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Machine learning has made important headway in helping to improve the treatment of quantum
many-body systems. A domain of particular relevance are correlated inhomogeneous systems. What
has been missing so far is a general, scalable deep-learning approach that would enable the rapid
prediction of spatial densities for strongly correlated systems in arbitrary potentials. In this work,
we present a straightforward scheme, where we learn to predict densities using convolutional neural
networks trained on random potentials. While we demonstrate this approach in 1D and 2D lattice
models using data from numerical techniques like Quantum Monte Carlo, it is directly applicable as
well to training data obtained from experimental quantum simulators. We train networks that can
predict the densities of multiple observables simultaneously and that can predict for a whole class of
many-body lattice models, for arbitrary system sizes. We show that our approach can handle well
the interplay of interference and interactions and the behaviour of models with phase transitions
in inhomogeneous situations, and we also illustrate the ability to solve inverse problems, finding a
potential for a desired density.

Predicting the properties of quantum many-body sys-
tems is one of the most important challenges in physics,
as it is relevant for quantum chemistry and materials sci-
ence, as well as for more recent tasks like benchmark-
ing quantum simulators. This is a hard problem for
larger system sizes, due to the exponential explosion of
the Hilbert space dimension. Elaborate approximation
schemes have been developed, including various forms of
perturbation theory, mean-field approaches like density-
functional theory (DFT), cluster methods, Monte Carlo
methods, and several variational-ansatz ideas, including
tensor network constructions. Machine learning has en-
tered this field of predicting quantum matter some years
ago, with results that show great promise, turning it into
an important tool [1–3]. It has led to improvements
in several directions, like the use of neural networks to
represent variational wave functions [4–6], to improve
DFT calculations [7–12], as well as in molecular dynam-
ics [13, 14].

However, the range of validity of such schemes is of-
ten limited, making it necessary to carefully select the
approach depending on circumstances. Furthermore, the
effort expended in applying the techniques to larger-scale
inhomogeneous systems can still be quite substantial. It
would, therefore, be desirable to employ machine learning
to circumvent entirely these tailored approaches and ar-
rive at a more general method for rapidly predicting the
properties of quantum many-body systems. This is espe-
cially true in inhomogeneous situations where the need
for a scalable approach that can treat large sizes in ex-
tended systems arises.

Here we introduce a straightforward scheme to train a
deep convolutional network that is able to directly predict
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FIG. 1: Overview of the approach. (a) The convolutional neu-
ral network maps a potential landscape of arbitrary size, to-
gether with model parameters, to the spatial maps of multiple
observables (including correlators, here denoted as ’noise’).
(b) Training procedure. Any of a set of numerical methods
are used to turn random potentials into spatial maps, provid-
ing the training data. The dependence of energy on particle
number is recorded as well and gives access to the chemical
potential.

spatial properties of many-body ground states or thermal
states in arbitrary potential landscapes. The key idea is
to train on random, spatially non-uniform potentials and
for variable particle numbers, where the corresponding
predictions can be extracted from any numerical method
or potentially even from experimental data. In general,
the network is designed with a multi-headed structure
and can thus be trained to produce the spatial maps of
several physical observables simultaneously. This is in-
tended to make it more sample-efficient in training, shar-
ing one initial processing block among observables (see
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Fig 1a for a schematic).
In addition, we introduce the capability of training a

single network on a range of model parameters, such as
coupling values and interaction strengths. This again is
designed to boost sample efficiency, since one network is
trained on data pertaining to the full parameter range,
giving it the potential to make predictions that are par-
tially informed by behaviour seen at other parameter val-
ues.

Even though the generation of training data may be
computationally expensive and may require a large-scale
computing cluster, once the network has been trained
our method allows rapid exploration of inhomogeneous
quantum many-body systems with low computational ef-
fort on single processors; examples show that for typical
parameters speedups of a factor of a million are real-
istic. Due to the local nature of the convolution, the
network can be exploited to make reliable predictions for
inhomogeneous systems far larger than those it has been
trained on previously, provided that training sample sizes
and the combined range of the stacked convolutions ex-
ceed the physical correlation length. One potential ap-
plication of the trained network would be Hamiltonian
learning [15], finding underlying parameters and poten-
tials given experimentally observed densities via gradient
descent. Another application would be the inverse design
of potentials with desired characteristics, either via ex-
ploiting the rapid predictions in gradient-free methods or
implementing direct gradient descent.

In previous works, scalable approaches based on convo-
lutional or recurrent neural networks have been proposed
in the context of quantum many-body systems. Those
approaches map a potential to a scalar global variable like
the energy [16, 17] or to level-spacing statistics [18]. In
contrast, our approach maps a potential to several spatial
distributions of observables like the density. Although
there have also been some works that investigate the di-
rect prediction of densities, those were in the context of
small few-particle quantum-chemistry type scenarios [10],
where scalability and application to an extensive system
was not an issue.

We consider interacting lattice models of fermions or
bosons, subject to a potential landscape V (x), where
x denotes the discrete lattice location. Our aim is to
train a deep neural network to be able to predict the
spatial dependence of the ground-state expectation val-
ues of interesting observables when it is provided with
the potential. These observables may include the density
n̂(x) = â†(x)â(x), the coherences that enter the density
matrix â†(x+ δx)â(x) (which can be used to express the
current flow if x+δx denotes a neighboring site), or fluc-
tuations like n̂(x+ δx)n̂(x).

In our approach, the starting point for training is the
evaluation of such spatial observable maps by any of a
number of numerical techniques, like exact diagonaliza-
tion (ED) or quantum Monte Carlo (QMC). Training

samples are produced by generating random potentials
and calculating predictions for those. We take these po-
tentials to be realizations of both white and colored noise,
with similar results. Samples are produced on relatively
small finite-size systems of linear extent L, and for dif-
ferent choices of particle number N .

This idea is related to a recent approach trying to learn
the dynamics of quantum many-body systems by observ-
ing their behaviour under random temporal driving [19].

One important characteristic of our approach is that
we are interested in using the network to produce pre-
dictions for arbitrary-size systems later on. In order to
handle that, we choose to work in the grand-canonical
ensemble, where the particle number can be tuned via
the chemical potential µ. Instead of taking V (x), N, L
as input, we hence feed V (x) − µ into the network. To
facilitate this, during the sample generation phase we
scan the evolution of ground-state energy E vs. parti-
cle number N and extract µ from the resulting depen-
dency. Specifically, for each sample fed into the network,
given E(N) we pick µ drawn uniformly from the inter-
val [E(N)− E(N − 1), E(N + 1)− E(N)]. This ansatz
effectively produces an interpolated version of µ(N) and
leads to the desired ability to scale to arbitrary sizes L.
For the specific QMC method we use in our studies, µ
can be prescribed directly (see Fig. 1b for a summary of
the described procedure).

One central aim in selecting the architecture of our net-
work is to make sure to maximize the sample efficiency,
i.e. to exploit as much as possible the information con-
tained in the training data, which is expensive to gen-
erate. In general, the architecture of the convolutional
network is set up with a multi-channel output struc-
ture that is asked to predict multiple observable maps
simultaneously. This enables more efficient use of the
training data (as compared to training several different
observable-specific networks), since processing steps in-
side the network are shared for the different observables,
and weight updates benefit from these different sources of
training information. The input to the network, as stated
above, is the potential V (x)−µ on a lattice, provided in
the shape of an ’image’ in d dimensions. Furthermore,
we may often be interested in predicting not for a fixed
model, but for a whole class of quantum many-body mod-
els, specified via a Hamiltonian Ĥ(J1, J2, . . .) with vari-
able coupling parameters J1, J2, . . .. To this end, we feed
extra ’channels’ to the network, one channel for each pa-
rameter. For simplicity these are taken to be of the same
spatial extent as the potential, but defined to be constant
throughout space (this setup would also allow a straight-
forward treatment of spatial inhomogeneities in such pa-
rameters). Training on randomly chosen parameter com-
binations within some parameter range again maximizes
sample efficiency, i.e. it is more economical than train-
ing a number of parameter-specific networks, since be-
haviour learned in other regions of parameter space can
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often be extrapolated. As to the specifics of the convolu-
tional neural network, many favourite choices from deep
image classification and processing are possible. In the
numerical investigations discussed below, we used both
plain convolutional networks as well as established archi-
tectures like the ResNet [20]. We augmented the limited
datasets through symmetry transformations (such as ro-
tations and reflections).

One of the defining characteristics of quantum many-
body problems in inhomogeneous potentials is the inter-
play of interference and interactions. Interference is gen-
erated when matter waves scatter from features in the
potential, but interactions can modify this interference
in multiple ways – for example, they might smear out
interference features via fluctuations, change the wave
length in a density-dependent manner, or even enhance
the density contrast of interference fringes. Situations
where both interference and interactions are present thus
can serve as a natural benchmark case for assessing the
quality of predictions for any new numerical or approx-
imate technique designed to handle generic inhomoge-
neous many-body systems.

We chose to study these effects in an interacting
fermionic 1D lattice system. One-dimensional systems
are good for benchmark comparisons, since we can obtain
essentially exact results on rather large systems. At the
same time, and for this very reason, 1D systems are not
necessarily the primary target for eventual applications of
our network-based approach, with the possible exception
of inverse problems. Nevertheless, we find that the per-
formance of the deep learning approach is not very sen-
sitive to the dimensionality, in contrast to other approxi-
mate and numerical techniques. Therefore, in our assess-
ment the comparisons obtained in 1D are meaningful to
indicate the overall accuracy of the method independent
of dimensionality, which is confirmed by our tests in 2D,
discussed further below. The specific model we selected
describes spinless fermions and contains nearest-neighbor
interactions:

Ĥ =− J
∑

x

â†(x)â(x+ 1) + h.c.

+ U
∑

x

n̂(x)n̂(x+ 1) +
∑

x

V (x)n̂(x),
(1)

where U denotes the interaction strength and J the hop-
ping amplitude, and we choose periodic boundary condi-
tions. After training on random potentials with extent
L ∈ {5, . . . , 16} (in this case, for fixed parameters), as de-
scribed above, we ask the network to predict the density
for a step-wise potential in the form of a potential well.
This kind of potential generates Friedel oscillations with a
density-dependent wavelength and an asymptotic power-
law decay modified by the interactions, as suggested by
Luttinger liquid theory. To quantify the accuracy of the
neural-network predictions on this test case, we compare
them against results from two other techniques: density-

matrix renormalization group (DMRG) (code taken from
[21]), which is essentially exact, and Hartree-Fock. The
results are shown in Fig.2.
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FIG. 2: Performance of the network addressing the interplay
of interactions and interference. (a) Density for a step po-
tential (never seen during training), displaying Friedel oscil-
lations in a 1D system of interacting fermions. The NN pre-
diction is very close to the almost exact result (DMRG), in
contrast to Hartree-Fock. (b) Density evolution vs. poten-
tial step height, comparing the three different approaches;
again the NN performs very well. (c) Predictions for multiple
observables, obtained from the single (multi-head) network,
evaluated for a step potential in a smaller system size. We
compare the network output with the exact diagonalization
(ED) result.

We observe a very good match with DMRG predic-
tions, while Hartree-Fock struggles and gives unreliable
results. This is particularly apparent when sweeping the
potential step height. That leads to characteristic step-
wise changes in the total particle number contained in
the potential well and resulting changes in the density-
dependent wave length of the oscillations. These are cap-
tured well by the network – even though to do so the net-
work has to extract non-local information, since the par-
ticle number quantization depends on the extent of the
well. In this example of interacting 1D fermionic systems,
we also take the opportunity to train and predict multiple
observables, as recounted above. In addition to observ-
ables connected to the density n̂, we predict the current
between sites, Î(x) = iJ(â†(x−δx)â(x)−â†(x)â(x−δx)),
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and its correlator. In this case, we compare the NN pre-
dictions vs. exact diagonalization (choosing a smaller
lattice size for that purpose) and observe an extremely
close match (Fig. 2c). We have verified that training
samples are not close to the test potential.

The second main characteristic of inhomogeneous
quantum many-body systems, beyond the interplay of
interference and interactions, is the appearance of phase
transitions and the resulting spatial patterns of differ-
ent phases produced in an external potential. A correct
predictive approach must not only reproduce the homo-
geneous bulk phase diagram but also be able to capture
features in inhomogeneous scenarios, like finite penetra-
tion depths observed at domains walls separating differ-
ent phases in space and the strongly modified response to
local perturbations when the system is close to a phase
boundary.

We have investigated the performance of our deep-
learning approach for a paradigmatic 2D model system,
the bosonic Hubbard model. Specifically, we selected the
extended model with both onsite and nearest-neighbor
interactions. This model [22, 23] is known to have mul-
tiple phases, including the homogeneous Mott insulator
and superfluid, but also phases with a spontaneously aris-
ing periodic density modulation (checkerboard and su-
persolid phases). The Hamiltonian for this model is given
by

Ĥ =− J
∑

x,x′

â†(x)â(x′)

+
U

2

∑

x

n̂(x)(n̂(x)− 1)

+ U ′
∑

x,x′

n̂(x)n̂(x′) +
∑

x

(V (x)− µ)n̂(x).

(2)

Here U and U ′ are the onsite and nearest-neighbor inter-
actions, respectively, and the sum over x′ is assumed to
range over all nearest neighbors of x. In this example,
we want to learn not only for a given model, with fixed
interactions, but rather be able to make predictions for
a whole class of models. To this end, during training
we choose U and U ′ for each sample randomly, within
certain ranges. As explained above, the values of these
parameters are fed into the network in the form of spa-
tially constant additional input channels. By training in
this way on a range of parameters, the network profits
from its ability to interpolate, i.e. all the observed sam-
ples will provide useful information even for predictions
eventually extracted at other parameter combinations.

A particular challenge for NN training is produced
when a phase has a spontaneously broken symmetry,
since the predictions for a given potential can assume one
of several outcomes, which would confuse the network.
This general aspect is illustrated nicely for the case of
the checkerboard solid, which shows a staggered density.
In contrast, the spontaneously broken U(1) symmetry for

the superfluid does not affect the observables we consider.
To cope with this challenge, during training we addition-
ally supply the network with an extra channel, that ef-
fectively selects the broken symmetry sector. Specifically
for the checkerboard, we provide another channel as input
to the network, which contains the checkerboard variant
(one of two), which is most strongly correlated with the
observed density. This is even necessary for inhomoge-
neous potentials, since QMC does not reliably pick the
energetically slightly favourable variant.

We train on predictions obtained using finite-
temperature QMC on relatively small systems with an
even number of sites L ∈ {6, 8, 10, 12, 14, 16} using the
worm algorithm [24]. For the training, we create data
sets of up to 170,000 samples, though we checked that
already 2,000 samples lead to very good results (see Fig.
3f). Further details about the data generation can be
found in the appendix.

As training is performed on random potentials, a non-
trivial check on the accuracy of the resulting trained net-
work can already be obtained by using the network to
predict the phases of homogeneous situations. The re-
sulting phase diagram is shown in Fig. 3a, with a very
good match against QMC predictions. Moving beyond
bulk phases, we test predictions for inhomogeneous sit-
uations. In the first example, we choose a parabolic po-
tential underlying the lattice, which is a typical situation
in experiments with ultracold atoms in optical lattices.
The resulting characteristic stepwise density distribution
(in the case of the standard bosonic Hubbard model with
Mott and superfluid phases) is known as a ’wedding cake’
structure. In the present case as shown in Fig. 3d, there
are more phases visible, and we compare against QMC
predictions. In a second example depicted in Fig. 3c, we
take a square potential well, and we study the resulting
density distribution vs. a varying potential depth, again
performing a comparison against the numerically exact
QMC result.

Having trained a neural network for the task of predict-
ing inhomogeneous quantum many-body systems, the
most straightforward benefit is speed, enabling applica-
tion to large-scale systems. We illustrate this by compar-
ing the time it takes to run QMC simulations vs. the time
it takes the neural network to produce predictions, as a
function of the system size (Fig. 3e). Even though such a
comparison comes with caveats – e.g. the time needed to
run QMC for a given potential depends on the details of
the convergence criteria adopted – it is clear that there
is a difference of many orders of magnitude, and this ob-
servation is independent of such details. Specifically for
system size 40, we achieve a speed up of a factor of 5·105,
which is likely even more pronounced for larger systems,
as the NN inference time scales much more favorably with
the system size. Another important aspect, besides infer-
ence time, is the time it takes to generate training sam-
ples using expensive techniques like QMC. In Fig. 3f, we



5

NN(NN°1(Ω))

QMC
°
NN°1(Ω)

¢

NN°1(Ω)

Ω

NN(Inverted)

QMC(Inverted)

Target ρ

1 2 3
¢V

0

20

40

S
it
e

j

0

1

2

0 20 40
Site i

0

20

40

S
it
e

j

0.5

1.0

0.1 0.2 0.3

1

2

3
µ
/U

0.0

0.5

1.0
a c

d

QMC

NN

b Phase Diagram Cuts

CB 1

CB 2

SS

SS

4J/U

MI

NN

QMC

NN

QMC

Cut

Site i

Si
te

 j

e QMC Duration [h] NN Duration [s] Test Loss [MSE]f

× 10−4

Samples

ΔV/J

0 1 2 3
0

1

2

0 1 2 3
0

1

2

⟨n⟩
g

L 40 100

0.5

1.0

L 20 40
0

25

Mean
σ

Mean
3σ

μ/U

NNmax
NNmin

CUT 2CUT 1

QMCmax
QMCmin

CUT 2CUT 1

CB 1

CB 2

MI
Inverted NN  (ρ)-1SF

500 3500

2.5

5.0

7.5

⟨n⟩max − ⟨n⟩min

μ

ΔV

V

FIG. 3: Results for a 2D model with phase transitions. (a) Phase diagram for the 2D Hubbard model with nearest-neighbor
coupling, vs. chemical potential and hopping strength for 4U ′/U = 1.0. The NN (trained on finite-T QMC results) is asked
to predict the density for a flat potential, after having been trained on random potentials. We plot the difference between the
maximum and the minimum of the density. The indicated phase boundaries mark the ground-state phase transitions extracted
from [22]. Checkerboard solids CB1 and CB2 with filling factors ρ = 3/2, 1/2, supersolid (SS), superfluid (SF), Mott insulator
(MI, ρ = 1). (b) Cuts through (a), comparing predictions of the network with those obtained from QMC (with max. and min.
densities). QMC densities in the SF phase are not perfectly constant in space, due to sampling noise. (c) Predictions (NN vs.
QMC) for a 2D potential well. Right plot shows evolution of density along a 1D cut for varying well depth. (d) Predictions for
a harmonic potential, changing the chemical potential. (e) Wall-clock time for QMC calculations vs. system size (for a fixed
convergence criterion), and the same for NN evaluation (inference time). (f) Test error (mean squared error) vs. training set
size, indicating fluctuations (standard deviation σ) over several training runs. (g) For given parameters (4J/U=0.3,zU’/U=1.0)
the network (NN) is used to ”invert” a prescribed density ρ to produce a corresponding potential (Inverted), see main text,
which is tested by using both the NN and QMC for recovering the density.

show the test loss as a function of the number of training
samples, observing that even for a few thousand samples
the loss is already on the same order of magnitude as for
105 samples. This is a very important message for the
feasibility of the whole method.

Another important benefit of using a network is that
it represents a differentiable mapping from input to out-
put. This can be exploited for inverse design. For that
purpose, we would start from a given desired observable
map (e.g. a density distribution), or, more generally,
some cost function that prefers certain features in the
predicted observable map. We can then take the deriva-
tive of that cost function with respect to the input, i.e.
with respect to the underlying potential (or the model
parameters), in order to do gradient descent and find
the potential landscape that is able to produce the de-
sired effect. Here we constrain the inversion to ranges
the network was previously trained on, by applying gra-
dient descent to an unconstrained input variable, which
is mapped to a constrained network input by an accord-

ingly scaled and shifted sigmoid function. In some cases,
there may be a continuum of possible solutions, in other
cases - possibly due to the constrained nature of the in-
version - one might only find a compromise solution, i.e.
come as close as possible to the desired output. We illus-
trate this use case in Fig. 3g.

In conclusion, we have shown how a deep neural net-
work can efficiently predict inhomogeneous densities in
large-scale quantum many-body systems, including as-
pects like simultaneous treatment of multiple observ-
ables. With this technique, one can speed up the explo-
ration of designed potentials by several orders of mag-
nitude and apply inverse design to obtain desired out-
comes. Another promising future application would be
Hamiltonian learning, deducing the potential and model
parameters from experimental observations in the ground
state of a system. While we have trained on simulations,
modern developments will enable training on experimen-
tal data, most notably using quantum gas microscopes
for optical lattices which also enable local potential pro-
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gramming [25].
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APPENDIX

Training Data Generation

In the 1D examples, we trained on potentials V (x)
that are realizations of uniform white noise (V (x)V (x′) =
δx,x′) with V (x)/J ∈ [−12, 12]. The input for the net-
work was solely the combination V (x) − µ, where µ is
extracted from the energy dependence on the number of
particles, as described in the main text.

For the 2D example, we instead used Gaussian colored
noise. This means the potential V (x) was obtained using
inverse Fourier transformation starting from randomly
chosen complex Fourier amplitudes with a fall-off towards
higher wavenumbers. Given the chemical potential µ,
we then for a random amplitude A ∈ [0, |µ|/2] shift and
rescale V, such that maxx V (x) − minx V (x) = 2A and
V (x) = 0.

In addition, in the 2D example, we supply the model
parameters in the Hamiltonian as input channels to the
network. For the training set, these parameters were
drawn from uniform distributions. In particular, we
selected 4J/U ∈ [0.05, 1], where the hopping strength
J is set to one, 4U ′/U ∈ [0.75, 1.75] and ultimately
µ ∈ [−0.5U, 3U ].

For the QMC application, we limit the number of par-
ticles per site to three and run the worm algorithm for
107 sweeps at temperature T/J = 1.0.

Network Architecture

As a starting point for the network architecture, we
use standard convolutions with kernel size five as the first
layer and kernel size three for all following layers, with-
out pooling and with strides set to one (i.e. keeping the
same resolution). All convolutions wrap around the in-
put periodically, such that we effectively mimic periodic
boundary conditions for the network’s analysis.

In order to be able to correlate as many sites as possi-
ble, we design the networks to be rather deep (see below),
since stacked convolutions extend the capability to learn
long-range correlations. To facilitate the training we em-
ploy residual connections [20] and batch norms [26]. As
non-linear activation ReLU is used. The training pro-
ceeded with the standard Adam optimizer. In princi-
ple any point-wise cost function is suitable, but we used
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the mean absolute error (MAE) for the one-dimensional
model and the mean squared error (MSE) in the two-
dimensional case.

Ultimately, after exploring several design choices and
hyperparameters, we selected the model with the smallest
validation loss for our studies.

For the one-dimensional model, we found that a
ResNet-type architecture with 64 blocks produces the
best results. Opposed to the common ResNet design, we

did not include dropout and pooling operations. Every
layer produces 120 output channels. The best perform-
ing architecture for the two-dimensional system was a
purely convolutional neural network with 20 layers and
200 channels per layer. This seems to be mainly due to
better resilience to the rather noisy dataset built with
QMC.

For model architectures and additional tasks like the
inversion, our implementations rely on Pytorch [27].
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