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Mechanisms of offline motor learning at a microscale
of seconds in large-scale crowdsourced data
Marlene Bönstrup 1✉, Iñaki Iturrate1, Martin N. Hebart 2, Nitzan Censor3 and Leonardo G. Cohen1✉

Performance improvements during early human motor skill learning are suggested to be driven by short periods of rest during
practice, at the scale of seconds. To reveal the unknown mechanisms behind these “micro-offline” gains, we leveraged the sampling
power offered by online crowdsourcing (cumulative N over all experiments= 951). First, we replicated the original in-lab findings,
demonstrating generalizability to subjects learning the task in their daily living environment (N= 389). Second, we show that offline
improvements during rest are equivalent when significantly shortening practice period duration, thus confirming that they are not
a result of recovery from performance fatigue (N= 118). Third, retroactive interference immediately after each practice period
reduced the learning rate relative to interference after passage of time (N= 373), indicating stabilization of the motor memory at a
microscale of several seconds. Finally, we show that random termination of practice periods did not impact offline gains, ruling out
a contribution of predictive motor slowing (N= 71). Altogether, these results demonstrate that micro-offline gains indicate rapid,
within-seconds consolidation accounting for early skill learning.
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INTRODUCTION
Early learning of a new motor skill unfolds fast over the course of a
single training session1. While performance improvements are
typically linked to practice itself, recently it was shown that in fact,
a substantial proportion of early skill acquisition happens during
short rest periods in the range of several seconds that are
interspersed with practice2. These micro-offline improvements
closely track the early online learning curve before a performance
plateau is reached, and account for total early learning. Micro-offline
improvements during early skill learning may thus constitute a rapid
form of consolidation, extending the concept of consolidation to a
time-scale in the order of seconds, rather than hours or days, as has
been a widely held assumption3.
Here, we directly tested this idea using a hallmark of consolidation

referred to as stabilization4. Stabilization can be tested as the
resistance of a memory trace to retroactive interference via a
competing task5 or disruptive noninvasive brain stimulation6.
Stabilization has been demonstrated to evolve hours after a full
training session3,7. In the context of early skill learning, it is unknown,
whether these short periods of rest, interspersed between practice
bouts in an initial training session, allow for stabilization of the
memory trace. Stabilization developing seconds after practice would
strongly support the existence of consolidation acting at such a short
temporal scale.
Alternatively, micro-offline gains may also be an indirect effect of

performance fatigue with continuous practice2,8 that expresses as
performance decrements, more specifically motor slowing. Such
motor slowing is commonly seen during prolonged (>10 s) motor
execution at maximum speed and, in its earliest appearance, is likely
linked to a central disbalance between excitation and inhibition in
motor cortical regions9–12. Recovery from motor slowing would lead
to measurable performance improvements over subsequent rest
periods, unassociated to within-rest learning13–15. Contrary to these
observations, micro-offline gains documented during rest periods of

early learning emerge in a fundamentally different context: they
occur well before maximum speed is reached and are largest in trials
that do not show within-practice performance decrements, i.e., in the
absence of overt motor slowing. However, micro-offline improve-
ments may arise from a recovery of potentially latent motor slowing
during each preceding practice period, masked and counter-
weighted by micro-online improvements.
The aim was to disambiguate the presence of rapid consolida-

tion mechanisms in early motor skill learning. We used the high
sampling power of crowdsourcing and achieved large sample
sizes in each experiment for replicable results16,17. Crowdsourcing
has become a widely used, well-tested and versatile tool in social
and cognitive sciences to investigate personality, decision making,
visual perception and recognition, and memory formation18. It is
used in replication studies19 and has recently also been adapted
for motor learning research20.
We first tested the feasibility of studying human sequence

learning dynamics in the web-based environment. This experi-
ment also allowed to test the replicability of micro-offline gains
during short periods of rest following each practice period in early
human motor skill learning. Then, in a second experiment, we
applied retroactive interference immediately after practice to test
if short periods of rest, in the range of seconds, allow for
stabilization of the memory trace to occur. In a third and fourth
experiment, we experimentally manipulated the motor slowing
effect to disambiguate the presence of consolidation mechanisms
acting at the level of seconds.

RESULTS
Early learning of a new skill occurs largely offline—replication in a
large crowdsourced sample
As a first step, we implemented an exact replication of the
sequential finger tapping task2,21 in the web-based environment.
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This replication experiment serves two purposes: (1) to evaluate
crowdsourcing as a tool for the study of dynamics of human
motor learning behavior and (2) to replicate and extend to a larger
and more representative sample our previous finding of micro-
offline learning, demonstrating that a substantial portion of early
skill learning is accounted for by performance improvements
during short periods of rest. The motor learning task is well-
characterized and widely used in the study of procedural motor
memory formation21. It is comprised of a series of sequential
keypresses that are executed repeatedly22,23. Overall 389 partici-
pants, recruited via the Amazon Mechanical Turk platform, trained
over 36 trials, each consisting of 10 s practice and 10 s rest, for a
total of 12 min (Fig. 1a, e and Table 1). In each practice period,
participants were asked to repetitively tap a 5-item sequence
indicated on the screen as fast and accurately as possible using
their left, nondominant hand on the number keys on the left side

of their own computer keyboard. Instructions were delivered via
short and comprehensible statements alongside illustrations
before the beginning of the task. Performance was measured as
the tapping speed (keypresses/s) for correctly performed
sequences2,24, which allows quantification of microscale, within-
trial performance changes. And, as the number of correct
sequences per trial, the classically used skill measure in this
task22,25,26. Both measures were highly correlated, however less in
the crowdsourced group as compared with the in-lab group
(Pearson’s linear correlation coefficient over 36 trials in-lab group:
ρ= 0.8 ± 0.03 mean ± s.e.m.; N= 27, 100% P < 0.05 and crowd-
sourced group: ρ= 0.73 ± 0.01; N= 389, 96% P < 0.05) and in the
following, only the tapping speed is reported.
Just as the in-lab motor learning dynamics (Fig. 1b), the

performance of the crowdsourced, online acquired motor learning
data (Fig. 1f) showed rapid performance improvements within the

Fig. 1 Experiment 1: early learning of a new skill occurs largely offline. Replication in a crowdsourced sample of 389 participants. a–d in-lab
experiment (N= 27, 17 female, mean ± s.e.m. age 26.3 ± 0.83), e–h crowdsourced experiment (224 female, 39.6 ± 0.56) a, e Task: participants
learned a motor skill task2,22,23 over 36 trials (inset shows a single trial) consisting of alternating practice and rest periods of 10 s duration for a
total of 12min. b, f Skill was measured as the average inter-tap interval within correct sequences (tapping speed measured in keypresses/s)2,24

and is shown over the first 11 trials for the in-lab (b) and crowdsourced (f) group (see Supplementary Fig. 1a, c for all 36 trials). Micro-online
changes were calculated as the difference in tapping speed (keypresses/s) of the first and last correct sequence within a practice period (blue
in inset) and micro-offline changes as the difference between the last correct sequence within a practice period compared with the first of
the next practice period (red in inset)2. The average number of correct sequences per trial is shown as green dots. c, g Trial-wise early learning
(trials 1–5) composed of micro-offline (red), micro-online (blue), and total (black) performance changes (mean+ s.e.m.). Note the presence of
large micro-offline gains and total early learning in the initial trials in the absence of micro-online performance decrements. d, h Data points
in the violin plot depict the sum of changes in performance over early learning trials in each participant, the red line denotes the mean
(***P < 0.001).
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first few minutes of practice that constitute the early learning
phase. Because most performance improvements occurred in
those early trials and performance decrements during later trials
confound the interpretation of performance improvements during
subsequent rests, we focused our analyses of microscale learning
dynamics to the early learning phase. Early learning in both
groups was defined as the trials before which practice period
performance significantly decremented in either group, which
developed by trial 6 in the crowdsourced group (trial-by-trial two-
tailed one-sample nonparametric permutation test, P < 0.05). Thus,
early learning was defined as trials 1–5. At a high temporal
resolution, strong performance increments between practice
periods were evident (Fig. 1b, f). The contribution of practice
and rest periods to total early learning was assessed as follows and
congruent to previous work: micro-online learning was defined as
the difference in tapping speed (keypresses/s) between the
beginning and end of each practice period. Micro-offline learning
was defined as the difference in tapping speed between the
end of each practice period and the beginning of the next one
(Fig. 1b, f, “Methods”)2. Total early learning was calculated as
the sum of single-trial performance changes from trial 1–5. We
found that micro-offline gains closely tracked trial-by-trial total
early learning (Fig. 1c, g), which amounted to 1.31 ± 0.06
keypresses/s in the crowdsourced group and to 1.87 ± 0.23
keypresses/s in the in-lab group (mean ± s.e.m., two-tailed one-
sample nonparametric permutation test, P < 0.001, group differ-
ence: two-tailed two-sample nonparametric permutation test, P <
0.01). This early learning was accounted for by performance
improvements during rest periods rather than during practice
periods. On average, micro-online changes were nil in both groups
(crowdsourced group: 0.07 ± 0.12 keypresses/s, P= 0.72; in-lab
group: 0.19 ± 0.30 keypresses/s, P= 0.48, group difference: P=
0.54) whereas micro-offline gains were substantial (crowdsourced
group: 1.24 ± 0.12 keypresses/s; P < 0.001, Fig. 1h; in-lab group:
1.68 ± 0.32 keypresses/s; P < 0.001, group difference: P= 0.38, Fig.
1e). In addition to testing for differences between groups, we
confirmed that microscale learning between groups was statisti-
cally equivalent (two one-sided test for equivalence, TOST). From
trial 6 on, as tapping speed increased towards a plateau, within-
practice performance started to decrement in both groups (Fig. 1,
Supplementary Fig. 1).
Total session learning over all 36 trials amounted to 1.93 ± 0.05

keypresses/s in the crowdsourced group and to 2.73 ± 0.22
keypresses/s in the in-lab group (difference between trial 1 and
36, mean ± s.e.m., P < 0.001). The difference in total session
learning and total early learning likely arose from difference in
performance at trial 1, with the crowdsourced group showing
higher starting performance than the in-lab group (1.17 ± 0.19 vs.
1.93 ± 0.06 keypresses/s, P < 0.001). This may be secondary to the

specific subset of the worker population sampled at this given
point in time27, or a potentially higher exposure to online and
typing tasks in the worker population compared with participants
in the lab. However, the ceiling level (trial 11–36 performance)
was similar in both groups (3.67 ± 0.27 vs. 3.80 ± 0.05 keypresses/s,
P= 0.63).
Although there were differences between the groups, the

overall similarity between the groups with respect to the shape of
the learning curve and microdynamics of motor learning,
representing the variables of interest, replicated previously
reported results. This demonstrates that the crowdsourcing
marketplace is useful to study human motor learning dynamics
at a large scale.
Having established a powerful tool for the fast collection of

replicable human motor learning behavioral data, we went on to
investigate the existence of consolidation mechanisms acting at
the level of seconds.

Stabilization of motor skill during short periods of rest
The previous results document one hallmark of consolidation:
performance enhancements4. However, consolidation may also
express as stabilization of the newly acquired memory trace over
periods of rest. For example, interference after a complete training
session on a new motor skill has been shown to disrupt
consolidation if applied shortly after training, but not if applied
after the passage of time5,7,28. Transferring this approach to the
microscale of seconds, stabilization of a memory trace during
periods of rest could be probed via interference with the memory
trace at different timepoints during a given rest period. In a
second experiment, we studied the effects of interfering on
microscale learning. Subjects learned the same sequence as in
Experiment 1. To probe the effects of interference on memory
stabilization, subjects repeatedly practiced a second sequence of
matched complexity (2-3-1-4-2)5, immediately after each practice
period (“early interference”, N= 118) or after the passage of a 10 s
rest (“late interference”, N= 126). To avoid proactive interference
of the interfering sequence on the next practice period, we
allowed another 10 s of rest to pass before the start of the new
trial (Fig. 2a). A control group with “no interference” (N= 129)
rested for 30 s to match the inter-practice period intervals. All
groups trained on 12 trials for a total of 8 min (Table 1). The
number of trials was reduced to minimize the duration of the task
while still capturing the early dynamics of motor learning, when
most performance improvements occur. Both groups of Experi-
ment 1 showed that 95% of total session learning over all 36 trials
was reached by trial 12 (assessed by modeling of the group
average performance curve, see “Methods”). Data for each
experimental group were collected simultaneously and tasks were
randomly assigned to participants (see “Methods”).

Table 1. Overview of experimental designs and participants.

Experiment Experimental groups trials x trial duration=
total duration

Rest period
duration

Practice period duration Participants
completed
the task

Participants
adherent to
instruction

Participants
included in
analysis

1 1 36 × 20 s= 12m 10 s 10 s 499 389 389, 212

2 3 12 × 40 s= 8m 523 373 373

Early interference 20 s 10 s seq A, 10 s seq B 178 118 118

Late interference 20 s 10 s seq A, 10 s seq B 176 126 126

No interference 30 s 10 s seq A 169 129 129

3 1 48 × 110 s= 12m 10 s 5 s 438 249 118

4 1 41 × 15–20 s= 12m 10 s Jittered 5–10 s 249 170 71

In Experiment 3 and 4 (and the respective reference group from Experiment 1), we only included participants who showed a minimum baseline performance
level of at least two completed sequences per trial.
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Performance on the target sequence was quantified as tapping
speed (keypresses/s) for correctly performed sequences24 (Fig. 2b)
and number of correct sequences per trial21 (Fig. 2c). As expected, the
“no interference” group showed a higher total session learning over
all 12 trials as opposed to both interference groups (early interference:
1.25 ± 0.08 keypresses/s, 2.61 ± 0.08 correct seq/trial; late interference:
1.46 ± 0.09 keypresses/s, 2.77 ± 0.09 correct seq/trial; no interference:
1.78 ± 0.09 keypresses/s, 3.91 ± 0.09 correct seq/trial; mean ± s.e.m.,
group-wise comparison between “no interference” and each of the
interference groups P< 0.001). See Supplementary Fig. 2 for the
performance curves of the interfering sequences.
Learning curves based on tapping speed (Fig. 2b) and number of

correct sequences (Fig. 2c) showed a difference between the early
and late interference groups with a steeper rise in early trials (trial
1–5) and higher performance level during later trials (6–12). To
quantify and compare learning parameters between groups, we
devised a simple model that captures performance curves of each
participant over all 12 trials. The model comprised three parameters
representing the initial performance, maximum performance and
learning rate (see Eq. 1, “Methods”, “Data Analysis” section). We then
statistically compared the model parameters between the inter-
ference groups (Fig. 2d). The late interference group showed a
higher learning rate compared with the early interference group
(late: 0.26 ± 0.23, early: 2.15 ± 0.20, P= 0.04). The effect size of the
group difference was small to medium (Cohen’s d 0.15)29. Similar
differences with a stronger rise in the learning curve of a late
interference groups vs. an early interference group were found in a
smaller sample collected in the lab environment (Supplementary
Fig. 3). The numerically smallest learning rate was estimated for the
no interference group, although this group showed highest
maximum performance. This seemingly discrepant result likely

arises from the formulation of the model (“Methods” section,
“Modeling of performance curves” section) in which the parameter
learning rate is relative to the parameter maximum performance. In
this sense, the smaller learning rate indicates the longer time the no
interference group took to reach the relatively high maximum
performance. Regarding early learning dynamics (trials 1–5), we
found no differences in microscale learning parameters (micro-
online/offline) or total early learning between both interference
groups. However, all groups showed significant performance
improvements during rest periods (micro-offline, early interference:
0.77 ± 0.19, late interference: 0.80 ± 0.19, P < 0.05, no interference:
1.30 ± 0.17 keypresses/s; P < 0.001), whereas performance improve-
ments during practice periods were undetectable. The no inter-
ference group showed significantly stronger total early learning
compared with both interference groups (early interference: 0.98 ±
0.09; late interference: 1.06 ± 0.10; no interference: 1.43 ± 0.10
keypresses/s both P= 0.003).
These results document memory stabilization at the temporal

microscale with more prominent stabilization in the first 10 s after
each practice period, suggestive of a temporal gradient.

Micro-offline gains are independent of motor slowing during
practice
During early learning (trials 1–5), it is theoretically possible that
motor slowing develops in each practice period but is counter-
weighted by learning-related performance improvements. If this
were the case, micro-offline gains during the subsequent rest
period, could be secondary to a dissipation of latent motor
slowing. As motor slowing is a function of practice time over the
duration of training12, such a contribution could be tested by

Fig. 2 Experiment 2: stabilization of motor skill during short periods of rest. a Task: learning of the target sequence was interfered by
learning of another sequence either immediately (early interference, N= 118, first row), or 10 s after (late interference, N= 126, second row)
each practice period. To avoid proactive interference of late interference on the following trial, a rest period of 10 s was introduced and the
rest period in the early interference group matched to 20 s. In a control group, no interference was given, and each practice period was
followed by 30 s of rest (N= 129). Training consisted of 12 trials amounting to 8min. b Skill was measured as the average inter-tap interval
within correct sequences (tapping speed measured in keypresses/s)2,24 and c as the number of correct sequences2,5,22,25,26. The performance
curve of each group (red: early interference, magenta: late interference, cyan: no interference; mean+ s.e.m.) is overlaid with the average of
modeled performance curves. Note the shallower rise of the performance curve in the early as opposed to late interference group. d Model
parameters (initial performance, maximum performance, and learning rate) of the learning curve for each experimental group, the line
denotes the mean. Modeling of the number of correct sequences revealed a significant group difference in the learning rate, with early
interference showing a shallower curve (P < 0.05, orange arrow). *P < 0.05, ***P < 0.001.
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evaluating how reducing the duration of practice periods affects
micro-offline gains. We reasoned that if micro-offline learning
remains high when practice period duration is shortened, motor
slowing effects are unlikely to represent the relevant driver.
In Experiment 3, 181 participants trained the sequential finger

tapping task in 48 trials alternating 5 s practice and 10 s rest
periods (Fig. 3a), to match a total task duration of 12 min as in
Experiment 1 (Table 1). Performance on the target sequence was
quantified as tapping speed (keypresses/s) for correctly performed
sequences. Early learning dynamics were compared with the
original experimental group 1 that trained on alternating 10 s
practice and 10 s rest periods. Both groups showed highly
comparable performance during early learning trials (Fig. 3b).
See Supplementary Fig. 4a for total session performance curves. In
both groups, micro-offline gains closely tracked trial-by-trial total
learning whereas micro-online changes remained relatively stable
with performance stagnation, small decreases or increases
(Fig. 3c). Total early learning was calculated as the sum of
single-trial performance changes (trial 1–5) and amounted to
1.67 ± 0.08 keypresses/s in the 10 s practice period group as
opposed to 1.79 ± 0.13 keypresses/s in the 5 s practice period
group (mean ± s.e.m., P < 0.001, Fig. 3d). In both groups, total early
learning was accounted for by performance improvements during
rest periods rather than during practice periods. On average,
micro-online changes were nil in both groups (10 s practice period
group: 0.19 ± 0.20 keypresses/s, P= 0.48; 5 s practice period
group: −0.10 ± 0.23 keypresses/s, P= 0.20) whereas micro-offline
gains were substantial (10 s practice period group: 1.48 ± 0.17
keypresses/s, P < 0.001, Fig. 3d; 5 s practice period group: 1.89 ±
0.23 keypresses/s, P < 0.001). No significant differences in total
early learning or microscale learning were evident (P > 0.05) and

microscale learning between groups was statistically equivalent
(TOST for equivalence). These results are inconsistent with a
substantial contribution of motor slowing to micro-offline gains
during early skill learning.
A closer look at later learning trials, in which within-practice

performance decrements were evident (i.e., following trial 11,
Supplementary Fig. 4a, b), suggested that motor slowing may
develop faster within 5 s than 10 s practice periods. This finding
could be explained if subjects preemptively slow down to stop as
the end of each practice period approaches. In Experiment 4, we
aimed to exclude preemptive slowing as a driver of micro-offline
gains by having participants train the same task with practice
periods of unpredictable duration.
In Experiment 4, 71 participants trained the sequential finger

tapping task in 41 trials of alternating 5, 6, 7, 8, 9, or 10 s
(randomized order) practice and 10 s rest periods (Fig. 4a), to
match a total task duration of 12 min as in Experiment 1 (Table 1).
Early learning dynamics were compared with the original
experimental group 1 who trained on alternating 10 s practice
and 10 s rest periods. Both groups showed highly comparable
performance during early learning trials (Fig. 4b). See Supplemen-
tary Fig. 4c for total session performance curves. In both groups,
micro-offline gains closely tracked trial-by-trial total learning
whereas micro-online changes remained relatively stable with
stagnation, small decreases or increases (Fig. 4c). Total early
learning was calculated as the sum of single-trial performance
changes (trials 1–5) and amounted to 1.67 ± 0.08 keypresses/s in
the 10 s practice period group as opposed to 1.63 ± 0.17
keypresses/s in the unpredictable-practice period group (mean
± s.e.m., P < 0.001, Fig. 4d). In both groups, total early learning was
accounted for by performance improvements during rest periods

Fig. 3 Experiment 3: training under reduced practice period duration shows comparable micro-offline gains. a Task: participants learned
the motor skill task2,22,23 over 48 trials (inset shows a single trial) consisting of alternating 5 s practice and 10 s rest periods for a total of 12min,
matched to the original experiment duration (Fig. 1). b Skill was measured as the average inter-tap interval within correct sequences (tapping
speed measured in keypresses/s)2,24. The group average performance curve is given in magenta (N= 118) and the group average of the 10 s
practice period group (Experiment 1, Fig. 1) displayed for comparison in black (N= 212). c Trial-wise early learning. Each line depicts
performance changes (micro-offline in red, micro-online in blue, total in black) per trial (mean+ s.e.m.). Even under reduced practice period
duration, total learning was closely accounted for by micro-offline gains (black and red lines) whereas micro-online performance changes
fluctuate around 0 (blue line). Micro-offline learning remains high when halving practice period duration. d Data points in the violin plot
depict the sum of changes in performance over early learning trials in each participant, the red line denotes the mean. In both groups (10 and
5 s), total early learning is accounted for by performance improvements during rest periods, but not during practice periods. ***P < 0.001. Note
that participants with a high performance were selected in both groups due to required at least two correct sequences in each trial for
calculation of microscale learning (“Methods”, “Data Analysis” section).
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rather than during practice periods. On average, micro-online
changes were nil in both groups (10 s practice period group:
0.188 ± 0.02 keypresses/s, P= 0.50; unpredictable-practice period
group: 0.11 ± 0.31 keypresses/s, P= 0.75) whereas micro-offline
gains were substantial (10 s practice period group: 1.48 ± 0.17
keypresses/s; P < 0.001, Fig. 4d; unpredictable-practice period
group: 1.52 ± 0.27 keypresses/s, P < 0.001). No significant differ-
ences in total early learning or microscale learning were evident
(P > 0.05) and microscale learning between groups was statistically
equivalent (TOST for equivalence). The groups differed with
respect to trial 1 performance with the unpredictable-practice
group showing higher starting performance than the 10 s practice
group (2.68 ± 0.15 vs. 2.41 ± 0.07 keypresses/s, P < 0.05).
Together, the results of Experiments 3 and 4 are inconsistent

with a dominant contribution of latent motor slowing to micro-
offline gains and thus support consolidation as driving micro-
offline gains.

DISCUSSION
Here, we first probed motor skill learning21,30 in the online
crowdsourcing environment and then replicated a recent finding
of performance improvements during early motor skill learning
occurring predominantly during rest rather than during practice
(Experiment 1). Two fundamentally different but not mutually
exclusive mechanisms could theoretically contribute to micro-
offline gains during early skill learning: rapid consolidation and
latent motor slowing8. In a series of behavioral experiments, we

showed that this effect cannot be explained by latent motor
slowing resulting from within-practice performance fatigue
(Experiments 3 and 4). We then found an indication of stabilization
of the motor memory immediately after the end of each practice
period (Experiment 2). Together, findings are consistent with
consolidation evolving at the level of seconds and contributing to
what is classically referred to as online learning1.
Motor skill training usually involves alternating periods of

practice and rest. During initial training of a new motor skill, early
performance improvements are substantial and develop over
periods of rest that occur within a series of practice bouts within
the same session. Our results in an in-lab (N= 27) and
crowdsourced experiment (N= 389) coincided in showing that
the sum of those micro-offline performance improvements
substantially contributed to early learning, when most of the over
all performance improvements manifested. Thus, micro-offline
gains during early acquisition of a new motor skill make a sizable
contribution to initial online learning1. This observation blurs the
border between two stages of memory formation that are treated
as distinct in neuropsychologic research. In fact, micro-offline
gains speak to the contrary: behaviorally distinct stages of
memory formation (online/offline learning, encoding/retrieval,
and fast/slow) may not have isomorphic counterparts in brain
plasticity but arise from a continuum of overlapping processes in
brain physiology31. Short periods of rest offer a state of reduced
interference compared with practice. A state of low interference,
i.e., reduced external input and exposure to new experience, may
be favorable for memories to consolidate synaptically32 and at the

Fig. 4 Experiment 4: training under unpredictable-practice period duration shows comparable micro-offline gains. Rhythmicity of
practice-rest alterations may lead to preemptive slowing towards the end of each practice period that may contribute to micro-offline gains.
Unpredictable-practice period durations (random 5, 6, 7, 8, 9, 10 s) prevent preemptive slowing. Task: participants learned the motor skill
task2,5,22 over 41 trials (inset shows a single trial) consisting of alternating 5–10 s practice and 10 s rest periods for a total of 12min, matched to
the original experiment duration (Fig. 1). b Skill was measured as the average inter-tap interval within correct sequences (tapping speed
measured in keypresses/s)2,24. The group average performance curve is given in magenta (N= 71) and the group average of the 10 s practice
period group (Experiment 1, Fig. 1) displayed for comparison in black (N= 212). d Trial-wise early learning. Each line depicts performance
changes (micro-offline in red, micro-online in blue, total in black) per trial (mean+ s.e.m.). Even under unpredictable-practice period duration,
total learning was closely accounted for by micro-offline gains (black and red lines) whereas micro-online performance changes fluctuate
around 0 (blue line). c Data points in the violin plot depict the sum of changes in performance over early learning trials in each participant, the
red line denotes the mean. In both groups (10 and 5 s), total early learning was accounted for by performance improvements during rest
periods, but not during practice periods. ***P < 0.001, two-tailed, one-sample (within group) nonparametric permutation test for each learning
partition. No across group comparison was significant. Note that participants with a high performance were selected in both groups due to
required two correct sequences in each trial for calculation of microscale learning (“Methods”, “Data Analysis” section), thus trial 1 performance
is comparably higher than in Experiment 1 and 2.
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network level33. Previous work showed that at the network level,
modulation of frontoparietal beta oscillatory activity during rest
periods predicts micro-offline gains2, consistent with the involve-
ment of this network, in encoding offline representations of
movement kinematics34. It is possible that reactivation of previous
practice-related activity35,36 or memory replay37 during rest
intervals is embedded in low amplitude beta activity, an indicator
of a state of sensorimotor engagement38. At the synaptic level,
within-seconds micro-offline improvements in performance are
likely the result of transient synaptic facilitation, mediated via
modifications of the ionic microenvironment and briefly altered
membrane conductance following increased firing activity39.
Transient perturbations at the cellular (molecular, synaptic) level
influence, and are integrated into, the formation of lasting, stable
states at the at the circuit and network level31. Since memories
form over several nested temporal scales, it remains to be
determined in how far rapid and longer forms of consolidation are
independent processes or serially linked. The in-lab experimental
group was tested after 24 h and overnight offline learning did not
correlate with micro-offline gains during early learning, suggesting
different mechanisms at play2.
Memory consolidation refers to the process by which a

temporary, labile memory is transformed into a more stable,
long-lasting form3. Consolidation may not only express as
performance enhancements over periods of rest (offline gains), a
feature demonstrated in Experiment 1, but also as resistance to
interference (stabilization4). Resistance to interference with the
passage of time is a feature of consolidation of explicit memories40

and dynamic motor adaptation7,28. It has been tested by learning a
competing task5, disrupting brain activity with noninvasive brain
stimulation6 or by evaluating the effects of pharmacological
inhibitors41 after a full learning session. If micro-offline gains
constitute a form of ultrafast consolidation, stabilization of the
memory trace may be experimentally tested at the seconds level.
To evaluate stabilization during early skill learning, we adapted a
behavioral retroactive interference protocol5 to the level of single
trials. Early retroactive interference led to a moderately shallower
learning curve compared with late retroactive interference (Fig. 2,
an effect not driven by baseline differences between groups),
suggesting that stabilization of the memory trace in the initial 10 s
post practice rendered it more resistant to interference in the late
interference group. This finding is reminiscent of the temporal
gradient of memory stabilization reported in longer forms of
consolidation40. We did not find, however, differences in micro-
scale learning dynamics (micro-online, -offline contribution to total
early learning, total early learning, total session learning) across
groups. Our finding of relatively subtle differences in stabilization
between the early and late interference groups is in line with the
mixed results reported on retroactive interference effects in
sequence learning as well as kinematic adaptation5,42. In dynamic
motor adaptation learning, stabilization effects are more robustly
revealed via retroactive interference28. This possibly reflects
differences in neural systems3,43, neurophysiology and cellular
circuit processing involved3. The combined declarative and
procedural features of our task, particularly in early trials, when
the short sequence is also processed declaratively, could have
contributed to the relatively small magnitude of the effect30.
A fundamentally different mechanisms from consolidation that

could theoretically express as micro-offline gains during early skill
learning is recovery from latent motor slowing8. In contrast to
strong micro-offline improvements during rest, micro-online
changes during early learning (trial 1–5) were on average nil.
Despite the absence of within-practice performance decrements in
these early trials, latent motor slowing theoretically could
contribute to micro-offline gains. In this scenario motor slowing is
not strong enough to induce micro-online performance decre-
ments but is enough to neutralize micro-online performance gains,
resulting in performance stagnation over trials 1–5 (Fig. 1c, g). We

addressed this possibility with the following reasoning: motor
slowing is a function of practice time12,14, a reduction of practice
period duration must therefore reduce the impact of possibly latent
motor slowing on micro-offline gains. In Experiments 3 and 4, we
found that micro-offline learning accounted for the totality of early
learning even when practice period duration was substantially
reduced by 50% and when practice period termination was
unpredictable (Fig. 3c, d, 4c, d). Thus, latent motor slowing due
to prolonged practice duration, or preemptive slowing due to the
anticipation of the end of practice, are not relevant contributors to
micro-offline gains during early skill learning.
At later learning stages (beyond trial 11), after a performance

plateau was reached, within-practice performance decrements
largely explained late learning micro-offline gains. Performance
decrements that robustly express during continued and intense
motor output, are an expression of motor fatiguability and in their
earliest appearance, seem to be related to supraspinal mechan-
isms44,45. A shift in the excitation/inhibition balance with a
decrease in inhibitory and increase in facilitatory cellular circuits
at the motor cortex9,10,12,44 which normalizes to baseline levels
within seconds after movement termination12.
The existence of learning under fatigue conditions has remained

inconclusive so far. And Experiments 3 and 4 even challenge the
common idea that “practice makes perfect” under no fatigue
conditions. Total early learning in trials 1–5, before performance
decrements indicate fatigue, was equivalent in groups practicing for
5, 6, 7, 8, 9, or 10 s, thus learning seemed to be independent of the
amount of practice. Even short practice periods may trigger
processes that lead to skill acquisition with a temporal delay. This
finding is in line with previous reports showing that brief training
reactivations may be as effective as longer practice periods to learn
in both perceptual and motor domains46. In long practice intervals,
lengthy practice may hide this temporal delay and so the learning is
(mis)attributed to come from practice but offline processing is
occurring latently during practice8. The amount of practice to trigger
such offline processing may vary from task to task and inter-
individually but for the skill of sequential tapping, our results
indicate that the amount of practice sufficient to trigger latent or
overt offline stabilization, and thus learning, ceils at or even before
5 s of practice.
Apart from replicability of microlearning dynamics, our results

demonstrate that crowdsourcing, a versatile tool in social and
cognitive sciences18–20 can be used to study human motor skill
learning. We developed a web-based version of a typical motor
skill learning task5,21,22 keeping all aspects of the task identical
except for the fact that participants used their own computer
hardware and carried out the task in their chosen environment.
The overall shape of the learning curves with a steep rise in early
trials (1–5), transition to a plateau phase starting by trial 6–11,
robust performance decrements during late learning trials and the
performance ceiling level were highly replicable across crowd-
sourced and in-lab experiments. Importantly, there were no
statistical differences of micro-online/-offline learning dynamics
during early learning between crowdsourced and in-lab experi-
mental groups. Differences between the two experimental groups
included performance in the first trial, with the Experiment 1
crowdsourced group showing higher performance relative to the
in-lab group. Consecutively, the in-lab group had higher total
session learning and total early learning. As the performance in
the Experiment 1 crowdsourced group is comparable with the
groups in Experiment 2 as well as other in-lab experimental
groups (1.71 ± 0.15 and 1.86 ± 0.24, Supplementary Fig. 5), we
conclude, that the in-lab group engaged participants with lower
starting performance than expected in the general population.
These results highlight the contribution of crowdsourcing plat-
forms making large-scale samples accessible for the study of
properly powered and reproducible motor learning behavior.
Ethical issues arising from the increasing use of crowdsourcing for
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human research should be part of the public discourse as personal
interaction is minimal and the regulatory framework is harder to
apply to internet research platforms. The monetary compensation
should at least match the minimum wage, workers should be
clearly informed about voluntary participation and ability to
withdraw at any moment. They should be informed that their
anonymity is limited by their worker ID and IP address being
known to the researcher and, in case of contacting the researcher,
all personal identifiable information contained in their e-mail
address. Guidelines for an ethical conduct in performing
crowdsourcing research should be consulted47.
The crowdsourced population in this study was substantially

larger and presumably more diverse18 than in our in-lab
investigation. Clearly crowdsourcing experiments were less con-
trolled due to the lack of personal interaction with the
investigators and observation of task execution as well as lack of
control of correctness of demographic responses. In addition,
subjects performed the task with their own equipment (compu-
ters and keyboards) and at a time and place of their choosing.
With sample sizes above 100, motor learning data led to better
mean estimations compared with the in-lab experiments (Supple-
mentary Table 1) and collecting behavioral data using crowdsour-
cing was very time efficient (average data collection time was 16 h
and 26min per experiment). At sample sizes comparable with
typical in-lab experiments, variability of crowdsourced behavioral
motor data is higher, likely due to the more heterogeneous pool
of participants18 and a less controlled setting. It is known, that
sometimes large differences in sample composition among
Amazon Turk workers are observed, even between studies with
several thousand respondents27. As expected and consistent with
previous reports18, a proportion of participants in our experiments
did not follow instructions correctly (Table 1), possibly due to
misunderstanding, inattention or negligence, and had to be
excluded. This emphasizes the need to develop prospective well-
defined plans for data quality control (see our prospective
approach in “Methods”, “Data Analysis” section). Taken together,
we experienced crowdsourcing as a very useful environment to
study motor learning. Features that made our task amenable to
study through crowdsourcing included the simple experimental
design, accessible hardware, and short task duration as well as the
clear definitions of correct adherence to instructions for post-hoc
data quality check. However, experimental designs involving
prolonged task durations or longitudinal measurements have also
been successfully implemented48,49. Finally, particular care should
be taken to properly randomize groups, thereby accounting for
rapid changes in the worker pool composition.
In summary we report a crowdsourcing approach to character-

ize dynamics of early motor skill learning. With large sample sizes
we studied the temporal microdynamics of learning and found
that performance improvements occur during short periods of rest
rather than during practice. We then showed that these micro-
offline gains cannot be explained by latent motor slowing due to
performance fatigue. The new motor memory experienced within-
seconds stabilization immediately after the end of each practice
period. Altogether results reveal mechanisms behind offline
learning at the microscale of seconds and are consistent with a
rapid form of consolidation occurring at a much faster time-scale
than previously acknowledged.

METHODS
Participants
Participants were recruited from the Amazon Mechanical Turk Platform
(MTurk). Qualifications for registered MTurk workers to view and work on the
tasks were: >95% approval rate on all previous MTurk assignments, location
in the United States, right-handedness and no previous participation in any
sequence learning task offered by our lab. The project was approved by the
Combined Neuroscience Institutional Review Board of the National Institutes

of Health (NIH). All participants declared via button press that they agree to
participate and acknowledge the outline and purpose of the study, the NIH-
based research-nature of the task, their voluntary participation, the time
commitment and payment, their mandatory age above 18 years old,
information on data safety and after being given contact information. Sample
sizes for each experiment were estimated based on prior studies of motor
sequence learning on MTurk20. Sample sizes were 389 participants for
Experiment 1 (224 female, mean ± s.e.m. age 39.6 ± 0.56), 373 for Experiment
2 (239 female, age 38.8 ± 0.65), 118 for Experiment 3 (67 female, age 35.4 ±
1.00), and 71 for Experiment 4 (37 female, age 35.63 ± 1.14). These sample
sizes represent the total number of participants after exclusion of
assignments demonstrating incomplete adherence to task instructions. For
Experiment 2, which had 3 groups, tasks corresponding to each group were
randomly assigned to MTurk workers in bundles of ten, i.e., the first 10 MTurk
workers would be assigned to the same task. Participants were paid $2
(Experiments 1 crowdsourced group, 3, 4) or $1.5 (Experiment 2), equivalent
to >$8 per hour. The time of the task being posted was midday on weekdays
for each experiment. All tasks were posted at once within each experiment,
except for Experiment 2 in which collection was done in two partitions for
technical (monetary) reasons.

Task
Participants learned a procedural motor skill task5,22,50. Instructions were
given as descriptions and with pictures before the motor task began.
The task was identical to previously reported studies2 except for the
hardware used being participants’ own in their chosen environment.
They used the nondominant, left hand to perform a sequence of five
keypresses (4-1-3-2-4) as quickly and accurately as possible in response to
instructions displayed on a monitor. Keypresses were applied using the
numeric keys of computer keyboards with the pinky finger corresponding
to button # 1, the ring finger to # 2, middle finger to # 3, and index finger
to # 4. The numeric sequence was displayed on the monitor continuously
during practice periods. Feedback was provided in the form of a dot
appearing immediately after each keypress regardless of correctness
(Fig. 1a). Keypress timing (ms) was recorded for behavioral data analysis.
Each trial consisted of alternating practice and rest periods13,51. In
Experiment 1, each practice period lasted 10 s and was followed by a rest
period of 10 s for a total of 36 trials. In Experiment 2, group “early
interference”, each practice period consisted of 10 s practicing of a target
sequence (4-1-3-2-4), immediately followed by 10 s practicing of an
interfering sequence (2-3-1-4-2), followed by a rest period of 20 s; in
group “no interference”, each practice period consisted of 10 s practicing
of the target sequence (4-1-3-2-4), followed by a rest period of 10 s,
followed by 10 s practicing of the interfering sequence (2-3-1-4-2),
followed by a rest period of 10 s and in group “no interference”, each
practice period of the target sequence (4-1-3-2-4) lasted 10 s and was
followed by a rest period of 30 s. Each group trained over 12 trials
(Table 1 and Figs. 2–4). To minimize distractions, participants of groups
“early interference” and “no interference” were prompted to tap any key
(1–4) once during rest period at random timepoints at least 11 s after the
last and 7 s before the next trial. Experiments 3 and 4 were like
Experiment 1, but with variable practice period durations. In Experiment
3, each practice period lasted 5 s and was followed by a rest period of 10 s
for a total of 48 trials, matching a total task duration of 12 min. In
Experiment 4, each practice period lasted 5, 6, 7, 8, 9, or 10 s, jittered
across a total of 41 trials and was followed by a rest period of 10 s,
matching a total task duration of 12 min. In all experiments, participants
were instructed to focus on the visually presented five-item sequence
(during practice periods) or on the text “rest” (during rest periods)
displayed on the monitor. After the task, participants were asked which
hand they used to type the sequence, their age, and some basic
demographic questions for institutional reporting requirements. Stimuli
were programmed, presented and responses recorded with Psytoolkit52,53.

Data analysis
Performance. Analysis of motor performance was done identically as
previously reported2. Tapping speed was quantified as the average of the
time intervals (in ms) between adjacent keypresses within correct
sequences24 divided by 1000 (keypresses/s). Performance within each trial
was calculated as the mean tapping speed of all correctly performed
sequences (including correct sequences the participant has not completed
by the end of the trial5,54). Number of correct sequences was calculated per
trial, also including correct sequences the participant has not completed by
the end of the trial.

M. Bönstrup et al.

8

npj Science of Learning (2020)     7 Published in partnership with The University of Queensland



Each assignment was checked for correct implementation and adherence
to task instructions, which may be insufficient by some participants due to
the less controlled experimental setting offered via crowdsourcing
marketplaces. Incorrect implementation of instructions or adherence was
defined by (i) completion of the task with the right hand (documented by
given answer to question after the task), (ii) completion of only one
sequence repetition beyond trial 1, (iii) keypresses consistently different
from instructed sequence, (iv) response times following the prompt to tap
any number during breaks in Experiments 3 and 4 indicative of lack of
attention to the screen, (v) deterioration of tapping performance over
consecutive trials after initial increase (>20% loss in speed), indicative of
diminished effort, (vi) no registered responses in any trial.
Total session learning over all trials (online learning) was calculated as the

difference between the mean tapping speed, or number of correct
sequences, of the last and the first trial. Data were analyzed using custom
written code on MATLAB 2017b.

Modeling of performance curves. Performance curves of mean tapping
speed and number of correct sequences per trial, B(t), were fitted using an
exponential function L(t):

B tð Þ � LðtÞ ¼ k1 þ k2 � 1� e�k3t
� �

; (1)

where k1−3 represent the initial performance (function intercept),
maximum performance (function plateau) and learning rate (function
slope) respectively; and t∈ [1, +∞) represents trial. Parameters k1−3 were
estimated by gradient descent, with the objective function defined as the
root mean square error between B and L functions:

min
k2R3

1
T

XT

t

B tð Þ � LðtÞð Þ2þλ k22
�� ��; (2)

where λ k22
�� �� is the L2 regularization term with λ ¼ 0:1. Lower and upper

bound constraints for each parameter k1−3 were set to [−2, 0, 0] and [4, 9, 6],
empirically derived by minimizing the mean squared error between modeled
and real values over a range of parameters. Additional inequality constraints
were set to a+ 0.15b > 0 and a+ b < 10, which control for a positive learning
when one trial has been executed and a physiologically plausible range of
performance increase, respectively. The parameters were derived from a grid
search of parameters on a subset of learning curves. Both the boundaries and
inequalities remained constant throughout all following experiments to avoid
overfitting within each experimental condition.

Microscale learning. We studied trial-by-trial early learning by dissecting
performance improvements occurring during practice (micro-online) and
during rest (micro-offline) periods, as done previously2. Micro-online learning
was defined as the difference in tapping speed between the first and the last
correct sequence of a practice period. Micro-offline learning was the
difference in tapping speed of the last correct sequence of a practice period
and the first correct sequence of the next practice period (Fig. 1b, e). The
tapping speed of incomplete sequences was averaged with the previous
complete sequence. In the case of only one correctly performed sequence,
the speed of that sequence served as the first and last tapping speed of each
trial. To derive the micro-online and micro-offline contribution to early
learning we calculated the sum over all early learning trials at the participant
level. Early learning was defined as trial 1–5, based on significant
performance decrements, starting by trial 6 in Experiment 1 (trial-by-trial
two-tailed one-sample nonparametric permutation test, P < 0.05, uncor-
rected), which may spuriously inflate micro-offline learning values due to
preceding motor slowing. Thus, five values (practice periods) were summed
for micro-online, and four values (rest periods) were summed for micro-
offline learning. Early learning was derived as the sum of all micro-online and
micro-offline values. Given the requirement of at least two completed
sequences per trial for the analysis of microscale learning dynamics,
participants with a lower performance were excluded from analysis of
Experiment 3 and 4. For better comparability of these experimental groups to
the performance level of the original group recorded in Experiment 1, a
corresponding performance threshold was applied to the group 1
experimental group in analysis of Experiment 3 and 4.

Visualization
Visualization of performance data was done identically as previously
reported2. Performance curve: the within-trials time-resolved representa-
tion of tapping speed for illustration of the performance curve in Fig. 1b, f,
2b, 3b, 4b was derived as follows: for each participant, the tapping speed

at each of the 10,000ms constituting one practice period was defined as
the average inter-tap interval of the sequence the participant was
executing at that moment. The duration of the execution of each
sequence was defined as the time between the first keypress of that
sequence (or the beginning of the practice period) and the first keypress of
the next (or the end of the practice period). The participants’ time series
were averaged at each millisecond to give the performance curve.

Quantification and statistical analysis
Early learning including micro-online, micro-offline, and total early learning,
as well as online learning over all trials were tested for significance using two-
tailed nonparametric permutation tests, one-sampled (within group compar-
ison) or two-sampled (across groups comparison). P values are reported
uncorrected for each test. Statistically not different across group comparisons
were tested for equivalence using TOST for equivalence55, tests with an
equivalence interval of −0.05 to 0.05 and alpha level of 0.05. This tests if any
group difference has at least a minimal effect size (0.05)29.
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