolomics. Below 
we describe some of the latest approaches in this area.

3. Challenges in Natural Product Identification from  
a Metabolomics Perspective

Usually, the structural elucidation of NPs requires their isola-
tion through chromatographic methods followed by NMR meth-
ods[34] complemented with MS information. For absolute config-
uration determination and thus complete metabolite identification 
in the case of possible stereoisomerism, complementary chirop-
tical methods such as electronic circular dichroism (ECD) and/or 
X-ray crystallography are required. 

Since metabolomic data are mainly based on MS (HRMS, 
MS/MS), the annotation of structures in extracts will thus have 
limited accuracy, even when searching against reference MS/MS 
spectra in spectral libraries. Metabolite annotation via MS alone 
is far from a trivial task, because, as mentioned above, more than 
450,000 NPs have been characterised and only a fraction have 
their experimental MS/MS fragmentation data available in public 
spectral libraries. Overall, these spectral databases are estimat-
ed to contain over 220,000 spectra (however the fraction of NP 
within is hard to estimate).[35] Moreover, during LC-MS analyses 
in electrospray ionisation, fragmentation spectra mode are gen-
erally obtained by collision-induced dissociation that is subject 
to variation in the fragmentation intensities depending on the 
instrument. [36] Unlike gas-chromatography hyphenated to mass 
spectrometry (GC-MS) analyses where the fragmentation energy 
is fixed by convention, fragmentation energies in LC-MS based 
metabolomics vary and are not readily standardisable due to in-
strumental constraints.

Therefore, in order to accurately annotate the structure of a NP, 
multiple approaches can be followed: i) after establishing the mo-
lecular formula for MS1 features, this information can be searched 

Mzmine,[28] MS-DIAL[29] and produces quantitative and qualita-
tive information[30] consisting of:

(1) a feature table documenting the intensity (peak height or 
area) of feature m in sample n.

(2) a spectral list that summarises MS/MS spectra and/or iso-
topic patterns of each features. 

The feature table (1), can be interpreted through MVDA to 
assess variability within a given sample set. This will reveal sta-
tistically significant differences across the metabolic profiles of 
the samples and highlight the feature(s) responsible for these 
differences. In chemical ecology, this type of analysis can be 
employed for the non-targeted identification of compounds in-
duced in a biological organism as a result of an interaction or 
a perturbation. It can also be used to compare changes in the 
metabolome of a crop plant at different times during its growth 
or at a given stage of growth. Supervised machine learning ap-
proaches such as random-forest methods can be alternatively 
employed to extract features of interest related to a specific ex-
perimental design.[31]

The spectral list (2), can be used to annotate most metabolites 
observed for the analysed organism. Spectral annotation provides 
a qualitative view of the putative chemical structures detected for 
a particular organism or can also be used to assess chemodiversity 
in a larger set of natural extracts. Such qualitative assessment is 
a crucial step upstream of drug discovery screening campaigns 
to anticipate the presence of active compounds[32,33] or to assess 
patterns of metabolic composition in relation to ecological aspects 
(eco-metabolomics).[14]

For either of the above options, the goal will be to identify ei-
ther the biomarker differentially expressed in a significant manner 
across given experimental conditions or assess the overall com-
position of the metabolome of a target organism or a biodiverse 
set of organisms. The qualitative description of a metabolome, 

Table 1. Glossary of terms used in MS-based metabolomics

Dereplication Process of annotating previously known molecules from a complex sample such as natural extract without 
requiring their physical isolation at the preparative scale. Annotation is usually based on data obtained by a 
combination of hyphenated chromatographic methods (LC-UV-PDA, LC-MS, LC-NMR).

Annotation The action of linking a putative chemical structure to an experimental feature (MS1, MS2 and/or MS/NMR).

Identification Complete establishment of the three-dimensional structure of an analyte using a combination of spectroscopic 
methods (1D and 2D NMR, HRMS, when necessary, chiroptical and/or crystallographic methods).

HRMS High resolution mass spectrometry/spectrum. The high resolution and accurate mass facilitates molecular 
formula calculation from the ions observed.

MS1 Full scan spectrum. Such spectra show all the quasi-molecular ions features (adducts, isotopologues, multim-
ers). The high mass accuracy in HRMS enables molecular formulae to be calculation.

MS/MS (MS2) MS/MS fragmentation spectra are obtained on tandem mass spectrometers by first filtering a given precursor 
ion mass that is then fragmented in the gas phase. The most common fragmentation technique used in metabo-
lomics is collision induced dissociation (CID). In UHPLC-HRMS/MS metabolite profiling, the acquisition of 
MS/MS spectra on most detected features is typically automated by data dependent acquisition.

Feature A feature in MS corresponds to a mass-to-charge ratio, m/z, at a given retention time (Rt). It can be observed 
in one sample and optionally aligned across multiple samples. Each sample contains typically hundreds of 
features that can be aligned across multiple samples. Features can also be characterised by their LC-MS peak 
shape, intensities and MS/MS.

Spectral library A spectral library consists in a collection of experimental or in silico predicted MS/MS spectra. A structure is 
linked to each spectrum. MS/MS spectra from metabolite profiling can be compared and matched against such 
libraries with spectral similarity methods.

Structural data-
base

A structural database consists of a set of chemical structures encoded in computer readable format such as 
their SMILES code or InChI that can be queried programmatically. InChIKey can be obtained from the InChI 
and allow for efficient indexing of molecular structures in databases. In the context of NP research, a structural 
database ideally links the structures of NPs with those of the organisms from which they originate.
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in NPs structural databases to provide clues about possible struc-
tures; ii) by matching the associated fragmentation spectra against 
the spectra of candidates molecules in public spectral libraries 
such as GNPS or MassBank.[37] In addition to experimental spec-
tral library matches, in silico predicted fragmentation spectra can 
also be used to expand the searchable spectral space.[38,39]

To face this annotation challenge, innovative approaches such 
as the organisation of spectral data through molecular networks 
have been developed over the last ten years. This approach makes 
it possible, for a single or multiple extracts, to organise all the 
MS/MS fragmentation information in the form of a network that 
will link each of the features into clusters according to their spec-
tral similarity.[37] Since fragmentation spectra reflect the analytes’ 
chemical structures, the features can be organised and visualised 
as families of potentially structurally related compounds. If anno-
tations are obtained for the MS/MS spectra for some of the nodes 
within a cluster, it is possible to propagate the annotation to other 
nodes in the same cluster by exploiting the existing spectral simi-
larity links (Fig. 2B).

The use of such an approach combined with in silico frag-
mentation spectral libraries generated with CFM-ID,[40] such as 
the In-Silico DataBase (ISDB), which currently contains more 
than 270,000 compounds and their associated spectra,[38,39] 
allows to annotate a large number of detected features. This 
approach can be reinforced by the use of taxonomic consider-
ations (see below). In addition, other computational methods 
have been established to rank possible structures for a given 
fragmentation spectrum. In particular SIRIUS[41] first identifies 
putative molecular formulas from both the MS1 isotopic analysis 
and MS/MS fragmentation tree analysis. The generated frag-
mentation tree is then employed to predict candidate molecules 
with CSI:FingerID, a machine learning-based method employ-
ing Support Vector Machine (SVM) models that was trained to 
recognise the presence of structural features from fragmenta-
tion patterns.[42] This concept was extended with CANOPUS to 
predict chemical classes thanks to a deep neural network.[43] In 
addition, SIRIUS was recently upgraded by COSMIC,[44] the 
first method that can quantify the confidence level in the com-
putational annotation generated by SIRIUS/CSI:FingerID. In 
summary, the tools available today can organise spectra by sim-
ilarity, obtain candidate structures for a large number of features, 
or even propose reliable information on the chemical class of 
compounds for unknown spectra. Such capabilities can be led 
on hundreds to thousands of extracts but require access to sig-
nificant computational resources.

Progress and limitations in computational annotation 
methods are periodically benchmarked during the Critical 
Assessment of Small Molecule Identification (CASMI) contest  
(http://casmi-contest.org/). Since its introduction ten years ago, 
the results of the CASMI editions are proving that automated 
approaches are continuously improving. Moreover, the CASMI 
consecrated the emergence of efficient computational methods 
for each task, including adducts and isotopologues recognition, 
molecular formula identification, and structure dereplication/an-
notation. For the CASMI 2022, our laboratory teamed up with the 
Boecker laboratory (Chair for Bioinformatics, Jena University) 
and the Dorrestein laboratory (University of California San Diego). 
In this edition, unknown exposomics (lato sensu) molecules  
were analysed by LC-HRMS/MS, and the data shared with the 
participants. Besides providing ion masses and retention times, no 
other information was available, neither was the biological source. 

Our team proposed a novel computational integrative strategy 
that boosted SIRIUS[41] performances by leveraging public spec-
tral libraries and repositories with GNPS[37] mass spectral search 
tools to retrieve meta-information pointing to source organism(s). 
The latter were then used to consider the most relevant structural 
database and candidate for each challenge. More specifically, we 

incorporated taxonomically informed scoring and the LOTUS ini-
tiative database (see next paragraph) to the SIRIUS graphical user 
interface. Our integrative strategy top-performed by accurately 
proposing the correct answer at the first rank for 228 challenges 
(94% correct for molecular formula, 26% correct for structure, 
and 69% correct for chemical class annotation) which demon-
strated that computational annotation methods have undoubtedly 
matured into powerful tools that can guide researchers into ex-
ploiting the metabolomics data generated. 

However, it is crucial to keep in mind that the structural an-
notations proposed by computational methods remain putative 
and thus orthogonal information is needed to increase confi-
dence. In this context, taxonomic information related to the an-
alysed samples can provide a valuable insight. Indeed, a central 
assumption in chemotaxonomy is that genetically close taxa 
will tend to produce similar metabolites.[45] Contextualisation 
of annotations from a taxonomic point of view can therefore 
greatly help to improve confidence in the annotation. To this 
end, we recently launched the LOTUS initiative with the aim of 
exploring and establishing open and collaborative NPs knowl-
edge-sharing systems. The structures found in LOTUS linked to 
their source organisms can facilitate taxonomy-informed derep-
lication.[46] The users can directly interact with the data through 
Wikidata (and different other read-only access points are availa-
ble (https://lotus.naturalproducts.net/).[47] Users can retrieve all 
structures found in a given organism (e.g. all compounds from 
the Melochia (Q837434) genus https://w.wiki/5LJf), or the other 
way round, all organisms where a given structure was found 
(e.g. all biological organisms where ergotamine (Q419186) 
was found in https://w.wiki/5ZqW). More examples can be 
found at https://www.wikidata.org/wiki/Wikidata:WikiProject_
Chemistry/Natural_products#Queries. For structural annota-
tion, this taxonomic information can be taken into account. In 
this context, we have developed a strategy that automatically 
reweighs the structural annotation and favours, in lists of candi-
date structures, those that were already reported from organisms 
taxonomically related to the one studied.[46] Implementing these 
different computational tools and their combination in data pro-
cessing workflows significantly improves the interpretation of 
annotation obtained. 

It is important to note that while taxonomic information is 
important for more reliable annotation, chemotaxonomy is less 
accurate than taxonomy in linking traits, for example in speciation 
processes. It is thus well known that the composition of special-
ised metabolites of a given botanical species can be strongly influ-
enced by its environment. Therefore, if trends between taxonomy 
and chemical profile clearly exist, the exploitation of this type of 
relationship should not be overvalued.

Despite all the developments in the field, an inherent limita-
tion of MS is that fragmentation spectra interpretation does not 
allow conclusions to be drawn regarding the stereochemistry of 
the annotated compounds. This information can only be obtained 
by techniques such as NMR (for relative configurations) and chi-
roptical or crystallographic approaches (for absolute configura-
tions). However, both NMR and chiroptical or crystallographic 
approaches generally require physical isolation of the analyte. 
While the isolation process was often slow and complex a few 
years ago, it is now possible to target the isolation of chromato-
graphic peaks of interest directly from metabolomic profiling data 
and to selectively isolate a metabolite at the scale of a few tens 
of micrograms based on its chromatographic retention time and 
m/z value using semi-preparative scale chromatographic gradient 
transfer calculations.[48] 

To this end, we have developed protocols to perform such tar-
geted isolations by keeping chromatographic resolution close to 
the one obtained at the analytical scale.[49–52] Thus, NMR data 
giving valuable additional MS information can be obtained con-
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4. Selected Applications of Metabolomic Approaches 
from our own Research

Based on the previously described approaches, our group par-
ticipated in various projects related to chemical and functional 
ecology as well as bioactive NPs discovery.

Regarding the elucidation of chemical-ecological mechanisms, 
we have conducted several untargeted metabolomics studies look-
ing for compounds induced by herbivore stress. In one of these 
studies, several other jasmonate derivatives (Q415713) having a 
characteristic dynamic induction behaviour were highlighted in 
an Arabidopsis thaliana (Q158695) model. This study allowed 
the identification of new jasmonate derivatives (Q415713) whose 

veniently for selected metabolites of interest (Fig. 1B). Although 
NMR is inherently less sensitive than MS, it should be noted 
that today, high-field NMR platforms equipped with low-volume 
cryogenic probes allow the recording of information-rich NMR 
spectra with quantities down to the low µg range. This has consid-
erably accelerated the complete identification of NPs and facilitat-
ed their rapid and efficient isolation to generate requisite sub-mg 
quantities. Propagation of such established structural information, 
mainly through molecular networks, then allows for a better anno-
tation of a large number of structural analogues typically present 
in the metabolome of natural extracts.[53]

Fig. 2. A) After data processing, 
features along with their MS/
MS spectra are detected in each 
sample. B) Based on the decon-
voluted MS/MS spectra, samples 
can be compared using a vector-
ization process such as MEMO. 
To do so, MS/MS spectra of the 
detected features from each indi-
vidual sample are vectorized with 
spec2vec[61] and aggregated to 
yield a MS/MS vector summaris-
ing the chemical diversity of the 
sample. In B), the same deconvo-
luted (here of the active Melochia 
umbellata (Q6813281) extract) 
spectra can be used to generate 
a molecular network (MN) to 
cluster features with similar frag-
mentation patterns. These spec-
tra can also be annotated using 
different computational tools to 
provide putative structures for 
some spectra. Such a MN can be 
used to spot structural analogues 
and propagate the annotations 
from annotated to unannotated 
spectra. In C), the annotated 
compounds of the MN can be 
compared to different chemical 
DB (in this case ChEMBL) to 
further help the identification of 
biological or ecological prop-
erties. To help the exploration, 
visualisation methods such as 
TMAP can be used.[26] In this 
example, it is possible to spot 
the annotations of the walthe-
rione Q (HDTZPKLRJBGXSO-
OYKVQYDMSA-N, Q110090899), 
an alkaloid active against T. 
cruzi (Q150162) (IC50 = 100 nM) 
reported in Waltheria indica 
(Q7966688).[62]
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structures were fully identified after targeted isolation.[54] The da-
ta obtained, both on local and distal leaves from the wound site 
(leaf wounding by forceps mimicking herbivory), also revealed 
jasmonate accumulations at fast post-injury induction times (180 
seconds).[55] Such studies have shown that targeted approaches 
could both identify new phytohormone analogues and reveal 
novel patterns of induction. This also underlines the importance 
of adapted time-series experiments for highlighting defence bio-
markers. This approach allowed to generate new hypotheses on 
the dynamics of induction during wounding. It was then followed 
by targeted analyses to further characterise the behaviour of the 
revealed biomarkers.

We also applied metabolomic approaches searching for de-
fensive compounds induced in fungal microorganisms. In collab-
oration with the Agroscope (agroscope.ch/changins/en), the ap-
plication of comparative metabolomics methods on fungal solid 
media co-culture allowed the identification of de novo induced 
compounds in the confrontation zone.[56] For this purpose, co-cul-
tures of fungi known to interact in nature and random co-cultures 
of strains available at Agroscope mycotheca (https://www.my-
coscope.ch/) were studied with the aim of highlighting dynamic 
metabolite induction mechanisms. As an example, two wood-de-
caying fungi involved in esca disease wood of the vines were in-
vestigated with this strategy. Botryosphaeria obtusa (Q4948840) 
and Eutypa lata (Q10647956) confront each other and form black 
interaction zones visible in the wood. Metabolomic analysis by 
GC- and LC-MS of the co-culture of the corresponding strains 
on solid media revealed the induction of volatile and non-vol-
atile substances. For this purpose, complex multiblock MVDA 
methods had to be used to consider the data structure (GC and 
LC-MS time series) and to highlight the relevant metabolomic 
changes. This approach was useful for the assessment of the spe-
cific impact of controlled experimental factors and evidenced the 
induction of O-methylmellein (Q77494423) in the solid media 
and 2-nonanone (Q15726063) in the volatile part suggesting a 
response implying both soluble and airborne compounds.[57] In 
other cases, random co-culturing reveal the biosynthetic potential 
of cryptic genes. To search specifically for induced metabolites 
in these cocultures, multivariate data processing approaches had 
to be adapted. This was necessary since the comparison of two 
monocultures of microorganisms with their cocultures should 
generate different groups in MVDA, and only compounds that 
differ from the mixture of the confronted metabolomes should 
be highlighted. A data mining approach, called POCHEMON, 
was specifically developed to highlight compounds produced 
following the interaction.[58] Here again, targeted isolations car-
ried out on selected co-cultures allowed the identification of new 
dynamically induced bioactive NPs, notably with anti-microbial 
activities.

At the wider environmental scale, we also employed untarget-
ed metabolomic approaches to explore variation in phytochemical 
diversity across multiple elevational transects in the Swiss alps.[15] 
The eco-phytochemical dataset obtained included samples from 
450 alpine plant species, collected across 42 sites spread along 5 
elevation gradients. We explored the extent to which environmen-
tal factors could influence phytochemical diversity heterogeneity 
of alpine ecosystems. This dataset contributed firstly to evaluate 
the effect of climate warming on plant-herbivore interaction and 
biodiversity in the alpine environment[15] and was exploited sec-
ondly to map phytochemical diversity at the landscape level based 
on molecular distribution models. In this last study, we calculated 
the climatic niche of >6000 phytochemical families, allowing us 
to investigate the spatial and evolutionary predictability of phyto-
chemical diversity and introduce the innovative concept of ‘che-
modiversity hotspots’.[14]

Over the course of studies aimed at investigating the me-
tabolome of plants or microorganisms, we have carried out 

high-throughput metabolite profiling (UHPLC-HRMS/MS) on 
sets of plants, lichens, as well as on model plants with specif-
ic ecological niche (tropical palm tree, seagrass) and their en-
dophyte community. For all these cases, we applied molecular 
networks (MN) that involved the comparison of tens up to more 
than a thousand of extracts depending on the data sets. A study 
was, for example, aimed at the profiling of a unique collection of 
Euphorbiaceae (Q156584) in collaboration with the Institut de 
Chimie des Substances Naturelles (ICSN) at the Centre National 
de la Recherche Scientifique (CNRS) of Gif-sur-Yvette, France. 
Euphorbiaceae (Q156584) are known to produce diterpene es-
ters with interesting anticancer and antiviral activities. These 
diterpene esters also present MS/MS fragmentation patterns 
rich in structural information, which makes them well suited for 
this type of MN analysis. Starting from 297 extracts, more than 
1.8 million spectra were clustered as 88,687 nodes, themselves 
grouped in 7,840 spectral families. In parallel to this massive 
chemical screening, all extracts were also evaluated for their anti- 
cancer activity in Wnt-pathway inhibition tests. The results of the 
bioassays were used as metadata for the molecular networks, thus 
creating what was defined as a massive ‘multi-informative’ mo-
lecular network. MN also allows researchers to assess whether a 
compound is extract-specific or not in a set. The combination of 
both sources of information allowed to highlight some clusters of 
features putatively related to the anti-cancer activity found in the 
corresponding crude extracts. This approach allowed the targeted 
isolation and identification of new phorbol esters. Interestingly, 
one of them turned out to be a very strong inhibitor of the Wnt-
pathway; it has a scaffold related to tigilanol tiglate (Q5322564), 
a PKC activator currently in phase 2 clinical trials.[59] The stacked 
layers of chemical and biological information allowed to effi-
ciently prioritise putative bioactive compounds from this dataset. 
The isolation process was straightforward since it didn’t require 
the classical iterative bio-guided fractionation procedure.[32] This 
study shows that it is possible to combine molecular network 
approaches and biological assays for targeted and efficient iso-
lation of bioactive compounds of interest. In the same way, we 
have now initiated a project to investigate the metabolome of a 
set of highly biodiverse plants (Pierre Fabre collection[60]). For 
this purpose, a subset (1,600 extracts) representing around 10% 
of the whole collection (159 Families, 533 Genus, 767 species) 
was profiled and the data were processed in the form of a massive 
MN.

Here, the size and chemical diversity of the data set can lead 
to huge MN hindering the possibility to get a global view of the 
spectral relations. We explored alternative tools to summarise 
high-dimension data, for example, chemical structures of such 
a set in the form of minimum spanning trees (TMAP) resum-
ing the overall information by pruning links of lower importance 
(Fig. 2B,D).[26] This type of processing is applicable not only  
to metabolite profiling data but also to all structural infor-
mation reported in the literature on NPs. This can be used 
to compare a set of annotations with a set of reported active  
compounds to highlight annotated active compounds or analogues 
(Fig. 2D).

The wealth of information acquired through MS analysis at the 
level of a large set of extracts also raises problems in terms of data 
alignment. Indeed, if samples cannot be analysed concomitantly, 
retention-time and intensity shift across batches hinders the fea-
ture alignment step. To overcome this problem, we have recently 
developed a vectorisation approach (MEMO, for MS/MS-Based 
Sample Vectorization) to explore sets of chemically diverse natu-
ral extracts. The MS/MS fragmentation data (peaks and losses to 
the precursor) of all the features of a given sample are abstracted 
from their spectral context using spec2vec[61] and summarised in 
the form of a single vector that can be compared to other vectors, 
i.e. samples. This tool allows to compare samples without tak-
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ing into account retention time information and thus avoiding the 
alignment process necessary for the usual MVDA. This process 
enables the comparison of sample sets analysed over long periods 
of time, or even on different MS platforms and with different chro-
matographic conditions. After MEMO vectorisation, each sample 
can be summarised as a single dot and the visualisation of all 
the samples in a set can be done using the previously presented 
TMAP visualisation (Fig. 2B,D). The application of MEMO has 
already demonstrated its effectiveness to establish relationships 
on sets of thousands of extracts in a dozen minutes using a clas-
sical laptop.[63]

5. Conclusion: Prospects for Natural Products 
Metabolomics

As described above, MS has played a central role in the devel-
opment of metabolomics. Today, the analytical platforms allow 
researchers to quickly obtain detailed information on most MS fea-
tures and their MS/MS spectra even in complex matrices such as 
natural extracts. To transform this spectral information into coher-
ent chemical compositional information, many data mining tools 
have been developed and are continuously improved. Capacities 
for structural annotation of known NPs, as well as the structural 
anticipation of unknown compounds (absent in the databases), is 
constantly improving.[64] The NPs chemists now possess powerful 
tools to document, interrogate and study the metabolome of natural 
extracts. The exclusive use of MS-based metabolomics, however, 
suffers from inherent limitations of the technique, in particular, 
to differentiate isomers. Complementary approaches can improve 
the quality of the data collected and the annotations obtained. This 
could be done by better exploitation of the orthogonal informa-
tion acquired during metabolite profiling. This is particularly the 
case for the chromatographic retention times of the detected com-
pounds. Ideally, tools that would allow accurate prediction of these 
LC dimensions would be useful. Efforts have been made in this 
direction and interesting solutions have been proposed to predict 
the elution orders of analytes.[65,66] However, it is known that this 
kind of prediction remains difficult to compute as the factors that 
govern the retention of compounds in HPLC are multiple.

New generations of mass spectrometers now allow the acqui-
sition of Ion Mobility Spectrometry (IMS) data for all detected 
analytes. IMS allows the measurement of metabolite drift time 
which depends on Collisional Cross Section (CCS), itself related 
to their stereochemical structure and conformations. However, 
IMS is not orthogonal to MS as CCS approximately correlates 
with the molecular mass. Yet, improvement in the performance of 
IMS resolution and the development of dedicated computational 
CCS prediction methods[67] will provide additional confidence in 
the annotation process with the increasing adoption of IMS. In 
addition to these improvements in the annotation process, more 
sensitive, more specific, and more reproducible MS/MS fragmen-
tation methods are being developed in LC-MS which will help to 
boost both the metabolome coverage and its annotation.[68,69]

For unambiguous structural determination, the targeted isola-
tion of metabolites of interest is still required for NMR, chiropti-
cal, or crystallographic data acquisition. The sensitivity of NMR 
has increased and a few micrograms of NPs are sufficient to ac-
quire high-quality data. Recently, with the advent of microcrystal 
electron diffraction (micro-ED) methods, it has become possible 
to perform X-ray analysis on micro-quantities of collected NPs. 
This opens up the possibility of obtaining structural information 
as well as absolute configurations ideally on any isolated NPs. 
Recently, a proof-of-concept publication has indicated the poten-
tial for coupling micro-ED methods with UHPLC.[70] The chal-
lenges in this area remain significant, however, as although the 
micro-ED technique is extremely sensitive, it requires micro-crys-
talline powder which is difficult to obtain in a generic manner.

Metabolomic data alone can provide important information for 

chemical ecology or for the discovery of bioactive NPs. However, 
they need to be integrated with other omics data to better under-
stand the links.[71] The links between genomic and metabolomic 
data are thus increasingly being exploited to predict the biosyn-
thetic potential of natural organisms. In bacteria, it is becoming 
increasingly feasible to identify biosynthetic gene clusters and the 
combination of genomic and metabolomic data in this context is 
very effective in selecting producers of compounds of interest or, 
more globally, for a better understanding of the biosynthetic ca-
pacities of this kingdom.[72] This link between biosynthetic gene 
clusters and specialised metabolites is however more complicated 
to establish in the case of organisms displaying complex genomes 
such as plants or fungi. 

Metabolomics continues to be a rapidly growing area of re-
search in NPs chemistry. There is no doubt that the advancement 
of analytical techniques in conjunction with computational meth-
ods on the one hand and the integration of multi-omics data on the 
other will give the scientists involved fantastic tools to interrogate 
the living world at the molecular level. This would lead to more 
efficient discovery of new drug candidates and a better under-
standing of the chemical interactions between organisms that are 
at the root of biodiversity.
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