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SIGNIFICANCE 

Chemotherapy resistance in inflammatory breast cancer is driven by the JAK2/STAT3 pathway, in 

part via cAMP/PKA signaling and a cell state switch, which can be overcome using paclitaxel 

combined with JAK2 inhibitors.   D
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ABSTRACT 

Inflammatory breast cancer (IBC) is a difficult-to-treat disease with poor clinical outcomes due to high 

risk of metastasis and resistance to treatment. In breast cancer, CD44+CD24- cells possess stem 

cell-like features and contribute to disease progression, and we previously described a CD44+CD24-

pSTAT3+ breast cancer cell subpopulation that is dependent on JAK2/STAT3 signaling. Here we 

report that CD44+CD24- cells are the most frequent cell-type in IBC and are commonly pSTAT3+. 

Combination of JAK2/STAT3 inhibition with paclitaxel decreased IBC xenograft growth more than 

either agent alone. IBC cell lines resistant to paclitaxel and doxorubicin were developed and 

characterized to mimic therapeutic resistance in patients. Multi-omic profiling of parental and resistant 

cells revealed enrichment of genes associated with lineage identity and inflammation in 

chemotherapy resistant derivatives. Integrated pSTAT3 ChIP-seq and RNA-seq analyses showed 

pSTAT3 regulates genes related to inflammation and epithelial to mesenchymal transition (EMT) in 

resistant cells, as well as PDE4A, a cAMP-specific phosphodiesterase. Metabolomic characterization 

identified elevated cAMP signaling and CREB as a candidate therapeutic target in IBC. Investigation 

of cellular dynamics and heterogeneity at the single cell level during chemotherapy and acquired 

resistance by CyTOF and single cell RNA-seq identified mechanisms of resistance including a shift 

from luminal to basal/mesenchymal cell states through selection for rare pre-existing subpopulations 

or an acquired change. Lastly, combination treatment with paclitaxel and JAK2/STAT3 inhibition 

prevented the emergence of the mesenchymal chemo-resistant subpopulation. These results provide 

mechanistic rational for combination of chemotherapy with inhibition of JAK2/STAT3 signaling as a 

more effective therapeutic strategy in IBC. 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-22-0423/3226682/can-22-0423.pdf by M

ax Planck Institute for M
olecular G

enetics user on 25 N
ovem

ber 2022



 4

INTRODUCTION 

Inflammatory breast cancer (IBC) is a rare and aggressive subtype of breast cancer with a unique 

clinical presentation, but despite improvements in multimodal therapy, survival rate remains low (1). 

Thus, a greater understanding of the molecular etiology of IBC is needed to develop more effective 

treatments. 

Breast cancer is classified based on the expression of estrogen (ER), progesterone (PR), and 

HER2 receptors into ER+, HER2+, and triple-negative (ER-PR-HER2-) subtypes (2). IBC 

encompasses these subtypes, although they are more commonly triple-negative (TN) or HER2+, and 

like non-IBC, subtype correlates with outcome and defines treatment strategy (3). However, IBC is 

considerably more aggressive than their non-IBC counterparts (4) and the search for IBC-specific 

molecular mechanisms is an intense area of investigation. Gene expression profiling of subtype-

matched IBC and non-IBC revealed high E-cadherin and RhoC levels and low TGFβ signaling in IBC 

tumor cells (5-7). Targeted sequencing studies in IBC have not identified specifically-mutated cancer-

driving genes (8-10), suggesting that the discovery of novel therapeutic targets in IBC will require 

alternative approaches.  

Resistance to therapy and increased metastatic capacity are often attributed to the cancer 

stem cell phenotype and to high intratumor heterogeneity (11). In breast cancer, CD44+CD24- cells 

with stem cell-like features are associated with higher risk of metastasis and poor outcome (12-14). 

We previously described that CD44+CD24-pSTAT3+ cancer cells are more commonly present in 

TNBC compared to other breast cancer subtypes and that the IL6/JAK2/STAT3 signaling pathway is 

required for their survival (13,15). STAT3 has known roles in therapeutic resistance, stem cell 

maintenance, metastasis, and inflammation (16). Furthermore, IL-6, an inflammatory cytokine that 

activates the JAK/STAT signaling pathway, is upregulated in IBC compared to non-IBC tumors (17), 

implying a role for IL6/JAK/STAT3 signaling in IBC.  

 Here we show that based on molecular profiling of patient samples and parental and 

chemotherapy-resistant IBC cell lines we developed, JAK2/STAT3 signaling is a key regulator of IBC 
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growth and cellular identity, which can modulate response and resistance to chemotherapeutics. 

Furthermore, we showed that JAK2/STAT3 may mediate chemotherapy resistance by multiple 

mechanisms including switching cell state, as in epithelial to mesenchymal transition (EMT). We also 

identified cAMP signaling as a putative marker of both IBC and resistance. Lastly, we found that 

combination of JAK2/STAT3 inhibition with chemotherapy was synergistic in resistant derivatives and 

suppressed EMT-associated resistance mechanisms. Our results will facilitate the stratification of IBC 

patients to improve clinical outcomes. 
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MATERIALS AND METHODS 

Human breast cancer samples 

All experiments with use of human tumor tissue were approved by the Dana-Farber Cancer Institute 

Institutional Review Board (protocol #14-400). Formalin-fixed paraffin embedded breast tumor 

samples were collected from patients diagnosed with inflammatory breast cancer at Dana-Farber 

Harvard Cancer Center and Seoul National University Bundang Hospital using protocols approved by 

the Institutional Review Boards of the respective hospitals and following the Declaration of Helsinki 

ethical guidelines. Written informed consent was obtained from all patients and samples were de-

identified prior to transfer to the laboratory. Tumor histology and expression of standard biomarkers 

(ER, PR, and HER2) were evaluated at the time of diagnosis according to ASCO/CAP guidelines 

(18).  

 

Multicolor immunofluorescence 

The triple immunofluorescence for CD44 (Neomarkers, clone 156-3C11, mouse monoclonal IgG2), 

CD24 (Neomarkers, clone SN3b, mouse monoclonal IgM) and pSTAT3 (Cell Signaling, cat# 9145, 

Rabbit monoclonal) was performed on whole sections of primary tumors or xenografts as previously 

described (13,15). Different immunofluorescence images from multiple areas of each sample were 

acquired with a Nikon Ti microscope attached to a Yokogawa spinning-disk confocal unit, 60x plan 

apo objective, and OrcaER camera controlled by Andor iQ software. The frequency of pSTAT3+ cells 

within each cell phenotype (i.e., CD44+CD24-, CD44+CD24+, CD44-CD24+, and CD44-CD24- cells) 

was calculated by counting an average of 100 cells in each sample. The frequency of each cell 

phenotype was calculated by counting an average of 300 cells in each sample. For 

immunofluorescence staining of xenografts with pHH3 or ClCasp3, following deparaffinization and 

antigen retrieval, slides were blocked with 10% goat serum in PBS for 10mins at room temperature. 

Cl-Casp3 (Cell Signaling, cat# 9661, diluted 1:100) or pHH3 (abcam, ab5176, diluted 1:200) were 

incubated in 5% goat serum in PBS-T for 1-2hrs at room temperature. Images were acquired with a 
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Leica SP5X confocal microscope and pHH3 quantification was done using ImageJ to determine 

number of pHH3 positive cells out of total number of cells (DAPI) on three fields of view per sample.  

 

Breast cancer cell lines  

Inflammatory breast cancer cell lines were generously provided by Steve Ethier (SUM149 and 

SUM190 cell lines, University of Michigan) and Massimo Christofanelli (FCIBC02, Fox Chase Cancer 

Center). SUM149 cells were cultured in DMEM/F12 supplemented with 5% FBS, 10 mM HEPES 

pH7.4, 1 μg/ml hydrocortisone, 5 μg/ml insulin. SUM190 cells were grown in 50% DMEM/F12, 

supplemented with 10% FBS, and 50% Human Mammary Epithelial Cell Growth Media (Cell 

Applications, 815-500). FCIBC02 cells were grown in DMEM/F12 with 10% FBS. All cell lines were 

supplemented with 50 U/mL penicillin and 50 μg/ml streptomycin. The identities of the cell lines were 

confirmed by STR analysis, were regularly tested for mycoplasma and were used within 20 passages. 

Paclitaxel and doxorubicin resistant derivatives were generated by treating 50% confluent cell lines 

with increasing concentrations of each drug starting at their IC90, during 24h for SUM149 and 48h for 

FCIBC02, followed by a holiday period until they were passaged and re-treated. 

 

Cellular viability, proliferation, and synergy assays 

Cellular viability assays were performed in triplicate wells and repeated 2–3 times. Cells were plated 

in 96-well plates in 100 μl culture media (2,000 cells/well for SUM149, 4,000 cells/well for FCIBC02 

cells, 5,000 cells/well for SUM190 cells). Treatments were started after an overnight incubation. 

Paclitaxel (Sigma T7181), Ruxolitinib (MedChemExpress, HY50858), Solcitinib (Selleckchem, 

S5917), Abrocitinib (MedChemExpress, HY-107429), AZD1480 (Selleckchem, S2162), Fedratinib 

(Selleckchem, S2736), C188-9 (Selleckchem, S8605), and SH-4-54 (Selleckchem, S7337) were 

dissolved in DMSO and doxorubicin (Sigma D1515) in water. Further dilutions were prepared in their 

respective solvents and then added to a 2x concentration of the final treatment into culture media. A 

100ul aliquot of these 2x dilutions were added to each well. Final solvent concentration was 0.1%. 
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Cells were cultured at 37°C with 5% CO2. 72 hours following treatment, cells were fixed by adding 

100 μl of an ice-cold 3:1 mixture of methanol and glacial acetic acid, overnight at 4°C. Fixed cells 

were washed twice with 1x phosphate buffered saline (PBS) and stained for 20 min with 1 μg/ml DAPI 

(Thermo-Fisher, 62248). Cells were washed twice with 1x PBS and 100μl PBS added to each well 

before cell counting. Numbers of DAPI stained cells were acquired with an automated Celigo 

microwell plate-based imaging cytometer. For shRNA dose curves and proliferation assays cells were 

plated in 96-well plates in 100 μl of culture media (1,000 cells/well). Treatments and doxycycline were 

started after an overnight incubation as above. Plates were fixed at day 3, 5, and 7 following 

treatment start and analyzed as above. For synergy studies, cells were seeded in 96-well plates as 

above. After an overnight incubation, 1000x concentrations of a dilution series of Paclitaxel, 

Doxorubicin, Ruxolitinib, or 3i (SelleckChem, S8846) were made and 0.1uL of drugs were pin-

transferred using the JANUS Automated Workstation. 5-7 concentrations for each drug were chosen, 

with three replicate wells per concentration. After a 72h incubation, plates were processed as above. 

The expected drug combination responses were calculated based on ZIP reference model using 

SynergyFinder (19). Deviations between observed and expected responses with positive and 

negative values denote synergy and antagonism respectively. Cells were plated in technical 

triplicates and representative plots are shown for experiments that were repeated 1-3 times.  

 

Lentiviral shRNA constructs and experiments 

SMARTvector inducible shRNA lentiviral vectors were used to infect cells and the resulting cell lines 

were selected according to the protocol (Horizon). shRNAs used in this study: shCTRL: Non-targeting 

Control 1 (VSC11653), shCREB#1: TATCTCACAACTCTTCACC (V3SH11252-224924211), 

shCREB#2: TTCTTCATTAGACGGACCT (V3SH11252-226763730), shPDE4A#1: 

TCGAGCACCGACTCATCGT (V3SH11252-225123696), shPDE4A#2: TTTCAACCCTGTGATTTGG 

(V3SH11252-229812765). Cells were the treated with 1ug/ml doxycycline to induce shRNA 

expression. 
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Quantitative real time PCR (qPCR) 

RNA was isolated with RNeasy Mini Kit (Qiagen) according to manufacturer’s protocol. cDNA 

synthesis was performed with PrimeScript RT Master Mix (Takara) using 500 ng RNA per 10 μl 

reaction at 65 °C for 15 min. For qPCR, 2 μl of this reaction was used with TB Green Premix Ex Taq II 

(Takara) master mix and 0.4 μM primer in a 25 μl reaction. qPCR was performed with a CFX96 (Bio-

Rad, US, (denaturation at 95 °C for 30 sec, elongation at 95 °C for 5 sec, 60 °C for 30 sec with 40 

cycles)). Relative gene expression was calculated using 2-ΔΔCt method normalized to GAPDH 

expression. Every biological triplicate was run in two technical duplicates. Primers: PDE4A Fwd: 

GATGCCATGGACACCAGCGA, PDE4A Rev: ATTCTCTGCCTCGAAGCGCC, GAPDH Fwd: 

AGCCACATCGCTCAGACAC, GAPDH Rev: GCCCAATACGACCAAATCC 

 

ChIP-seq 

For pSTAT3 ChIP-seq, cells were seeded in several 150 mm plates, 2.5x106 cells/plate for SUM149 

and 2x106 cells/plate for FC-IBC02, incubated for 24 and 48h respectively and then treatments added 

in 1ml of non-FBS containing DMEM/F12. Plates were then double fixed in 1.5 mM EGS [ethylene 

glycol bis(succinimidyl succinate)]/1% formaldehyde. Briefly, a 15mM EGS stock solution was freshly 

made in DMSO and a fixing solution prepared diluting 1:10 in room temperature PBS. Culture media 

was exhaustively removed from the plates and cell monolayers were fixed by adding 10ml fixing 

solution to each plate and incubating for 30 min at RT in an orbital shaker. EGS was added to plates 

for 20 mins, and then formaldehyde (32%, Electron Microscopy Sciences, cat# 15714) was added to 

the EGS at a final concentration of 1% for the last 10 min. Crosslinking was quenched by adding 

glycine to a final concentration of 0.125 M and further rocking the plates for 5 min. Cell monolayers 

were washed twice with ice-cold PBS and scrapped off the plate in 10 ml PBS, spun at 200g for 5 

min, and flash frozen after removing the supernatant. Frozen pellets were resuspended in 1 ml of Cell 
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Lysis Buffer (50 mM HEPES pH8, 140 mM NaCl, 1 mM EDTA pH8, 10 % glycerol, 0.5% NP-40, 

0.25% Triton X-100 and PPI) and incubated for 10 min at 4°C with gentle rotation. Nuclei were then 

centrifuged at 1,700g for 5 min at 4°C. Pelleted nuclei were washed twice with 1 ml Wash Buffer (10 

mM Tris-HCl pH8, 200 mM NaCl, 1mM EDTA pH8, 0.5 mM EGTA pH8 and PPI) and then 

resuspended in 1 ml of Shearing Buffer (10 mM Tris-HCl pH7.4, 1 mM EDTA pH8, 0.1% SDS, 1% 

Triton-X100, 0.1% Sodium Deoxycholate, 0.25% N-Lauroylsarcosine, 1 mM DTT and PPI) and 

sonicated in a Covaris E220 focused-ultrasonicator (peak intensity: 140, 5% duty cycle, 200 cycles 

per burst, 10 min) using 1 ml AFA fiber tubes. An equivalent of 5 x 106 cells was sonicated in each 

tube and used for each ChIP. Lysates were centrifuged for 15 min at 10,000g in a refrigerated 

centrifuge. Cleared supernatants were transferred to new tubes and NaCl was added to a final 

concentration of 150 mM. Samples were then incubated with Dynabeads Protein G 

(LifeTechnologies,10003D, 40 µl/ml of lysate) for 1 hour at 4°C, with constant rotation (pre-clearing). 

After magnetic separation of the beads, the appropriate primary antibody was added to each tube for 

an overnight immunoprecipitation, at 4°C, with gentle rotation. Antibody-bound cross-linked chromatin 

was precipitated with prewashed Dynabeads Protein G for 2h at 4°C and with constant rotation. 

Beads were then washed sequentially with low salt wash buffer (20 mM Tris-HCl pH 8, 150 mM NaCl, 

10 mM EDTA, and 1% SDS), high salt wash buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, and 1% 

SDS), LiCl wash buffer (50 mM Tris-HCl pH 8, 10 mM EDTA, and 1% SDS) and twice with 1X TE 

buffer. Each wash was performed for 5 min at 4°C with gentle rotation. DNA was eluted from the 

beads with 300 µl of 100 mM sodium bicarbonate and 1% SDS for 30 min at RT with constant 

shaking. Crosslinking was reversed overnight at 65°C and RNA and protein were then sequentially 

digested by adding 0.2 mg/ml Rnase A for 30 min at 37°C followed by 0.2 mg/ml Proteinase K for 1 h 

at 55°C. DNA was extracted with 300 µl of phenol/chloroform/isoamyl-alcohol (Calbiochem, #516726) 

and centrifuged at 20,000g for 5 min at RT. DNA in the upper layer was then precipitated with 1 

volume isopropanol, 1/3 volume of 2 M sodium perchlorate and 5 µl glycogen and centrifuged at 

20,000g for 10 min at RT. Pelleted DNA was washed twice with 70% ethanol and resuspended in 20 
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µl low TE. ChIP-seq libraries were prepared using the ThruPLEX DNA-seq Kit (Rubicon Genomics, 

R400427) according to the manufacturer’s protocol. 

 

RNA-seq 

For RNA-seq, cells were seeded in 100mm plates, 1x106 cells/plate for SUM149 and 7.5x105 

cells/plate for FC-IBC02, incubated for 24 and 48h respectively and then treatments added in 0.5ml of 

non-FBS containing DMEM/F12. Cells were incubated for further 72h and total RNA extracted using 

the Rneasy Mini Kit (Qiagen, #74106) with on-column DNA digestion. RNA-seq libraries were 

prepared using Illumina TruSeq Stranded mRNA sample preparation kits from 500ng of purified total 

RNA according to the manufacturer’s protocol. The finished dsDNA libraries were quantified by Qubit 

fluorimeter, Agilent TapeStation 2200, and RTqPCR using the Kapa Biosystems library quantification 

kit according to manufacturer’s protocols. Uniquely indexed libraries were pooled in equimolar ratios 

and sequenced on an Illumina NextSeq500 with single-end 75 bp reads by the Dana-Farber Cancer 

Institute Molecular Biology Core Facility. 

 

Single cell RNA-seq (scRNAseq) 

For FCIBC02 parental cells were processed according to 10xGenomics v2 chemistry protocol. Briefly, 

cells were resuspended to a concentration of 1,000 cells/uL and 2,000 cells were targeted for 

recovery. For SUM149PR and FCIBC02PR cell lines, cells were prepared according to 10xGenomics 

v3 chemistry, and cells were resuspended at a concentration of 1,000 cells/uL and 5,000 cells were 

targeted for recovery and submitted to the Translational Immunogenomics Lab core for library 

preparation. 

 

Xenografts assays 

All animals were housed and maintained in Dana-Farber Cancer Institute LWC Assessment and 

Accreditation of Laboratory Animal Care-approved facility. All animal studies were conducted in 
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accordance with the regulations formulated by the Dana-Farber Cancer Institute Animal Care and 

Use Committee (IACUC; protocol #11–023). Exponentially growing SUM149 or SUM190 cells (1 x 

106) were resuspended in DMEM/F12 without FBS and 50% Matrigel (BD Biosciences) and injected 

orthotopically into the mammary fat pads of 6-week-old female NOD.Cg-PrkdcscidIl2rgtm1Sug/JicTac 

mice (Taconic). Treatments were started when tumors became palpable. Paclitaxel was delivered via 

intraperitoneal injection twice weekly at 10mg/ml. Ruxolitinib was prepared for a dose of 60mg/kg/day 

and delivered by subcutaneous osmotic pumps (ALZET, #1004). Briefly, ruloxitinib was first weighed 

in a 2ml glass milliTube (Covaris, #520132) and solubilized in a volume of N,N-dymethylacetamide 

(DMAC, Sigma D5511) equivalent to 40% of the volume required to fill the pumps. The mixture was 

sonicated in a Covaris E220 focused-ultrasonicator (peak intensity: 200, 20% duty cycle, 200 cycles 

per burst, 60 min). Then a volume of propylene glycol (PG, Sigma P4347) equivalent to 60% of the 

pump-filling volume was added. Mixture was vortexed and used to fill the osmotic pumps. Two pumps 

per mouse were subcutaneously inserted, placing them dorsally on both sides away from the midline. 

Animals were euthanized and tumors were harvested when tumors in the control group reached ~ 1.5 

cm size. For histological analyses, 5μm sections of formalin-fixed paraffin-embedded (FFPE) tissue 

slides were stained with hematoxylin and eosin using standard protocols. 

 

Immunoblotting  

SUM149 cells were seeded in 100mm plates at 5x105 cells/plate and FCIBC02 at 1x106 cells/plate in 

their respective complete media. After a 24hr incubation, drugs were added at each cell lines 

respective IC50 value (paclitaxel (SUM149: 2.5nM, SUM149PR: 7.5nM, FCIBC02: 10nM, 

FCIBC02PR: 200nM) doxorubicin (SUM149: 10nM, SUM149DR: 200nM, FCIBC02: 100nM, 

FCIBC02DR: 1uM), ruxolitinib (SUM149s: 10uM, FCIBC02s: 15uM) or the combination were added in 

1ml media without FBS, to avoid pSTATs phosphorylation triggered by FBS. Cells were incubated for 

72hrs and washed with ice-cold PBS. Depending on confluency, 200-400ul RIPA buffer (50mM Tris-

HCl pH 7.5, 150 mM NaCl, 5 mM EDTA pH8, 1% NP40, 0.5% sodium deoxycholate, 0.1% SDS and 
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PPI) was added to the plates and cells were scraped and lysates were collected and incubated on ice 

for 30min, and vortexed every 10mins. Samples were then sonicated in a cup horn sonicator 

(Qsonica Q500, 5 min net sonication time, 20 sec On/10 sec Off cycle with a 75% amplitude at 4°C). 

Sonicated lysates were centrifuged at 20,000 g for 15 min at 4°C and supernatants transferred to new 

tubes. Protein concentration was determined by the Bradford assay. Samples (40 ug total protein per 

well) were resolved in 3-8% Tris-Acetate NuPAGE gels and transferred to PVDF membranes using a 

wet NuPAGE Transfer buffer system. Membranes were blocked with 5% non-fat dry milk in 0.1% 

Tween20 TBS pH7.4 (TBS-T) for 1 hour at RT followed by an overnight incubation with primary 

antibodies (in 5% BSA TBS-T). Membranes were washed and incubated for 1 hour at RT with 

appropriate secondary antibodies, then washed and developed with Clarity Western ECL substrate 

(BioRad) and imaged using ChemiDoc MP imaging system (BioRad). 

 

Mass cytometry (CyTOF) 

Antibodies used for CyTOF were purchased in carrier-free solutions and conjugated with the 

respective lanthanide metals by the CyTOF Antibody Resource and Core at Brigham and Women’s 

Hospital. SUM149 and SUM149PR cells were continuously cultured in 10cm dishes and split normally 

in each cell lines respective IC50 in either DMSO (.1%), paclitaxel (SUM149: 2.5nM, SUM149PR: 

7.5nM), ruxolitinib (10uM), or the combination for 14 days. Cells were refed every 3 days with fresh 

drug if they did not need to be split. At day 12, cells were plated in 10cm at 2E6, and at day 14, cells 

were washed with PBS, then 5mM EDTA was added to plates for 15mins to detach cells without 

cleaving cell surface proteins. 1x106 cells were then viably frozen in 90%FBS and 10%DMSO. Cells 

were then thawed and treated with 100 µM intercalator-103Rh (Fluidigm) for 15 min at 37°C in their 

respective full medium without drug. 1x106 cells per sample were barcoded using the Cell-ID 20-Plex 

Pd Barcoding Kit (Fluidigm) according to the manufacturer’s instructions. Barcoded samples were 

pooled and stained simultaneously. Cells were fixed for 10 min with 1.6% paraformaldehyde (Electron 

Microscopy Sciences) and then incubated with Fc-receptor block (Human TruStain FcX, Biolegend) 
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for 10 min, and then stained with surface antibody staining for 30 min at RT. Next, cells were 

permeabilized with methanol for 10 min on ice and stained with the antibody cocktail for intracellular 

epitopes for 30 min. Cells were kept at 4°C overnight in Fix and Perm Buffer (Fluidigm) with 62.5 nM 

of Intercalator-IR (Fluidigm) (20). Before analysis, cells were washed in CAS (Fluidigm), and then 

resuspended in CAS containing EQ™ Four Element Calibration Beads (Fluidigm) (1:10) and filtered 

through a 35 µm strainer. Samples were acquired using a CyTOF Helios instrument (Fluidigm), 

normalized as previously described (Bendall at al. 2011) and analyzed with Cytobank. Cell Staining 

Media (PBS with 0.5% BSA, 0.02% NaN3) was used for all washes and antibody incubations. For 

analysis, the population was gated for intact cells, singlets, viable (defined as Rh-103 negative) and 

non-apoptotic (cleaved PARP negative). viSNE analysis was performed using the c-PARP negative 

population with the following markers for clustering: CDK4, HER2, CD24, CDK1, Vimentin, pS6, 

PTEN, CK5, p21, PR, CD10, CD44, CyclinD3, MUC1, E-Cadherin, CDK6, p63, TCF7, AR, GATA3, 

pAKT, pSTAT3, pSTAT5, EGFR, ER, HER3, Lamp2, EpCAM, Ki-67, SMA, pSMAD2-3, CD49f, and 

CK8-18. 

 

Flow Cytometry  

For analysis of EpCAM levels in increasing doses of Paclitaxel, SUM149PR cells were maintained in 

DMSO, 3nM, or 5nM of paclitaxel for 1 month before sorting. For EpCAM sorting and analysis, cells 

were collected and stained for EpCAM (Ber-EP4-FITC) at 1:50 dilution for 30mins on ice in the dark. 

For analysis, fluorescence intensities were acquired on an LSRFortessa cytometer (BD Biosciences) 

and analyzed using FlowJo. For sorting of EpCAM- and EpCAM+ populations, cells were sorted using 

BD FACSAria II SORP UV.  

 

Antibodies 

Western: STAT3 (Cell Signaling Technology, 9139, AB_331757, 1:1000), pSTAT3 Tyr705 (Cell 

Signaling Technology, 9145, AB_2491009, 1:1000); β-Actin (Merck, A2228, AB_476697, 1:10,000), 
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E-cadherin (BD Biosciences, 610181, AB_397580, 1:2,000); pJAK2 Tyr1007/1008 (Cell Signaling 

Technology, 3776, AB_2617123 1:1000), JAK2 (Cell Signaling Technology, 3230, AB_2128522, 

1:1000), pJAK1 Tyr1034/1035 (Cell Signaling Technology, 74129, AB_2799851, 1:1000), JAK1 (Cell 

Signaling Technology, 3332, AB_2128499, 1:1000), pSTAT1 Tyr701 (Cell Signaling Technology, 

9167, AB_561284, 1:1000), STAT1 (Cell Signaling Technology, 14994, AB_2737027, 1:1000), 

pSTAT3 Ser727 (Cell Signaling Technology, 9134, AB_331589, 1:1000), pERK1/2 (Cell Signaling 

Technology, 9101, AB_331646, 1:1000), ERK1/2 (Cell Signaling Technology, 9102, AB_330744, 

1:1000), CREB (Cell Signaling Technology, 9197, AB_331277, 1:1000), Vimentin (Dako, GA630, 

AB_2827759, 1:1000), HRP-conjugated antiMouse IgG (H+L) (Thermo Fisher Scientific, 32430, 

AB_1185566), HRP-conjugated antiRabbit IgG (H+L) (Thermo Fisher Scientific, 32460, 

AB_1185567). Immunofluoresence: CD44 (Neomarkers, clone 156-3C11, mouse monoclonal IgG2), 

CD24 (Neomarkers, clone SN3b, mouse monoclonal IgM), pSTAT3 Tyr705 (Cell Signaling 

Technology, 9145, AB_2491009 ,1:1000), Cl-Casp3 (Cell Signaling, 9661, AB_2341188, 1:100), 

pHH3 (abcam, ab5176, AB_304763, 1:200). ChIP: pSTAT3 Tyr705, Cell Signaling Technology, 9131, 

AB_331586 (20uL/ChIP); CyTOF: Rabbit monoclonal anti-PR a/b (141Pr) (Cell Signaling Technology, 

8757, AB_2797144), Mouse monoclonal anti-CD10 (142Nd) (BD Biosciences, 555373, AB_395775), 

Rat monoclonal anti-CD44 (143Nd), (Biolegend, 103002, AB_312953), Mouse monoclonal anti-cyclin 

D3 (144Nd), (Abcam, ab28283, AB_2070798), Mouse monoclonal anti-MUC1 (145Nd) (Biolegend, 

355602, AB_2561642), Mouse monoclonal anti-LAMP2 (146Nd) (Biolegend, 354302, AB_11204245), 

Mouse monoclonal anti-CDK4 (147Sm) (BD Biosciences, 559677, AB_397299), Rabbit monoclonal 

anti-PTEN (148Nd) (Cell Signaling Technology, 9559, AB_390810), Rabbit monoclonal anti-E-

Cadherin (149Sm) (Cell Signaling Technology, 3195, AB_2291471), Mouse monoclonal anti-EpCAM 

(150Nd) (Biolegend, 324202, AB_756076), Mouse monoclonal anti-Her2 (151Eu) (BD Biosciences, 

554299, AB_395352), Rabbit polyclonal anti-CK5 (152Sm) (Abcam, ab53121, AB_869889), Mouse 

monoclonal anti-CD24 (153Eu) (Biolegend, 311102, AB_314851), Mouse monoclonal anti-CDK1 

(154Sm) (Biolegend, 626901, AB_2074779), Rabbit monoclonal anti-CDK6 (155Gd) (Cell Signaling 
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Technology, 13331, AB_2721897), Rabbit monoclonal anti-p63 (158Gd) (Abcam, ab124762, 

AB_10971840), Rabbit monoclonal anti-TCF7 (159Tb) (Cell Signaling Technology, 2203, 

AB_2199302), Rabbit monoclonal anti-AR (160Gd) (Cell Signaling Technology, 5153, AB_10691711), 

Goat polyclonal anti-HER3 (161Dy) (R&D Systems, AF234, AB_355227), Mouse monoclonal anti-Ki-

67 (162Dy) (BD Biosciences, 550609, AB_393778), Mouse monoclonal anti-SMA (163Dy) (Thermo 

Fisher Scientific, 14-9760-82, AB_2572996), Mouse monoclonal anti-cPARP (164Dy) (BD 

Biosciences, 552596, AB_394437), Rabbit monoclonal anti-Vimentin (165Ho) (Cell Signaling 

Technology, 5741, AB_10695459), Rat monoclonal anti-GATA3 (166Er) (eBioscience, 14-9966-80, 

AB_1210520), Rabbit monoclonal anti-p21 (167Er) (Cell Signaling Technology, 2947, AB_823586), 

Rabbit monoclonal anti-phospho-AKT Ser473 (168Er) (Cell Signaling Technology, 4060, 

AB_2315049), Rabbit monoclonal anti-phospho-STAT3 Tyr705 (169Tm) (Cell Signaling Technology, 

9145, AB_2491009), Rabbit monoclonal anti-EGFR (170Er) (Cell Signaling Technology, 4267, 

AB_2246311), Rabbit monoclonal anti-phospho-SMAD2 Ser465/467/SMAD3 Ser423/425 (171Yb) 

(Cell Signaling Technology, 8828, AB_2631089), Rabbit monoclonal anti-ERα (172Yb) (Cell Signaling 

Technology, 13258, AB_2632959), Rat monoclonal anti-CD49f (173Yb) (Biolegend, 313602, 

AB_345296), Rabbit monoclonal anti-phospho-STAT5 Tyr694 (174Yb) (Cell Signaling Technology, 

4322, AB_10548756), Rabbit monoclonal anti-phospho-S6 Ser235/236 (175Lu) (Cell Signaling 

Technology, 4858, AB_916156), Mouse monoclonal anti-CK8/18 (176Yb) (Cell Signaling Technology, 

4546, AB_2134843). 

  

ChIP-seq and RNA-seq analyses 

Peak calling was performed using ChiLin pipeline 2.0.0 (21). Peak annotation was performed using 

annotatePeaks.pl of the HOMER package v4.9.1 with version hg19 of the human genome. Motif 

analysis was performed by ChiLin pipeline using the top 1,000 peak regions. RNA-seq datasets were 

aligned to the human reference GRCh37/hg19 genome using the STAR RNA-Seq aligner (version 

STAR_2.5.1b) (22). Two-pass mapping was performed using the following modified parameters: --
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outSAMstrandField intronMotif, --outFilterMultimapNmax 20, -- alignSJoverhangMin 8, --

alignSJDBoverhangMin 1, --outFilterMismatchNmax 999, -- outFilterMismatchNoverLmax 0.1, --

alignIntronMin 20, --alignIntronMax 1000000, -- alignMatesGapMax 1000000, --outFilterType 

BySJout, --outFilterScoreMinOverLread 0.33, -- outFilterMatchNminOverLread 0.33, --

limitSjdbInsertNsj 1200000, --chimSegmentMin 15, -- chimJunctionOverhangMin 15, --twopassMode 

Basic. The read counts for individual genes were generated using the htseq-count script of the 

HTSeq framework (version 0.6.1p1) (23) using modified parameters (--stranded no) and the hg19 

refGene annotation file available at the UCSC Genome Browser. Genes with 0 counts across all 

samples were filtered out. The gene-level counts from all studies were then normalized using TMM 

with edgeR (24). Log2 transformed TMM-normalized counts per million [log2(TMM-CPM + 1)] were 

used for analysis. Principle component analysis were conducted using prcomp function. Differentially 

expressing genes were identified by using DESeq2 (25) with cutoff of padj<0.05 and |FC|>2 (DR 

models) or |FC|>1.5 (PR models). Same threshold was applied to call DEGs between Parental vs 

resistant derivatives or vehicle vs drug treatments for each derivative. De novo genes were defined 

as DEGs identified between Parental vs resistant derivatives but not between the corresponding 

vehicle vs drug treatment comparison. The intersected counterparts were defined as adaptive genes. 

For gene set enrichment calculation, GSVA package (26) was used with pre-defined signatures 

provided in the Supplementary Table S1.  

ChIP-seq and RNA-seq data integration: For a given factor peak, the distance to the nearest TSS 

was found and the target was defined as that gene. Differentially expressed targets of a factor were 

then defined as differentially expressed genes that were also associated to a factor peak. BETA 

analysis was performed as previously described (27). BETA basic modules were used to compute the 

statistical associations between DE genes and DB peaks using 100kb as the ranges to link gene TSS 

to each peak. P values were derived using one-tailed Kolmogorov-Smirnov test for up-regulated and 

down-regulated genes respectively. For pathway map and process network analysis, differentially 
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expressed gene lists were uploaded into Metacore. Genes were filtered for padj<.01 and Log2FC > 1 

for up genes, and < -1 for down genes. Only process networks that were FDR<0.1 were shown. 

 

scRNA-seq Analyses 

Data for SUM149, sequenced with 10x genomics v2 chemistry was obtained from (28). We analyzed 

this cell line together with three additional cell lines sequenced across two batches with different 

chemistries (FCIBC02: batch 1, v2 chemistry, SUM149PR and FCIBC02PR batch 2, v3 chemistry). 

We also analyzed eight additional samples from four cell lines (CAL51, HCC1806, HCC1937, and 

Hs578 (replicate cell lines)) sequenced in both batch 1 and batch 2 which were used to correct batch 

effects and enable comparisons across samples (see below). The 12 scRNA-seq samples were 

preprocessed using Cell Ranger (https://www.10xgenomics.com/) to obtain UMI counts for each gene 

in each cell. Cell filtering proceeded in two steps. First, for every cell in each sample we calculated 

the logarithm of the proportion of UMI’s from mitochondrial genes (mito_score). The median and 

median absolute deviation from the median (MAD) was calculated for the mito_score among cells 

with fewer than 50% of UMI’s from mitochondrial genes, and cells with mito_scores greater than 4 

MAD’s above the median in each sample were excluded from downstream analysis. Secondly, from 

the remaining cells in each sample we excluded cells where the logarithm of the number of genes 

expressed was less than 4 MAD’s below the median. Normalization and clustering for individual IBC 

cell lines was performed using the Seurat (29) standard log-normalization workflow based on genes 

detected in 10 or more cells. The top 10 principal components were used for SUM149, and the top 20 

were used for FCIBC02, SUM149PR, and FCIBC02PR. The resolution parameter was set to 0.5 to 

run clustering with the Seurat function FindClusters. STAT3 signature activity was inferred using the 

Seurat function AddModuleScore. We used two approaches to compare expression between 

SUM149 and SUM149PR or between FC-IBC02 and FC-IBC02PR. Since both parental cell lines 

were sequenced using v2 chemistry, and both resistant cell lines were sequenced using v3 chemistry, 

and in different batches, we took steps to try to remove potential artefacts arising due to differences in 
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chemistry, and (where possible) differences due to batch as described further below. scRNA-seq Cell 

Type Signature Analysis: Each pair of resistant and parental cell lines was normalized and analyzed 

separately. For each pair we removed genes expressed in fewer than 10 cells across the resistant 

and parental cells. Resistant and parental cells were log-normalized in Seurat together with an equal 

number of cells from each replicate cell line from each of batches 1 and 2 (v2 and v3 chemistry, 

respectively). We used the function rescaleBatches from the R package ‘batchelor’ (30), with the 

restrict parameter set, to estimate a scaling difference between batches for each gene based on the 

replicate samples only, and to correct the log-normalized data for the IBC samples accordingly. No 

correction was applied for genes with zero UMI counts in cells from the replicate cell lines in either 

batch. Single-cells were assigned to treatment types (parental, paclitaxel-treated, or resistant) based 

on the expression of gene signatures for each type. The positive and negative signature genes for 

each type were defined as the top n positive and negative differentially expressed genes for that type 

vs. the other two types that were also present in the scRNA-seq data. Here, n was taken to be as 

large as possible given the number of differential genes in each direction that were present in the 

scRNA-seq data. The TNBC type signatures were defined in a similar way based on bulk RNA-seq 

data from 34 TNBC cell lines (Jovanović et al., manuscript in preparation). We assessed the evidence 

for each signature in each single cell based on a previously described method (28). Briefly, we 

considered there to be significant evidence for a signature in a cell when the average expression 

(gene centered or gene z-scored log-normalized data) for ‘up’ genes minus the average expression 

for ‘down’ genes exceeded the same statistic in 95% of randomly chosen signatures of the same size. 

Seurat Integration Analysis: We also applied an orthogonal approach to integrate single-cell data from 

resistant and parental cell lines pairs using Seurat’s data integration functionality. As above we 

considered each resistant/parental pair separately, and only considered genes expressed in at least 

10 cells in either cell line. For this analysis we applied the Seurat integration standard workflow for 

log-normalized data, using a dataset dimensionality of 20. Integrated data for each pair of cell lines 

was clustered using FindClusters with the resolution parameter set as 0.5. 
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Mass spectrometry analysis of histone modifications 

Cells were harvested while growing exponentially, pelleted, washed, and snap frozen. Global 

Chromatin profiling was performed as described in Creech et al, 2015 (31). Briefly, histones were 

isolated from cell nuclei using acid extraction and precipitated with trichloroacetic acid. Histones (10 

μg each sample) were propionylated, desalted and digested overnight with trypsin, following standard 

protocols. Histone peptides underwent a second round of propionylation, followed by desalting. Prior 

to MS analysis, a reference mixture of isotopically labeled synthetic peptides for histones H3 and H4 

was added to each sample. Peptides were separated on a C18 column (EASY-nLC 1000, Thermo 

Fisher Scientific) and analyzed by MS using a PRM method (Q Exactive Plus Orbitrap, Thermo Fisher 

Scientific). Chromatographic peak areas of endogenous (light, L) and synthetic standard (heavy, H) 

peptides were extracted in Skyline and the ratios of light to heavy peak areas (L:H) were calculated. 

Ratios were log2 transformed, normalized to a typically unmodified region of H3 (41-49) or H4 (68-78) 

respectively, and row median normalized for each histone mark. Heatmap was made using 

https://software.broadinstitute.org/morpheus. The raw mass spectrometry data have been deposited 

in the public proteomics repository MassIVE and are accessible 

at  ftp://MSV000086634@massive.ucsd.edu. This data will be made public upon acceptance of the 

manuscript. 

 

Clinical cohort analyses 

Microarray data from four breast cancer patient cohorts were attained from GEO: the ISPY clinical 

trial for neoadjuvant chemotherapy (GSE32603) (32) (Only TNBC patients were selected for 

downstream analysis), Boersma cohort of laser capture micro-dissected stromal and epithelial cells of 

IBC and nIBC patients (GSE5847) (33), Woodward cohort of 20 IBC (GSE45584) (7), Iwamoto cohort 

of fine needle aspirates of T4 IBC (GSE22597) (34). Data was converted to log2 values and quantile 

normalized. Differential expression analysis on a probe level was performed using limma (25605792). 
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Gene-set enrichment analysis (16199517) was conducted on log2-fold changes were used in using 

HTSAnalyzeR (21258062), and CAMP-related signaling pathways with FDR<0.1 were visualized in a 

heatmap. Gene-signature scores for STAT (Supplementary Table S1) and PDE (PDE7B, PDE2A, 

PDE3A, PDE3B, PDE4A, PDE4B, PDE4C, PDE4D, PDE7A, PDE8A, PDE1B, PDE8B) family 

members were determined by averaging the expression of all probes that mapped to these genes. 

Differences in groups was tested by Wilcoxon rank sum test. 

 

Exome-seq 

Samples were submitted to the DFCI Center for Cancer Genome Discovery (CCGD) for exome 

sequencing and analysis. Briefly, DNA yields were determined using PicoGreen. DNA was 

fragmented by Covaris sonication to 250bp and purified further with Agentcourt AMPure XP beads. 

Libraries were constructed using KAPA HTP library construction kit. Libraries were pooled and 

sequenced on Illumina MiSeq to estimate the concentration based on the number of barcode reads 

per sample. Libraries were then pooled in equal mass (3x3-plex) and hybrid capture was performed 

using SureSelect Human All Exon v5 RNA baits and the Agilent SureSelect system. The captures 

were then pooled and sequenced over three lanes of the HiSeq2500 in Rapid Run mode. Pooled 

sample reads were deconvoluted and sorted using Picard tools. Reads were aligned to reference 

sequence b37 edition from the Human Genome Reference Consortium using “bwa aln” (http://bio-

bwa.sourceforge.net/bwa.shtml) and the following parameters “-q 5 -l 32 -k 2 -o 1” and duplicate 

reads were identified and removed using Picard tools (35). The alignments were further refined 

using the GATK for localized realignment around indel sites 

(https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_tools_walkers_indels_IndelR

ealigner.php). Recalibration of the quality scores was also performed using the GATK 

(http://gatkforums.broadinstitute.org/discussion/44/base-quality-score-recalibration-bqsr) (36,37). 

Quality control for sequencing was performed by generating metrics for the representation of each 

sample within the pool using unaligned reads after sorting on the barcode 
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(http://broadinstitute.github.io/picard/picard-metric-definitions.html for a description of the metrics). 

All samples passed these quality control measures. Mutation analysis for single nucleotide variants 

(SNV) was performed using MuTect v1.1.4 and annotated by Variant Effect Predictor (VEP) (38,39). 

Insertions and deletions (InDels) were called using Indel Locator 

(http://www.broadinstitute.org/cancer/cga/indelocator). SomaticIndelDetector tool, which is part of 

GATK, was used for indel calling. MuTect was run in paired mode using CEPH as the project 

normal. Copy number variants were identified using RobustCNV, an algorithm in development at 

CCGD. RobustCNV relies on localized changes in the mapping depth of sequenced reads in order 

to identify changes in copy number at the loci sampled during targeted capture. This strategy 

includes a normalization step in which systemic bias in mapping depth is reduced or removed using 

robust regression to fit the observed tumor mapping depth against a panel of normal (PON) 

sampled with the same capture bait set. Observed values are then normalized against predicted 

values and expressed as log2ratios. A second normalization step is then done to remove GC bias 

using a loess fit. Finally, log2ratios are centered on segments determined to be diploid based on 

allele fraction of heterozygous SNPs in the targeted panel. Normalized coverage data was next 

segmented using Circular Binary Segmentation (40) with the DNAcopy Bioconductor package. 

Finally, segments are assigned gain, loss, or normal-copy calls using a cutoff derived from the 

within-segment standard deviation of post-normalized mapping depths and a tuning parameter 

which was set based on comparisons to array-CGH calls in separate validation experiments. 

Segment calls were then summarized to gene calls by assigning capture intervals and tallying up 

interval calls for each gene. Genes may contain multiple intervals with a combination of calls; 

therefore, a variety of gene calls are possible.  

 

Metabolomic profiling and ELISA 

SUM149 and FCIBC02 cell lines were plated in duplicate in 3 biological replicates and polar 

metabolites were extracted as described (41). Briefly, SUM149 and FCIBC02 cell lines were plated in 
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duplicate and grown to approximately 80% confluency. Media was thoroughly removed by aspiration 

and an 80% methanol solution kept at -80C was added to cell monolayers working on dry ice. Cells 

were then scraped off and transferred to conical tubes. The lysate/methanol mixture was centrifuged 

at full speed for 5min at 4°C, and supernatant kept on dry ice. Solvent was evaporated under a 

stream of nitrogen. Samples from 3 independent experiments were submitted for polar metabolite 

profiling to the Beth Israel Deaconess Medical Center Mass Spectrometry Core Facility as described 

(41). Nonhierarchical clustering was performed using a Euclidean distance measure and Ward’s 

clustering algorithm using MetaboAnalyst. Pathway and Joint Pathway analysis were performed using 

MetaboAnalyst (42) and only pathways that were FDR < 0.05 were shown. For ELISA SUM149 and 

FCIBC02 cells were plated in 6cm dishes (2.5 x 105 for SUM149s, 4 x 105 for FCIBC02), and 

treatments were started as above for immunoblotting following an overnight incubation. Following 

72hr incubation, cells were lysed and the ELISA was performed according to the manufacture 

instructions (Abcam, ab65355). 

 

Study approval 

All animal studies described were carried out under protocol 11-023 approved by the Dana-Farber 

Cancer Institute Animal Care and Use Committee. 

 

DATA AVAILABILITY 

The RNA-Seq and ChIP-seq datasets have been deposited to Gene Expression Ominbus (GEO) with 

the accession number GSE163397. The original mass spectra and the protein sequence database 

used for searches have been deposited in the public proteomics repository MassIVE 

(http://massive.ucsd.edu) and are accessible at ftp://massive.ucsd.edu/MSV000090647/.
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RESULTS 

High frequency of CD44+CD24-pSTAT3+ cells in IBC 

To investigate the frequency of CD44, CD24, and pSTAT3 in IBC, we performed multicolor 

immunofluorescence in IBC tumors from 33 patients (Supplementary Table S2) and quantified the 

frequency of pSTAT3+ cells in the four cell types (i.e., CD44+CD24-, CD44+CD24+, CD44-CD24+, 

CD44-CD24-) (Fig. 1A). We found that CD44+CD24- was the most frequent cellular phenotype 

regardless of subtype, representing over 75% of cancer cells in most cases, while CD24+ cells were 

rarely detected (Fig. 1B). Within CD44+CD24- cells, a large fraction was pSTAT3+ and a subset of 

tumors had CD44-CD24-pSTAT3+ cells, which was not influenced by tumor subtype (Fig. 1C-D). We 

also compared pre- and post-chemotherapy samples and observed a significant increase in the 

relative proportion of CD44+CD24- cells following treatment in the ER+ subtype, although patient 

numbers were low (Supplementary Fig. S1A). While changes in the frequency of pSTAT3+ cells 

were not significant, pSTAT3 levels were more variable post-treatment, particularly in CD44+CD24- 

cells in ER+ tumors (Supplementary Fig. S1B-C). Therefore, in a subset of patients with IBC, 

treatment may select for stem-like CD44+CD24-pSTAT3+ cells increasing the risk of disease 

progression.  

 

Dependency of IBCs on JAK2/STAT3 signaling 

To explore whether the high fraction of pSTAT3+ cells reflects a dependency on JAK/STAT3 

signaling, we analyzed the effects of ruxolitinib (RUX), a JAK1 and JAK2 inhibitor (43), on the growth 

of IBC cell lines in cell culture and xenograft assays. Because patients with IBC frequently receive 

neoadjuvant paclitaxel (PTX), we also tested paclitaxel alone and in combination with ruxolitinib. We 

found ruxolitinib alone decreased the viability and growth of both SUM149 and SUM190 cells in vitro, 

albeit at relatively high concentrations, and in immunodeficient mice (Fig. 1E-F and Supplementary 

Fig. S1D). Furthermore, in SUM190 xenografts, combination of ruxolitnib with paclitaxel significantly 

decreased tumor volume compared to either agent alone and SUM149 xenografts exhibited a similar 
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trend (Fig. 1E-F and Supplementary Fig. S1E-F). Tumors treated with the combination had 

significantly higher phospho-histone H3+ (pHH3+) cells compared to vehicle and single agent 

treatments, suggesting mitotic arrest, while the frequency of cleaved caspase-3+ or CD44+ cells were 

not affected (Supplementary Fig. S1F-G).  

 To confirm inhibition of JAK/STAT signaling by ruxolitinib in vivo, we performed immunoblot 

analysis of pSTAT3 in the xenografts. We found ruxolitinib significantly decreased pSTAT3 levels in 

SUM190 xenografts, and while we saw a similar trend in SUM149, these tumors tended to be 

heterogeneous for pSTAT3 (Fig. 1G). Paclitaxel induced a slight increase in pSTAT3 in some tumors, 

which was inhibited in the combination. Activation of pSTAT3 by paclitaxel may reflect an increased 

dependency of treatment-resistant samples on JAK/STAT signaling, which is in line with 9p24/JAK2 

amplification being more common in residual TNBC after neoadjuvant chemotherapy (44,45). 

 

Cell line models of chemotherapy-resistant IBC 

To explore mechanisms of chemotherapy resistance in IBC, we generated derivatives of IBC cell 

lines resistant to paclitaxel and doxorubicin, commonly used chemotherapeutic agents, by prolonged 

culture in the presence of drug. We used both triple-negative (SUM149 and FCIBC02) and HER2+ 

(SUM190) IBC cell lines to assess resistance mechanisms across subtypes. Compared to parental, 

paclitaxel (SUM149PR, FCIBC02PR, and SUM190PR) and doxorubicin (SUM149DR, FCIBC02DR, 

and SUM190DR) resistant cells displayed an increase in IC50 to the respective drug (Fig. 2A). 

 To determine if resistance was due to genetic alterations, we performed whole exome 

sequencing on parental and resistant cell lines. We filtered for mutations that are only present in 

resistant derivatives and are most likely to impact cellular phenotypes (e.g., frameshift, missense, 

nonsense or in-frame deletions and insertions). Most mutations were unique to each cell line 

(Supplementary Fig. S2A and Supplementary Table S3) and some overlapped with the COSMIC 

database, implying clinical relevance (Fig. 2B). We also examined copy number variations but found 

limited differences (Supplementary Fig. S2B). Functional analysis of mutant genes in resistant cells 
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using Metacore (46) revealed genes were enriched in chromatin modification pathways in 

SUM149PR (Supplementary Fig. S2C and Supplementary Table S4), and mutations in these 

genes (Fig. 2B) highlight the importance of epigenetic changes in therapeutic resistance. Therefore, 

we analyzed histone modification patterns by mass spectrometry, but did not identify consistent 

resistance-associated differences (Supplementary Fig. S2D).  

 Next, we performed RNA-seq to identify treatment and resistance-associated gene expression 

changes that could reveal common targetable pathways. Differences were the largest between 

parental and resistant derivatives, except for SUM190DR where treatment of parental cells accounted 

for the most variation. In all other cell lines, treatment in parental cell lines was the source of the 

second highest variation, and in all cell lines, there were limited drug-induced differences in resistant 

derivatives (Fig. 2C, Supplementary Table S5). We focused on differentially expressed genes 

between parental and resistant derivatives, and classified them as either “adaptive”, which were 

differentially expressed following drug treatment in parental cells or “de novo”, which were not 

significantly affected by drug. Both gene sets were represented in all cell lines, but there were more 

de novo than adaptive genes. SUM149PR cells had the largest gene expression changes compared 

to parental cells, most of which were de novo genes (Fig. 2D and Supplementary Fig. S2E). To 

identify pathways associated with response and resistance to chemotherapy, we performed GSEA 

and identified epithelial to mesenchymal transition (EMT) as a top enriched gene set across resistant 

derivatives in both adaptive and de novo gene lists with the most significant enrichment in 

SUM149PR cells.  De novo genes were specifically associated with the “estrogen response late” 

gene set, whereas adaptive genes were more enriched for inflammation and immune-response 

related pathways, except for SUM149PR (Fig. 2E, Supplementary Table S4). Finally, the 

IL6/JAK/STAT3 gene set was enriched only in de novo genes in SUM149PR and SUM190PR cells 

(Fig. 2E). 

 Further analysis of the EMT pathway revealed a significant increase in the EMT signature in 

resistant TN-IBC and a decrease in HER2+ luminal SUM190s (Fig. 2F, Supplementary Table S1), 

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/doi/10.1158/0008-5472.C

AN
-22-0423/3226682/can-22-0423.pdf by M

ax Planck Institute for M
olecular G

enetics user on 25 N
ovem

ber 2022



 27

which was validated by immunoblot for the mesenchymal marker vimentin (Supplementary Fig. 

S2F). We also found SUM190PR cells have an increase in the myoepithelial breast tumor signature 

(47), suggesting a shift from luminal to myoepithelial cell state (Fig. 2G, Supplementary Table S1). 

These data identified cell state switching as a potential mechanism of chemotherapy resistance in 

IBC.  

 

Genomic targets of STAT3 in chemotherapy-sensitive and resistant IBC cells 

Next, given the efficacy of ruxolitinib and paclitaxel combination in vivo (Fig. 1), we characterized 

STAT3 signaling in more detail. First, we found enrichment of the Hallmark JAK/STAT signature from 

GSEA in SUM149PR and SUM149DR RNA-seq data with an opposite trend in SUM190 

(Supplementary Fig. S3A, Supplementary Table S1). Furthermore, we found paclitaxel-resistant 

and paclitaxel-treated SUM149 cells had higher pSTAT3Tyr705 levels compared to parental, whereas 

paclitaxel decreased pSTAT3Tyr705 in SUM149PR cells (Fig. 3A). FCIBC02 cells had high basal levels 

of pSTAT3Tyr705 that decreased after paclitaxel treatment, while doxorubicin-resistant lines had lower 

pSTAT3Tyr705 that did not change by doxorubicin treatment (Supplementary Fig. S3B). We also 

examined other components of the JAK/STAT pathway but found relatively few changes 

(Supplementary Fig S3C-D). The variability in pSTAT3 depending on chemotherapeutic agent 

suggests a context-dependent role for JAK/STAT signaling in treatment response and resistance. To 

confirm the importance of JAK2/STAT3 in IBC cell survival, we tested specific inhibitors for JAK1, 

JAK2, and STAT3. JAK1 inhibitors had no effect on viability even at high concentrations, whereas 

JAK2 and STAT3 inhibitors decreased cell viability (Supplementary Fig S3E-F). Resistant 

derivatives behaved similar to parental cells, except SUM149 resistant derivatives were more 

sensitive to the JAK2 inhibitor AZD1480 and more resistant to the STAT3 inhibitor SH-4-54.  

 To explore how STAT3 activation influences gene expression, we performed pSTAT3Tyr705 ChIP-

seq in SUM149 and FCIBC02 parental and resistant cells in the presence and absence of paclitaxel 

or doxorubicin. Similar to the immunoblot, pSTAT3 chromatin binding showed remarkable differences 
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between the two cell lines with increased binding in paclitaxel-treated SUM149 cells and a decrease 

in FCIBC02 cells (Fig. 3B-E, Supplementary Table S6). SUM149PR cells had more pSTAT3Tyr705 

peaks than parental cells, which were lost following paclitaxel treatment (Fig. 3B-C). Conversely, 

FCIBC02PR and FCIBC02DR cells had fewer pSTAT3Tyr705 peaks than parental cells but gained 

peaks after drug treatment (Fig. 3D-E, Supplementary Fig. S4A-B). Given the higher basal level of 

STAT3 in FCIBC02 compared to SUM149 cells based on immunoblot and ChIP-seq, we 

hypothesized that these cells already have an activated STAT pathway even before paclitaxel 

treatment. Indeed, we found a large fraction of pSTAT3Tyr705 peaks that were gained after paclitaxel 

treatment or resistance in SUM149 cells were already present in FCIBC02 cells (Supplementary Fig. 

4C). To examine whether pSTAT3 has different functional roles in these cell lines, we analyzed 

pSTAT3 chromatin targets using Metacore (48). We found significant enrichment in known STAT3-

related signaling pathways, such as cell adhesion, development, regulation of EMT, Wnt and Notch 

signaling, and cell cycle networks (Supplementary Fig. S4D-E and Supplementary Table S4). 

Many of these pathways were similar to those found by RNA-seq (Fig. 2E), suggesting that pSTAT3 

may facilitate chemotherapy resistance through its direct transcriptional targets. 

To assess how pSTAT3 binding affects gene expression associated with chemotherapy 

resistance, we performed Binding and Expression Target Analysis (BETA) (49) using pSTAT3Tyr705 

ChIP-seq and genes differentially expressed between parental and resistant cells. We found that 

genes upregulated in SUM149PR cells were significantly enriched in pSTAT3Tyr705 peaks, indicating 

that increased pSTAT3Tyr705 binding in resistant cells correlates with higher expression of upregulated 

genes (Fig. 3F). Similarly, the decrease of pSTAT3Tyr705 peaks observed in FCIBC02 resistant 

derivatives correlated with decreased gene expression, supporting that pSTAT3 acts as a 

transcriptional activator in both cell lines (Fig. 3F, and Supplementary Fig. S4F). These data 

highlight the context dependence of pSTAT3 signaling, as FCIBC02 cells with high basal levels of 

pSTAT3 may not be as dependent on pSTAT3 for the acquisition of resistance as SUM149 cells, but 

inhibition of pSTAT3 may sensitize cells to chemotherapy in both lines. 
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 Next, to assess the functional impact of pSTAT3Tyr705 on resistance, we identified ChIP-seq 

targets found only in resistant lines and whose gene expression was significantly upregulated in 

resistant cells (Supplementary Table S5). Only SUM149PR had sufficient differentially expressed 

genes (>100) for pathway analysis, and we again saw enrichment for EMT, inflammation, 

development, and cell adhesion processes (Fig. 3G, Supplementary Table S4). BETA analysis of 

SUM149PR adaptive or de novo gene sets revealed a significant enrichment of pSTAT3 peaks in 

upregulated genes from the de novo cluster, which correlates with our RNA-seq data where we found 

enrichment of EMT and the IL6/JAK/STAT pathway (Fig. 3H). In line with this, EMT-related genes 

(e.g., ZEB2, PTGS2, and BCL3) upregulated in SUM149PR cells were enriched for pSTAT3Tyr705 

peaks (Fig. 3I). Conversely, in FCIBC02DR cells loss of pSTAT3Tyr705 binding significantly correlated 

only with downregulated genes in the adaptive cluster (Supplementary Fig. S4G). 

 Finally, to identify transcriptional targets of pSTAT3 important for resistance across cell lines, we 

examined the overlap of resistant-specific pSTAT3Tyr705 targets with increased gene expression in 

resistant cells. The only gene that was shared was PDE4A (cAMP-specific 3’, 5’-cyclic 

phosphodiesterase 4A) (Supplementary Fig. S5A). We found pSTAT3 ChIP-seq peaks were 

increased in resistant derivatives near exon 1 of two PDE4A isoforms, PDE4A10, and PDE4A11 

(Supplementary Fig. S5B). Overall, we identified a link between pSTAT3 and metabolic genes, cell 

state, response to treatment and acquisition of resistance in IBC cell lines.  

 

Metabolic reprogramming and cAMP signaling in IBC and chemotherapy resistance 

The efficacy of chemotherapeutic agents is influenced by cellular metabolism and abnormal levels of 

certain metabolites can confer treatment resistance (41). We identified PDE4A, which hydrolyzes the 

secondary messenger cAMP, as the only pSTAT3Tyr705 target common in all chemo-resistant 

derivatives (Supplementary Fig. S5A). To assess if upregulation of PDE4A reflects overall metabolic 

differences between parental and chemo-resistant cells, we performed metabolomic profiling by LC-

MS/MS. We found that parental and resistant cell lines were metabolically distinct (Fig. 4A-B, 
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Supplementary Table S7). In SUM149 cells, the top 50 differential metabolites separately clustered 

the three cell lines, whereas in FCIBC02, parental and resistant cells were clustered by metabolites, 

but FCIBC02DR and FCIBC02PR were intermingled (Fig. 4A-B).  

 Next, we examined the levels of cAMP pathway components in our cell lines as measured by 

LC-MS/MS and found they were significantly increased in both paclitaxel-resistant derivatives (Fig. 

4C). This increase in both AMP and cAMP as well as increased PDE4A expression suggests that the 

entire cAMP pathway may be elevated in paclitaxel-resistant derivatives. To determine how treatment 

changes cAMP levels, we performed a cAMP ELISA following treatment with paclitaxel or doxorubicin 

in parental and resistant cell lines. In SUM149 parental cells, paclitaxel treatment decreased cAMP 

levels, whereas in SUM149PR cells treatment had no effect. We also found cAMP was significantly 

decreased only in doxorubicin treated FCIBC02 parental cells, with the same trend in paclitaxel 

treated cells (Supplementary Fig. S5C). 

 Higher cAMP levels are associated with increased resistance to apoptosis (50), therefore, 

components of the cAMP pathway may be upregulated in resistant derivatives to maintain higher 

levels of cAMP signaling to increase survival. To test this hypothesis, we investigated whether 

inhibiting CREB, the main downstream mediator of cAMP signaling (50), would increase sensitivity to 

chemotherapeutic drugs. When we treated parental and resistant derivatives with the CREB inhibitor 

3i (51), we found that both FCIBC02DR and FCIBC02PR were more resistant to CREB inhibition 

alone (Supplementary Fig. S5D). However, when we performed synergy studies with 

chemotherapeutic drugs and CREB inhibition, we found that in all resistant derivatives combination 

with 3i was more synergistic across a broad range of chemotherapeutic doses compared to parental 

cells (Fig. 4D).  

 To validate these findings, we generated doxycycline-inducible knockdowns for both PDE4A and 

CREB in FCIBC02 cells (Supplementary Fig. S5E-F). We first examined the role of these genes in 

cell proliferation and found CREB knockdown significantly decreased cell growth in all cell lines 

(Supplementary Fig. S5G). PDE4A knockdown also resulted in a significant decrease in 
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proliferation, but this effect was much less pronounced than CREB, likely due to compensation from 

other PDE enzymes (Supplementary Fig. S5G). Downregulation of CREB also increased sensitivity 

to paclitaxel in both parental and resistant derivatives (Supplementary Fig. S5H). While this effect 

was only significant for shCREB1#2, this hairpin had the greatest loss of CREB following doxy-

induction (Supplementary Fig. S5F). Again, downregulation of PDE4A had less pronounced effects 

than loss of CREB and had little effect on paclitaxel sensitivity (Supplementary Fig. S5H). We also 

tested how combination treatment of the CREB inhibitor with ruxolitinib would impact sensitivity to 

paclitaxel. In the SUM149PR cell line, we found that increasing concentrations of 3i had little impact 

on synergy between ruxolitinib and paclitaxel at lower concentrations, but was antagonistic at the 

highest concentration, suggesting that cAMP may be acting downstream of STAT3, and the 

combination of these three drugs has limited added benefit (Supplementary Fig. S5I).  

 Finally, we evaluated the expression of PDE gene family members in three patient cohorts of 

IBC and non-IBC (nIBC) (7,33,34) to determine if PDE expression could be a biomarker of IBC or 

IBC-associated chemotherapeutic resistance. While the STAT signature was unable to significantly 

differentiate IBC from non-IBC, the PDE gene signature was significantly higher in IBC in one of the 

three cohorts with an increased trend in one other cohort (Fig. 4E, Supplementary Fig. S5J, 

Supplementary Table S1). Furthermore, we found that PDE4A expression was significantly 

correlated with the STAT signature in one IBC cohort and had a positive trend in other cohorts, which 

was only seen in IBC samples (Fig. 4F, Supplementary Fig. S5K). This suggests that STAT3 

regulation of PDE4A may be unique to IBC and metabolomic profiling might identify novel IBC 

biomarkers. Lastly, GSEA for genes differentially expressed between IBC and non-IBC patient 

samples also demonstrated an enrichment of cAMP-related signaling pathways in IBC (FDR<0.1) 

(Fig. 4G). While these patient cohorts are relatively small and contain both treated and untreated 

samples, our results suggest that elevated cAMP-PKA-CREB signaling, in part due to activated 

JAK/STAT3, might distinguish IBC from non-IBC and contribute to chemotherapeutic resistance in 

IBC. 
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Cellular heterogeneity and therapeutic resistance in IBC 

Next, we explored cellular heterogeneity in parental and resistant cell lines using CyTOF (52) and 

single cell RNA-seq (scRNA-seq). CyTOF profiles, using a panel of 34 markers, were similar between 

parental and chemo-resistant lines in the FCIBC02 series, while in the SUM149 set, SUM149PR was 

clearly distinct from parental (Supplementary Fig. S6A-B). FCIBC02DR cells showed a reduction of 

CD24 with concomitant increase in CD44, implying selection for CD44+CD24- cells. However, short-

term treatment with chemotherapeutic agents had no discernable effects on the cellular protein levels 

of the markers tested in any cell line (Supplementary Fig. S6A-B). SUM149PR cells contained two 

subpopulations, one with high levels of luminal markers (e.g., EpCAM) and low levels of 

mesenchymal markers (e.g., vimentin) and a smaller subset with high mesenchymal and low luminal 

marker levels consistent with EMT (Fig. 5A, Supplementary Fig. S6B). Further analysis of 

SUM149PR cells by gating for EpCAM high or low expression showed that EpCAMlow cells had lower 

expression of the proliferation markers Ki67 and CDK1 and were mainly composed of stem cell-like 

CD44+CD24- cells (Supplementary Fig. S6C).  

 To assess whether these distinct populations have different therapeutic sensitivities, we sorted 

EpCAM+ and EpCAM- cells from both SUM149 and SUM149PR cells and tested their response to 

paclitaxel. In the SUM149PR cell line, treatment with increasing doses of paclitaxel led to a 

progressive increase in EpCAM- cells (Supplementary Fig. S6D). However, the EpCAM- population 

appeared to be unstable and required the continuous presence of paclitaxel, since culturing EpCAM- 

cells sorted from SUM149 led to the reappearance and dominance of EpCAM+ cells. In contrast, 

EpCAM- cells sorted from SUM149PR and cultured in the presence of paclitaxel remained EpCAM- 

(Supplementary Fig. S6E). Gene expression profiles of EpCAM+ and EpCAM- fractions sorted from 

SUM149PR cells confirmed their more epithelial and more mesenchymal features, respectively, with 

differentially expressed genes enriched in cell adhesion and developmental pathways, such as EMT 
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(Fig. 5B-C). EpCAM- cells sorted from the SUM149PR line were significantly more resistant to 

paclitaxel compared to SUM149PR and EpCAM+ SUM149PR cells (Fig. 5D). 

 To explore subclonal heterogeneity in more detail, we performed scRNA-seq on both parental 

and paclitaxel-resistant cell lines. In concordance with CyTOF, scRNA-seq identified a distinctly 

EpCAM-VIM+ cluster (cluster 5) in SUM149PR (Fig. 5E-F and Supplementary Table S8). In SUM149 

parental, there was a small cluster of cells that were EpCAMlow and VIMhigh, suggesting a selection for 

these cells during acquired resistance to paclitaxel (Supplementary Fig. S7A). In FCIBC02PR, we 

detected a similar emergence of an EpCAMlow cluster (cluster 6), implying a loss of some epithelial-

like features (Fig. 5E-F). We also detected clusters within both resistant derivatives (clusters 0 and 4 

in SUM149PR and cluster 5 in FCIBC02PR) that have lower relative expression of VIM, but EpCAM 

remained unchanged, which may reflect cells that have retained epithelial features. Overall, in both 

resistant lines, we observed multiple luminal-mesenchymal cell states compared to parental cells, 

consistent with hybrid-EMT cell states associated with high intratumor heterogeneity and therapeutic 

resistance (53). Furthermore, we identified cells that co-express epithelial and mesenchymal markers 

characteristic of hybrid-EMT cells in both resistant derivatives, and SUM149PR cells were particularly 

heterogeneous along the EMT spectrum (Supplementary Fig. S7B).  

 We next analyzed the expression of STAT3 to determine whether any cluster reflects increased 

STAT3 transcriptional activity. While STAT3 expression was generally low by scRNA-seq, in 

FCIBC02PR cells, the EpCAMlow cluster 6 had higher expression of STAT3 (Supplementary Fig. 

S7C). We then generated a STAT3 signature based on genes that were both differentially expressed 

between resistant and parental cells and direct pSTAT3 targets only in resistant cells. This STAT3-

driven-resistance signature was enriched in both EMT-like clusters in the resistant lines (Fig. 5G). 

Many clusters correlated with cell cycle phase in all cell lines, but each cell line also contained cell-

cycle independent clusters (Supplementary Fig. S7D). GSEA analysis of differentially expressed 

genes in these clusters (FCIBC02PR cluster 5-7, and SUM149PR cluster 4-5) revealed that in 

FCIBC02PR cells cluster 6 and 7 had genes enriched in metabolic pathways and interferon response, 
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respectively (Supplementary Fig. S7E, Supplementary Table S4). Furthermore, in the EMT-like 

clusters (SUM149PR cluster 5 and FCIBC02 cluster 6) we observed enrichment for EMT genes and 

IL6/JAK/STAT3 signaling (Fig. 5H). Overall, these single cell profiles demonstrate a high degree of 

cellular heterogeneity in both cell lines and a selection for subpopulations with more active STAT3 

and mesenchymal features during acquisition of paclitaxel resistance. 

 

Changes in IBC cellular dynamics during acquired resistance to paclitaxel 

To explore how resistance and treatment alter population dynamics, we created signatures based on 

differentially expressed genes between parental, resistant, and treated cells based on bulk RNA-seq 

data. We then classified single cells according to these signatures to investigate whether they were 

transcriptionally like parental, resistant, or paclitaxel treated groups. In both SUM149 and FCIBC02 

lines, we detected a small subpopulation of cells (3.4% and 7.9%, respectively) that was classified as 

having a resistant profile, whereas in both resistant lines most cells were classified as resistant (Fig. 

5I). These data suggest small pre-existing paclitaxel-resistant subpopulations in parental lines are 

selected for during treatment, but there may also be drug-induced changes underlying acquired 

resistance. 

 Due to the EMT-driven resistance mechanism observed in SUM149PR cells, and the presence 

of hybrid-EMT states, we also investigated differentiation state-related heterogeneity by classifying 

cells as basal, luminal, and mesenchymal based on signatures derived from RNA-seq of TNBC cell 

lines (54). Single cells were then classified based on their transcriptional similarity to these subtypes 

within each cell line. Both SUM149 and FCIBC02 are basal, so the classification of single cells into 

the three subtypes reflects a relative scale. In SUM149 cells, we observed a shift from basal and 

luminal signatures in parental cells towards mesenchymal in the resistant derivative (Fig. 5J). 

FCIBC02 cells were more evenly distributed amongst the three subtypes with a higher fraction of 

unclassified cells. In FCIBC02PR cells, there was a similar decrease in luminal-like cells, but they 

instead shifted towards basal rather than mesenchymal (Fig. 5J). The general trends observed were 
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robust enough to be maintained even when different statistical tests were used to assign cells to 

groups (Supplementary Fig. S7F). 

 To further examine how subpopulations in parental and resistant cells may be related to each 

other, we performed integrated clustering analysis. In SUM149/SUM149PR, the mesenchymal cell-

enriched cluster (Cluster 4) was also detected in parental cells, but represented a relatively small 

proportion of cells, and most cells were classified as Cluster 0. In the resistant derivative, cells were 

more evenly distributed across clusters (Fig. 5K-L, Supplementary Fig. S7G). Cells in cluster 0 have 

higher expression of genes involved in mitosis and cell cycle, which may be more likely to be targeted 

by paclitaxel (Supplementary Table S8). In contrast, while FCIBC02 and FCIBC02PR cells were 

intermingled, Cluster 7 was only found in resistant cells. There was also an expansion of a rare 

population of parental cells in Cluster 5 (Fig. 5L), which had decreased VIM expression and 

increased ELF5 and MSX1 expression (Supplementary Table S8). Overall, our single cell analysis 

by CyTOF and scRNA-seq show that in the SUM149 cell line, one mechanism of resistance is 

through selection for rare pre-existing EMT-like cells, whereas in FCIBC02 cells, resistance may be 

due to the emergence of new cell clusters with perturbed lineage programs. Lastly, we observed a 

shift from luminal towards basal and mesenchymal phenotypes in both chemotherapy-resistant cell 

lines, which may in part be mediated through JAK/STAT signaling. 

 

Molecular mechanism of ruxolitinib-chemotherapy synergy in IBC 

To investigate whether ruxolitinib treatment can increase sensitivity to chemotherapies in resistant 

derivatives and prevent a shift in lineage programs, we performed synergy studies. In general, 

combination of ruxolitinib with paclitaxel was synergistic around each cell line’s IC50. In both SUM149 

and FCIBC02 parental cells, combination had mostly additive or antagonistic effects, whereas in 

paclitaxel-resistant cells, combination was synergistic around each cell line’s respective IC50 dose of 

paclitaxel (6.25nM PTX, maximum delta score = 15.4 in SUM149PR and 250nM PTX, maximum delta 

score = 39 in FCIBC02PR) (Fig 6A). In the SUM190 HER2+ cell line we observed synergy in both 
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parental and resistant lines, although SUM190PR cells had a lower synergy score (Fig. 6A). 

Combination of RUX with doxorubicin was mostly additive across a broad range of doses 

(Supplementary Fig. S8A). We also tested synergy using a more specific JAK2 inhibitor, Fedratinib, 

and found similar results (Supplementary Fig. S8B). 

  To investigate the molecular basis of the observed synergies, we performed RNA-seq on cells 

treated with ruxolitinib or each chemotherapeutic agent alone, and in combination. We found that in 

TN-IBC cell lines the most significant expression changes were induced by combination treatments 

with some variability in the degree of response between parental and resistant cells and the overlap 

with single agent-induced genes (Fig. 6B, Supplementary Fig. S8C, Supplementary Table S9). For 

example, paclitaxel-ruxolitinib (PTX+RUX) combination induced changes were more pronounced in 

parental SUM149 than in SUM149PR cells (Fig. 6B-C), but the opposite was observed in FCIBC02 

(Supplementary Fig. S8C-D). In both SUM149PR and FCIBC02PR derivatives however, single 

agents had limited effects, and combination was necessary to produce significant gene expression 

changes (Fig. 6B-C, and Supplementary Fig. S8C-D). In the doxorubicin-ruxolitinib (DOX+RUX) 

combination in SUM149, both parental and resistant cells had similar levels of combination induced 

changes (Supplementary Fig. S8C,E). In contrast, ruxolitinib alone had the most significant gene 

expression changes in SUM190 cells and combination with paclitaxel did not induce many further 

changes. (Supplementary Fig. S8C,F). In SUM149PR and SUM149DR cells, combination treatment 

induced genes that were upregulated compared to both vehicle and single agents, and in parental 

cells, were also upregulated by RUX alone, suggesting that in resistant derivatives combination 

treatment may be necessary for these RUX-specific effects (Fig. 6C, cluster 3 and Supplementary 

Fig. S8E, cluster 2). In both FCIBC02 and FCIBC02PR cells ruxolitinib and paclitaxel combination 

induced unique gene expression changes (Supplementary Fig. S8D, cluster 2). Analysis of process 

networks by Metacore demonstrated that genes within these clusters were most significantly enriched 

in apoptosis and cell cycle networks as well as inflammation and immune response-related functions 
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(Fig. 6D and Supplementary Table S4). Many of the top activated networks include IRAK1/2, JAK2, 

STAT5, IL-6, and NF-kB implying autoregulatory feedback loops and crosstalk with NF-kB signaling. 

 To explore the clinical relevance of our findings, we investigated the expression of JAK/STAT 

signaling components following chemotherapy treatment. We assessed the levels of our IBC-STAT 

signature, defined by genes downregulated following RUX treatment in both SUM149 and FCIBC02 

(Supplementary Table S1), in an ISPY clinical trial with neoadjuvant chemotherapy (32) in TNBC 

patients due to lack of similar data availability in IBC patients. Although numbers were low, we 

detected a decrease in the IBC-STAT signature 48 hours after treatment (T2, p=0.015) in patients 

who had a pathologic complete response, but not in non-responders (Supplementary Fig. S8G). 

 Lastly, we tested whether treatment with ruxolitinib prevents the emergence of mesenchymal 

VIM+EpCAM- cells. We found that ruxolitinib alone and in combination with paclitaxel was able to 

decrease VIM protein expression in parental cells following short-term (72hrs) treatment (Fig. 6E). 

However, in SUM149PR cells, VIM remained unchanged potentially indicating stable mesenchymal 

cell states. To test this further, we performed CyTOF on SUM149 parental or resistant cells treated 

with single agents or the combination for 14 days. Concordant with our previous data, we saw that 

prolonged exposure to paclitaxel increased the proportion of VIM+EpCAM- cells in both cell lines (Fig. 

6F, Supplementary Fig. S9). Following long-term culture in ruxolitinib alone, both parental and 

resistant cells had a decreased VIM+EpCAM- population compared to vehicle. Importantly, in the 

parental cells, combination treatment prevented the expansion of this resistant mesenchymal 

subpopulation. In resistant derivatives, there is still a slight expansion of this population, but it does 

not reach the same level as paclitaxel alone (Fig. 6F). Therefore, a short period of ruxolitinib alone 

before combination treatment with paclitaxel may help delay or prevent the emergence of a more 

resistant mesenchymal cell population. 

 

DISCUSSION  
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IBC remains a poorly defined breast cancer subtype with unique features and resistance to treatment. 

Thus, there is an urgent need to improve our understanding of drivers of IBC to design more effective 

therapies. Here, we found a central role for JAK2/STAT3 signaling in regulating IBC phenotypes and 

response to common chemotherapeutic agents. We demonstrated that inhibition of the JAK2/STAT3 

pathway in combination with chemotherapy is a new candidate treatment option for IBC.  

 We previously characterized stem cell-like CD44+CD24- cells in non-IBC and found that these 

cells are associated with poor outcome, commonly pSTAT3+ and dependent on JAK/STAT signaling 

(12,15,55). Here, we found that most IBCs are composed of CD44+CD24- cells regardless of tumor 

subtype and a large fraction of these cells are pSTAT3+. Serum levels of IL-6 are higher in IBC 

patients compared to those with non-IBC (56) potentially contributing to the high frequency of 

pSTAT3+ cells in IBC. We also found that inhibition of JAK/STAT3 in combination with chemotherapy 

significantly decreased IBC tumor volume, suggesting that this combination may be more effective in 

IBC patients, a hypothesis currently being tested in clinical trials (NCI.gov: NCT02623972). Inhibition 

of STAT3 to overcome therapeutic resistance is also applicable to other cancer types, and there are 

currently clinical trials investigating different types of STAT3 inhibition strategies (e.g., direct STAT3 

inhibitors and antisense oligonucletides) in multiple malignancies (57).  

 IBC is relatively resistant to therapies, which may be due to the high frequency of stem cell-like 

cells with activated JAK/STAT3 signaling (58,59);Gooding, 2020 #11856}. In prostate cancer, 

JAK2/STAT3 activation led to lineage plasticity, whereby switching from a luminal androgen receptor 

positive phenotype to mesenchymal/neuroendocrine state was associated with resistance to anti-

androgens and metastatic progression (60,61).  We also observed substantial differentiation state-

related heterogeneity within our IBC cell lines and treatment with paclitaxel and the development of 

resistance increased the relative frequencies of EpCAMlowVIMhighCD44highCD24lowpSTAT3+ cells in 

TN-IBC lines. Similarly, paclitaxel-resistant derivates of the SUM190 HER2+ IBC line shifted from 

luminal to a more myoepithelial phenotype. These results suggest that the increased frequency of 

stem cell-like cells in IBC with activated JAK2/STAT3 signaling leads to cellular plasticity that 
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promotes treatment resistance, but resistance mechanisms are heterogeneous and depend on tumor 

subtype. 

 One of the long-standing questions in IBC is the identification of molecular markers that are 

specific to IBC compared to non-IBC. Here we identified the PDE family of cAMP phosphodiesterases 

as candidate biomarkers for IBC that may also be more resistant to chemotherapy. We found 

elevated cAMP signaling in paclitaxel resistant cells and in IBC patient samples compared to non-IBC 

tumors. One of the major downstream targets of cAMP is PKA, which activates CREB and RAF to 

regulate gene expression and cell survival (62). cAMP/PKA signaling is required for the survival of 

many normal stem cells and has been implicated in cancer stem cells and therapeutic resistance 

(63). PKA also activates PDEs as part of a negative feedback loop to maintain cAMP homeostasis 

(62,64), which could explain the elevated PDE expression and high cAMP levels in our resistant cell 

lines. We found that inhibition and knockdown of CREB sensitized cells to paclitaxel identifying PDEs 

and the cAMP/PKA signaling pathway as candidate biomarkers and novel therapeutic targets in IBC.  

 STAT3Tyr705 functions as a transcriptional activator inducing tumor-promoting gene expression 

programs (65). Our analysis pSTAT3Tyr705 chromatin binding in TN-IBC cell lines revealed divergent 

changes in pSTAT3 peaks following paclitaxel treatment and acquisition of resistance. In SUM149 

cells with lower basal pSTAT3 compared to FCIBC02, there were fewer pSTAT3 peaks at baseline 

compared to paclitaxel-resistant cells, and paclitaxel treatment increased the number of pSTAT3 

peaks in parental but not in resistant cells. In contrast, parental FCIBC02 cells had higher levels of 

chromatin-bound pSTAT3 than resistant cells, but paclitaxel treatment increased the number of 

pSTAT3 in resistant derivates, which could contribute to the more significant synergy in combination 

treatment in FCIBC02. The heterogeneity of these responses highlights the need for predictive 

biomarkers to select IBC patients JAK2/STAT3-targeting combination therapy. 

 To examine how IBC cells respond to paclitaxel and ruxolitinib combination therapy, we 

performed synergy studies with RNA-seq in vitro. Potential effects of treatment on the 

microenvironment, which is out of the scope of this study, is warranted given that synergy was more 
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pronounced in vivo than in vitro. The importance of JAK2/STAT3 signaling in the stroma, for example 

in angiogenesis, likely explains these differences. Considering the unique IBC microenvironment is 

not reproduced in any preclinical models, the impact of inhibiting JAK2/STAT3 signaling in IBC would 

have to be dissected in clinical trials. Interestingly, when cells were treated with the combination of 

chemotherapy and ruxolitinib, cells paradoxically had increased inflammation and immune response 

pathways, suggesting possible compensatory mechanisms. Thus, our data suggests that patients 

with IBC receiving the combination of JAK2/STAT3 inhibitors with chemotherapy may benefit from the 

addition of immunotherapy such as PD-L1 immune checkpoint inhibitors. Recent data supports this, 

where inhibition of STAT3 made mammary tumor cells more immunogenic in syngeneic models (66).  

 In summary, our analysis of clinical IBC samples in combination with comprehensive profiling of 

chemotherapy-sensitive and resistant IBC cell line models emphasizes a key role for JAK2/STAT3 

signaling and identified novel biomarkers and candidate therapeutic targets in IBC to explore in future 

preclinical and clinical studies.  
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FIGURE LEGENDS  
 
Figure 1. Frequency of CD44+CD24-pSTAT3+ cells and dependency on JAK/STAT3 signaling in 

IBC. A, Representative immunofluorescence analysis of CD44, CD24, and pSTAT3 in IBC samples. 

Scale bars represent 10μm. Nuclei are stained with DAPI. B, Percent of the four cell types in each 

IBC tumor of the indicated subtype. C, Percent pSTAT3+ cells in the four cell types. n=33 patients. D, 

Percent pSTAT3+ cells within the four cell types in each tumor classified by subtype. E, Graphs 

depicting SUM149 (top) and SUM190 (bottom) xenograft tumor volume in mice treated with vehicle, 

paclitaxel (PTX), ruxolitinib (RUX), or the combination with green arrow depicting treatment start 

when tumors were first palpable (~20mm3 for SUM149 and ~60mm3 for SUM190). Error bars 

represent SEM, n = 5 mice with 2 tumors/mouse. p-values were calculated by two-way ANOVA. F, 

Graph of tumor weights at end point from experiment shown in E. Error bars represent s.d.  G, 

Immunoblot analysis of pSTAT3 and STAT3 in xenografts. ACTB was used as a loading control. Dot 

plot depicts quantification of pSTAT3/STAT3 ratios. p-values for panels B-D, F-G calculated by one-

way ANOVA with Tukey’s multiple comparisons.  

 

Figure 2. Characterization of chemotherapy-resistant IBC cell lines. A, Cellular viability after 

paclitaxel or doxorubicin treatment of parental and resistant cells. Error bars represent s.d., n = 3. p-

values determined by comparison of curves using F test. B, Selected genes from Supplemental Fig. 

S2A that were mutated in resistant derivatives and either overlap with the COSMIC cancer database, 

were differentially expressed in pathway analysis, or were mutated in both paclitaxel-resistant cell 

lines. Highlighted genes in red correspond to chromatin modifiers. C, Principal component analysis of 

gene expression of parental and resistant cell lines treated with vehicle, paclitaxel (PTX), or 

doxorubicin (DOX). D, Heatmap of significant differentially expressed genes between parental and 

resistant derivatives clustered by either their presence (adaptive) or absence (de novo) in parental 

paclitaxel treated cells compared to vehicle. E, Gene set enrichment analysis for Hallmark gene sets 
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in the indicated resistant vs. parental differential gene lists that were significantly enriched (FDR < 

0.05). Color scale corresponds to -log(FDR q-value). F, Gene Set Variation Analysis (GSVA) score 

showing relative enrichment of the Hallmark Epithelial to Mesenchymal Transition (EMT) gene set in 

the indicated cell lines. G, GSVA analysis as in F for enrichment of the Hollern Myoepithelial Breast 

Tumor gene signature in SUM190 cell lines. p-values for F-G calculated by student’s t-test. 

 

Figure 3. pSTAT3 chromatin binding patterns in drug-sensitive and resistant IBC cells. A, 

Western blot of pSTAT3Tyr705, and STAT3 in the indicated cell lines following 24hrs of paclitaxel (PTX) 

treatment. ACTB used as loading control B, Venn diagram depicting overlap of pSTAT3Tyr705 ChIP-

seq peaks between vehicle (Veh) and paclitaxel (PTX) treatment of SUM149 and SUM149PR cell 

lines. C, Heatmap depicting pSTAT3Tyr705 peaks which are unique in vehicle (Veh) and paclitaxel 

(PTX) treated SUM149 and SUM149PR cells and the overlap between groups. The color key is the 

score of ChIP-seq signal over the selected genomic region, the signals across different genomic 

regions have been scaled to the same length. D, Venn diagram depicting overlap of pSTAT3Tyr705 

peaks between Veh and PTX treatment of FCIBC02 and FCIBC02PR. E, Heatmap of pSTAT3Tyr705 

peaks in FCIBC02 and FCIBC02PR as shown in C. F, Integration of differential gene expression and 

pSTAT3Tyr705 targets by BETA analysis. The p-value listed in the top left represents the significance of 

the up or down group relative to the unchanged (NON) group as determined by the Kolmogorov-

Smirnov test. G, Process networks significantly enriched (FDR<0.1) in genes that are upregulated in 

SUM149PR compared to SUM149 and are pSTAT3 targets only in SUM149PR cells. FDR calculated 

by MetaCore Enrichment Analysis test. H, BETA analysis as shown in F of integration of pSTAT3 

targets and differentially expressed genes in either adaptive or de novo clusters as defined in Fig. 2D. 

I, Gene tracks depicting pSTAT3Tyr705 signal at selected genomic loci. X-axis shows position along the 

chromosome with gene structures drawn below. Y-axis shows genomic occupancy in units of rpm/bp.  
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Figure 4. Metabolic reprogramming and upregulation of cAMP signaling in IBC resistance. A-

B, Fold change metabolite abundance over SUM149 Parental (A) or FCIBC02 Parental (B) for top 50 

differential metabolites in doxorubicin-resistant and paclitaxel-resistant cells as measured by LC-

MS/MS. C, Relative abundance of cAMP, AMP, and ATP by LC-MS/MS (n=6). p-values calculated by 

one-way ANOVA. D, Synergy scores for cell lines treated with paclitaxel (PTX) or doxorubicin (DOX) 

in combination with the CREB inhibitor 3i (n = 3). Synergy was calculated using ZIP model where a 

score of 0 indicates an additive response and areas of red and green indicate synergistic and 

antagonistic dose regions, respectively. E, PDE gene-family and STAT (generated from KEGG) gene 

signature scores in a patient cohort (Woodward) featuring IBC and non-IBC patient samples. F, 

Correlation between STAT signature generated from KEGG and PDE4A expression in the Woodward 

cohort. G, Gene set enrichment scores of gene ontology cAMP-related pathways in IBC vs non-IBC 

(nIBC) patient samples (FDR<0.1). 

 

Figure 5. Cellular heterogeneity and dynamics in the development of resistance. A, Selected 

viSNE maps of CyTOF analysis from Supplementary Fig. S6B of SUM149 and SUM149PR cells 

colored for expression of EpCAM, E-cadherin, vimentin, CD44, and CD24. Color scale indicates 

minimum and maximum values of expression. B, PCA plot depicting gene expression of SUM149PR 

EpCAM- and EpCAM+ cells treated with Vehicle (Veh) or paclitaxel (PTX). C, Process networks 

significantly enriched (FDR < 0.005) in genes up or down-regulated between SUM149PR EpCAM- 

and EpCAM+ cells. Color scale corresponds to –log(FDR) of significance of enrichment, calculated by 

MetaCore Enrichment Analysis test. D, Cellular viability after paclitaxel treatment of indicated cell 

lines. Error bars represent s.d. (n = 3). E, UMAP plots of cells from indicated cell lines by scRNA-seq, 

colored by cluster. Each point represents a single cell. F, Violin plots of EpCAM (top) and vimentin 

(bottom) expression levels in single cells clustered as shown in (E). G, Violin plot of single cell 

expression of a STAT3 signature, generated by combination of differential gene expression between 

resistant and parental cells and pSTAT3 ChIP-seq resistant-only targets. Single cells clustered as in 
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(E). H, Subset of gene set enrichment analysis from Supplementary Fig. S7E of differentially 

expressed genes in EMT-like clusters (SUM149PR cluster 5, FCIBC02PR cluster 6) that were 

significantly enriched in the hallmark gene set for EMT and IL6/JAK/STAT3 signaling. I, Hexagonal 

plots showing classification of single cells as either Parental (black), Parental + Paclitaxel treatment 

(PTX, teal), or Paclitaxel resistant (PR, red) populations. J, Hexagonal plots depicting classification of 

single cells as either basal (red), mesenchymal (green), or luminal (blue), as defined by differential 

expression of bulk RNA-seq data from 34 TNBC cell lines. For I-J, gray cells are unclassified and 

mixed colors represent cells classified in both categories. Classifications were based on gene-

centered expression data. K, Integrated scRNA-seq data colored by cell line (left) or by cluster (right). 

L, Bar plot depicting the percent of cells that belong to each cluster shown in K in parental and 

resistant cell lines. 

 

Figure 6. Mechanism of synergy of JAK inhibition with chemotherapeutic agents in drug-

sensitive and resistant IBC cells. A, Synergy scores for combination of paclitaxel (PTX) and 

ruxolitinib (RUX) in the indicated cell lines. Calculated using ZIP model where a score of 0 indicates 

an additive response and areas of red and green indicate synergistic and antagonistic dose regions, 

respectively. B, PCA plot of gene expression of SUM149 and SUM149PR cells treated with vehicle, 

PTX, RUX, or the combination. C, Heatmap depicting gene expression changes in SUM149 and 

SUM149PR cells after PTX, RUX, or PTX+RUX treatment. D, Process network enrichment analysis 

(FDR < 0.01) of up and down-regulated genes in the indicated clusters as defined by Fig 6C and 

Supplementary Fig. S8D-E. Color scale corresponds to -log(FDR) of significance of enrichment, 

calculated by MetaCore Enrichment Analysis test. E, Western blot analysis of the indicated proteins in 

cell lines treated with PTX, RUX, or the combination for 72hrs. F, Selected viSNE maps from 

Supplementary Fig. S9 of CyTOF analysis of SUM149 and SUM149PR cells treated with indicated 

drugs for 14 days. Plots are colored for expression of vimentin (VIM) and gated for VIMhigh cells. Bar-

plot is quantification of VIMhigh cells from gates shown in viSNE plots. 
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