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Fig. 1. We propose the first SDF-DDF hybrid model that allows for 3D shape opti-
mization via rendering with a single evaluation. In each of the 3 parts of the figure,
we show the given ground truth depth map (2.5D GT) on left, and two views of our
reconstructed 3D shape on the right

Abstract. Implicit neural representations of 3D shapes form strong pri-
ors that are useful for various applications, such as single and multiple
view 3D reconstruction. A downside of existing neural representations
is that they require multiple network evaluations for rendering, which
leads to high computational costs. This limitation forms a bottleneck
particularly in the context of inverse problems, such as image-based 3D
reconstruction. To address this issue, in this paper (i) we propose a novel
hybrid 3D object representation based on a signed distance function
(SDF) that we augment with a directional distance function (DDF), so
that we can predict distances to the object surface from any point on
a sphere enclosing the object. Moreover, (ii) using the proposed hybrid
representation we address the multi-view consistency problem common
in existing DDF representations. We evaluate our novel hybrid represen-
tation on the task of single-view depth reconstruction and show that our
method is several times faster compared to competing methods, while at
the same time achieving better reconstruction accuracy.

Keywords: Sphere tracing, neural implicit representations, directional
distance function, signed distance function
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1 Introduction

There are various alternatives for representing 3D shapes, among them being
explicit and implicit representations. Explicit representations readily give us in-
formation about the surface of the represented 3D shape, e.g. triangular meshes,
point clouds, and splines. In contrast, implicit 3D shape representations encode
the surface of a shape as the level-set of a function, i.e. all points that have a
specific function value are considered to form the surface of the shape. Recently,
with the progress of deep learning, the use of neural networks to approximate
functions for representing a class of shapes in an implicit manner have been
widely adopted [27I22]7]. These representations have proven to be versatile in
representing shapes of varied topology, and it has been demonstrated that re-
spective parameterized neural representations generalize well to unseen objects.

Despite their great success, existing implicit neural representations are slow
to render and optimize for inverse problems. The most common algorithms to
render an implicit representation are ray marching and sphere tracing [13], where
the latter is specifically designed for rendering SDFs. However, to utilise these
algorithms in the context of neural implicit representations, it is necessary to
perform multiple evaluations of the network per ray to obtain the distance to
the surface along the ray. This is particularly prominent for objects with high
geometric complexity, since in this case it would take many steps to march along
the ray due to multiple local optima. The computation and time intensive step
of rendering an SDF is aggravated when we use a neural SDF representation to
solve an inverse problem [53/20], such as 3D reconstruction from images using
optimization. Here, we need to render the neural SDF at each iteration, since we
update the network parameters (or a latent code vector that represents a shape)
during each optimization step.

To compensate for this shortcoming of neural implicit representations, in this
work we introduce a novel hybrid 3D representation.

Specifically, we augment a neural signed distance function (SDF) representa-
tion with a neural directional distance function (DDF) that is defined on a unit
sphere enclosing the 3D shape (see Fig. . Our main motivation for incorporat-
ing the DDF representation is to obviate the need for computationally expensive
sphere tracing when solving inverse problems. By sphere-tracing an SDF, we get
the distance to the surface along a ray — in contrast, this information is already
explicitly encoded in a DDF representation. Thus, while sphere-tracing neural
SDFs require multiple evaluations of the network along the ray, the DDF repre-
sentation has the strong advantage that it just needs a single network evaluation
per ray.

However, a downside of traditional DDF representations is that they suffer
from multi-view inconsistencies. This is because a point on the surface of the
object can be reached from multiple points (in different directions) on the unit
sphere, see Fig.[2l As the DDF is represented by a general neural network func-
tion, we cannot guarantee that the rays will reach the same point on the surface
with the predicted distance. In this work we present a solution to this problem
by exploiting the fusion of neural SDF with DDF representations in terms of a
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novel neural network architecture. Our main goal is to learn a neural network-
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SDF: In the region in grey (+) inside the enclosing unit
circle the SDF evaluates to a positive value, whereas
in the region in orange (—) the SDF evaluates to a
negative value. DDF multi-view inconsistency: The
points p{ in blue represent a few possible points from
which the point on the surface z, is visible in the re-
spective direction r{.The points p; in red represent a
few possible points from which the point on the surface
xp, is visible in the respective direction rf. The number
of possible points on the sphere and directions for the
points z, and z;, may be uncountable.
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Fig.2. A 2D illustration of a signed distance function and the directional distance
function multi-view inconsistency.

based DDF model for representing a class of shapes, for which we consider an
autodecoder framework. Overall, we demonstrate a substantial improvement in
terms of runtime compared to the previous state of the art, as we do not need
sphere tracing during the optimization process. Furthermore, as the DDF and
SDF form strong priors, our approach leads to an improved accuracy compared
to existing methods.

We note the following as the core contributions of our work.

1. A novel hybrid neural-3D representation that simultaneously models the
signed distance function and directional distance function in order to repre-
sent a class of shapes.

2. A novel network architecture that predicts SDF when not conditioned on
directions and predicts DDF when conditioned on directions.

3. Surface prediction with the DDF model with just one network evaluation
per ray using the proposed hybrid representation for accelerating inverse
rendering problems.

2 Related Work

In this section we present the works from topics that are most relevant to us: im-
plicit representations, accelerating implicit representations, and 3D reconstruc-
tion methods.

Implicit Representations. Implicit surface representations, e.g., signed
distance functions (SDF'), have been studied for decades due to the flexibility to
represent arbitrary topologies of 3D shapes [TOTO/I84233124411T6]. However,
to represent real-world objects, analytical expressions rarely exist, so that in
practice the SDF values are usually discretized and stored in a voxelized space,
which makes it non-trivial to represent detailed shapes. Recently, deep implicit
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representations are proposed to overcome the aforementioned limitations. Park
et al. [27] proposed DeepSDF that learns the SDF values using an autodecoder
architecture in which latent codes of different shape priors can be encoded and
optimized. The concurrent works of Mescheder et al. [22] and Chen et al. [7]
learn object surfaces as decision boundaries between the interior and exterior
of shapes. Instead of encoding only global priors, local priors [BUT5IRI30] have
been explored to handle large-scale scenes and more detailed representations. To
relax the requirements of the availability of 3D ground-truth labels, differentiable
formulations have been proposed that allow to learn from only 2D images or
depth maps [26/40020]. Pixel features [56J35/36] have been used to condition
implicit representations on local image features leading to high-quality multiview
RGB reconstructions from a single image. Such representations also allow to
render multiple views of an object given a single view RGB image. However,
they can also not model the geometry of the object satisfactorily. Applications
on human [36/35l46], face [55], and hair [34U55] modeling are also explored and
have achieved superior results to classical methods.

Accelerating Neural Implicit Representation Rendering. Recent works
[4312132] have focused on rendering an image from a neural network representing
a single shape in real time. However, representing a class of shapes with these
kinds of networks is an open problem. There have been two recent work which
predict the the occupancy density distribution along the rays [31], or, alterna-
tively, a region along the ray instead of distance [25]. They can however only
model single objects and they still need to do local sampling as they work in
a volumetric setting. We note PDDF [27] and SDDF [57] as our contemporary
works. However, they suffer from multi-view inconsistencies as they represent
shapes only with a directional distance function. In contrast, we address multi-
view inconsistencies via our hybrid SDF-DDF representation.

3D Reconstruction. Reconstructing 3D shapes from images is a funda-
mental computer vision task. Depending on the number of input images, one
can categorize the 3D reconstruction methods into single-view based methods
and multi-view based methods. Although single-view reconstruction is generally
an ill-posed problem, a lot of advances have been made due to its practicality and
simplicity of inference. To constrain the problem, one can introduce explicit pri-
ors as statistical 3D models of certain classes [3I21I28] and optimize using such a
model as prior [45/4/48]. When reconstructing dynamic objects from videos, tem-
poral information and consistency constraints are considered to deliver better
results [44]. To extend the methods to more general objects, lower-level geo-
metric or photometric properties [I2I47/50], as well as joint 3D reconstruction
and correspondence matching [54] have also been explored. Multi-view methods
leverage established 3D geometric constraints like epipolar constraints and can
more reliably reconstruct the scene. Multi-view stereo estimates the dense depth
map of the reference image using multiple images and their corresponding cam-
era parameters [38I37T]. Deep neural networks are also utilized to improve the
reconstruction quality [T452/49/T7]. Recent novel neural representations encode
scenes as neural radiance fields [23]29] and reconstruct dynamic and static ob-
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jects using self-supervised learning. More recently, LFN [39] has been proposed
to exploit light field principles to reconstruct multiple views given a single view.
While it is possible to obtain sparse depth, the method does not model dense
geometry.

Encoder-based single-view reconstruction methods [S/5126] can obtain the
latent code with a query to an encoder. However, they cannot work with ar-
bitrary image sizes without architectural changes to the learned-encoder. An
optimisation-based latent code prediction, such as the one that we propose in
this work, on the other hand can not only work with any arbitrary image sizes,
but also work with unstructured data such as point clouds, and open meshes.

3 Method

We learn a neural network-based novel hybrid representation which represents
both the signed distance function and the directional distance function. The
directional distance function represents the distance to the surface of the object
from a point on the unit sphere along a given direction. This is particularly
desirable as it helps avoid the computationally intensive sphere tracing step for
rendering images, especially for solving image-based inverse problems such as 3D
reconstruction. In the following, we first introduce our representation, followed
by our network architecture, and our proposed algorithm based on the novel
representation and architecture for single-view reconstruction from depth maps.

3.1 Proposed Hybrid Shape Representation

Our main objective is to learn a neural 3D representation that simultaneously
contains information about two aspects: (i) a distance d to the surface of an
object along a given direction r from a point p on the surface of the unit sphere,
and (ii) the signed distance s at every point inside the unit sphere enclosing the
object, as shown in Fig.

The directional distance d and signed distance s are related as follows: Out-
side the surface of the object the signed distance is positive and the value is the
minimum distance between a given point p and the object surface (in any given
direction), i.e.

SDF(p) = mrin DDF(p,r), (1)

where s = SDF(p) is the signed distance at the point p, and d = DDF(p,r) is
the directional distance to the surface of the object from point p in a direction
r. In our work we learn to predict the DDF only on the surface of the sphere,
and use the SDF to predict whether the ray hits the surface. In other words, the
point = p+dr = p+DDF(p, r)-r is on the object surface if s = SDF(p) = 0. In
practice, we threshold s to predict if the ray hits. In the following, we elucidate
how we approximate the distances for a class of objects using neural networks.
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Fig. 3. Our novel network predicts SDF and DDF simultaneously. Our network struc-
ture for DDF prediction is shown in red and grey. The network takes as input a point p
on the unit sphere, a direction r, and a latent code z. The LatentNet (grey) encodes the
latent code z and the DirectionNet encodes the direction r, which are used to modulate
the outputs of different layers [56] of the DistanceNet. The predicted distance from the
DistanceNet is coarse, therefore we finetune it using the FineTuneNet. The latter has
the task to predict the DDF at points close to the surface p + d.r, where d. is the
predicted coarse distance. Finally, DDF d = d. + dy, where dy is the fine-tuned DDF
prediction near the surface. Our network structure for SDF prediction is shown in blue
and grey. Given an encoded latent code fi(z), and a point inside the unit sphere p, the
DistanceNet predicts signed distance s. Note that there is no DirectionNet conditioning
during SDF prediction

3.2 Network

Motivated by the relationship between the SDF and DDF as illustrated in
Eq. , we propose a neural network model that can predict both SDF and
DDF, as shown in Fig. [3] Towards that, we use four main MLPs to predict
DDF and SDF functions: the distance prediction network (DistanceNet) f, the
latent conditioning network (LatentNet) fi, the directional conditioning network
(DirectionNet) f,, and the DDF fine-tuning network f,,. LatentNet encodes the
latent code and produces a conditioning for the DistanceNet to represent a class
of objects. DirectionNet encodes directions given a LatentNet conditioning to
condition the DistanceNet to predict DDF. DistanceNet is the main component
of our network that predicts DDF given directional conditioning and predicts
SDF without the directional conditioning. FineTuneNet predicts fine-tuned di-
rectional distances for accurate DDF prediction.

LatentNet The latent conditioning network f; : R2°6 — R5%!2 is an MLP that
takes a latent code z and encodes the latent code to the size of the hidden layer
dimensions of DistanceNet and DirectionNet, i.e.

ze = fi(2;601), (2)

where z, is the encoded latent code and ©@; are the network parameters of the
LatentNet.
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DirectionNet The directional conditioning network f,. : R3 x R%12 — RS2
conditions the DistanceNet f to predict directional distances on the surface of
the unit sphere. Without the directional conditioning, the DistanceNet predicts
signed distances everywhere in the unit sphere. The DirectionNet is an MLP with
encoded latent z, modulating the layers’ outputs similar to pixelNeRF [56]. This
conditioning helps the network predict different features for different objects
based on a given a direction. The inputs to this network are encoded with a
positional encoding [23]. Given a direction r, we obtain the encoded directional
vector as

Te = fr(ra Ze; @7) ’ (3)

where r, € R%2 is the encoded directional vector for a given encoded latent code

Ze in Eq. .

DistanceNet The distance prediction network f predicts both the signed dis-
tance f : R3 x R?'2 — R and the directional distance f : R? x R>!2 x R%12 — R.
When the network is conditioned with f., it predicts the directional distance
on the unit sphere. Otherwise, i.e. without conditioning with f., it predicts the
signed distances everywhere inside the unit sphere. As with the DirectionNet,
we add the output of the LatentNet to a few output layers of the DistanceNet to
condition the network to predict directional distances to the surface of different
shapes.

SDF Prediction The signed distance at a point p € R? inside the unit sphere
is given by
S:f(pvze;@D)v (4)

where z. is the encoded latent code from Eq. , and p € R? is a point inside the
unit sphere, and s € R is the signed distance value. We truncate the predicted
signed distances [27].

Coarse DDF Prediction The coarse directional distance d. € Ry (as DDF is
always positive on outside the shape) at a point p € Sy on the unit sphere in a
direction r € Sy is given by

de. = f(pa Te, Zes @D)a (5)

where 2z, is the encoded latent code from Eq. , re is the encoded direction
code, and d. is the coarse directional distance.

FineTuneNet The DDF fine-tuning network f,, : R3 x R3 x R?56 — R fine-
tunes the coarse DDF d. predicted by the DistanceNet by predicting a local
directional distance d; from points close to the surface, i.e.

df = fn(p+dcT,T,Z;@n), (6)
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where p+d.r is a point close to the surface obtained using the coarse directional
distance d., point p on the unit sphere and direction r, and z is the latent code.
The final directional distance is given by

d=d; +d.. (7)

3.3 Training

We train the model per object class of the ShapeNet dataset [6].

Data Preprocessing For training the network, we use two supervision signals,
the signed distance supervision, and the directional distance supervision. We
use the preprocessing pipeline from DeepSDF [27] to sample about 1 million
points and signed distances inside and near the surface of each shape. Further,
we randomly sample 1 million points on the unit sphere and random directions
that point to the surface of an object. We sample directions with the help of
sampled points and the shape’s point cloud. We use the rendering function from
Trimesh [II] to find the distance to the surface for each pair of the sampled
points and directions.

Losses We train the network with the following losses:

— SDF loss L. We utilize the SDF loss to train DistanceNet to predict signed
distances. Note that the DistanceNet does not have directional conditioning
for predicting signed distances in the unit sphere. Specifically, we use

Ls(s) = lls = serlh (®)

where s is the predicted signed distance value from Eq. , and sgr is the
ground truth signed distance value at the point p.

— Coarse DDF loss L,4.. We enforce the coarse DDF loss to predict the coarse
DDF value at a point on the unit sphere as

Lac(de) = ||de — dar|l1 9)

where dgr is the ground truth distance value, and d. is the coarse predicted
distance from Eq. .

— Fine-tuned DDF loss L4. We enforce the fine-tuned DDF loss to train
the FineTuneNet to predict DDF values near the surface as

Lap(dy,de) = ||de +dy —dar1, (10)

where dy is the local directional distance inside the unit sphere from Eq. @
Note that we enforce both d. and d = d. + dy to predict the ground truth
directional distance dgr as a means to regularize that the FineTuneNet only
needs to predict fine DDF values close to the object surface.
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— Latent code regularizer £;. As we use an Autodecoder framework [27],
we enforce that the latent codes for different shapes are close to each other,
so that the model can generalize to new shapes. This can be achieved by
penalizing latent codes with large norms, so that latent codes are close to
zero, i.e.

Li(z) = |22, (11)

where z is the latent code for a given shape. Note that we use the same
latent code for both SDF and DDF data paths for a given shape.
— Total training loss. The complete training loss is given as

L=wsLs+wqcLlae + warLar +wi Ly, (12)

where ws, wqe, wqr, and w; are the weights for the SDF loss, coarse DDF
loss, fine-tuned DDF loss, and latent code regularizer, respectively.

Optimization We optimize the loss in Eq. for the network parameters
and the optimization parameters. We optimize for the loss in Eq. to obtain
the parameters Op, O,., O, O, and Z, where Z = {z;|i = 1... N} is the set of
latent codes representing all the N training shapes, @p are the learnable network
parameters of the DistanceNet f, @, are the learnable network parameters of
the DirectionNet f,., ©@; are the learnable network parameters of the LatentNet
f», and ©,, are the learnable network parameters of the FineTuneNet f,,.

3.4 3D Reconstruction from Single View Depth Maps

Our autodecoder framework allows us to work with any type of data without
having to learn a new encoder for each type of data. Hence, during test time
we merely need to optimize for the latent code z. One of the main advantages
of our representation is that, unlike DIST [20], we obviate the need for sphere
tracing at every iteration of the optimization.

For 3D reconstruction we assume a depth map with an object mask and a
given camera pose as input. We obtain the points of intersection of the rays
r from the camera with the unit sphere as p. For some initial latent code z,
we evaluate our DDF pipeline for the directional distance from p along r using
Eq. . We evaluate the SDF pipeline for the SDF at the points p + dr as s.

We optimize for the latent code z,. of the object in the given depth map using
the loss function

Lree = wmLs +wpLlp +w Ly +wpprLlppF, (13)

where Lg is the silhouette loss, Lp is the depth loss, L;4ten: is the regularizer for
learning the latent code, and Lppp is the regularizer for DDF-SDF consistency,
with w,,, wp, w;, and wpppr as their respective weights. In the following we
explain the individual loss terms:
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— Silhouette Loss Lg. The silhouette loss is enforced as

Ls(s) = llsmoillr + lllsm_ol = 7ll1, (14)

where m is the given mask, s is the predicted signed distance from Eq. ,
and 7 is the truncation distance. m—g is an indicator function where mask
is 0, similarly m—; where mask is 1. The first term in the loss enforces that
along the rays that must hit the surface, the signed distance must be close
to 0, and the second term enforces that the signed distance value must be
close to the truncation distance where the rays must not hit the surface.

— Depth Loss L. The depth loss is simply the error between the given depth
and the predicted depth, i.e.

Lp(0) =6 = dcrll, (15)

where ¢ is the predicted depth and g is the given depth.

— Latent Regularizer £;. We enforce the same loss as in Eq. for learning
the latent code during inference.

— Regularizer for DDF-SDF consistency. As the predicted directional
distance and the signed distance for an object need not agree, we enforce a
DDF-SDF consistency regularizer. Towards that, we randomly sample points
on the unit sphere and on the currently predicted shape. We enforce that
the signed distance of the points (using p + dr) predicted by the directional
distance must be close to 0 by using

Lppr(s) = sl (16)

4 Experiments

In this section we first provide the training details for our model followed by
experiments that evaluate our design choices and our method.

4.1 Training Details

We train a model for each class of the ShapeNet dataset with the splits from [26].
We use a batch size of 64 and 16384 samples per scene, train for 3000 iterations
for classes with less than 3000 shapes, and 2000 otherwise. Each batch takes
about 3s on two Nvidia A100 GPUs. Depending on the number of shapes in a
class it takes 1-7 days to train a per-class model.

4.2 Inference Setup

We use an Nvidia RTX8000 GPUs for all the inference tasks based-on optimiza-
tion both for ours and DIST [20] to ensure that the optimization performance
we report are consistent.
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4.3 3D Reconstruction from Single View Depth Maps

Our method predicts distance to the surface of the shape given a latent code
representing the shape, the ray origin and the ray direction. This makes our
method well-suited for solving inverse 3D reconstructions problems from images.
In this experiment, we evaluate our method on reconstructing 3D shape given a
depth map and camera pose.

Given a depth image, and camera parameters, we render a depth image from
our network. We optimize for the latent code to minimize the distance between
the predicted and given depth images as discussed in Sec[3.4] The main advantage
of using our method compared to other methods, such as DIST [20], is that others
need to perform multiple forward passes to sphere trace. Specifically, for finding
the object surface our network only requires a single evaluation, whereas others
may require multiple passes due to their involved line search.

We test our trained models on different classes of shapes — airplanes, cars,
chairs, lamps, sofas, and tables. We test our method on the first 200 instances
of the test splits of each class (except for the cars class we use the first 140
instances). We obtain the first image of the rendered ShapeNet dataset from 3D-
R2N2 [9]. The images are of resolution 137 x 137, and we re-render the images
with the same camera matrices to obtain the depth maps and use these depth
maps with camera poses to reconstruct the 3D shape. We use the official shape
completion code from IF-Net [§] to complete the sparse point clouds. As such,
we obtain the sparse point clouds for completion using IF-Net by un-projecting
the depth maps using the given camera poses.

Qualitative Results We show qualitative results in Fig. [l It can clearly be
seen that our method can complete the shape given a sparse depth of about 3k
pixels while resulting in the most plausible 3D shapes. Whilst DIST [20] is close
in terms of the overall quality, our method is about 8.6x faster per iteration
(see Tab. . Further, given that we have a prior on the distances, the DDF, we
can better reconstruct finer details such as the airplane’s tail in 6** column. We
also compare with IF-NET [§], a state-of-the-art encoder-based neural implicit
representation. While IF-NET leads to plausible reconstructions in the observed
locations, where there are depth maps, it does not complete the unobserved
shapes, as shown in the last two rows of Fig.

Quantitative Results We extract meshes at 256% resolution to evaluate our
experiments quantitatively. We use the symmetric L2 Chamfers distance as the
metric for our quantitative experiments, i.e.

1 .~ . 1 .~ .
CDh = Nzizl mi i = yll5 + Nzizl mi e — will3, (17)
where X = {z; € R3|i = 1..N} and Y = {y; € R3|i = 1...N} are points on
the surfaces of two shapes, and N is the number of points sampled on the two
shapes. We show the quantitative results in Tab. [I The quantitative results
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Fig. 4. 3D shapes reconstructed from a given depth map. Each column shows recon-
struction results from the methods in our evaluation given the same depth image. Top
row: Given ground truth depth map. Second and third rows: 3D shape reconstructed
with our method shown in two views. Fourth and fifth rows: 3D shape reconstructed
using DIST [20]. Last two rows: 3D shape reconstructed using IF-NET [§], a state-of-
the-art encoder-based implicit representation network, using point clouds obtained by
unprojecting depth maps using the given camera matrices. Our method outperforms
existing methods, as it can for example better model fine-scale details (see e.g. the legs
of the tables or chairs, or the geometry of the airplanes)

are consistent with the qualitative results, as our method can fit better to the
given depth maps and thus obtain more plausible shapes compared to DIST [20].
Moreover, we outperform DIST by a small margin in most cases, while being
8.6x faster. Further, as IF-NET [§] does not complete the shape in unobserved
areas, we significantly outperform IF-NET both quantitatively and qualitatively.

For computing the metrics, we use DeepSDF’s [27] surface sampling algo-
rithm to sample 30000 points on the visible surface of the object. We com-
pute the symmetric Chamfer’s distance, see Eq. , in ground truth scale of
ShapeNetV2 [6].

4.4 Ablations

In this experiment we evaluate the design choices of our final model. We start
with a baseline method which is a vanilla DeepSDF [27] for predicting the SDF
and a similar network with larger capacity for DDF prediction. Next, we refine
the DDF prediction in the baseline using FineTuneNet (see Sec. . Afterwards,
we evaluate the our model without FineTuneNet. Finally, we evaluate our model
with all the components.



HDSDF 13

Table 1. Quantitative comparisons of our method with DIST [20] and IF-NET [§].
Our method outperforms DIST in almost all the classes, showing that our DDF prior
and our depth-fitting algorithm lead to more plausible 3D shape reconstructions. We
also outperform the encoder-based implicit reconstruction method IF-NET by a large
margin as [IF-NET does not lead to plausible shapes in unobserved areas. Note that we
report 1000x the L2 Chamfer distance (CD) (see Eq. (I7))). We further compare the
time it takes to perform one step in the optimization with DIST, as shown in the last
two columns. As we do not need to perform sphere tracing to obtain an image each
iteration, our approach is about 8.6x faster than DIST

Method[Ours[DIST 20][IF-NET [8]] Ours [DIST [20]
Metric CD | seconds/iteration |
Plane 0.68 0.94 2.08 0.017 0.227
Sofa 1.42 1.81 9.43 0.0368| 0.275
Table 3.47 2.79 4.67 0.0348 0.263
Lamp 5.55 7.34 6.05 0.0227 0.247
Chair 1.84 1.92 5.45 0.0335 0.257
Car 0.55 0.613 4.09 0.0359 0.246

For the ablations experiments, we train the models with the first 256 shapes
from the training split of the sofas class of ShapeNet dataset. We test our model
on the first 64 test shapes from the test split. We use the first image from the
renders of 3D-R2N2 [J] along with the camera matrices to obtain a depth map.
We optimize for the latent code of our model representing a 3D shape, from the
depth map as explained in Sec. [3.4]

Table 2. Ablations. We evaluate the design choices of our model by training a model
on the sofas class with 256 shapes and testing on a set of 64 shapes. We report 1000x
the L2 Chamfer distance (CD). We ablate with 4 models, (i) (Baseline WO FT) a
baseline model with a DeepSDF [27] network for SDF prediction and a similar larger
capacity network for DDF prediction, (ii) (Baseline FT) the DDF predictions of the
baseline are fine-tuned with the FineTuneNet, (iii) (Ours WO FT) our model without
the FineTuneNet, and (iv) (Ours) our final model with FineTuneNet. The quantita-
tive results confirm that our final model performs better than our baselines and our
FineTuneNet indeed helps improve the reconstruction accuracy

Method|Baseline WO FT |Baseline W FT|Ours WO FT|Ours
CD | 1.30 1.29 1.26 1.24

Quantitative Results We show the quantitative results in Tab. 2| We compute
the chamfers distance between 30000 samples of the reconstructed shape and
the ground truth shape. We use DeepSDF’s [27] preprocessing step to obtain
the surface samples. As can be seen in Tab. [2] our model with FineTuneNet
outperforms our model without the fine tuning layers. This could be a result of
the fact that an accurate prediction of DDF enables the model to infer a surface
close to the iso-surface obtained from the given depth maps. The quality of DDF
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Ground Baseline Baseline Ours Ours Baseline Bagéline Ours Ours

=

Truth  W/OFT WFT W/O FT W/O FT WFT W/O FT
Reconstructions (DDF+SDF Renders) DDF Renders

Fig. 5. Qualitative comparison of ablations. Given a ground truth depth map (left), we
show renders of reconstructed 3D shapes (left-part). From left to right, baseline without
FineTuneNet, baseline with FineTuneNet, ours without FineTuneNet and ours. As can
be seen our models leads to the most plausible reconstructions. We show one pass
forward renders with DDF in the right part, we probe the network for DDF and find if
the point at the predicted distance is close to the surface (SDFa2 0). This need not be
the case for all predictions due to multi-view inconsistency. As can be seen, our model
with FineTuneNet results in the most consistent prediction among all the others

prediction is important for us as we reconstruct with just a single evaluation
through the network during optimization. The baselines with two models do
not perform as well as our model as they do not implicity exploit the relation
between DDF and SDF (which our models do).

Qualitative Results As can be seen in Fig. o] our network performs better
than the baselines. Further, in Fig. [5[ (right) we observe that the DDF prediction
is more consistent with the SDF prediction when there are fine-tuning layers.

5 Future Work

Overall, our method has shown significant improvement in terms of speed and
quality of reconstructions from depth maps, and we believe that our proposed
model opens up many exciting future possibilities. One of the most challenging
problems is to make the DDF and SDF consistent. While we provide a solution to
this problem based on test time optimization, we believe in better neural models
that can couple DDF and SDF more tightly. Achieving this would mean that we
marry the inherently implicit SDF representations with an explicit counterpart,
thereby enabling even faster and consistent rendering. Another open problem
with much wider applications that could help solve this limitation is to make
the predictions of the neural network even more accurate.

6 Conclusion

We have presented a novel hybrid 3D representation that models both direc-
tional and signed distances. To this end, we have introduced a unique neural
network architecture that can predict SDF and also DDF given an additional
directional conditioning. We have demonstrated the effectiveness of our model
by evaluating its performance on the task of 3D reconstruction from depth maps.
For the first time, our model enables optimizing for a shape given a depth map
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observation with just a single evaluation through the DDF and SDF networks,
thereby making it not only 8.6x faster than existing methods, but also result-
ing in better reconstruction accuracy. Overall, we believe that our novel hybrid
neural 3D shape representation can be used to address diverse other challenging
inverse rendering tasks.
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Appendix

In this supplementary material, we show additional experiments that further
evaluate our model. Specifically, we show results of ablation studies on our algo-
rithm for 3D reconstruction from depth maps (see Sec. in the main paper),
and 3D shape reconstruction from silhouettes.

A TImplementation Details

In this section, we provide more details about our network architecture and
hyperparameters.

A.1 Network Architecture

DistanceNet: The DistanceNet consists of 3 MLPs, as shown in Fig. [6] with
2 hidden layers each. The hidden layers have a dimension of 512. The output
dimension of the first two MLPs is 512 and that of the last MLP is 1. Encoded
latent code and encoded directional conditioning codes are added to the output
of the MLPs before activation. We use ReLU activation function for all the
layers except the output. We use Tanh activation when predicting SDF and no
activation when predicting DDF.

Other Networks: For all the other networks, we use MLPs with two hidden
layers and ReLU activations. The MLP of DirectionNet is conditioned similarly
as DistanceNet with the encoded latent code.

A.2 Hyperparameters

During training, we use the weights wys = 1.0, wg. = 1.0, wgr = 1.0, and w; =
0.0001 respectively for the SDF loss, coarse DDF loss, fine-tuned DDF loss, and
latent code regularizer. For 3D shape reconstruction from depth maps, during
inference, we set w,, = 1.0, wp = 1.0, wppr = 1.0, and w; = 0.0001 respectively
for silhouette loss, depth loss, latent regularizer, and regularizer for SDF-DDF
consistency. For 3D shape reconstruction from silhouettes, we set w,, = 1.0,
wp = OO, WppF = 1.0, and w; = 0.05.

We set a threshold of 0.009 to mark the points obtained using the predicted
distances of the DDF network as surface points. That is, if the SDF at the points
evaluates to less than the threshold, they are marked as surface points and if the
SDF evaluates to more than the threshold, the predictions are discarded as not
surface points.

Similar to DeepSDF [27], we set a truncation distance 7 = 0.1. In other
words, SDF values that are more than 0.1 are set to 0.1 and those less than —0.1
are set to —0.1.

We run the code and parameters as released by the authors of DIST [20],
and IF-NET [§] for comparisons.
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Encoded Latent Conditioning z,

3D point p w

Encoded Directional Conditioning 7,

w Distance

DistanceNet f

Fig. 6. Network architecture of our DistanceNet f. The encoded directional condition-
ing (red) is only applied while predicting DDF

B Shape from Silhouettes

We evaluate our method on the challenging task of reconstructing 3D shapes
from silhouettes given a camera pose. The task is much more challenging com-
pared with reconstructing from depth maps as we have no information about
the shape of an object apart from a silhouette in an image.

We optimize for shape with the 3D reconstruction from depth maps algo-
rithm, presented in Sec. [3-4] of the main paper, without the depth loss wp = 0.0.
We compare with DIST [20] for this task and also set the weight of the depth
loss in its reconstruction algorithm to 0.0. We test on the same test split as in
3D reconstruction from depth maps, i.e., the first 200 shapes from test splits of
each category and the first image from the test dataset of 3D-R2N2 [9].

Qualitative results: We show qualitative results of reconstructing 3D shape
from a silhouette in Fig. [7] As can be seen, our method reconstructs more plau-
sible shapes as per the given mask due to the strong prior formed by our hybrid
representation, HDSDF'. From a mask, our method is able to reproduce accurate
finer details such as spoilers for cars, and wing geometry of airplanes.

Quantitative resuls: We show the quantitative results of our 3D shape
from silhouettes experiment in Tab. 3] We report 1000x the L2 chamfer dis-
tance (see Sec. between the reconstructed and ground truth meshes. Our
method outperforms DIST [20] in almost all the classes by a large margin fur-
ther corroborating that the prior learned by our hybrid representation is indeed
strong and meaningful.

C Ablations - 3D Reconstruction from Depth Maps

We perform ablation studies on our 3D reconstruction from depth maps algo-
rithm presented in Sec. [3:4]of the main paper. We study the main advantage of
our model is the DDF prior used during reconstruction, therefore our ablation
studies are focused on the DDF predictions.

We compare three algorithms for this evaluation — (i) (SDF+DDF, ours)
obtaining the surface with one evaluation of the DDF pipeline and one evaluation
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GT

GT
Geometry Silhouettes

Ours (2 views)

DIST (2 views)

Fig. 7. Qualitative comparison of 3D shape reconstruction from silhouettes. In each
column, given a silhouette (top) (ground truth geometry for reference in second row)
we show renders of reconstructed 3D shapes with our method (middle rows) and shapes
reconstructed with DIST [20] (bottom rows). As can be seen from images, our method
better reconstructs shape from silhouettes proving that our hybrid representation, DDF
along with SDF, is a stronger prior

of the SDF pipeline, (ii) (SDF as DDF) obtaining the surface with 1 evaluation
of the SDF pipeline instead of the DDF pipeline to reach the surface, and (iii)
(SDF+DIST) reconstructing 3D shape with our SDF prior using DIST’s [20]
reconstruction algorithm. For all the experiments we use the same split as in the
ablation studies in the main paper (see Sec. [4.4)).

SDF+DIST: Our reconstruction algorithm outperforms DIST’s [20] both in
terms of speed and accuracy. This could be due to two reasons, either our DDF
model learns a strong prior of the surfaces and leads to better reconstructions or
our SDF model is superior in comparison with DeepSDF [27] which DIST uses.
Therefore, we study the performance of our SDF prior with the reconstruction
algorithm from DIST [20]. SDF as DDF: We replace the DDF prediction with
SDF predictions to study the influence of DDF in the reconstruction algorithm
i.e., to ensure that the DDF predictions are indeed meaningful directional dis-
tances.

Qualitative results: We show the qualitative results in Fig. [§] As can be
seen, our algorithm faithfully reconstructs finer details of the shape as compared
with our SDF prior with DIST’s reconstruction algorithm while being 8.6x per
iteration faster than DIST. This shows that our DDF pipeline learns a strong



22 T. Yenamandra et al.

Table 3. Quantitative comparisons of our method with DIST [20] on 3D shape re-
construction given a silhouette. Our method outperforms DIST [20] in almost all the
classes by a large margin, proving that our hybrid prior leads to more plausible 3D
shape reconstructions given just a silhouette of the shape. Note that we report 1000x
the L2 Chamfer distance (CD)

Method|Ours[DIST [20]
Metric CD |
Plane 2.24 5.74
Sofa 2.84 3.82
Table 9.98 5.95
Lamp 9.54 11.92
Chair 4.79 7.84
Car 0.97 1.53

prior on a class of shapes leading to better and faster reconstructions. Fur-
ther, the SDF as DDF experiment shows that the DDF predictions are indeed
meaningful directional distances to the surface and not just some direction-
independent distance predictions.

‘ \\’77\ \7 .\\7 % 7 L/

Ground Truth SDF+DDF SDF + DIST SDF as DDF | Ground Truth SDF+DDF SDF + DIST SDF as DDF
(Ours) (Ours)

Fig. 8. Qualitative comparison of ablation studies on our 3D reconstruction algorithm.
Given a ground truth depth map (left of each part of figure), we show renders of
reconstructed 3D shapes (on the right part of each part of the figure). We show three
experiments in the order — (i) (SDF+DDF) Our proposed algorithm where we only
have one evaluation of the DDF and SDF pipelines, (ii) (SDF + DIST) Our SDF
pipeline with DIST’s [20] 3D reconstruction algorithm, and (iii) (SDF as DDF) Our
SDF pipeline used instead of DDF. The ‘SDF+DDF’ ablation shows that the prior DDF
learns is more meaningful leading to more plausible shapes. The ‘SDF as DDF’ ablation
shows that the learned DDF is indeed meaningful and learns directional distances

Quantitative results: We show the quantitative results for the ablation
studies in Tab. [4] In the table, we show 1000x the chamfer distance (see Sec.
between the reconstructed and ground truth meshes. As one would expect, when
we use SDF instead of DDF prediction (SDF as DDF), the reconstructions are
really bad therefore leading to bad results. Moreover, when we reconstruct with
DIST’s [20] algorithm with our SDF pipeline instead of DeepSDF’s[27], we see a
decrease in accuracy proving that our method performs better due to the strong
prior learned by the DDF pipeline. Further, the experiment also shows that our
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improvements, for the most part, are not just due to an improvement in the SDF
predictions compared to DeepSDF [27].

Table 4. Ablation study on our algorithm to reconstruct 3D shape given a depth
map. We evaluate the design choices of our reconstruction algorithm with our model
trained on the sofas class with 256 shapes. We test the algorithm by reconstructing 64
shapes from depth maps. We report 1000x the L2 Chamfer distance (CD) between the
ground truth shape and reconstructed shape. We ablate 3 design choices — (i) (SDF
as DDF) use SDF predictions instead of DDF to show that our DDF predictions are
meaningful directional distances, (ii) (SDF + DIST [20]) using the 3D reconstruction
algorithm from DIST along with our SDF prior instead of our proposed algorithm to
show that our hybrid representation and the presented reconstruction algorithm are
indeed better, and (iii) ours

Method|SDF as DDF|SDF + DIST [20]|Ours
CD | 8.18 1.62 1.24

D Visualizations

Unless explicitly mentioned, we visualize the results of our method by one eval-
uation of DDF followed by local sphere tracing with the SDF network. We use
sphere tracing to show the results of DIST [20], and we show reconstructed
meshes for IF-NET [8]. For shading, we use an accelerated version of Blinn-
Phong shader from i3DMM’s code [55]. We render meshes of IF-NETs for vi-
sualizations, and 3D-R2N2’s test data set for obtaining depth maps and masks
with the help of Trimesh [IT].
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