
Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model

Erik C.M. Johnson1, 2 Marc Habermann1 Soshi Shimada1 Vladislav Golyanik1 Christian Theobalt1

1Max Planck Institute for Informatics, SIC 2Saarland University, SIC

Figure 1: We present a new method for 4D reconstruction of dynamic scenes using a single RGB video. In contrast
to previous work, our approach can handle small- and large-scale deformations of arbitrary objects due to our separation of
non-rigid deformations using a canonical space, our unbiased volume rendering formulation, and a novel scene flow loss.

Abstract

Capturing general deforming scenes is crucial for many
computer graphics and vision applications, and it is espe-
cially challenging when only a monocular RGB video of
the scene is available. Competing methods assume dense
point tracks, 3D templates, large-scale training datasets, or
only capture small-scale deformations. In contrast to those,
our method, Ub4D, makes none of these assumptions while
outperforming the previous state of the art in challenging
scenarios. Our technique includes two new—in the con-
text of non-rigid 3D reconstruction—components, i.e., 1)
A coordinate-based and implicit neural representation for
non-rigid scenes, which enables an unbiased reconstruc-
tion of dynamic scenes, and 2) A novel dynamic scene flow
loss, which enables the reconstruction of larger deforma-
tions. Results on our new dataset, which will be made pub-
licly available, demonstrate the clear improvement over the
state of the art in terms of surface reconstruction accuracy
and robustness to large deformations. Visit the project page
https://4dqv.mpi-inf.mpg.de/Ub4D/.

1. Introduction
Reconstructing the deforming 3D geometry of an object

from image data is a long-standing and important problem

in computer vision with many applications in the movie and
game industries, as well as VR and AR. Especially inter-
esting and the subject of this work is the 4D reconstruc-
tion from a single RGB video, as this is the most intuitive
and user-friendly capture setup. Over the last decade, many
monocular 4D reconstruction approaches have been pro-
posed; they can be categorized into dense non-rigid struc-
ture from motion (NRSfM) methods, shape-from-template
(SfT) approaches, and neural template-free approaches.

NRSfM methods [5, 46, 10, 1, 28, 17, 26, 43] usu-
ally assume dense and coherent 2D point tracks connect-
ing the frames of the video. While accurate results can
be obtained, it is usually hard to satisfy this assumption in
real-world captures, limiting the use case in practice. SfT
methods [39, 25, 58, 42, 9] assume an object template is
given. While this provides a strong prior for this highly ill-
posed task, initial reconstruction errors in the template can
lead to tracking errors. Importantly, topological changes
cannot be captured by such methods. Last, template-free
learning-based approaches have shown compelling results
for category-specific (e.g., humans [38, 37]) and general
scenes with small deformations [47]. However, generaliza-
tion beyond categories and the reconstruction of large scale
deformations remains a challenge.

To this end, we propose Unbiased 4D (Ub4D), i.e., a
novel method for the 4D reconstruction of a deforming ob-

1

ar
X

iv
:2

20
6.

08
36

8v
1

 [
cs

.C
V

]
 1

6
Ju

n
20

22

https://4dqv.mpi-inf.mpg.de/Ub4D/

ject given a single RGB video of the object and, option-
ally, a rough proxy geometry; see Figure 1. Using a signed
distance field (SDF) network, we represent the object of
interest as an implicit SDF in canonical space. In order
to obtain the deformed per-frame geometry, we propose a
bending network, which deforms the current frame into a
shared canonical space. To supervise the SDF and bend-
ing network, we impose a volume rendering loss extend-
ing prior work on unbiased volume rendering [51] to dy-
namic scenes. In particular, we compare the rendered im-
ages and object segmentation masks with the ground truth
images and masks. This formulation alone still struggles
with larger scene deformations. Thus, in addition, we pro-
pose a scene flow loss, which attaches free space to a rough
mesh or sparse 3D proxy in order to guide the scene defor-
mations predicted by the bending network. In summary, our
primary technical contributions are as follows:

• Ub4D, i.e., a new approach for dense 4D surface re-
construction from monocular image sequences based
on an implicit surface representation and a dynamic
bending network.

• A new scene flow loss leveraging coarse geometric
proxies (dense and sparse), which further increases the
robustness to large-scale scene deformations.

• Extending the unbiased formulation of volume render-
ing [51] to general deforming scenes.

We also introduce a new benchmark dataset for general
and large-scale deforming scenes and demonstrate that our
method outperforms the previous state of the art in terms of
accuracy and robustness to large scale scene deformations.
The code and the new dataset will be made publicly avail-
able for future research.

2. Related Work
Several method classes for 3D reconstruction of non-

rigidly deforming surfaces and shapes from monocular im-
age sequences are known in the literature. They differ in the
assumptions they make about the available priors and types
of motions and deformations. In this section, we review the
methods most closely related to our approach.
Non-Rigid Structure from Motion (NRSfM). NRSfM
operates on point tracks over the input monocular views
[5, 46]. It then factorizes them into camera poses and de-
formable (per-frame) geometry of observed surfaces. As-
suming that accurate point tracks can be obtained is a re-
strictive assumption in practice. If points of the input views
are tracked densely, NRSfM can then even be used to ob-
tain dense surfaces [10, 1, 28, 11]. Both neural NRSfM
methods for the sparse [17, 26, 49] and dense [43] cases
were recently proposed in the literature. Deep NRSfM
[17, 26, 49, 43] is related to NRSfM in that it lifts 2D

input points in 3D and does not rely on 3D supervision.
Ub4D is similar to NRSfM in that 1) it has the least num-
ber of assumptions (no training datasets, no 3D priors) and
2) requires camera or object movement while recording the
scene. It differs from NRSfM in that it operates directly on
images with no need for 2D correspondences.
Shape from Template (SfT). This class of techniques as-
sumes a 3D shape prior called a template. SfT is then posed
as the problem of tracking and deforming the template so
that the new states plausibly reproject to the input images
[39, 25, 58, 12]. While some approaches have demonstrated
accurate results, even for larger deformations, they come at
the cost of being category-specific (e.g., they only work for
humans [13, 4]). Further, the assumption of a known 3D
template is limiting when dealing with unknown objects.
Moreover, obtaining the template usually requires a sepa-
rate step, which can be difficult. φ-SfT [14] explains 2D
observations through physics-based simulation of the de-
formation process. In contrast to them, we do not model
physics laws explicitly. Moreover, we target a different
class of non-rigid objects (thin surfaces [14] vs articulated
objects). Deep SfT or direct surface regression methods as-
sume multiple states available for training [42, 9]. Our ap-
proach differs from SfT in that it only requires 2D images
as input. Nonetheless, it can benefit from a subset of frames
observing static scene states to initialise the canonical vol-
ume. Note that—in contrast to SfT techniques—observing
a scene under rigidity assumption [58] or having a template
in advance from elsewhere is not a strict requirement for us.
Monocular 3D Mesh Reconstruction. 3D mesh recon-
struction methods deform an initial mesh to match image
observations [50, 15, 18, 53]. They are exclusively neural
techniques, usually trained using 2D data only, i.e., raw im-
age collections. One of their limitations is that large sets
of images are not available for all object categories (e.g.,
consider rarely observed biological species). Moreover, the
methods, which do not require 2D image priors, might cap-
ture coarse articulations but fail to reconstruct fine surface
details [15, 53]. Starting from a sphere mesh is a restricting
assumption. Even though many watertight meshes are, in
theory, topologically equivalent to a sphere, a practical at-
tempt to guide sphere deformations by image cues can con-
verge to local minima.
Free Viewpoint Video and Neural Surface Extraction.
Coordinate-based volumetric neural representations learned
from 2D observations, such as NeRF [24], can be used to
render high-quality novel views of rigid [57, 7, 20] and non-
rigid scenes [47, 34, 21, 33, 29, 35, 19, 52]. While they
have shown impressive results, the volumetric representa-
tion they use lacks surface constraints so that it is difficult
to extract high-quality surfaces from the learned represen-
tation. At the same time, some works [27, 51, 55, 56] pro-
pose to represent 3D scenes as a neural SDF and use vol-

2

ume rendering to learn the representation. We are inspired
by the recent progress in neural volumetric representations
learned without 3D supervision. Even though our goal is
not novel view rendering and editing, we show that a NeRF-
inspired component can be useful for monocular non-rigid
3D reconstruction. Moreover, surface extraction methods
[27, 51, 55, 56] have focused on rigid objects so far. Thus,
we demonstrate that the problem we are interested in, i.e.,
monocular non-rigid 3D reconstruction, significantly bene-
fits from advances in another, distantly related research di-
rection [44].

3. Method
The goal of Ub4D is to reconstruct the dense and deform-

ing surface of an object from a single RGB video. There-
fore, our method takes as input the monocular image se-
quence {Ii, Si : i ∈ [1, Nf]} of the segmented object con-
sisting of Nf RGB images Ii and respective segmentation
masks Si. We assume the extrinsic and intrinsic camera pa-
rameters are known. Optionally, corresponding per-frame
coarse geometric proxies with Nv vertices can be provided
{Mi : i ∈ [1, Nf]}, where Mi = {v(k)

i : k ∈ [1, Nv]}
and v

(k)
i denotes vertex k of the mesh in frame i. Note that

we only use corresponding vertices, i.e. no connectivity in-
formation, which allows the use of sparse point sets (e.g.
skeleton) as the geometric proxy. Given these inputs, Ub4D
outputs an explicit geometry for every frame.

A diagram of our method, along with its inputs and out-
puts, is shown in Figure 2. We first describe our model
for non-rigid deformations in Section 3.1. Then we present
a rendering method for supervision with 2D images and
object segmentations (Section 3.2). Next, we formulate a
novel loss on the scene flow using a geometric proxy pro-
vided as input to our method (Section 3.3). Finally, we ex-
plain how an explicit geometry can be obtained from our
implicit scene representation (Section 3.4).

3.1. Non-Rigidity Model

We model temporal non-rigid deformations as a vector
field projecting points from the frame space into a canoni-
cal space. One can conceptualize this by considering it as
a bending of the straight rays originating from the camera.
Given a straight ray with an origin o ∈ R3 and a view-
ing direction d ∈ R3 as r(t) = o + td, we bend this ray
with a frame-specific bending network bi : R3 → R3 as
r̃i(t) = r(t) + bi(r(t)) where i denotes the frame. This
bent ray is a directed parametric path in R3 like the straight
ray, but, where the derivative of the straight ray is constant
(i.e. dr(t)

dt = d), the bent ray has an instantaneous direction
at each point along it of dr̃i(t)

dt = d+ ∂bi

∂r(t)d. We desire that
this bending network transforms points from frame space
into a single canonical representation of the object shared

by all frames of the input.
While this discussion presents the bending network as a

per-frame vector field throughout R3, it is implemented us-
ing a per-frame latent code li ∈ R64. This latent code is
given as input along with a point in space to a Multi-Layer
Perceptron (MLP) b : (R3,R64)→ R3 and the latent codes
are optimized during training. li passed to the bending net-
work is the only frame-specific element in our method and
no other network receives it. One can see this as a factor-
ization between the temporal and spatial domains where our
method forces time to be entirely modeled by the latent code
and the bending network.

This is similar to the non-rigidity model employed in
NR-NeRF [47]. However, we propose a different regu-
larization to enable the modeling of larger deformations,
which also removes the need to learn a rigidity score
throughout the scene. Whereas NR-NeRF [47] penalizes
the bending network output for its absolute length, we in-
stead enforce that the deformation of the current frame is
similar to that of the neighboring frames. This assumes that
neighboring frames represent similar object states, which
is a more reasonable assumption for dynamic scenes com-
pared to the absolute amount of deformation. More specifi-
cally, forNs samples along a straight ray r, we penalize the
bending network as:

LNBR =
1

Ns

Ns∑
z=1

∑
j∈N (i)

ω
(z)
i ||bi(r(t

(z)))− bj(r(t
(z)))||22, (1)

where ω(z)
i is the visibility weight at sample z along the bent

ray (see Section 3.2) and N (i) are the neighbours of frame
i. We also penalize the divergence of the bending network
as:

LDIV =
1

Ns

Ns∑
z=1

ω
(z)
i |∇ · bi(r(t(z)))|2, (2)

where we use the unbiased, approximated divergence as
presented in Tretschk et al. [47].

3.2. Rendering Method

Recent studies on static scene reconstruction have
demonstrated that volume rendering enables more stable
training compared to surface rendering [56, 51, 55]. There-
fore, we extend the volume rendering method proposed in
NeuS [51] to dynamic scenes. Let f : R3 → R be a Signed
Distance Field (SDF) modeled by an MLP that takes as in-
put sampled points r̃i(t) on the bent ray. Then, NeuS [51]
shows that we can compute the opaque density as:

ρi(r̃i(t)) = max

{
−dΦs

dt

(
f(r̃i(t))

)
Φs
(
f(r̃i(t))

) , 0

}
, (3)

3

Figure 2: Our Ub4D approach takes a sequence of images and respective foreground segmentations recorded with a single
calibrated RGB camera as input. In addition, each frame is also equipped with a learnable latent code. Given this, our
method learns a canonical and colored SDF representing the static scene. Our bending network then maps the frame space to
canonical space and volume rendering and marching cubes can produce per-frame renderings and geometries, respectively.
We then weakly supervise our scene representation with image-based losses as well as spatio-temporal priors including our
novel scene flow loss.

where Φs is the logistic Cumulative Distribution Function
(CDF) with standard deviation s−1. This is in contrast to the
original formulation, which operates on unbent ray sample
points rather then bent ones. To calculate the color of each
camera ray, we employ a hierarchical sampling procedure
with Ns samples in total (samples in coarse and fine stages)
along the bent ray {r̃i(t(z)) : z ∈ Z, z ∈ [1, Ns]} where
t(z) < t(z+1),∀z. Then, the color of the ray can be com-
puted as:

Î(r̃i) =

Ns−1∑
z=1

ω
(z)
i c

(
r̃i
(
t(z)
)
, r̃i
(
t(z+1)

)
− r̃i

(
t(z)
))
,

(4)

where c(·) is a color function modeled by an MLP, which
takes as input the point position r̃i(t) and the viewing direc-
tion of the ray at that point, which is approximated with a
forward difference. The weight ω(z)

i is occlusion-aware and
unbiased with respect to the object’s surface [51], which
is formulated based on the opaque density ρi(r̃i(t)) from
Equation (3) as follows:

ω
(z)
i = T

(z)
i α

(z)
i , where (5)

T
(z)
i =

z−1∏
ζ=1

(1− α(ζ)
i), with (6)

α
(z)
i = max

{
Φs

(
f
(
r̃i(t

(z))
))
− Φs

(
f
(
r̃i(t

(z+1))
))

Φs

(
f
(
r̃i(t(z))

)) , 0

}
,

(7)

and α
(z)
i = 1− exp

−∫ t(z+1)

t(z)
ρ(t)dt

 . (8)

Importantly, the discrete opacity α
(z)
i derivation from

NeuS [51] still applies in the case of a bent ray as replacing
the constant viewing direction with dr̃i(t)

dt does not affect
the analysis.

In addition to the color, we can determine if a ray inter-
sects the object by computing the sum of the weights:

Ŝ(r̃i) =

Ns−1∑
z=1

ω
(z)
i , (9)

where Ŝ approaches 1 for a ray intersecting the object and
otherwise Ŝ approaches 0.

Supervision. We supervise the dynamic scene representa-
tion by computing the L1 distance between the color of each
bent ray r̃

(p)
i and the corresponding ground-truth color I(p)

i

of pixel p:

LCOL =
1

Np

Np∑
p=1

∣∣∣Î(r̃(p)
i

)
− I(p)

i

∣∣∣, (10)

where Np is the number of pixels sampled from frame i.
To more explicitly ensure that our approach solely focuses
on reconstructing the foreground object, we also define a
segmentation loss LSEG as the binary cross entropy between
the estimated segmentation Ŝ

(
r̃

(p)
i

)
and the ground truth

4

Figure 3: Graphical depiction of the relationship between
the scene flow from frame i to j (i.e., mi→j(xi)) and the
bending network projecting both points to the same canon-
ical position xc.

object segmentation S(p)
i . Finally, we enforce f to be an

SDF with the Eikonal loss defined as follows:

LEIK =
1

NpNs

Np∑
p=1

Ns∑
z=1

(|∇f(r̃
(p)
i (t(z)))| − 1)2. (11)

3.3. Scene Flow Loss

So far, very large scene deformations remain a challenge
for Ub4D since it can create erroneous multiple geometries
in the canonical space to best explain the monocular obser-
vations. This is particularly noticeable for scenes contain-
ing large translations (see Figure 5b). To resolve this, we
accept an additional input in the form of a coarse and co-
herent per-frame geometric proxy. From these coarse 3D
correspondences, we can compute an estimate of the scene
flow, which can then be used to regularize the bending net-
work. This greatly reduces the effect of duplicate geome-
tries in the canonical space.

Consider a function mi→j : R3 → R3 that returns the
scene flow estimate at a point from frame i to j. The scene
flow allows us to transform points from a frame i into any
other frame j as xj = xi+mi→j(xi). Given that the bend-
ing network projects a point xi in frame space into canoni-
cal space resulting in the point xc, it follows:

xc = xi + bi(xi) = xj + bj(xj) =

= xi + mi→j(xi) + bj
(
xi + mi→j(xi)

)
.

(12)

Intuitively, this means that a point in frame i and its cor-
responding point in frame j determined through the scene
flow mi→j(xi) should be mapped to the same point xc in
canonical space by the bending network (see Figure 3). We
can then formulate it as a loss for a set X of sampled points:

LFLO =
1

|X |
∑
x∈X

||mi→j(x) + bj
(
x+mi→j(x)

)
− bi(x)||22.

(13)

The scene flow from the geometric proxies can only be
directly computed on the surface. However, our implicit
surface representation can potentially be evaluated at any
point in 3D space. Thus, we extrapolate this scene flow to

any point in R3 with a convex combination over the vertices
using a kernel function depending on the distance to the ver-
tices inspired by the spatial weighting approach in bilateral
filtering [45]:

m′i→j(x) =

∑Nv

k=1 wλ1

(
||x− v

(k)
i ||2

) (
v

(k)
j − v

(k)
i

)∑Nv

k=1 wλ1

(
||x− v

(k)
i ||2

) ,

(14)

where wλ1
(x) = e−λ1x

2

is a kernel function with λ1 as a
scale parameter affecting the weighting of vertex flow es-
timates. Additionally, we add an attenuation term, so that
the scene flow falls off as the distance to the nearest vertex
increases:

mi→j(x) = wλ2

(Nv

min
k=1
||x− v

(k)
i ||2

)
m′i→j(x) (15)

where wλ2(x) = e−λ2x
2

is a kernel function with λ2 as a
scale parameter defining the extent of the kernel.

3.4. Surface Extraction

To convert our deforming and implicit scene representa-
tion into an explicit geometry, we use the Marching Cubes
algorithm [22]. For points sampled in frame i, we trans-
form them from the frame space into the canonical space,
i.e., xc = xi + bi(xi), where xi is a point sampled for
marching cubes and xc is the canonical space point at which
we then evaluate the SDF. We restrict the selection of frame
march points to the camera frustum of the given frame since
any space not seen in that frame is unconstrained by our re-
construction losses and may contain aberrant geometry.

4. Results
In the following, we visually and quantitatively compare

our method to previous works on monocular 4D scene re-
construction (Sec. 4.1). Next, we validate the design choice
of using an SDF network rather than a density network
(Sec. 4.2). Finally, we ablate other important design choices
over several baselines (Sec. 4.3) and show more qualitative
results on real world data (Sec. 4.4). All experiments were
performed using a single NVIDIA Quadro RTX 8000 with
48 GB RAM. For more qualitative results, we refer to the
supplement and the video.
Dataset. We aim at reconstructing the full deforming ge-
ometry and, thus, the monocular capture requires sufficient
camera motion around the dynamic object to observe every
part at least once. However, we found that existing datasets
either capture static scenes with a circulating camera path
around the object or dynamic scenes with very limited cam-
era motion. Therefore, we create our own dataset of dy-
namic objects with sufficient camera motion, which con-
tains synthetic scenes for quantitative evaluations and real
scenes for qualitative results.

5

For the synthetic evaluation, we create two scenes in
Blender [8] showing a deforming cactus, referred to as Cac-
tus, and a moving human, referred to as RootTrans. Each of
the scenes has an image resolution of 1024×1024 and is
150 frames long. We define a moving camera viewing the
dynamic object and provide the camera parameters as input
to our method. To generate the proxy geometries, which are
required for our proposed scene flow loss, we leverage a hu-
man capture method [31] for the RootTrans sequence (fur-
ther details are included in our supplementary material). For
the Cactus sequence, we use a highly downsampled version
of the ground-truth geometry as a coarse proxy. A visual-
ization of the proxies is shown in Figure 4.

For the evaluation of our method on real data, we cap-
ture two sequences: one of a moving human, called the Hu-
manoid sequence, and one of a deforming cactus toy, called
RealCactus. We capture these sequences at resolutions of
960×1280 and 1080×1920, respectively, with a mobile
phone camera. Again each sequence contains around 150
frames. To obtain the camera parameters, we use the rigid
Structure from Motion (SfM) software COLMAP [40, 41].
As with the RootTrans synthetic sequence, we generate
proxy geometries for the Humanoid sequence using the
same human capture method [31]. However, unlike the
RootTrans sequence, we only input the sparse skeleton (i.e.
12 vertices) as the proxy, rather than the full posed SMPL-
X [31] model. This demonstrates that our proxy need not
include any information about the location of the surface.
The RealCactus sequence does not have proxy geometry
as it includes an initially rigid subsequence. For the fore-
ground masks, we manually labeled a few frames and then
trained a segmentation network, based on the UNet archi-
tecture [36], on those labeled frames, which then provides
masks for all frames in a semi-automated fashion.

For additional evaluation of our method, we leverage
the Lego object 1 made available by Mildenhall et al. [24],
which we animate over time by lifting the boom and tilting
the bucket (see Figure 5a), to obtain a dynamic scene. Fur-
ther, we defined a monocular camera path for 150 frames,
rendered monocular images and masks at a resolution of
800×800, and extracted the known camera extrinsics and
intrinsics. This scene includes an initially rigid subsequence
and does not require proxy geometry for our method.

Evaluation Metrics. To quantitatively evaluate our method
and compare it to the state-of-the-art methods, we compute
the Chamfer distance (CD) and Hausdorff distance (HD) be-
tween our result and the ground-truth geometry. Since we
evaluate on synthetic scenes without a meaningful physical
scale, we report the absolute numbers without any physi-
cal unit. The baseline methods either assume a fixed cam-
era [58] or predict the camera [53, 43] and, in both cases, we

1Released under CC-BY-3.0 and modifications are made. Originally
created by Blend Swap user Heinzelnisse.

apply ICP [3] to rigidly align their meshes with the ground
truth in order to compare to our method, which assumes
camera motion is known.

4.1. Quantitative Comparison

We compare our method to N-NRSfM [43], DDD [58],
LASR [53], and ViSER [54]. N-NRSfM is a Non-Rigid
Structure-from-Motion (NRSfM) method, which uses an
auto-decoder to deform a mean shape based on a learned
per-frame latent representation. DDD is template-based; it
deforms the template to minimize an energy formulation.
For DDD, we provide the first frame’s ground-truth mesh
as a template. Both LASR and ViSER do not require a
template and recover a rigged mesh that is animated over
the image sequence. Several other 4D reconstruction tech-
niques with source code available online, such as Shimada
et al. [42] or Ngo et al. [25], do not work under our assump-
tions; so, we do not include them. For each related method,
we follow the original papers to find the best possible hyper-
parameters.

The quantitative results on the synthetic sequences are
reported in Table 1a and a qualitative comparison is shown
in Figure 4. Ub4D outperforms the state-of-the-arts both
quantitatively and qualitatively. We found that prior work
struggles with large scale deformations resulting in track-
ing errors [58], has a limited resolution [53], [54], or only
reconstructs the frontal geometry [43] while ours accurately
captures the large deformations of the entire geometry. Also
note that although we rigidly align the results for other
methods with the ground truth, our method still achieves
the most accurate results. For completeness, we also report
our results after ICP, which is even more accurate.

4.2. Comparison to Volume-based Representations

Like some previous works [51, 56], our method lever-
ages an SDF representation to model the surface of the
object. An alternative choice would be predicting volume
density with a network [47, 24]. While a volume density
representation has proven to be a good choice for novel
view synthesis, naïvely extracting a surface from such a
density representations results in a noisy and inaccurate ge-
ometry as demonstrated in Figure 5a, where we compare
to the state-of-the-art method [47], called NR-NeRF, for
novel view synthesis of dynamic scenes. It suffers from
noisy surfaces and can result in significant inaccuracies for
deforming parts of the object since these regions have rel-
atively low densities. In contrast, an SDF representation
removes the need to determine a threshold when extracting
the explicit geometry and must add a zero crossing, i.e., a
surface, in order to satisfy the reconstruction losses. Fur-
ther, this example shows the limited ability of NR-NeRF
to model large deformations as they penalize the absolute

6

https://creativecommons.org/licenses/by/3.0/legalcode

(a)

Scene Method CD (HD) (↓)

Cactus

LASR [53] 20.23
ViSER [54] 14.34

N-NRSfM [43] 102.00 (5.74)
DDD [58] 34.71

Ub4D (ours) 3.06 (2.42)
Ub4D after ICP 2.71 (2.24)

RootTrans

LASR [53] 0.39
ViSER [54] 0.37

N-NRSfM [43] 0.38 (0.09)
DDD [58] 0.26

Ub4D (ours) 0.23 (0.14)
Ub4D after ICP 0.03 (0.02)

(b)

Scene Comparison CD (↓)

Cactus

w/o LFLO 8.32 †

w/o LEIK 5.47
w/o LFLO, LNBR, LDIV 5.34 †

Ub4D (Ours) 3.06

RootTrans

w/o LFLO 60.25
w/o LEIK 0.29

w/o LFLO, LNBR, LDIV 3.83 †

Ub4D (Ours) 0.23

Table 1: a Quantitative comparison to previous work. We report the Chamfer distance (CD) between the ground truth
object geometry and the respective reconstructions averaged over the sequence. Since N-NRSfM [43] provides only a planar
surface (not a watertight mesh), we additionally report the Hausdorff distance (HD) averaged over the sequence for it and our
method. Note that we quantitatively outperform the previous work. b Quantitative ablation study. We report the Chamfer
distance (CD) between the ground-truth scene geometry and the respective reconstructions averaged over the sequence. “†”
denotes frames that do not produce any geometry (due to frustum culling). Note that our full method provides the best result
for both scenes.

offset length, which our neighbouring frame regularization
allows us to handle.

4.3. Ablation Study

We validate our design decisions through an ablation
study on the Cactus and RootTrans sequences and report the
metrics in Table 1b. Our full supervision consists of six loss
terms: LCOL, LSEG, LEIK, LFLO, LNBR and LDIV. We com-
pare the full method to removing the terms: 1) LFLO, which
is our novel flow loss, 2) LEIK, which directly regularizes
the SDF and color network and indirectly regularizes the
bending network and 3) LFLO, LNBR, and LDIV, which are
all direct bending network regularizers. Most importantly,
the full combination of losses provides the best result vali-
dating the contribution of each term.

Concerning 1), our flow loss especially helps for the
large root translation and arm motion of the RootTrans se-
quence. Without using this loss, multiple different geome-
tries are synthesized, which fit the reconstruction losses.
Then, the bending network can “switch" between the differ-
ent copies throughout the sequence. This results in overfit-
ting to the camera pose and exploits monocular depth ambi-
guities to generate geometry that is not seen in other views.
Figure 5b shows this overfitting to the camera pose with
multiple distinct geometries being used over the sequence
to satisfy the reconstruction losses.

Regarding 2), we found that not using LEIK leads to over-
all noisier surfaces and thus the quality is reduced. Fi-
nally concerning 3), without any explicit regularization of

the bending network, the deformations can be almost arbi-
trary again leading to overfitting to individual frames by vi-
olating 3D consistency resulting in a reduced accuracy. We
even observed that the network was not able to produce any
geometry for some frames, which validates the necessity of
explicit regularization of the bending network.

4.4. Qualitative Results on Real Word Scenes

We next demonstrate that Ub4D works well on real-
world scenes. Figure 6 visualizes our RealCactus sequence
depicting a dancing cactus and the Humanoid sequence
where a person is moving their arms and legs. Although in
both cases the dynamic scenes contain large deformations,
our method robustly and accurately reconstructs individual
frame geometries, which also contain medium frequency
details. We refer to our supplement for further visualiza-
tions.

5. Discussion and Possible Extensions
Ub4D significantly outperforms all competing methods

in our evaluations, both numerically and qualitatively. In
fact, we found that none of the existing methods can deal
with captures that include object motion and severe camera
motions while our method leverages such recording condi-
tions to its benefit, inspired by classical non-rigid structure
from motion algorithms.

However, in the case of severe scene deformations we
rely on a geometric proxy. On the one hand, this is the
cost for significantly improved results. On the other hand,

7

Figure 4: Qualitative comparison for select frames of our synthetic sequences rendered from novel views. Note that com-
peting methods struggle with reconstructing the dense and deforming surface, while our method captures the large scale
deformations as well as medium scale details.

our scene flow loss is versatile in the sense that this proxy
can be either a mesh or even just a few points, as long as
the proxy roughly describes the deformation of the scene
(see Fig. 6). Future work involves exploring this direction
even further with the main question being: How sparse can
the proxy be and could it even be a 2D entity in the image
plane? Along these lines, we see multiple avenues for fu-
ture research, including tracking a generic proxy along with
learning the SDF and using 2D image features for initialis-
ing a sparse proxy.

6. Conclusion
We presented, Ub4D, a method of a new class for 3D re-

construction of deformable scenes from a single RGB cam-
era. It represents the scene as a learned static canonical vol-
ume with an implicit surface. A bending network warp-

ing the frames into this canonical volume accounts for the
scene deformation. Our scene flow loss improves the re-
construction accuracy and robustness in the case of large
deformations. The qualitative and quantitative comparisons
to different method types show that our approach is a clear
step towards dense and deformable tracking of general and
largely deforming scenes solely using a single RGB camera.
We hope to see more work in this direction in the future.

8

(a) (b)

Figure 5: (a): Comparison of Ub4D using an SDF scene representation (without scene flow loss) to a density-based scene
representation, called NR-NeRF [47]. To generate surfaces for NR-NeRF, we apply marching cubes [22] with a threshold of
50. The density-based representation leads to an overall noisier surface compared to our approach. We also penalize bending
using neighbouring frame offsets allowing Ub4D to accurately reconstruct large deformations. (b): Qualitative ablation of the
scene flow loss (LFLO) on the RootTrans sequence. Right column shows the scene from a static novel view with the geometry
in the camera frustum highlighted with a blue box. Note that without the proposed scene flow loss using proxy geometry,
Ub4D can produce multiple distinct copies of the character at different scales by exploiting the monocular depth ambiguity.

Figure 6: Qualitative results of our method for a non-humanoid object, RealCactus, left, and a human character, Humanoid,
right. The scene flow loss is only used for the human character and only uses a sparse skeleton geometric proxy (12 vertices).
This shows that the geometric proxy need not be dense or provide any information about the surface. Note that the recovered
geometry nicely overlays onto the input image but also looks plausible from a novel 3D viewpoint.

9

References
[1] Mohammad D. Ansari, Vladislav Golyanik, and Didier

Stricker. Scalable dense monocular surface reconstruction.
In International Conference on 3D Vision (3DV), 2017.

[2] Matan Atzmon and Yaron Lipman. Sal: Sign agnostic learn-
ing of shapes from raw data. In Computer Vision and Pattern
Recognition (CVPR), 2020.

[3] Paul J. Besl and Neil D. McKay. Method for registration
of 3-d shapes. In Sensor fusion IV: Control Paradigms and
Data Structures, 1992.

[4] Federica Bogo, Angjoo Kanazawa, Christoph Lassner, Peter
Gehler, Javier Romero, and Michael J. Black. Keep it SMPL:
Automatic estimation of 3D human pose and shape from a
single image. In European conference on computer vision
(ECCV), 2016.

[5] Christoph Bregler, Aaron Hertzmann, and Henning Bier-
mann. Recovering non-rigid 3d shape from image streams.
In Computer Vision and Pattern Recognition (CVPR), 2000.

[6] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A.
Sheikh. Openpose: Realtime multi-person 2d pose estima-
tion using part affinity fields. Transactions on Pattern Anal-
ysis and Machine Intelligence (TPAMI), 2019.

[7] Julian Chibane, Aayush Bansal, Verica Lazova, and Gerard
Pons-Moll. Stereo radiance fields (srf): Learning view syn-
thesis from sparse views of novel scenes. In Computer Vision
and Pattern Recognition (CVPR), 2021.

[8] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, 2018.

[9] David Fuentes-Jimenez, Daniel Pizarro, David Casillas-
Perez, Toby Collins, and Adrien Bartoli. Texture-generic
deep shape-from-template. IEEE Access, 9:75211–75230,
2021.

[10] Ravi Garg, Anastasios Roussos, and Lourdes Agapito. Dense
variational reconstruction of non-rigid surfaces from monoc-
ular video. In Computer Vision and Pattern Recognition
(CVPR), 2013.

[11] Vladislav Golyanik, André Jonas, Didier Stricker, and Chris-
tian Theobalt. Intrinsic Dynamic Shape Prior for Dense Non-
Rigid Structure from Motion. In International Conference on
3D Vision (3DV), 2020.

[12] Marc Habermann, Weipeng Xu, Helge Rhodin, Michael
Zollhoefer, Gerard Pons-Moll, and Christian Theobalt. Nrst:
Non-rigid surface tracking from monocular video. In Ger-
man Conference on Pattern Recognition (GCPR), 2018.

[13] Marc Habermann, Weipeng Xu, Michael Zollhöfer, Gerard
Pons-Moll, and Christian Theobalt. Livecap: Real-time
human performance capture from monocular video. ACM
Transactions on Graphics (TOG), 38(2):14:1–14:17, 2019.

[14] Navami Kairanda, Edgar Tretschk, Mohamed Elgharib,
Christian Theobalt, and Vladislav Golyanik. φ-sft: Shape-
from-template with a physics-based deformation model. In
Computer Vision and Pattern Recognition (CVPR), 2022.

[15] Angjoo Kanazawa, Shubham Tulsiani, Alexei A. Efros, and
Jitendra Malik. Learning category-specific mesh reconstruc-
tion from image collections. In European Conference on
Computer Vision (ECCV), 2018.

[16] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Yoshua Bengio and Yann LeCun,
editors, International Conference on Learning Representa-
tions, ICLR, 2015.

[17] Chen Kong and Simon Lucey. Deep non-rigid structure from
motion. In International Conference on Computer Vision
(ICCV), 2019.

[18] Xueting Li, Sifei Liu, Shalini De Mello, Kihwan Kim, Xiao-
long Wang, Ming-Hsuan Yang, and Jan Kautz. Online adap-
tation for consistent mesh reconstruction in the wild. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2020.

[19] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Computer Vision and Pattern Recognition
(CVPR), 2020.

[20] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.

[21] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:
Neural free-view synthesis of human actors with pose con-
trol. In ACM Transactions on Graphics (TOG), 2021.

[22] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
SIGGRAPH, 21(4):163–169, 1987.

[23] MATLAB. R2020a. The MathWorks Inc., Natick, Mas-
sachusetts, 2010.

[24] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view
synthesis. In European Conference on Computer Vision
(ECCV), 2020.

[25] Dat Tien Ngo, Sanghyuk Park, Anne Jorstad, Alberto Criv-
ellaro, Chang D. Yoo, and Pascal Fua. Dense image regis-
tration and deformable surface reconstruction in presence of
occlusions and minimal texture. In International Conference
on Computer Vision (ICCV), 2015.

[26] David Novotny, Nikhila Ravi, Benjamin Graham, Natalia
Neverova, and Andrea Vedaldi. C3dpo: Canonical 3d pose
networks for non-rigid structure from motion. In Interna-
tional Conference on Computer Vision (ICCV), 2019.

[27] Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In International Con-
ference on Computer Vision (ICCV), 2021.

[28] Shaifali Parashar, Daniel Pizarro, and Adrien Bartoli. Iso-
metric non-rigid shape-from-motion with riemannian geom-
etry solved in linear time. Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI), 40(10):2442–2454,
2018.

[29] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In International Conference on Computer Vision (ICCV),
2021.

10

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2019.

[31] Georgios Pavlakos, Vasileios Choutas, Nima Ghorbani,
Timo Bolkart, Ahmed A. A. Osman, Dimitrios Tzionas, and
Michael J. Black. Expressive body capture: 3d hands, face,
and body from a single image. In Computer Vision and Pat-
tern Recognition (CVPR), 2019.

[32] Karl Pearson. LIII. on lines and planes of closest fit to
systems of points in space. In The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science,
1901.

[33] Sida Peng, Junting Dong, Qianqian Wang, Shangzhan
Zhang, Qing Shuai, Xiaowei Zhou, and Hujun Bao. Ani-
matable neural radiance fields for modeling dynamic human
bodies. In International Conference on Computer Vision
(ICCV), 2021.

[34] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Computer
Vision and Pattern Recognition (CVPR), 2021.

[35] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. In Computer Vision and Pattern Recogni-
tion (CVPR), 2021.

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), 2015.

[37] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digiti-
zation. In International Conference on Computer Vision
(ICCV), 2019.

[38] Shunsuke Saito, Tomas Simon, Jason Saragih, and Hanbyul
Joo. Pifuhd: Multi-level pixel-aligned implicit function for
high-resolution 3d human digitization. In Computer Vision
and Pattern Recognition (CVPR), 2020.

[39] Mathieu Salzmann, Julien Pilet, Slobodan Ilic, and Pascal
Fua. Surface deformation models for nonrigid 3d shape re-
covery. Transactions on Pattern Analysis and Machine Intel-
ligence (TPAMI), 29(8):1481–1487, 2007.

[40] Johannes Lutz Schönberger and Jan-Michael Frahm.
Structure-from-motion revisited. In Computer Vision and
Pattern Recognition (CVPR), 2016.

[41] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys,
and Jan-Michael Frahm. Pixelwise view selection for un-
structured multi-view stereo. In European Conference on
Computer Vision (ECCV), 2016.

[42] Soshi Shimada, Vladislav Golyanik, Christian Theobalt, and
Didier Stricker. Ismo-gan: Adversarial learning for monoc-

ular non-rigid 3d reconstruction. In Computer Vision and
Pattern Recognition Workshops (CVPRW), 2019.

[43] Vikramjit Sidhu, Edgar Tretschk, Vladislav Golyanik, Anto-
nio Agudo, and Christian Theobalt. Neural dense non-rigid
structure from motion with latent space constraints. In Euro-
pean Conference on Computer Vision (ECCV), 2020.

[44] Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srini-
vasan, Edith Tretschk, Wang Yifan, Christoph Lassner,
Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lom-
bardi, Tomas Simon, Christian Theobalt, Matthias Nießner,
Jonathan T. Barron, Gordon Wetzstein, Michael Zollhöfer,
and Vladislav Golyanik. Advances in Neural Rendering.
Computer Graphics Forum (EG STAR 2022), 2022.

[45] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for
gray and color images. In International Conference on Com-
puter vision (ICCV), 1998.

[46] Lorenzo Torresani, Aaron Hertzmann, and Chris Bregler.
Nonrigid structure-from-motion: Estimating shape and mo-
tion with hierarchical priors. Transactions on Pattern Analy-
sis and Machine Intelligence (TPAMI), 30(5):878–892, 2008.

[47] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view
synthesis of a dynamic scene from monocular video. In In-
ternational Conference on Computer Vision (ICCV), 2021.

[48] Laurens Van der Maaten and Geoffrey Hinton. Visualizing
data using t-sne. In Journal of Machine Learning Research
(JMLR), 2008.

[49] Chaoyang Wang and Simon Lucey. Paul: Procrustean au-
toencoder for unsupervised lifting. In Computer Vision and
Pattern Recognition (CVPR), 2021.

[50] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In European Conference on
Computer Vision (ECCV), 2018.

[51] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[52] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In Computer Vision and Pattern Recognition (CVPR),
2021.

[53] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Huiwen Chang, Deva Ramanan, William T
Freeman, and Ce Liu. Lasr: Learning articulated shape re-
construction from a monocular video. In Computer Vision
and Pattern Recognition (CVPR), 2021.

[54] Gengshan Yang, Deqing Sun, Varun Jampani, Daniel Vlasic,
Forrester Cole, Ce Liu, and Deva Ramanan. Viser: Video-
specific surface embeddings for articulated 3d shape recon-
struction. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[55] Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In Advances in
Neural Information Processing Systems (NeurIPS), 2021.

11

[56] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.

[57] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In International Conference on Com-
puter Vision (ICCV), 2021.

[58] Rui Yu, Chris Russell, Neill DF Campbell, and Lourdes
Agapito. Direct, dense, and deformable: Template-based
non-rigid 3d reconstruction from rgb video. In International
Conference on Computer Vision (ICCV), 2015.

12

Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model
—Supplementary Material—

Erik C.M. Johnson1, 2 Marc Habermann1 Soshi Shimada1 Vladislav Golyanik1 Christian Theobalt1

1Max Planck Institute for Informatics, SIC 2Saarland University, SIC

In this supplementary material, we present additional results in Section A and implementation details in Section B. Sec-
tion C provides a derivation of the discrete opacity equation for bent rays and Section D shows the unbiased nature of our
rendering method. Additional details on the experiments performed are given in Section E, including how we compute the
geometric proxies for our human character scenes in Section E.5. Section F investigates the necessary accuracy and resolution
of the geometric proxies. Section G analyzes the learned latent codes and demonstrates novel geometry synthesis. Finally,
we discuss some additional limitations in Section H.

A. Additional Results
Figures 7 and 8 show additional results for our synthetic sequences: i.e., Cactus and RootTrans, respectively. We include a

qualitative visualization of the output’s Chamfer distance to the ground truth where dark blue is zero and red is above the mid-
point between the mean and the maximum, both taken over the entire sequence. Note that overall our reconstructed surface
has a very low error and only a small region was not precisely reconstructed. Similar to many monocular reconstruction
methods, the majority of our higher error regions are due to the monocular depth ambiguity (rows 1 and 3 in Figure 7; and
row 4 in Figure 8). For further results, we also direct the reader to the video.

13

Figure 7: Additional results for our Cactus sequence. We include error coloring where blue is low error and red is high error,
relative to the entire sequence.

14

Figure 8: Additional results for our RootTrans sequence. We include error coloring where blue is low error and red is high
error, relative to the entire sequence.

15

B. Implementation Details
We base our implementation on the codebase of Wang et al. [51], which is implemented in PyTorch [30]. Our method

consists of three MLP networks: Bending, SDF, and Rendering. We provide a diagram showing the networks in Figure 9 and
give additional details in Table 2. We also configure the starting weights of SDF using the geometric initialization method of
Atzmon and Lipman [2].

At the start of training we follow Tretschk et al. [47] and initialize the latent codes with zeros. For each iteration during
training, we select 512 pixels uniformly over the image for which to fire rays. We sample 64 positions along each straight
ray, jitter these samples, and then importance sample 64 additional positions based on the SDF values.

Figure 9: Network diagram of our method. PE denotes Positional Encoding [24] with the given number of additional
frequencies. The addition node performs element-wise addition while the plus blocks represent vector concatenation.

16

Network Activation Weight Normalization
Bending ReLU No

SDF SoftPlus (β = 100) Yes
Rendering ReLU Yes

Table 2: Network parameters used in our implementation.

C. Derivation of the Discrete Opacity α
(z)
i Equation for Bent Rays

In this section we show that the derivation of discrete opacity α(z)
i (Section 3.2) follows from volume rendering principles

and the definition of the opaque density ρi(r̃(t)) (Section 3.2, Equation 3). This analysis is similar to that in the Appendix A
of Wang et al. [51], where we extend their derivation to any smooth parametric path.

Before beginning, we remind the reader that we render along bent rays, which are parametric paths in R3:

r̃i(t) = r(t) + bi
(
r(t)

)
, r(t) = o + td. (16)

We direct the reader to Section 3.1 for the definition of these terms. At each point on the bent ray there is an instantaneous
viewing direction dr̃i(t)

dt which can be computed analytically as:

dr̃i(t)
dt = d

dt

[
r(t)

]
+ d

dt

[
bi(r(t))

]
= d +

∂bi
∂r(t)

d
dt

[
r(t)

]
= d +

∂bi
∂r(t)

d, (17)

where ∂bi

∂r(t) is the Jacobian of the bending network w.r.t. its input r(t), a point along the straight ray. Note that, in our case,
the Jacobian exists everywhere since the bending network is an MLP; thus our bent ray is a smooth parametric path.

In Section 3.2, we define the opaque density as:

ρi(r̃i(t)) = max

{
−dΦs

dt

(
f(r̃i(t))

)
Φs
(
f(r̃i(t))

) , 0

}
, (18)

where Φs is the CDF of the logistic distribution. In order to proceed, we must expand the numerator through the chain rule:

dΦs

dt

(
f(r̃i(t))

)
= φs

(
f(r̃i(t))

)
d
dt

(
f(r̃i(t)

)
= φs

(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
, (19)

where φs is the Probability Density Function (PDF) of the logistic distribution. There is no need to expand the instantaneous
viewing direction now that we have demonstrated its smoothness.

Placing (19) into (18) gives:

ρi(r̃i(t)) = max

{
−
φs
(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
Φs
(
f(r̃i(t))

) , 0

}
. (20)

There are two regions of interest identified in Appendix A of NeuS [51]: a ray entering geometry and a ray exiting geometry.
We first present the case where a ray is entering the geometry as depicted in Figure 10. Since we know that in this case:

∇f(r̃i(t)) · dr̃i(t)
dt < 0 (21)

and that both φs and Φs are non-negative, we can drop the maximum in the opaque density and return the numerator to its
more condensed form:

ρi(r̃i(t)) =
−φs

(
f(r̃i(t))

)[
∇f(r̃i(t)) · dr̃i(t)

dt

]
Φs
(
f(r̃i(t))

) =
−dΦs

dt

(
f(r̃i(t))

)
Φs
(
f(r̃i(t))

) . (22)

17

Figure 10: Graphical depiction of a bent ray (traveling left to right) entering an SDF surface. Note that the instantaneous
viewing direction and gradient of the SDF must have a negative dot product for the bent ray to be entering the geometry.

The remaining derivation for the discrete opacity α(z)
i follows exactly as in Appendix A of NeuS [51]:

α
(z)
i = 1− exp

−∫ t(z+1)

t(z)
ρ(t)dt

 = 1− exp

−∫ t(z+1)

t(z)

−dΦs

dt

(
f(r̃i(t))

)
Φs
(
f(r̃i(t))

) dt

 =

= 1− exp
(

ln
[
Φs
(
f(r̃i(t

(z+1))
)]
− ln

[
Φs
(
f(r̃i(t

(z))
)])

= 1−
Φs
(
f(r̃i(t

(z+1))
)

Φs
(
f(r̃i(t(z))

) =

=
Φs
(
f(r̃i(t

(z))
)
− Φs

(
f(r̃i(t

(z+1))
)

Φs
(
f(r̃i(t(z))

) .

(23)

Note that (23) is non-negative (∵ f(r̃i(t
(z)) > f(r̃i(t

(z+1)) and Φs is non-negative and monotonically increasing) and as
such is equivalent to a maximum with zero.

The second case to consider is where a ray is exiting the geometry as depicted in Figure 11. Given that

∇f(r̃i(t)) · dr̃i(t)
dt > 0 (24)

and that both φs and Φs are non-negative, (18) gives that ρi(r̃i(t)) = 0. Thus the discrete opacity α(z)
i is:

α
(z)
i = 1− exp

−∫ t(z+1)

t(z)
ρ(t) dt

 = 1− exp

−∫ t(z+1)

t(z)
0 dt

 = 0. (25)

Since (23) will be non-positive when exiting the geometry (∵ f(r̃i(t
(z+1)) > f(r̃i(t

(z)) and Φs is non-negative and mono-
tonically increasing), we can write the derived equation for α(z)

i satisfying both cases as:

α
(z)
i = max

{
Φs

(
f
(
r̃i(t

(z))
))
− Φs

(
f
(
r̃i(t

(z+1))
))

Φs

(
f
(
r̃i(t(z))

)) , 0

}
. (26)

18

Figure 11: Graphical depiction of a bent ray (traveling left to right) exiting an SDF surface. Note that the instantaneous
viewing direction and gradient of the SDF must have a positive dot product for the bent ray to be exiting the geometry.

D. Unbiased Nature of our Rendering Method
In this section, we show that our rendering method is unbiased with respect to the surface of the object, i.e. f

(
r̃i(t)

)
= 0,

given that s becomes sufficiently small. This demonstration follows a similar progression to that in the Appendix B of
Wang et al. [51]. We assume two theoretical properties: that f is an SDF and that dr̃i(t)

dt is never the zero vector. Both
of these properties are enforced by penalizers in our method (i.e. the Eikonal and divergence regularizers respectively), but
are not strictly guaranteed. Specifically, the dr̃i(t)

dt 6= 0 property follows from a divergence-free bending network since this
prevents the compression of space necessary to give a stationary ray.

From Figure 10, it can be seen that for a smooth parametric path to intersect the surface, there must be a finite region
t ∈ (tl, tr) such that ∇f

(
r̃i(t)

)
· dr̃i(t)

dt < 0. We can re-write the weight as:

ω(r̃i, t) = T (r̃i, t) ρ(r̃i(t)) = exp

(
−
∫ t

0

ρ(r̃i(τ)) dτ

)
ρ(r̃i(t)) =

= exp

(
−
∫ tl

0

ρ(r̃i(τ)) dτ

)
exp

(
−
∫ t

tl

ρ(r̃i(τ)) dτ

)
ρ(r̃i(t)) =

= T (r̃i, tl) exp
(

ln
[
Φs
(
f(r̃i(t))

)]
− ln

[
Φs
(
f(r̃i(tl)

)])
ρ(r̃i(t)) =

= T (r̃i, tl)�
�����

Φs
(
f(r̃i(t))

)
Φs
(
f(r̃i(tl))

)
[
−∇f(r̃i(t)) · dr̃i(t)

dt

]
φs
(
f(r̃i(t))

)
������
Φs
(
f(r̃i(t))

) ,

∴ ω(r̃i, t) =
T (r̃i, tl)

Φs
(
f(r̃i(tl))

)︸ ︷︷ ︸
constant

[
−∇f(r̃i(t)) · dr̃i(t)

dt

]
φs
(
f(r̃i(t))

)
︸ ︷︷ ︸

F (t)

.

(27)

Then we can establish that for:

F (t) =
[
−∇f(r̃i(t)) · dr̃i(t)

dt

]
︸ ︷︷ ︸

G(t)

φs
(
f(r̃i(t))

)
, (28)

∃s > 0 such that F (t) is maximized by f(r̃i(t
∗)) = 0, t∗ ∈ (tl, tr). Consider another value t† ∈ (tl, tr), t† 6= t∗ where

G(t†) = 1 is maximum and G(t∗) = ε is minimum for some necessarily non-zero value ε. This corresponds to the worst
case for the unbiasedness since 0 < G(t) ≤ 1, ∀t ∈ (tl, tr). Then:

G(t∗)φs
(
f(r̃i(t

∗))
) ?
> G(t†)φs

(
f(r̃i(t

†))
)
, (29)

φs(0)

φs
(
f(r̃i(t†))

) ?
>
G(t†)

G(t∗)
=

1

ε
. (30)

19

Taking the limit of the left-hand side of (30) as s approaches 0 and using the definition of the logistic PDF φs:

lim
s→0

φs(0)

φs
(
f(r̃i(t†))

) = lim
s→0

exp
(
f(r̃i(t

†))
s

)
4

(
1 + exp

(
− f(r̃i(t†))

s

))2 =∞ . (31)

Thus, for every possible ε, ∃s > 0 such that:

φs(0)

φs
(
f(r̃i(t†))

) > 1

ε
, (32)

which implies F (t∗) > F (t†), ∀t† ∈ (tl, tr), t
† 6= t∗. �

E. Experimental Details
We present hyperparameters and additional details for the experiments with respect to our method and previous works.

Sections E.1, E.2, E.3, and E.4 give the experimental details for Ub4D, LASR, DDD, and N-NRSfM, respectively. As a
reminder, the datasets used are summarized in Table 3.

Name Creation Frames Resolution Geometric Proxies? GT?
Cactus Blender [8] 150 1024×1024 Yes (decimated GT) Yes

RootTrans Blender [8] 150 1024×1024 Yes (SMPL [31]) Yes
Lego Blender [8] 150 800×800 No No

Humanoid Real World 171 960×1280 Yes (SMPL [31]) No
RealCactus Real World 150 1080×1920 No No

Table 3: Summary of the datasets introduced in this work. GT indicates access to ground truth geometry in the form of
per-frame meshes. Synthetic scenes are above the dashed line, real-world captures below.

E.1. Ub4D

The hyperparameter settings for the experiments presented are contained in Table 4. Our loss weights are all relative to
the colour weight:

L = LCOL + ωSEGLSEG + ωEIKLEIK + ωNBRLNBR + ωDIVLDIV + ωFLOLFLO. (33)

Additionally, for the RealCactus experiment we use constant ωNBR and ωDIV weights, rather than the 1
100 factor exponentially

increasing schedule of Tretschk et al. [47].
We give the time to apply marching cubes over the scene, which is independent of scene, in Table 5. This is given without

applying frustum culling since that is an insignificant portion of the total runtime and is scene and region dependent.

Scene Iterations (×1000) Training (hours) ωSEG ωEIK ωNBR ωDIV ωFLO λ1 λ2

Cactus 300 17.0 1.0 0.5 20000 200 10 700 75
RootTrans 450 26.4 1.0 0.5 20000 200 10 700 75

Lego 450 19.9 0.75 0.25 10000 100 0 - -
RealCactus 450 22.1 1.5 0.75 15000† 50† 0 - -
Humanoid 450 21.5 1.25 0.25 50000 200 10 700 75

Table 4: Hyperparameters used in acquiring results presented. “†” indicates a constant weight without the increasing schedule
of Tretschk et al. [47].

20

Resolution March Time
(seconds) (hours)

64 14 0.00
128 69 0.02
256 536 0.15
512 4224 1.17

1024 34.99×106 18.32

Table 5: Time required to march geometry (without frustum culling).

E.2. LASR [53]

We run LASR [53] in the manner shown in their code2. We progressively increase the number of bones and faces in
a coarse-to-fine manner following the configurations provided. This progression is shown in Table 6. For the RootTrans
sequence, we use a slightly modified version of the code. This was to prevent a complete failure case where bone re-
initialization without CNN re-initialization results in the mesh entering a local minimum that no longer reprojects on the
image. This code modification was made with the assistance of the lead author of LASR [53].

Step Bones Faces Hypotheses Epochs
r1 21 1280 16 20
r2 26 1600 1 10
r3 31 1920 1 10
r4 31 2240 1 10
r5 36 2560 1 10

final 36 2880 1 10

Table 6: A subset of parameters used when running LASR [53].

E.3. Direct, Dense, Deformable [58]

We run the method of Yu et al. [58] in the manner shown in their code3. We empirically explored a set of values and found
those of Table 7 to perform best when comparing results after rigid alignment with ICP [3] to the ground truth.

Parameter Value
Photometric weight 1

ARAP weight 20

Table 7: A subset of parameters used when running the method of Yu et al. [58]. If not mentioned otherwise, we use the
parameters as proposed in the original code.

E.4. Neural Dense NRSfM [43]

We run Neural NRSfM in the manner shown in their code4. In order to acquire the Multi-Frame Optical Flow (MFOF) W
matrix used as input by this implementation, we use the Matlab [23] code of Ansari et al. [1]. Additionally, this implementa-
tion requires input in a specific format which is computed using proprietary code provided by the authors. The loss function
weights used are given in Table 8.

2https://github.com/google/lasr
3https://github.com/cvfish/PangaeaTracking
4http://vcai.mpi-inf.mpg.de/projects/Neural_NRSfM/

21

https://github.com/google/lasr
https://github.com/cvfish/PangaeaTracking
http://vcai.mpi-inf.mpg.de/projects/Neural_NRSfM/

Parameter Value
β 1

γ 1× 10−4

η 1

λ 0

Table 8: A subset of parameters used when running the method of [43].

E.5. Human Geometry Proxy

To generate the proxy geometry for our human character sequences (i.e., the RootTrans synthetic sequence and the Hu-
manoid real-world sequence), we employ SMPLify-X [31] to obtain the root orientation and joint angles of SMPLX [31]
human mesh model from the input image sequence. We then solve the 2D reprojection based optimization L2D to obtain the
3D root translation of the human mesh:

L2D =
1

K

K∑
k=1

∥∥Π(Xk)− pk
∥∥2

2
, (34)

where Π(·) and K represents the perspective projection operator and the number of joints, respectively. Xk and pk denotes
the kth 3D joint keypoint obtained from [31], and pseudo GT 2D joint keypoints obtained from OpenPose [6]. To solve
the optimization, we use Adam [16] optimizer with the camera intrinsics estimated by COLMAP [40], [41], and use a fixed
height for the human model of 180 cm. Finally, we transform the vertices using the estimated camera extrinsics to place the
model in world space.

F. Geometric Proxy Resolution Ablation
While our experiments have used a complete SMPLX model [31] for the RootTrans scene as described in Section E.5,

we have identified that the geometric proxy could be reduced further. This is shown by the use of only a 12 vertex skeleton
for the Humanoid scene. A proxy that summarizes the motion of the scene by coarsely tracking the extremities would be
sufficient. We validate this possible approach in Figure 12 by reducing the SMPLX mesh to just 7 vertices (one on each
extremity, two on the body, and one on the head). This 7 vertex proxy is sufficient to constrain Ub4D to produce a single
canonical copy, rather than the multiple copies when no proxy is supplied (see Figure 5b in the main paper).

22

Figure 12: Comparison of the scene flow loss with full SMPL proxy (10.4k vertices) and just seven vertices from it.

G. Per-Frame Latent Code Analysis and Novel Geometry Synthesis
In Ub4D, the entirety of the model’s understanding of time is encoded into a per-frame latent code provided to the bend-

ing network. Initializing these latent codes with zeros gives our latent space a valuable property: a smooth, semantically
meaningful latent representation. Demonstrating such a latent representation allows us to interpolate latent codes for certain
applications, e.g. temporal super-resolution. It also opens the door for employing such deformation models using latent codes
to analyze motion (e.g. periodicity detection, metrically comparing deformation states).

To validate the semantic meaning of our latent representation we perform PCA [32] on the 64 dimensional learned latent
codes. The results are shown in Figure 13. Note that even though the latent space is never directly constrained in Ub4D,
neighbouring frames (i.e. similar colors in Figure 13) tend to be nearby.

We wish to compare against the standard latent code initialization approach: random Gaussian initialization. However,
the same concept of performing PCA [32] does not suffice. This is because PCA uses directions of maximum variance and
randomly initialized latent codes could structure themselves “inside” of the variance. While a more complex dimensional
reduction technique (e.g. t-SNE [48]) could yield results, a failure to visualize a meaningful structure would not definitively
show that such a structure does not exist. Therefore, we use a reduced latent code dimension allowing visualization without
dimensional projection.

Taking the Cactus scene, we train using 2D latent codes: once initializing with zeroes as proposed in Tretschk et al. [47]
and once initializing with random Gaussian samples. We show the resulting learned latent codes in Figure 14. Note how
spatially coherent the zero-initialized latent codes become during training, whereas the random Gaussian initialized latent
codes do not have this property. Observing the particular structure of the zero-initialized case and slight clustering of similar
frames in the random Gaussian initialization, one could imagine these latent codes as charged molecules, with similar states
attracting and differing states repelling, resulting in a particular fold.

Some applications require semantically meaningful latent codes which we have demonstrated in the analysis above. This
allows us to generate entirely new geometries by providing novel latent codes. Figure 15 shows samples of a novel latent
path for the 2D latent codes from the left-hand side of Figure 14 (see webpage or video for a better visualization). A further
investigation is required into the ability to generate new geometries from novel latent codes, particularly when using higher
dimensional latent codes or exceeding the convex hull of the observations.

23

Figure 13: 2D PCA of learned 64D latent codes for the RootTrans, Cactus, Lego, and Humanoid scenes. The first two
principal components explain 38%, 32%, 25%, and 24% of the variance, respectively. The colors correspond to frames. Note
how similar colors are nearby.

24

Figure 14: Learned 2D latent codes for the Cactus scene showing the latent code provided to the network without any dimen-
sional projection. We initialize with zeroes on the left and random Gaussian samples on the right. The colors correspond to
frames. Note how similar colors are nearby for zero-initialized latent codes, whereas the random Gaussian initialization does
not give rise to such a property (although some local structuring is interesting).

Figure 15: Synthesizing entirely new geometries with novel latent codes. Red dot in latent space plot shows the provided
latent code while grey dots show the original sequence. Note the smoothness and plausibility of the deformation.

25

H. Additional Limitations
One limitation of Ub4D is that errors in the geometric proxy can increase the Chamfer distance of our reconstruction.

Our scene flow loss is designed such that it does not require highly accurate correspondences to allow us to handle large
deformations and prevent multiple canonical copies; however, we still inherit errors from the geometric proxy. Figure 16
illustrates this for a geometric proxy that is offset from the ground truth which results in the region with a high error on our
reconstruction. Note that our method results in a decreased Chamfer distance for this frame compared to the geometric proxy
(0.76 vs 0.92). Another limitation is that acquiring a geometric proxy may limit application if results without the scene flow
loss are not satisfactory. Figure 17 shows one example of a common issue encountered without the scene flow loss. In this
case, an additional appendage is used to satisfy the reconstruction losses while not grossly violating the other regularizers.

Figure 16: Impact of a significant geometric proxy error. Red regions have a higher Chamfer distance to the ground truth.

Figure 17: Example without the scene flow loss using an additional appendage to satisfy the reconstruction losses.

26

	1 . Introduction
	2 . Related Work
	3 . Method
	3.1 . Non-Rigidity Model
	3.2 . Rendering Method
	3.3 . Scene Flow Loss
	3.4 . Surface Extraction

	4 . Results
	4.1 . Quantitative Comparison
	4.2 . Comparison to Volume-based Representations
	4.3 . Ablation Study
	4.4 . Qualitative Results on Real Word Scenes

	5 . Discussion and Possible Extensions
	6 . Conclusion
	A . Additional Results
	B . Implementation Details
	C . Derivation of the Discrete Opacity i(z) Equation for Bent Rays
	D . Unbiased Nature of our Rendering Method
	E . Experimental Details
	E.1 . Ub4D
	E.2 . LASR yang2021lasr
	E.3 . Direct, Dense, Deformable yu2015direct
	E.4 . Neural Dense nrsfm sidhu2020neural
	E.5 . Human Geometry Proxy

	F . Geometric Proxy Resolution Ablation
	G . Per-Frame Latent Code Analysis and Novel Geometry Synthesis
	H . Additional Limitations

