Supporting Information

Synthesis, Structure-Property Relationships and Absorbance Modulation of Highly Asymmetric Photochromes with Variable Oxidation and Substitution Patterns

Kakishi Uno ${ }^{\text {a\#\# }}$, Dojin Kim ${ }^{\text {a\#\# }}$, Jonas Bucevicius ${ }^{\text {b }}$, Mariano L. Bossi ${ }^{\text {c }}$, Vladimir N. Belov ${ }^{\text {a }}$, and Stefan W. Hell ${ }^{\text {a,c }}$
${ }^{\text {a }}$ Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI NAT), Am Fassberg 11, 37077 Göttingen, Germany
${ }^{\mathrm{b}}$ Chromatin Labeling and Imaging group, Department of NanoBiophotonics, MPI NAT, Am Fassberg 11, 37077 Göttingen, Germany.
${ }^{\text {c D Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, }}$ 69120 Heidelberg, Germany.
\# equal contribution

Abstract

Abbreviations anti-parallel (ap), aqueous (aq.), argon (Ar), brine (aq. NaCl), catalyst/catalysis (cat.), closed form (CF), diarylethene (DAE), dichloromethane (DCM), equivalent (equiv.), electrospray ionization (ESI), ethyl acetate (EtOAc), high performance liquid chromatography (HPLC), high resolution mass-spectrometry (HR-MS), m-CPBA (meta-chloroperoxybenzoic acid), methanol (MeOH), NBS (N -bromosuccinimide), N-hydroxysuccinimide (NHS), N, N-diisopropyl ethyl amine (DIEA), , nitrogen (N_{2}), nuclear magnetic resonance (NMR), open form (OF), parallel (p), phosphate buffer saline (PBS), photostationary state (PSS), reversed phase (RP), room temperature (r.t.), saturated (sat.), tetrahydrofurane (THF), thin layer chromatography (TLC), ultraviolet (UV), visible (Vis), volume ratio of two solvents (v/v).

Materials

The key precursors $\mathbf{a},{ }^{\text {S1 }} \mathbf{A}(\mathbf{H}),{ }^{\mathrm{S} 2}$ and $\mathbf{b}^{\mathrm{S} 3}$ were synthesized according to previously reported procedures. Other chemicals were purchased from TCI Deutschland (Tokyo Chemical Industry Co.) or Sigma-Aldrich and used without further purification.

Nuclear Magnetic Resonance (NMR)

NMR Spectra (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$) were recorded on an Agilent 400 MR DD2 spectrometer. All ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ NMR spectra are referenced to the signals of the residual protons and ${ }^{13} \mathrm{C}$ in $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: 7.26 \mathrm{ppm},{ }^{13} \mathrm{C}\right.$: 77.00 ppm). Multiplicities of the signals are described as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin $=$ quintet, sext $=$ sextet, sept $=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Coupling constants (J) are given in Hz .

ESI and high resolution mass-spectrometry (ESI-MS)

ESI-MS were recorded on a Varian 500-MS spectrometer (Agilent). ESI-HRMS were recorded on a MICROTOF spectrometer (Bruker) equipped with an Apollo ion source and a direct injector as an LCautosampler (Agilent RR 1200).

High-performance liquid chromatography (HPLC)

Analytical HPLC was performed on a KNAUER Azura system with a $20 \mu \mathrm{~L}$ injection loop, a $150 \times 4 \mathrm{~mm}$ column (Knauer, Eurospher II 100-10 C18A with precolumn, Vertex Plus), and a photodiode array detector. Flowrate was $1.2 \mathrm{~mL} / \mathrm{min}$ with water $/ \mathrm{MeCN}$ gradient (both solvents containing 0.1% of TFA).

Synthesis

Scheme S1. Upper: The synthesis of precursors. Bottom: The general procedures for the synthesis of diarylethenes studied in this work.

General procedure 1 (GP-1)

Starting material (e.g. $\mathbf{C}(\mathbf{H}), \mathbf{C}(\mathbf{P h}), \mathbf{D}(\mathbf{H})$, or $\mathbf{D}(\mathbf{P h})$ (1 equiv.) and boronic acids (phenyl boronic acid, 4methoxyphenylboronic acid, or 4-cyanophenylboronic acid) (1.1-1.3 equiv.) were dissolved in a THF solution (15-20 mL). To this solution, saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(15-20 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.2$ equiv.) were added. The mixture were heated to reflux for $1.5-3.0 \mathrm{~h}$. After cooling to r.t., the mixture was poured into brine and extracted with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude products were purified by silica gel column chromatography with EtOAc/nhexane with noted gradient. The product yields, R_{f} values and appearance of each products are noted in the experiment section separately. For some substances, lyophilization with dioxane was performed to give light powders.

General procedure 2 (GP-1)

 equiv.) dissolved in DCM (10 mL per 0.1 g of $\mathbf{O x}^{\mathbf{0}} \mathbf{- X}-\mathbf{Y}$) was added with $77 \% \mathrm{~m}-\mathrm{CPBA}(10$ equiv.). The reaction mixture was stirred for $24-72 \mathrm{~h}$. The reaction solution was poured into sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and stirred for 1 h . The DCM layer was extracted and poured into sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, then stirred for 1 h . The organic layer was extracted and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude products were purified by silica gel column chromatography with EtOAc/n-hexane with noted gradient. The product yields, R_{f} values and appearance of each products are noted in the experiment section separately. For some substances, lyophilization with dioxane was performed to give light powders.

A(Ph)

Starting material a $(5.7 \mathrm{~g}, 19 \mathrm{mmol}){ }^{\text {S1 }}$ was dissolved in dry THF $(120 \mathrm{~mL})$ under N_{2}. The reaction solution was cooled to $-70^{\circ} \mathrm{C} .1 .6 \mathrm{M} n$ - BuLi ($13 \mathrm{~mL}, 21 \mathrm{mmol}, 1.1$ equiv.) was slowly added with stirring over 1 h . The reaction solution was further stirred for 2 h at $-70^{\circ} \mathrm{C}$. Octafluorocyclopentene ($5.8 \mathrm{~g} \mathrm{~mL}, 28 \mathrm{mmol}$, 1.5 equiv.) was slowly added by syringe, and the reaction solution was gradually warmed-up to r.t. overnight. The reaction mixture was poured into sat. brine $(250 \mathrm{~mL})$ and extracted with ether $(2 \times 250 \mathrm{~mL})$. The combined organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was subjected to chromatography on regular silica gel (eluent: n-hexane/DCM $=95 / 5)$ to afford $6.0 \mathrm{~g}(76 \%$ yield $)$ of \mathbf{b} as a white solid. $R_{f}(n$-hexane $)=0.40$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.00(\mathrm{~d}, J=1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.57-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{tt}, J=1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})$ $=144.43,140.56,138.97,138.27,128.91,127.52,127.34,124.83,121.80,120.50,14.78 .{ }^{19} \mathrm{~F}-\mathrm{NMR}(367$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-107.6(\mathrm{~m}, 2 \mathrm{~F}),-118.8(\mathrm{~m}, 2 \mathrm{~F}),-125.1(\mathrm{~m}, 1 \mathrm{~F}),-130.3(\mathrm{~m}, 2 \mathrm{~F})$. ESI-MS: positive mode, $m / z=[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~F}_{7} \mathrm{~S}^{+}, 416.0464$; found, 416.0460.

C(H)

Starting material $\mathbf{b}^{\text {S3 }}\left(5.8 \mathrm{~g}, 23 \mathrm{mmol}, 1.0\right.$ equiv.) was dissolved in dry THF (50 mL) under N_{2}. The reaction solution was cooled to $-70^{\circ} \mathrm{C} .1 .6 \mathrm{M} n$ - $\mathrm{BuLi}(16 \mathrm{~mL}, 26 \mathrm{mmol}, 1.1$ equiv.) was slowly added via syringe over 2 h . A dry THF solution (8 mL) containing $\mathbf{A}(\mathbf{H}){ }^{\mathrm{S} 2}(6.6 \mathrm{~g}, 19 \mathrm{mmol}, 0.83$ equiv.) was slowly added below $-65^{\circ} \mathrm{C}$, and the reaction solution was then gradually warmed-up to r.t. overnight. The reaction mixture was poured into sat. brine $(250 \mathrm{~mL})$ and extracted with ether $(2 \times 250 \mathrm{~mL})$. The combined organic solutions were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude $\mathbf{B}(\mathbf{H})$ was subjected to chromatography on silica gel (eluent: n-hexane) to afford compound $\mathbf{B}(\mathbf{H})$ as a pale yellow oil ($6.0 \mathrm{~g}, 53 \%$). The freshly prepared $\mathbf{B}(\mathbf{H})$ was dissolved in DCM (180 mL) and cooled to $0^{\circ} \mathrm{C}$ by ice bath. $\mathrm{Br}_{2}(2.4 \mathrm{~g}, 15 \mathrm{mmol}, 1.2$ equiv. relative to $\mathbf{B}(\mathbf{H}))$ was slowly added to the reaction solution, which was further stirred for 2 hat r.t. The reaction mixture was poured into combined brine (200 $\mathrm{mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, (200 mL) which was then extracted with $\mathrm{DCM}(2 \times 200 \mathrm{~mL})$. The organic solutions were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was subjected to chromatography on silica gel (eluent: n-hexane) to give $3.5 \mathrm{~g}(30 \% \mathrm{two}$ step yield) of $\mathbf{C}(\mathbf{H})$ as a pale yellow oil. $R_{f}(n$-hexane $)=0.44$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.78-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.72$ $(\mathrm{s}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=143.18,141.23$, $138.37,138.12,125.00,124.59,122.10,121.87,121.83,119.87,116.85,15.76,14.87 .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ (367 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.7(\mathrm{~m}, 4 \mathrm{~F}),-132.4(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=\left(\left[\mathrm{M},{ }^{81} \mathrm{Br}\right]^{+}\right.$calcd. for $\left.\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrF}_{6} \mathrm{~S}_{2}{ }^{+}\right)$497.9364, $\left(\left[\mathrm{M},{ }^{79} \mathrm{Br}\right]^{+}\right.$calcd. for $\left.\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{BrF}_{6} \mathrm{~S}_{2}{ }^{+}\right)$495.9385; found, 497.9362, 495.9383.

C(Ph)

Starting material $\mathbf{b}^{53}\left(5.8 \mathrm{~g}, 23 \mathrm{mmol}, 1.0\right.$ equiv.) was dissolved in dry THF (50 mL) under N_{2}. The reaction solution was cooled to $-70^{\circ} \mathrm{C} .1 .6 \mathrm{M} n-\mathrm{BuLi}(16 \mathrm{~mL}, 26 \mathrm{mmol}, 1.1$ equiv.) was slowly added via syringe over 2 h . A dry THF solution (10 mL) containing $\mathbf{A}(\mathbf{P h})(8.0 \mathrm{~g}, 19 \mathrm{mmol}, 0.83$ equiv.) was slowly added below $-65^{\circ} \mathrm{C}$, and the reaction solution was then gradually warmed-up to r.t. overnight. The reaction mixture was poured into sat. brine $(250 \mathrm{~mL})$ and extracted with ether ($2 \times 250 \mathrm{~mL}$). The organic solutions were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude $\mathbf{B}(\mathbf{P h})$ was subjected to chromatography on silica gel (eluent: n-hexane) to afford compound $\mathbf{B}(\mathbf{P h})$ as a pale yellow oil ($8.5 \mathrm{~g}, 64 \%$). The freshly prepared $\mathbf{B}(\mathbf{P h})$ was dissolved in $\mathrm{DCM}(240 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$ by ice bath. $\mathrm{Br}_{2}(3.1 \mathrm{~g}, 19 \mathrm{mmol}, 1.3$ equiv. relative to $\mathbf{B}(\mathbf{P h})$) was slowly added to the reaction solution, which was further stirred for 2 h at r.t. The reaction mixture was poured into combined brine $(200 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, which was then extracted with DCM ($2 \times 200 \mathrm{~mL}$). The organic solutions were combined, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue was subjected to chromatography on silica gel (eluent: n-hexane) to give $4.4 \mathrm{~g}(33 \%$ two step yield) of $\mathbf{C}(\mathbf{P h})$ as a white solid. $R_{f}(n$-hexane $)=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.98-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.55-$ $7.50(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=149.65,143.53,141.98,140.56,139.10,137.97,137.50,137.23,133.94$, $128.88,127.44,127.27,124.66,122.06,122.01,120.40,119.71,116.93,15.86,15.83,15.80,15.00$, 14.98. ${ }^{19} \mathrm{~F}$-NMR ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=-109.6(\mathrm{~m}, 4 \mathrm{~F}),-132.4(\mathrm{~m}, 2 \mathrm{~F})$.

ESI-MS: positive mode, $m / z=\left(\left[M,{ }^{81} \mathrm{Br}\right]^{+}\right.$calcd. for $\left.\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{BrF}_{6} \mathrm{~S}_{2}{ }^{+}\right) 571.9698$, $\left(\left[\mathrm{M},{ }^{79} \mathrm{Br}\right]^{+}\right.$calcd. for $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{BrF}_{6} \mathrm{~S}^{+}$) 573.9677; found, 571.9699, 571.9675.

D(H)

$\mathbf{C}(\mathbf{H})(1.5 \mathrm{~g}, 2.8 \mathrm{mmol}, 1$ equiv.) was dissolved in a acetic acid solution (30 mL). To this solution, 2.7 mL of 50% hydrogen peroxide in water (2.7 mL , excess) was added. The mixture was stirred at $130^{\circ} \mathrm{C}$ for 30 min . After cooling to r.t., the mixture was poured into brine and stirred for 10 min . The generated precipitate was filtered and washed with water. The precipitate was subjected to silica chromatography with EtOAc/n-hexane (gradient: 10/90 to $40 / 60, \mathrm{v} / \mathrm{v}$) to give $0.93 \mathrm{~g}(62 \%)$ of $\mathbf{D}(\mathbf{H})$ as a pale yellow powder. $R_{f}($ EtOAc $/ n$-hexane $=1 / 3)=0.40$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~s}$, $1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=143.37$, 135.52, 134.68, 134.31, $134.15,130.61,130.44,129.95,126.26,122.93,122.89,122.81,122.73,122.50,122.33,118.73,16.21$, 16.19, 16.16, 8.63, 8.60. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.4(\mathrm{~m}, 4 \mathrm{~F}),-132.0(\mathrm{~m}, 2 \mathrm{~F})$.

ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{BrF}_{6} \mathrm{NaO}_{2} \mathrm{~S}_{2}{ }^{+}$, 550.9180; found, 550.9176.

D(Ph)

Compound $\mathbf{C}(\mathbf{H})(1.5 \mathrm{~g}, 2.6 \mathrm{mmol}, 1$ equiv.) was dissolved in a acetic acid solution (30 mL). To this solution, 50% hydrogen peroxide in water (3.0 mL , excess) was added. The mixture was stirred at $130{ }^{\circ} \mathrm{C}$ for 30 min . After cooling to r.t., the mixture was poured into brine and stirred for 10 min . The generated precipitate was filtered and washed with water. The precipitate was subjected to silica chromatography with EtOAc/n-hexane (gradient: 10/90 to $40 / 60, \mathrm{v} / \mathrm{v}$) to give $0.81 \mathrm{~g}(51 \%)$ of $\mathbf{D}(\mathbf{P h})$ as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=2 / 8)=0.37$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=143.83,143.26,143.08,138.25,136.19,134.57,132.35,129.21,128.83$, $128.38,127.03,126.04,123.06,123.02,120.83,118.64,16.13,16.10,16.08,8.57,8.54 .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ (367 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.3(\mathrm{~m}, 4 \mathrm{~F}),-132.1(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{BrF}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}$, 604.9674; found, 604.9662.
Ox ${ }^{0}$-MeO-H: The synthesis was performed followed by GP-1.

$\mathbf{C}(\mathbf{H})(0.30 \mathrm{~g}, 0.60 \mathrm{mmol})$ and 4-methoxyphenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc $/ n$-hexane ($5 / 95, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave $0.22 \mathrm{~g}(73 \%)$ of the titled compound as a pale yellow powder. $R_{f}(n$-hexane $)=0.10$. ${ }^{1} \mathrm{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.52(\mathrm{~m}, 1 \mathrm{H})$, $7.40-7.28(\mathrm{~m}, 4 \mathrm{H}), 6.8-6.83(\mathrm{~m}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=160.10,147.78,143.19,142.70$, 138.54, 138.47, 127.29, 126.35, 125.88, 125.05, 124.58, 122.26, 122.22, 122.14, 120.96, 120.73, 114.49, $55.50,16.24,15.08 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.5(\mathrm{~m}, 4 \mathrm{~F}),-132.4(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[M+H]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{OS}_{2}{ }^{+}, 525.0776$; found, 525.0760.
$\mathbf{O x}{ }^{0} \mathbf{- H}-\mathbf{H}$: The synthesis was performed followed by $\mathbf{G P} \mathbf{- 1}$.

$\mathbf{C}(\mathbf{H})(0.30 \mathrm{~g}, 0.60 \mathrm{mmol})$ and phenylboronic acid were used in the synthesis. Purification by column chromatography with n-hexane and lyophilization from dioxane gave $0.21 \mathrm{~g}(71 \%)$ of the titled compound as a white powder. R_{f} (n-hexane) $=0.25$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H})$, 7.47-7.43 (m, 2H), 7.37-7.28 (m, 5H), $6.96(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=143.23,142.57,138.47,133.09,129.10$, $128.63,127.30,125.97,125.07,124.62,122.24,122.19,122.16,120.59,16.22,16.19,16.16,15.10,15.08$. ${ }^{19} \mathrm{~F}-$ NMR $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.7(\mathrm{~m}, 4 \mathrm{~F}),-132.5(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}-\mathrm{F}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~F}_{5} \mathrm{~S}_{2}{ }^{+}, 475.0608$; found, 475.0595 .
$\mathbf{O x}^{\mathbf{0}} \mathbf{- C N}-\mathbf{H}$: The synthesis was performed followed by GP-1.

$\mathbf{C}(\mathbf{H})(0.45 \mathrm{~g}, 0.90 \mathrm{mmol})$ and 4-cyanophenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc / n-hexane (gradient: $0 / 100$ to $15 / 85, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave $0.37 \mathrm{~g}(79 \%)$ of the titled compound as a white powder. R_{f} $(\mathrm{EtOAc} / n$-hexane $)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.91$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=144.77,143.33,142.74,138.47,138.30,137.26,132.88$, $129.01,126.23,125.16,124.74,123.95,122.23,122.11,122.06,120.23,118.61,111.75,16.10,16.07$, $16.05,15.12,15.10 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.6(\mathrm{~m}, 4 \mathrm{~F}),-132.4(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{15} \mathrm{~F}_{6} \mathrm{NNaS}_{2}{ }^{+}$, 542.0442; found, 542.0428.
$\mathbf{O x}{ }^{\mathbf{1}} \mathbf{- M e O}-\mathbf{H}$: The synthesis was performed followed by GP-1.

$\mathbf{D}(\mathbf{H})(0.30 \mathrm{~g}, 0.57 \mathrm{mmol})$ and 4-methoxyphenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc / n-hexane (gradient: $10 / 90$ to $30 / 70, \mathrm{v} / \mathrm{v}$) gave $0.37 \mathrm{~g}(79 \%)$ of the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=1 / 3)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.79-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 2 \mathrm{H})$, 7.46-7.40 (m, 2H), 7.18-7.13 (m, 1H), 6.95 (s, 1H), 6.91-6.86 (m, 2H), 3.82 $(\mathrm{s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $160.55,149.72,144.32,143.17,135.65,134.08,130.39,130.22,127.52,127.07,126.99,125.25,123.04$, $123.00,122.14,114.66,55.53,16.70,16.67,16.63,8.63,8.59 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-$ 108.9 (m, 4F), -131.8 (m, 2F).

ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{~S}_{2}{ }^{+}$, 557.0674; found, 557.0663.
$\mathbf{O x}{ }^{\mathbf{1}} \mathbf{- H} \mathbf{H}$: The synthesis was performed followed by GP-1.

$\mathbf{D}(\mathbf{H})(0.30 \mathrm{~g}, 0.57 \mathrm{mmol})$ and phenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: $5 / 95$ to $20 / 80, \mathrm{v} / \mathrm{v}$) gave $0.21 \mathrm{~g}(79 \%)$ the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=1 / 3)=0.35$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.79-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 4 \mathrm{H})$, $7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}, J=0.9$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=149.51,144.08,143.23,135.63$, $134.09,132.51,130.27,129.26,129.20,127.94,126.88,126.15,123.02,122.98,122.18,16.63,16.60$, $16.57,8.65,8.62 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-108.6(\mathrm{~m}, 4 \mathrm{~F}),-131.9(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}, 527.0569$; found, 527.0564.
Ox ${ }^{1}$-CN-H: The synthesis was performed followed by GP-1.

$\mathbf{D}(\mathbf{H})(0.30 \mathrm{~g}, 0.57 \mathrm{mmol})$ and 4-cyanophenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: $10 / 90$ to $30 / 70$, v/v) gave $0.18 \mathrm{~g}(58 \%)$ of the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=1 / 3)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H})$, 7.61-7.56 (m, 2H), 7.56-7.48 (m, 2H), 7.18-7.13 (m, 2H), $2.17(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}$, $J=0.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=146.42,144.06$, $143.43,136.68,135.59,134.17,133.03,130.44,130.11,129.58,126.49,122.94,122.91,122.31,118.45$, $112.37,16.51,16.48,16.45,8.66,8.63 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.4(\mathrm{~m}, 4 \mathrm{~F}),-131.9$ (m, 2F).
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$, 552.0521; found, 552.0506.
$\mathbf{O x}^{\mathbf{2}} \mathbf{- M e O}-\mathbf{H}$: The synthesis was performed followed by GP-2.

$\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- M e O}-\mathbf{H}(0.18 \mathrm{~g}, 0.34 \mathrm{mmol})$ was used in as starting material. The reaction time was 24 h . Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: $5 / 95$ to $30 / 70, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave $59 \mathrm{mg}(29 \%)$ of the titled compound as an orange powder. R_{f} $(\mathrm{EtOAc} / n$-hexane $=2 / 3)=0.20$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.77-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 2 \mathrm{H})$, $7.57(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=162.47,146.23,145.03,143.60,135.17,134.25,130.39,130.25,129.14,125.56,123.44$, $123.39,123.37,122.17,119.64,118.31,115.18,55.67,18.25,18.23,18.21,8.96,8.93 .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ (367 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.7(\mathrm{~m}, 4 \mathrm{~F}),-131.9(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{~S}_{2}{ }^{+}$, 589.0573; found, 589.0558.
$\mathbf{O x} \mathbf{} \mathbf{2}^{\mathbf{2}} \mathbf{H - H}$: The synthesis was performed followed by GP-2.

$\mathbf{O x}^{\mathbf{0}} \mathbf{- H} \mathbf{- H}(0.15 \mathrm{~g}, 0.30 \mathrm{mmol})$ was used in as starting material. The reaction time was 24 h . Purification by column chromatography with mixed eluent of EtOAc/nhexane (gradient: $5 / 95$ to $30 / 70, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave 47 mg (28%) the titled compound as a yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=2 / 3)=0.40$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.78-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.58$ $(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=145.40,145.08,143.67,135.15,134.25,131.74,130.44,130.22,130.20,129.55,127.26$, $125.75,125.38,124.55,123.36,123.33,122.44,122.21,30.46,18.13,18.11,18.09,8.96,8.93 .{ }^{19} \mathrm{~F}-\mathrm{NMR}$ $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.3(\mathrm{~m}, 4 \mathrm{~F}),-131.9(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}$, 559.0467; found, 559.0455.
$\mathbf{O x}^{\mathbf{2}} \mathbf{- C N}-\mathbf{H}$: The synthesis was performed followed by GP-2.

$\mathbf{O x} \mathbf{x}^{0} \mathbf{C N}-\mathbf{H}(0.28 \mathrm{~g}, 0.54 \mathrm{mmol})$ was used in as starting material. The reaction time was 72 h . Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: $5 / 95$ to $35 / 65$, v/v) and lyophilization from dioxane gave $87 \mathrm{mg}(27 \%)$ of the titled compound as a yellow powder. R_{f} (EtOAc/nhexane $=2 / 3)=0.15$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.79-7.69(\mathrm{~m}, 5 \mathrm{H}), 7.59(\mathrm{td}, J=7.6$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}$, $1 \mathrm{H}), 2.23(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=144.60,143.81$, $143.00,135.13,134.26,133.12,130.55,130.17,129.77,127.66,125.63,125.09,123.23,123.21,122.30$, $117.81,114.92,18.04,18.02,18.00,8.95,8.92 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.4(\mathrm{~m}, 4 \mathrm{~F})$, -132.0 (m, 2F).
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}{ }^{+}$, 584.0419; found, 584.0414.
$\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- M e O} \mathbf{- P h}$: The synthesis was performed followed by GP-1.

$\mathbf{C}(\mathbf{P h})(0.30 \mathrm{~g}, 0.52 \mathrm{mmol})$ and 4-methoxyphenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc / n-hexane (gradient: $5 / 95$ to $15 / 85, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave $0.22 \mathrm{~g}(70 \%)$ of the titled compound as a yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=1 / 9)=0.27$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.97-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}$, $2 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.89-6.83$ $(\mathrm{s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=159.96,140.66$, $139.04,137.75,128.85,127.26,126.24,125.72,124.55,124.04,122.29,122.24,120.30,119.72,114.35$, $77.20,55.36,16.17,15.03 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.2(\mathrm{~m}, 4 \mathrm{~F}),-132.4(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{OS}_{2}{ }^{+}$, 601.1089; found, 601.1059.
$\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- M e O}-\mathbf{P h}$: The synthesis was performed followed by GP-1.

$\mathbf{C}(\mathbf{P h})(0.30 \mathrm{~g}, 0.52 \mathrm{mmol})$ and phenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: 5/95 to $15 / 85, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave $0.24 \mathrm{~g}(80 \%)$ of the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=1 / 9)=$ 0.40 .
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.97-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H})$, 7.60-7.55 (m, 2H), 7.49-7.42 (m, 4H), 7.39-7.27 (m, 4H), $6.98(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=147.58,143.43,142.47,140.62,139.04,137.79$, $137.45,132.92,128.95,128.84,128.49,127.37,127.25,127.18,125.82,124.57,122.25,122.20,121.76$, $120.31,120.28,16.13,16.10,16.08,15.05,15.03 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.6(\mathrm{~m}$, 4F), -132.4 (m, 2F).
ESI-MS: positive mode, $m / z=[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{31} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{~S}_{2}{ }^{+}, 570.0905$; found, 570.0905.
$\mathbf{O x}^{\mathbf{0}} \mathbf{- C N} \mathbf{- P h}$: The synthesis was performed followed by GP-1.

$\mathbf{C}(\mathbf{P h})(0.30 \mathrm{~g}, 0.60 \mathrm{mmol})$ and 4-cyanophenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: 5/95, 30/70) and lyophilization from dioxane gave $0.18 \mathrm{~g}(58 \%)$ of the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=2 / 8)=0.33$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.96(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.59(\mathrm{~m}, 4 \mathrm{H})$, 7.59-7.51 (m, 4H), 7.49-7.42 (m, 2H), 7.39-7.31 (m, 1H), 7.07 (s, 1H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=144.68,143.52,142.65,140.45,13$ $9.05,137.92,137.25,137.10,132.74,128.89,127.48,127.20,126.10,124.64,123.77,122.13,122.0$ $9,120.33,119.93,118.45,111.62,16.02,15.99,15.97,15.09,15.06 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=-109.4(\mathrm{~m}, 4 \mathrm{~F}),-132.4(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NS}_{2}{ }^{+}, 596.0936$; found, 596.0921.
Ox ${ }^{1}$-MeO-Ph: The synthesis was performed followed by GP-1.

$\mathbf{D}(\mathbf{P h})(0.30 \mathrm{~g}, 0.50 \mathrm{mmol})$ and 4-methoxyphenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: 5/95 to 30/70, v/v) and lyophilization from dioxane gave $0.20 \mathrm{~g}(64 \%)$ of the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=3 / 7)=0.43$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{dd}$, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$,), 6.91-6.86(m, $2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=160.39,143.57$, $142.89,138.37,136.32,132.31,129.15,128.71,127.39,127.01,126.87,125.11,123.13,120.64,114.50$, $55.38,16.58,8.54 .{ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-108.6(\mathrm{~m}, 4 \mathrm{~F}),-132.1(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{O}_{3} \mathrm{~S}_{2}{ }^{+}$, 633.0987; found, 633.0968.

Ox ${ }^{1}$-H-Ph: The synthesis was performed followed by GP-1.

$\mathbf{D}(\mathbf{P h})(0.30 \mathrm{~g}, 0.50 \mathrm{mmol})$ and 4-methoxyphenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc / n-hexane (gradient: $5 / 95$ to $30 / 70$, v/v) and lyophilization from dioxane gave $0.24 \mathrm{~g}(80 \%)$ of the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=3 / 7)=0.50$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.01-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{dd}, J=$ $8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{~s}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $149.39,143.97,143.63,142.96,138.33,136.29,132.36,132.31,129.16,129.10,129.04,128.73,127.82$, $127.01,126.65,126.01,123.15,123.11,120.68,16.54,16.51,16.49,8.58,8.55 .{ }^{19} \mathrm{~F}-\mathrm{NMR}(367 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-108.9(\mathrm{~m}, 4 \mathrm{~F}),-132.0(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}$, 603.0882; found, 603.0874.
$\mathbf{O x}^{1}$ - $\mathbf{C N}-\mathbf{P h}$: The synthesis was performed followed by GP-1.

$\mathbf{D}(\mathbf{P h})(0.30 \mathrm{~g}, 0.50 \mathrm{mmol})$ and 4-cyanophenylboronic acid were used in the synthesis. Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: 5/95 to 30/70, v/v) and lyophilization from dioxane gave $0.19 \mathrm{~g}(61 \%)$ of the titled compound as a pale yellow powder. $R_{f}($ EtOAc $/ n$-hexane $=3 / 7)=0.33$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{dd}$, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.38(\mathrm{~m}$, $3 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=146.30,143.96,143.78,143.14,138.16,136.51,136.25,132.86,132.33,129.45,129.21,128.85$, $128.52,126.96,126.34,126.23,123.06,123.02,122.38,120.77,118.28,112.20,16.41,16.38,16.35,8.59$, 8.56. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.0(\mathrm{~m}, 4 \mathrm{~F}),-132.3(\mathrm{~m}, 2 \mathrm{~F})$.

ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$, 628.0834; found, 628.0809.
$\mathbf{O x}^{\mathbf{2}} \mathbf{- M e O}-\mathbf{P h}:$ The synthesis was performed followed by GP-2.

$\mathbf{O x} \mathbf{x}^{\mathbf{0}} \mathbf{M e O}-\mathbf{P h}(0.15 \mathrm{~g}, 0.25 \mathrm{mmol})$ was used in as starting material. The reaction time was 24 h . Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: 10/90 to $40 / 60$, v/v) and lyophilization from dioxane gave $95 \mathrm{~g}(57 \%)$ of the titled compound as an orange powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=40 / 60)=0.33$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.98(\mathrm{dd}, J=1.6,0.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.77(\mathrm{dd}, J=2.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-$ $7.38(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~d}, ~, J=$ $1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=162.32,146.12,144.90,143.74,143$ $.32,138.30,135.84,132.45,129.16,129.01,128.75,128.66,127.02,125.35,123.52,123.50,123.36$, 120.67, 119.50, 118.16, 115.03, 55.51, 18.14, 8.91, 8.87. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-$ 109.3 (m, 4F), -132.2 (m, 2F).

ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{O}_{5} \mathrm{~S}_{2}{ }^{+}$, 665.0886; found, 665.0877.
$\mathbf{O x} \mathbf{} \mathbf{2} \mathbf{H - P h}$: The synthesis was performed followed by GP-2.

$\mathbf{O x}^{0} \mathbf{- H}-\mathbf{P h}(0.15 \mathrm{~g}, 0.26 \mathrm{mmol})$ was used in as starting material. The reaction time was 24 h . Purification by column chromatography with mixed eluent of EtOAc / n-hexane (gradient: $10 / 90$ to $40 / 60, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave $63 \mathrm{mg}(38 \%)$ of the titled compound as a yellow powder. R_{f} $(\mathrm{EtOAc} / n$-hexane $=40 / 60)=0.33$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.98(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J$ $=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 6 \mathrm{H})$, $7.32(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=145.27,144.96,143.81,143.38,138.27,135.82,132.45,131.59,129.40,129.17,128.78$, $128.63,127.13,127.02,125.61,125.17,124.48,123.48,123.46,122.29,120.72,18.04,18.02,18.00,8.91$, 8.88. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.4(\mathrm{~m}, 4 \mathrm{~F}),-132.2(\mathrm{~m}, 2 \mathrm{~F})$.

ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{31} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{+}$, 635.0780; found, 635.0771.
$\mathbf{O x}^{\mathbf{2}} \mathbf{- C N} \mathbf{- P h}$: The synthesis was performed followed by GP-2.

$\mathbf{O x}^{0}$ - $\mathbf{C N}-\mathbf{P h}(0.15 \mathrm{~g}, 0.25 \mathrm{mmol})$ was used in as starting material. The reaction time was 72 h . Purification by column chromatography with mixed eluent of EtOAc/n-hexane (gradient: 10/90 to $40 / 60, \mathrm{v} / \mathrm{v}$) and lyophilization from dioxane gave $47 \mathrm{~m}(28 \%)$ of the titled compound as a pale yellow powder. $R_{f}(\mathrm{EtOAc} / n$-hexane $=40 / 60)=0.17$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.99(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-$ $7.75(\mathrm{~m}, 3 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.29(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=144.46,143.94,143.51,142.88,138.16,135.81,132.98,132.44,129.61,129.23,128.88,128.56$, $127.52,126.99,125.58,125.46,124.89,123.36,120.79,117.66,114.80,17.95,17.93,17.91,8.91,8.88$. ${ }^{19} \mathrm{~F}-\mathrm{NMR}\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-109.4(\mathrm{~m}, 4 \mathrm{~F}),-132(\mathrm{~m}, 2 \mathrm{~F})$.
ESI-MS: positive mode, $m / z=[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{32} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}{ }^{+}$, 660.0732; found, 660.0720.

Figure S1a. ${ }^{1} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{A}(\mathbf{P h})$.

Figure S1b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{A}(\mathbf{P h})$.

Figure S1c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{A (P h)}$.

Figure S2a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{C}(\mathbf{H})$.

Figure S2b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{C}(\mathbf{H})$.

Figure S2c. ${ }^{19} \mathrm{~F}$-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{C}(\mathbf{H})$.

Figure S3a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{D}(\mathbf{H})$.

Figure S3b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{D}(\mathbf{H})$.

Figure S3c. ${ }^{19} \mathrm{~F}$-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{D}(\mathbf{H})$.

Figure $\mathbf{S 4 a} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{C}(\mathbf{P h})$.

Figure S4b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{C}(\mathbf{P h})$.

Figure S4c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{C}(\mathbf{P h})$.

Figure S5a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{D}(\mathbf{P h})$.

Figure S5b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{D}(\mathbf{P h})$.

Figure S5c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{D}(\mathbf{P h})$.

Figure S6a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- M e O}-\mathbf{H}$.

Figure S6b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O} \mathbf{x}^{\mathbf{0}} \mathbf{-} \mathbf{M e O} \mathbf{- H}$.

Figure S6c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}^{\mathbf{0}} \mathbf{- M e O} \mathbf{- H}$.

Figure S7a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x} \mathbf{0} \mathbf{- H} \mathbf{- H}$.

Figure S7b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x} \mathbf{0} \mathbf{- H} \mathbf{- H}$.

Figure S7c. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- H} \mathbf{- H}$.

Figure S8a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- C N}-\mathbf{H}$.

Figure S8b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}^{\mathbf{0}} \mathbf{-} \mathbf{C N}-\mathbf{H}$.

106-107-108-109-110-111-112-113-114-115-116-117-118-119-120-121-122-123-124-125-126-127-128-129-130-131-132-133-134-135
Figure S8c. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}^{\mathbf{0}} \mathbf{- C N}-\mathbf{H}$.

Figure S9a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}^{2} \mathbf{- M e O}-\mathbf{H}$.

Figure S9b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O} \mathbf{x}^{2}-\mathbf{M e O}-\mathbf{H}$.

Figure S9c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{2}} \mathbf{- M e O} \mathbf{- H}$.

Figure S10a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O} \mathbf{x}^{2} \mathbf{- H} \mathbf{H}$.

Figure S10b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{2}} \mathbf{- H} \mathbf{H} \mathbf{H}$.

Figure S10c. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}{ }^{\mathbf{2}} \mathbf{- H} \mathbf{- H}$.

Figure S11a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}^{\mathbf{2}} \mathbf{- C N}-\mathbf{H}$.

Figure S11b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O} \mathbf{x}^{2}-\mathbf{C N}-\mathbf{H}$.

Figure S11c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}{ }^{2} \mathbf{- C N}-\mathbf{H}$.

Figure S12a. ${ }^{1} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{1} \mathbf{- M e O}-\mathbf{H}$.

Figure S12b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{1}-\mathbf{M e O}-\mathbf{H}$.

Figure S12c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{1}} \mathbf{- M e O}-\mathbf{H}$.

Figure S13a. ${ }^{1} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{1} \mathbf{- H} \mathbf{H}$.

Figure S13b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{1} \mathbf{-} \mathbf{H}-\mathbf{H}$.

Figure S13c. ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x} \mathbf{} \mathbf{-} \mathbf{H}-\mathbf{H}$.

Figure S14c. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{1} \mathbf{- C N}-\mathbf{H}$.

Figure S14b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{1}} \mathbf{- C N}-\mathbf{H}$.

Figure S14c. ${ }^{19}$ F-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}^{1} \mathbf{- C N}-\mathbf{H}$.

Figure S15a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{0}{ }^{\mathbf{-}} \mathbf{M e O} \mathbf{- P h}$.

Figure S15b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{0} \mathbf{- M e O}-\mathbf{P h}$.

Figure S15c. ${ }^{19}$ F-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- M e O}-\mathbf{P h}$.

Figure S16a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}^{\mathbf{0}} \mathbf{- H} \mathbf{- P h}$.

Figure S16b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{0}} \mathbf{- H}-\mathbf{P h}$.

Figure S16c. ${ }^{19}$ F-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- H} \mathbf{- P h}$.

Figure S17a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{\mathbf{0}} \mathbf{- C N}-\mathbf{P h}$.

Figure S17b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{\mathbf{0}}{ }^{\mathbf{C}} \mathbf{C N}-\mathbf{P h}$.

Figure S17c. ${ }^{19} \mathrm{~F}$-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x} \mathbf{x}^{0}$ - $\mathbf{C N}-\mathbf{P h}$.

Figure S18a. ${ }^{1} \mathrm{H}$-NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{1}{ }^{\mathbf{M}} \mathbf{M e O} \mathbf{- P h}$.

Figure S18b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x} \mathbf{x}^{\mathbf{1}} \mathbf{- M e O} \mathbf{- P h}$.

Figure S18c. ${ }^{19}$ F-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{1}$-MeO-Ph.

Figure S19a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O} \mathbf{x}^{\mathbf{1}} \mathbf{- H} \mathbf{- P h}$.

Figure S19b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{1} \mathbf{- H}-\mathbf{P h}$.

Figure S19c. ${ }^{19}$ F-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x} \mathbf{x}^{\mathbf{1}} \mathbf{H}-\mathbf{P h}$.

Figure S20a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}^{\mathbf{1}} \mathbf{- C N}-\mathbf{P h}$.

Figure S20b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{1}} \mathbf{- C N}-\mathbf{P h}$.

Figure S20c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{1}} \mathbf{- C N}-\mathbf{P h}$.

Figure S21a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x}^{\mathbf{2}} \mathbf{- M e O}-\mathbf{P h}$.

Figure S21b. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{\mathbf{2}} \mathbf{- M e O} \mathbf{- P h}$.

Figure S21c. ${ }^{19} \mathrm{~F}$-NMR spectrum $\left(367 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O x ^ { 2 }} \mathbf{- M e O}-\mathbf{P h}$.

Figure S22a. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O} \mathbf{x}^{\mathbf{2}} \mathbf{- H} \mathbf{- P h}$.

Figure S22b. ${ }^{13} \mathrm{C}$-NMR spectrum $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{O} \mathbf{x}^{2} \mathbf{- H} \mathbf{H} \mathbf{- P h}$.

Figure S22c. ${ }^{19}$ F-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x}{ }^{2} \mathbf{- H}-\mathbf{P h}$.

Figure S23b. ${ }^{13} \mathrm{C}$-NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x} \mathbf{x}^{2} \mathbf{- C N}-\mathbf{P h}$.

Figure S23c. ${ }^{19} \mathrm{~F}$-NMR spectrum ($367 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{O x} \mathbf{x}^{\mathbf{2}} \mathbf{- C N}-\mathbf{P h}$.

Figure S24. The DFT calculated ground state isodensity surface plots of the FMOs in a) closed forms b) open forms of $\mathbf{O X}{ }^{1} \mathbf{- X}-\mathbf{Y}$ series and \mathbf{c}) closed forms \mathbf{d}) open forms of $\mathbf{O X}{ }^{2}-\mathbf{X}-\mathbf{Y}$ series

Transition	Major contribution	f (Oscillator strength)	Energy, eV	Wavelength, nm
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	HOMO-1 -> LUMO (100\%)	0.3824	3.3880	365.96
	HOMO-4 -> LUMO (15\%)			
$S_{0} \rightarrow S_{2}$	HOMO-1 -> LUMO (25\%)	0.1615	3.5770	346.62
	HOMO -> LUMO (60\%)			
	HOMO-3 -> LUMO (63\%)			
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	НОМО-3 -> LUMO+3 (13\%)	0.0319	4.4639	277.75
	HOMO-1 -> LUMO+1 (24\%)			
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	HOMO-5 -> LUMO (100\%)	0.0079	4.5451	272.79
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	HOMO -> LUMO+2 (100\%)	0.6831	4.6322	267.66
	HOMO-4 -> LUMO (25\%)			
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	HOMO-2 -> LUMO (63\%)	0.0089	4.9148	252.27
	HOMO-2 -> LUMO+2 (22\%)			

Figure S25. Electronic absorption spectra of closed form of $\mathbf{O X}^{\mathbf{2}} \mathbf{- M e O}-\mathbf{H}$ computed using TDDFT, B3LYP/6-311++G(d,p)/IEFPCM (1,4-dioxane) and DFT calculated isodensity surface plots of the FMOs and neighboring molecular orbitals involved in calculated transitions.

HOMO-1

HOMO-3

HOMO

HOMO-2

LUMO

Figure S26. Electronic absorption spectra of open form of $\mathbf{O X}^{\mathbf{2}} \mathbf{- M e O}-\mathbf{H}$ computed using TDDFT, B3LYP/6-311++G(d,p)/IEFPCM (1,4-dioxane) and DFT calculated isodensity surface plots of the FMOs and neighboring molecular orbitals involved in calculated transitions.

Transition	Major contribution	Oscilator strength, f	Energy, eV	Wavelength, nm
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	HOMO-4 -> LUMO (28\%) HOMO-1 -> LUMO (72\%	0.8429	3.1872	389.00
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$	$\begin{aligned} & \text { HOMO-6 -> LUMO (19\%) } \\ & \text { HOMO -> LUMO (81\%) } \end{aligned}$	0.0891	3.5440	349.84
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	$\begin{aligned} & \text { HOMO-4 -> LUMO (85\%) } \\ & \text { HOMO-1 -> LUMO+3 (15\%) } \end{aligned}$	0.1318	4.3371	285.87
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	HOMO-5 -> LUMO (69\%) HOMO -5 -> LUMO+1 (14\%) HOMO-4 -> LUMO (17\%)	0.0312	4.4027	281.61
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	HOMO-7 -> LUMO (100\%)	0.0200	4.5464	272.71
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	$\begin{aligned} & \text { HOMO -> LUMO+1 (38\%) } \\ & \text { HOMO -> LUMO+3 (62\%) } \end{aligned}$	0.6893	4.6285	267.87

Figure S27. Electronic absorption spectra of closed form of $\mathbf{O X}^{\mathbf{2}} \mathbf{- M e O} \mathbf{- P h}$ computed using TDDFT, B3LYP/6-311++G(d,p)/IEFPCM (1,4-dioxane) and DFT calculated isodensity surface plots of the FMOs and neighboring molecular orbitals involved in calculated transitions.

HOMO-1

LUMO+1

HOMO-3

LUMO+2

LUMO+3

Transition	Major contribution	f (Oscillator strength)	Energy, eV	Wavelength, nm
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$	HOMO -3 -> LUMO (14\%)	0.6787	3.1105	398.60
	HOMO -> LUMO (86\%)			
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}$	HOMO-1 -> LUMO (39\%)	0.2642	3.8985	318.03
	HOMO-1 -> LUMO+1 (47\%)			
	HOMO -> LUMO+1 (14\%)			
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{3}$	HOMO-3 -> LUMO (22\%)	0.1412	4.2149	294.16
	HOMO-1 -> LUMO (78\%)			
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{4}$	HOMO -> LUMO+2 (100\%)	0.0286	4.3416	285.58
	HOMO-4 -> LUMO (20\%)	0.0120	4.6060	269.18
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{5}$	HOMO-3 -> LUMO (63\%)			
	HOMO-3 -> LUMO+2 (17\%)			
$\mathrm{S}_{0} \rightarrow \mathrm{~S}_{6}$	HOMO-7 -> LUMO (22\%)	4.6272	0.0942	267.95
	HOMO-6-> LUMO (13\%)			
	HOMO-5 -> LUMO (21\%)			
	HOMO-4 -> LUMO (25\%)			
	HOMO -> LUMO (10\%)			
	HOMO -> LUMO+1 (9\%)			

Figure S28. Electronic absorption spectra of open form of $\mathbf{O X}^{\mathbf{2}} \mathbf{- M e O} \mathbf{- P h}$ computed using TDDFT, B3LYP/6-311++G(d,p)/IEFPCM (1,4-dioxane) and DFT calculated isodensity surface plots of the FMOs and neighboring molecular orbitals involved in calculated transitions.

Supplementary References

S1. B. Kim, K. T. Lee, J. Cho, N. A. Darshanoju, K. Jung, I. H. Ahn, J. M. Shin, H. Oh, Y. Ki, H. Lee, S. J. Kwon, I. S. Kim, W. Cai, K.H. Ahn, D. H. Ko, Adv. Optical Mater. 2021, 9, 2100776.

S2. G. Liu, M. Liu, S. Z. Pu, C. B. Fan and S. Q. Cui, Dyes Pigm. 2012, 95, 553-562.
S3. Y. Shoji, A. Yagi , M. Horiuchi , M. Morimoto and M. Irie, Isr. J. Chem. 2013, 53, 303-311.

