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LANDAU AND RAMANUJAN APPROXIMATIONS
FOR DIVISOR SUMS AND COEFFICIENTS OF CUSP FORMS

ALEXANDRU CIOLAN, ALESSANDRO LANGUASCO, AND PIETER MOREE

Abstract. In 1961, Rankin determined the asymptotic behavior of the number Sk,q(x) of positive
integers n ≤ x for which a given prime q does not divide σk(n), the k-th divisor sum function. By
computing the associated Euler-Kronecker constant γk,q, which depends on the arithmetic of certain
subfields of Q(ζq), we obtain the second order term in the asymptotic expansion of Sk,q(x). Using a
method developed by Ford, Luca and Moree (2014), we determine the pairs (k, q) with (k, q− 1) = 1
for which Ramanujan’s approximation to Sk,q(x) is better than Landau’s. This entails checking
whether γk,q < 1/2 or not, and requires a substantial computational number theoretic input and
extensive computer usage. We apply our results to study the non-divisibility of Fourier coefficients
of six cusp forms by certain exceptional primes, extending the earlier work of Moree (2004), who
disproved several claims made by Ramanujan on the non-divisibility of the Ramanujan tau function
by five such exceptional primes.

1. Introduction

1.1. Motivation and historical background. A set S of positive integers is said to be multi-
plicative if for every pair (m,n) of coprime positive integers we have that mn ∈ S if and only if
m,n ∈ S. (In other words, S is a multiplicative set if and only if the indicator function of S is
multiplicative.) An enormous supply of multiplicative sets is provided by taking

S = {n ≥ 1 : q - f(n)}, (1)

where f is a multiplicative function and q a prime. (Throughout the paper, the letters p and q
will always denote prime numbers.) Several papers (see, e.g., [15, 41, 45, 50, 51, 52, 56, 59]) are
concerned with the asymptotic behavior of S(x), the number of positive integers n ≤ x that are in
S. An important role in understanding this quantity is played by the Dirichlet series

LS(s) :=
∑
n∈S

n−s, (2)

which converges for <(s) > 1.
Here we are interested in the second order behavior of S(x) and, in particular, in the case where

S = {n ≥ 1 : q - σk(n)}, with σk(n) =
∑

d|n d
k being the usual k-th divisor sum function. Our

results have applications to the non-divisibility of the Fourier coefficients of six standard cusp
forms by so-called exceptional primes. The cusp forms that make the object of our study are
the normalized generators of the six one-dimensional cusp form spaces for the full modular group
SL2(Z) (see Table 2). Of these, the modular discriminant function

∆(z) = q1

∞∏
m=1

(1− qm1 )24 =
∞∑
n=1

τ(n)qn1 ,

is perhaps the most well-known (with z ∈ H, the complex upper half-plane, and q1 = e2πiz), its
Fourier coefficients τ(n) being the values of the Ramanujan tau function.
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2 A. CIOLAN, A. LANGUASCO, AND P. MOREE

Ramanujan was not the first to consider ∆, but he seems to have been the first to realize that
the values of τ(n) provide an interesting arithmetic sequence. In an “unpublished” manuscript
that belongs to the collection of Trinity College, Cambridge, he considered τ modulo various prime
powers qe with q ∈ {2, 3, 5, 7, 23, 691}. Except for the case q = 23, these congruences involve the
divisor sum function (and, often, a power of n), the most famous example in this regard being
τ(n) ≡ σ11(n) (mod 691).

In 2004 the second order behavior for f(n) = τ(n) and q ∈ {3, 5, 7, 23, 691} was determined by
Moree [34]. One aim of this paper is to put his work in a general framework. First, in that we
consider (1) with f = σk being any sum of divisors function and q any prime. Second, in that
we consider an entire class of cusp forms that share certain properties (e.g., they are normalized
simultaneous Hecke eigenforms), out of which ∆ is a representative.

The congruences found by Ramanujan for q ∈ {3, 5, 7, 23, 691} are not singular, and certainly not
a coincidence. The monumental work of Serre [53, 54] and Swinnerton-Dyer [62, 63] revealed that
these primes are only a few out of a much larger, but finite, list of exceptional primes modulo which
the coefficients of these six cusp satisfy congruences involving divisor sum functions, as shown in
Table 2.

1.2. Euler-Kronecker constants. In the following we will use F ′/F (s) as a shorthand for
F ′(s)/F (s). If the limit

γS := lim
s→1+

(
L′S
LS

(s) +
α

s− 1

)
(3)

exists for some α > 0, we say that the set S admits an Euler-Kronecker constant γS. In case S = N,
we have LS(s) = ζ(s), the Riemann zeta function, α = 1 and γS = γ, the Euler-Mascheroni constant
(see, for example, Lagarias [25] for a beautiful survey, and Havil [19] for a popular account).

As the following result shows, the Euler-Kronecker constant γS determines the second order
behavior of S(x),

Classical Theorem 1. Let S be a multiplicative set. If there are ρ > 0 and 0 < δ < 1 such that∑
p≤x, p 6∈S

1 = δ
∑
p≤x

1 +OS

(
x

log2+ρ x

)
, (4)

then γS ∈ R exists and

S(x) =
∑

n≤x, n∈S

1 =
c0 x

logδ x

(
1 +

(1− γS)δ

log x
(1 + oS(1))

)
(5)

as x→∞, where c0 is a positive constant. If the prime numbers belonging to S are, with finitely
many exceptions, precisely those in a finite union of arithmetic progressions, we have, for arbitrary
j ≥ 1,

S(x) =
c0 x

logδ x

(
1 +

c1
log x

+
c2

log2 x
+ · · ·+ cj

logj x
+Oj,S

(
1

logj+1 x

))
, (6)

with c0, . . . , cj constants, c0 > 0 and c1 = (1− γS)δ.

Proof. For the first assertion, see Moree [35, Theorem 4]; for the second, Serre [56, Théorème
2.8]. �

Before stating our main results (Sec. 1.3), we recall some known facts from the literature and we
explain what we mean by a “Landau vs. Ramanujan approximation” comparison (Sec. 1.2.2). Our
focus is on the special case where S is as in (1), the general case being discussed in greater detail
by Moree [36].
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1.2.1. Two claims of Ramanujan. Put

tj =

{
0 if q | τ(j),

1 if q - τ(j).

For q ∈ {3, 5, 7, 23, 691}, in his typical style, Ramanujan makes the following claim in his famous
“unpublished” manuscript, perhaps included with his final letter to Hardy (Jan. 12th, 1920), or
maybe sent to Hardy in 1923 by Francis Dewsbury, Registrar at the University of Madras.

Claim 1. It is easy to prove by quite elementary methods that
n∑
j=1

tj = o(n). (7)

It can be shown by transcendental methods that
n∑
j=1

tj ∼
Cq n

logδq n
(8)

and
n∑
j=1

tj = Cq

∫ n

1

dx

logδq x
+O

(
n

logρ n

)
, (9)

where ρ is any positive number.

Remark 1. We slightly changed the original notation to make it more consistent with ours. In
order to stress the dependency on q, we use Cq and δq. Ramanujan wrote down the values of δq
for the above primes q (see Table 1), and he explicitly (and correctly) determined C3, C7 and C23

(except for a factor 1− 23−s erroneously omitted in case q = 23), see Sec. 5 for details.

q 3 5 7 23 691
δq 1/2 1/4 1/2 1/2 1/690

Table 1. The values δq for the primes studied by Ramanujan

Remark 2. Ramanujan [3, p. 8] claims that proving the statement (7) is very similar to showing
that π(x) = o(x), with π(x), the number of primes up to x, and refers to Landau [28]. Thus,
one may speculate, what inspired Ramanujan in claiming that the integral in (9) is a better
approximation than (8) might have been the fact, of which he was aware, that Gauss’s approximation
Li(x) =

∫ x
2
dt/ log t is a much better estimate for π(x) than is x/ log x.

Remark 3. For the history of the unpublished manuscript and its wanderings, see Rankin [47]. It
was finally made available to the mathematical community in 1999 by Berndt and Ono [3], together
with commentaries, proofs and references to the literature. However, the material related to Claim
1 had already been discussed years earlier by Rankin [46, 48].

In his first letter to Hardy (Jan. 16th, 1913), Ramanujan [4, p. 24] had made a claim similar to
(9):

Claim 2. The number of positive integers A ≤ n ≤ x that are either squares or can be written as
the sum of two squares equals

K
∫ x

A

dt√
log t

+ θ(x),

where K = 0.764 . . . and θ(x) is very small compared with the previous integral. K and θ(x) have
been exactly found, though complicated...
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In his second letter to Hardy (Feb. 27th, 1913), answering his inquiry (see [4, p. 56]), Ramanujan
wrote: “the order of θ(x) which you asked for in your letter is

√
x/
√

log x.”
See the exposition of Berndt and Rankin [4] for the full text of these two letters.

1.2.2. Landau vs. Ramanujan. Let S be the set of natural numbers that can be written as a
sum of two squares. The fact that S is a multiplicative set was already known to Fermat. Following
Landau, let us denote S(x) by B(x) in this particular case. In 1908, Landau [27] proved (see also
[28, pp. 641–669]) that, asymptotically,

B(x) ∼ K x√
log x

, (10)

a result of which Ramanujan was most likely unaware in 1913.
To honor the contribution of both Landau and Ramanujan, the constant

K =
1√
2

∏
p≡3 (mod 4)

(1− p−2)−1/2 = 0.7642236535892206 . . . (11)

is called the Landau-Ramanujan constant (cf. Finch [14, Section 2.3]).
For historical reasons delineated in this section, we will call

c0
x

logδ x
and c0

∫ x

2

dt

logδ t

the Landau and the Ramanujan approximation to S(x), respectively. Further, if the inequality∣∣∣∣S(x)− c0
x

logδ x

∣∣∣∣ < ∣∣∣∣S(x)− c0
∫ x

2

dt

logδ t

∣∣∣∣
holds for every x sufficiently large, we say that the Landau approximation is better than the
Ramanujan approximation (and the other way around if the reverse inequality holds). Partial
integration gives us

c0

∫ x

2

dt

logδ t
=

c0 x

logδ x

(
1 +

δ

log x
+O

(
1

log2 x

))
,

and comparison with (5) then yields the following corollary of Classical Theorem 1.

Corollary 1. If S is a multiplicative set satisfying (4), the associated Euler-Kronecker constant
γS exists. If γS < 1/2, then Ramanujan’s approximation is asymptotically better than Landau’s,
and the other way around if γS > 1/2.

Remark 4. If γ = 1/2, then Landau and Ramanujan give the same approximation up to the
second order term. To see which one is closer to the actual value of S(x), one would have to study
the higher order terms.

By partial integration we see that Claim 2 implies the asymptotic (10). Nevertheless, one can
wonder whether Ramanujan’s integral expression provides a better approximation than Landau’s
asymptotic.

The first to ever consider this question seems to have been Hardy, who in his lectures on
Ramanujan’s work (see [17, pp. 9, 63]) writes that Ramanujan’s “integral has no advantage, as an
approximation, over the simpler function Kx/

√
log x.” He also says, see [17, p. 19], “The integral is

better replaced by the simpler function...”. However, as revealed by Shanks [58], Hardy made his
claims based on a flawed paper [61] of his PhD student, Gertrude Stanley.
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Going beyond the first order asymptotic behavior, it can be shown (see, e.g., Hardy [17, p. 63])
that, as x→∞, B(x) has an asymptotic series expansion in the sense of Poincaré of the form

B(x) = K x√
log x

(
1 +

c0
log x

+
c1

log2 x
+ · · ·+ cj−1

logj x
+O

(
1

logj+1 x

))
, (12)

where j can be taken arbitrarily large and the ci are constants. Serre [56] proved a similar result
for a larger class of so-called Frobenian multiplicative functions. This result implies, in particular,
that for the multiplicative set Sτ ;q = {n ≤ x : q - τ(n)} we asymptotically have

Sτ ;q(x) = Cq
x

logδq x

(
1 +

c0
log x

+
c1

log2 x
+ · · ·+ cj−1

logj x
+O

(
1

logj+1 x

))
, (13)

where q is any of the primes studied by Ramanujan, the constants ci may depend on the choice of
q, and δq is given in Table 1. Much earlier, Watson [66] (who had had the unpublished manuscript
in his possession for many years) showed that Sτ ;691(x) = O(x(log x)−1/690). Both expansions (12)
and (13) fit in the framework set up in the opening paragraphs of this article and are special cases
of (6).

By partial integration, Claims 1 and 2 imply that expansions of the form (12) and (13) should
hold true for B(x), respectively Sτ ;q(x). Both claims also imply particular values for the ci. However,
already the values of c0 from (12) and (13) turn out to be incorrect.

Classical Theorem 2. For q ∈ {3, 5, 7, 23, 691} the asymptotic (8) is correct, cf. Rankin [46, 48],
but the refined estimate (9) is false, cf. Moree [34], for every ρ > 1 + δq, with δq as in Table 1.

Claim 2 is true for θ(x) = O(x log−3/2 x), but false for θ(x) = o(x log−3/2 x), cf. Shanks [58].

For a more detailed and leisurely account of the historical aspects, see Berndt and Moree [2] or
Moree and Cazaran [37]. The latter authors focus on the work done on counting integers represented
by quadratic forms other than X2 + Y 2.

The reader might wonder about what happens for the primes not mentioned in Classical Theorem
2. Here it is known, thanks to deep work of Serre [55, 56], that an asymptotic of the form (8) holds.
However, the correctness of the refined estimate (9) is an open problem.

1.2.3. Ramanujan-type congruences and divisor sums. We now know that 691 and the other
primes studied by Ramanujan are only a few out of a larger, but finite set of exceptional primes
modulo which certain congruences hold for the six cusp forms given in Table 2. Following the
notation used by Ramanujan and, later, by Swinnerton-Dyer, we let Q and R denote the normalized
Eisenstein series E4 and E6, which, along with ∆, are given by

Q = E4 = 1 + 240
∑
n≥1

σ3(n)qn1 , R = E6 = 1− 504
∑
n≥1

σ5(n)qn1 , ∆ =
1

1728
(E3

4 − E2
6).

It is an impressive feat that Ramanujan actually found all exceptional primes for ∆.

Weight w 12 16 18 20 22 26
Form ∆ Q∆ R∆ Q2∆ QR∆ Q2R∆

Table 2. The cusp forms in the “Serre and Swinnerton-Dyer” classification

The weights w appearing here1 are precisely those for which the associated space of cusp forms
of the full modular group is 1-dimensional.

1The traditional notation k unfortunately clashes with the subscript used in σk.



6 A. CIOLAN, A. LANGUASCO, AND P. MOREE

It is well-known that the coefficients τw(n) of the cusp forms above satisfy the following funda-
mental properties (for references see the three excellent articles highlighting different aspects of the
tau function [39, 48, 63] in the proceedings of the 1987 “Ramanujan Revisited” conference).

Classical Theorem 3. For w ∈ {12, 16, 18, 20, 22, 26} the following properties hold:

(1) τw is multiplicative; that is, τw(mn) = τw(m)τw(n) whenever (m,n) = 1.
(2) if p is prime, then τw(pe+1) = τw(p)τw(pe)− pk−1τw(pe−1) for any e ≥ 2.
(3) |τw(p)| ≤ 2p(w−1)/2.

For τ(n) (which equals τ12(n), but we will keep our old notation) these properties were conjectured
by Ramanujan on basis of very scant numerical material. They were a starting point for amazing
and fundamental developments in the 20th and 21st centuries, see, e.g., the book by the Murty
brothers [40], or the expository article by Sujatha [60]. In addition, Ramanujan found many other
congruences for τw involving sums of divisor functions (see [3]). In the years that followed, Deligne
[9], Haberland [16], Serre [53, 54] and Swinnerton-Dyer [62, 63] classified all primes q modulo which
which congruences hold for τw, which are of one of the following types:

(i) τw(n) ≡ nvσw−1−2v(n) (mod q) for all (n, q) = 1, and for some v ∈ {0, 1, 2}.
(ii) τw(n) ≡ 0 (mod q) whenever

(
n
q

)
= −1.

(iii) p1−wτ 2w(p) ≡ 0, 1, 2 or 4 (mod q) for all primes p 6= q.

The complete list of the exceptional primes q for each of the forms in Table 2 is given in Section 4.
Following convention, we speak about the “Serre and Swinnerton-Dyer” classification.

The congruences of type (i) suggest to investigate the non-divisibility of nvσk(n), with v and k
arbitrary natural numbers. Note that if v ≥ 1, we may take without loss of generality v = 1. The
associated counting functions Sk,q(x) =

∑
n≤x, q-σk(n) 1 and S ′k,q(x) =

∑
n≤x, q-nσk(n) 1 are the main

functions of interest in this paper.
The following elementary result (the proof is immediate from the analysis in Sec. 3.2) greatly

simplifies our analysis.

Proposition 1. The prime q divides σk(n) if and only if it divides σ(k,q−1)(n).

Corollary 2. It is enough to study the non-divisibility problem for σk(n) with k dividing q − 1.

Definition 1. If the prime q divides a(n) whenever it divides b(n), we write a(n) ∼= b(n) (mod q).

Note that ∼= is an equivalence relation. In this notation, Proposition 1 can be reformulated
as σk(n) ∼= σ(k,q−1)(n) (mod q). For example, the congruence τ(n) ≡ σ11(n) (mod 691) implies
τ(n) ∼= σ1(n) (mod 691). For our purposes it is not the actual congruence that is relevant, but the
weaker ∼= notion. As we shall see, the Serre and Swinnerton-Dyer classification takes, up to ∼=, a
simpler form than with the classical congruence notion.

Ramanujan, in the unpublished manuscript [3, Sec. 19] was likely the first to consider Sk,q(x).
He made three claims (also reproduced by Rankin [46]). These were later proved by Watson [66].

One of these claims, namely that Sk,q(x) = O(x log−1/(q−1) x) in case k is odd, is discussed by
Hardy in his Ramanujan lectures [17, §10.6]. The asymptotic behavior of Sk,q(x) for general k was
determined by Rankin [45]. Eira Scourfield [50] (in her 1963 PhD thesis, supervised by Rankin)
generalized his work by establishing asymptotics in the case where a prescribed prime power is
required to exactly divide σk(n). In a later paper [51] she considered the divisibility of the divisor
function by arbitrary fixed integers.

In this paper we will determine the second order behavior of Sk,q(x). In particular, one of
our main results, Theorem 1, gives a formula for the Euler-Kronecker constant γk,q associated
to the non-divisibility of σk(n) by an odd prime q, which allows one to decide on the “Landau
vs. Ramanujan problem” for prescribed k and q. In case (k, q− 1) = 1, which holds indeed for most
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of the exceptional primes of type (i) and the accompanying values k, we can invoke Theorem 4 in
order to decide on the “Landau vs. Ramanujan problem.”

1.2.4. Other functions. Ford, Luca and Moree [15] studied the divisibility of the function f = ϕ
by q, with ϕ(n) the Euler totient function, for any odd prime q. They showed that Ramanujan wins
for q ≤ 67, and Landau for q > 67, and were the first to resolve this type of comparison problem
for infinitely many cases. Earlier, Spearman and Williams [59] had determined the relevant leading
constant Cq by relating it to the arithmetic of the cyclotomic number field Q(ζq).

More generally, Scourfield [52] considered integer-valued multiplicative functions f(n) with the
property that f(p) = W (p) for primes p, with W (x) being a polynomial with integral coefficients.
For this class of functions, she obtained an asymptotic expression for #{n ≤ x : N - f(n)}, while
Narkiewicz [41] obtained asymptotics for #{n ≤ x : (f(n), N) = 1}.

1.3. Statement of results. Before stating our results, let us fix some terminology used in the
sequel.

Definition 2. Given a divisor m of q−1, let Km be the unique subfield of Q(ζq) of degree (q−1)/m.
By OKm , ζKm(s) and γKm , we denote its associated ring of integers, Dedekind zeta function and
Euler-Kronecker constant, respectively.

The uniqueness of Km is a consequence of Galois theory and Gal(Q(ζq)/Q) ∼= (Z/qZ)∗ being
cyclic, see Section 2.2. The constant γKm is obtained on setting LS(s) = ζKm(s) and α = 1 in (3),
cf. Section 2.3.

After this rather long introduction, we are now able to state our findings. The first half of
Theorem 1 is a special case of Classical Theorem 1, the formulas for γk,q and γ′k,q being the novel
feature.

Theorem 1. Let q be an odd prime and k ≥ 1 an integer. We define

Sk,q(x) =
∑

n≤x, q-σk(n)

1 and S ′k,q(x) =
∑

n≤x, q-nσk(n)

1.

Put r = (k, q− 1) and assume that h = (q− 1)/r is even. The counting function Sk,q(x) satisfies an
asymptotic expansion (13) in the sense of Poincaré with δq = 1/h. In particular, there is a positive
constant Ck,q only depending on r and q such that

Sk,q(x) =
Ck,q x

log1/h x

(
1 +

1− γk,q
h log x

+Ok,q

(
1

log2 x

))
.

Here γk,q is the Euler-Kronecker constant of the sum of divisors function σk(n) and satisfies

γk,q = γ − 1

h
(2γK2r − γKr)−

log q

h(q − 1)
− S(r, q), (14)

where γ is the Euler-Mascheroni constant, γKr is as in Definition 2,

S(r, q) =−
∑
gp=1

(q − 1) log p

pq−1 − 1
+
∑
gp=1

q log p

pq − 1
−
∑
gp≥3

(gp − 1) log p

pgp−1 − 1
+
∑
gp≥3

gp log p

pgp − 1

+
∑
gp=2

log p

p2 − 1
+
∑
gp≥4
2|gp

log p

pgp/2 − p−gp/2
, (15)

gp is the multiplicative order of pr modulo q, and the sums are over primes p 6= q.
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The counting function S ′k,q(x) also satisfies an asymptotic expansion (13) in the sense of Poincaré
with δq = 1/h. In particular, we have

S ′k,q(x) =
C ′k,q x

log1/h x

(
1 +

1− γ′k,q
h log x

+Ok,q

(
1

log2 x

))
,

with

C ′k,q =

(
1− 1

q

)
Ck,q and γ′k,q = γk,q +

log q

q − 1
. (16)

Remark 5. The remaining cases where q = 2 or h is odd are rather trivial, see Secs. 3.7–3.8.

Remark 6. Consistent with Proposition 1 we have Ck,q = Cr,q, C
′
k,q = C ′r,q, γk,q = γr,q and

γ′k,q = γ′r,q. The constant Ck,q was first determined by Rankin [45, p. 38]. For completeness we
derive his formula again, in our notation, in Sec. 3.9.

The following is a special case of Corollary 1.

Corollary 3. A Ramanujan-type claim for Sk,q(x) is false if γk,q 6= 0. If γk,q < 1/2, then the
Ramanujan integral approximation for Sk,q(x) is asymptotically better than the Landau asymptotic.
If γk,q > 1/2, then it is the other way around. The same applies for S ′k,q(x) and its Euler-Kronecker
constant γ′k,q.

The proof of Theorem 1 rests on studying the associated Dirichlet series T (s) := LS(s) (defined
in (2)) with S = {n ≥ 1 : q - σk(n)}, and expressing it in term of Dirichlet L-series and a function
which is regular for Re(s) > 1/2. An important aspect in our analysis will be played by the greatest
common divisor r = (k, q− 1). For small values of r, this is motivated by the congruences involving
exceptional primes of type (i), for which we have r ∈ {1, 3, 5}. We prove that, for any prescribed r,
the Landau approximation is better than the Ramanujan one for all large enough q.

Theorem 2. There exists an absolute constant c1 such that for every positive integer r, every prime

q ≥ e2r(log r+log log(r+2)+c1), with q ≡ 1 (mod 2r),

and every positive integer k satisfying (k, q − 1) = r, the Landau approximation is better than the
Ramanujan approximation for both Sk,q(x) and S ′k,q(x).

The larger the prime q gets, the more the associated Dirichlet series T (s) will resemble the
Riemann zeta function, and so the closer the associated Euler-Kronecker constant approximates γ.
This is expressed more mathematically in the following theorem.

Theorem 3. Let q be an odd prime and k ≥ 1 an integer. Put r = (k, q − 1). We have

γk,q = γ +O
( log3 q

q1/r log log q
+
r log2 q
√
q

)
,

where the implied constant is absolute.

Corollary 4. Let ε > 0. There exists a constant c1(ε) such that

|γk,q − γ| < ε,

for every positive integer r, every prime

q ≥ er(3 log r+2 log log(r+2)+c1(ε)), with q ≡ 1 (mod 2r),

and every positive integer k satisfying (k, q − 1) = r.
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Thus for a random choice of k and q, the constant γk,q will be close to γ, and as γ > 1/2 we
deduce that Landau generically wins over Ramanujan. In the special case when r = 1, we were able
to find the precise value of q beyond which Landau always wins. As this value was not too large,
by extensive numerical checks we were also able to determine, for each of the remaining values of q,
whether it is the Landau or the Ramanujan approximation that wins.

Theorem 4. Let k ≥ 1 be an integer and q an odd prime such that (k, q − 1) = 1. The Landau
approximation for Sk,q(x) is better than the Ramanujan one for all primes q other than

q ∈ {3, 5, 7, 11, 13, 17, 23, 29, 37, 41, 43, 47, 53, 59, 73},
in which cases the Ramanujan approximation is better. The Landau approximation for S ′k,q(x) is
better than the Ramanujan one for all primes q 6= 5.

It is an exercise in elementary analytic number theory to show that the number of pairs (k, q) with
k, q ≤ x such that (k, q − 1) = 1 is asymptotically equal to Ax2/ log x, where A = 0.37399558 . . . is
the Artin constant. Thus, in some sense, the probability of the condition (k, q − 1) = 1 being met,
for random integers k and primes q, equals A.

For r ≥ 2, our upper bound for the values of q beyond which the Landau approximation is
certainly better increase rather dramatically (see Sec. 7). Despite the considerable computer
resources we had at our disposal, we were not able2 to run a test on all the remaining primes q, in
order to fully answer the question in case r ∈ {3, 5}. However, our numerical experiments strongly
suggest the following.

Conjecture 1. If r = 3, the Landau approximation for Sk,q(x) is better than the Ramanujan one
for all primes q other than

q ∈ {7, 13, 19, 31, 37, 61, 67, 79, 97, 103, 109, 127, 181},
in which cases the Ramanujan approximation is better. The Landau approximation for S ′k,q(x) is
better than the Ramanujan one for all primes q other than q ∈ {7, 13, 19, 31, 61, 67, 97, 109}.
Conjecture 2. If r = 5, the Landau approximation for Sk,q(x) is better than the Ramanujan one
for all primes q other than

q ∈ {11, 31, 41, 71, 101, 131, 241, 271, 311},
in which cases the Ramanujan approximation is better. The Landau approximation for S ′k,q(x) is
better than the Ramanujan one for all primes q other than q ∈ {11, 31, 71, 131, 241, 311}.

While we were not able to decide on the “Landau vs. Ramanujan” comparison for all primes q
in case r ∈ {3, 5}, we were nevertheless able, on performing rather involved numerical checks, to
answer this question for every exceptional prime q and each of the six cusp forms that we studied.

Theorem 5. Let f =
∑

n≥1 τw(n)qn1 be any of the six cusp forms in Table 2 and let q be any odd
exceptional prime of type (i) or (ii). If we put

tn =

{
0 if q | τw(n),

1 if q - τw(n),

then (8) holds for some positive numbers Cq and δq. However, the Ramanujan-type claim (9) is
false for any ρ > 1 + δq, where δq = r/(q − 1) for primes q of type (i) (with r given as in Tables
7–8) and δq = 1/2 for those of type (ii).

Ramanujan’s approximation is better than Landau’s if one of the following is satisfied:

2For every prescribed r = (q − 1, k) it is theoretically possible to decide on the “Landau vs. Ramanujan
approximation” for all primes q. However, we expect this would require extensive numerical checks, and, very likely,
considerable improvements on the algorithms used in this paper.
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• q = 5;
• q = 7 and f ∈ {∆, Q2∆, Q2R∆};
• q > 5 and f = R∆.

In all remaining cases, Landau’s approximation is better.

The case where q = 2 and exceptional is far more trivial, see Section 4.3 for further details.
Thanks to the work of Swinnerton-Dyer and Haberland, see Section 4.5, we know that (iii) only
occurs for w = 16 and q = 59. Here we leave computing the associated Euler-Kronecker constant
as a challenge to the interested reader. For some remarks on what happens for non-exceptional
primes, see Section 4.6.

1.4. Outline. Section 2 contains some prerequisites on the multiplicative order, character theory,
factorization of Dedekind zeta functions and splitting of primes in certain number fields (most
of these results are well-known facts from algebraic and analytic number theory). In Section 3
we evaluate the generating series and the Euler-Kronecker constant associated to q - nvσk(n) and
we give the proof of Theorem 1. In Section 4 we discuss the congruences for exceptional primes,
and we prove Theorem 5. In Section 5 we look in close detail at the Claim 1 statements in the
unpublished manuscript. We present our take on why Ramanujan only wrote down C3, C7 and C23

explicitly and give a uniform way of deriving his three formulae. Section 6 is dedicated to finding
upper and lower bounds for the sum S(m, q). In Sections 7, 8 and 9 we prove Theorems 2, 3 and 4.
Section 10 discusses various aspects of the numerical computations that we carried out. Finally,
Section 11 discusses possible generalizations of our work and some open questions.

The programs used to obtain the numerical results included in this paper are available under
www.math.unipd.it/~languasc/CLM.html.

2. Analytic and algebraic preamble

2.1. Multiplicative orders. Let us recall that the letters p and q will be used throughout to
denote prime numbers. Additionally, we assume q is odd. For a prime p 6= q, relevant for our
work will be the multiplicative order of p modulo q, which is the smallest positive integer fp such
that pfp ≡ 1 (mod q). (The order is more commonly denoted by ordq(p); we use fp for reasons of
space and to be consistent with the notation in earlier works, e.g., [15].) Obviously, if satisfies the
divisibility property fp | q − 1. Since the order is not defined for p = q, whenever fp appears in the
sequel, the implicit assumption is that p 6= q.

Given a positive integer m, we let gp be the smallest positive integer such that pgpm ≡ 1 (mod q).
In other words, gp is the order of pm modulo q. Since this implies that fp | gpm, dividing both sides
by (fp,m), the greatest common divisor of fp and m, yields gp = fp/(fp,m). We trivially have

am ≡ −1 (mod q)⇔ a2m ≡ 1 (mod q) and am 6≡ 1 (mod q), (17)

and we further note that

gp = 1⇔ fp | m and gp = 2⇔ fp | 2m and fp - m.
Observe that if q ≡ 1 (mod m), then gp is a divisor of h.

We will make several times use of the following elementary result.

Lemma 1. Let q be an odd prime, let m be a divisor of q − 1 and put h = (q − 1)/m. Then
the equation xm ≡ 1 (mod q) has m solutions modulo q. The equation xm ≡ −1 (mod q) has m
solutions if h is even, and no solutions otherwise. If m is even, both congruences have at most m/2
prime solutions p < q − 2.

Proof. Left as an exercise. Use the trivial fact that not both p and q − p can be prime (unless
p = 2). �
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Lemma 2. Let m ≥ 1 be fixed.

1) We have pbm ≡ −1 (mod q) if and only if gp is even and b ≡ gp/2 (mod gp).
2) If gp is even and has an odd divisor d > 1, then

pgpm/2 + 1

pgpm/(2d) + 1
= qmp, (18)

with mp ≥ 1 an integer.

Proof. 1) We have to find all b such that p2bm ≡ 1 (mod q) and pbm 6≡ 1 (mod q). This is equivalent
with fp | 2bm and fp - bm. On dividing both fp and m by (fp,m), we see that these two requirements
are equivalent with gp | 2b and gp - b. The latter two conditions are fulfilled precisely when gp is
even and b is an odd multiple of gp/2.
2) The left-hand side of (18) is easily seen to be an integer. By part 1), the numerator is divisible
by q, while the denominator is not. Assuming otherwise, the order of pm mod q would divide gp/d,
which contradicts the definition of gp. �

2.2. Cyclotomic subfields. In what follows, we fix an odd prime q and we denote Q(ζq) by K.
By basic algebraic number theory, we have Gal(Q(ζq)/Q) ∼= (Z/qZ)∗, the latter being a cyclic
group. For every divisor m of q − 1, there is a unique subgroup of order m, which, by the main
theorem of Galois theory, corresponds uniquely to a subfield of Q(ζq).

Definition 3. For any divisor m of q − 1, we let Km be the unique subfield of Q(ζq) of degree
[Km : Q] = (q − 1)/m. Certainly, we have K1 = K.

As examples, note that K2 = Q(ζq + ζ−1q ) = Q(cos(2π/q)) and Kq−1 = Q. The field K2 is the
maximal real subfield of Q(ζq). Any field Km with m even is a subfield of K2, and is therefore real.

By the Kronecker-Weber theorem, every abelian number field is a subfield of some cyclotomic
field Q(ζn). If we restrict n to be a prime, we can realize precisely all extensions of the rationals
having a cyclic Galois group that are tamely ramified in one prime and unramified in all other
primes (note that in this case (Z/nZ)∗ is always cyclic).

Good introductions to the arithmetic of subfields of Q(ζn) relevant to this paper can be found in
the books by Kato et al. [22, Chp. 1] and Washington [65, Chps. 3-4].

2.2.1. Splitting of primes. For certain families of number fields it is not difficult to explicitly
work out the Euler product in (21). For this, we need to precisely know how the rational primes
split in OKm .

Lemma 3 (Splitting of primes in Km). Let q be an arbitrary odd prime, m an arbitrary divisor of
q − 1 and Km the number field as in Definition 3. If p 6= q is a prime, the principal ideal pOKm
factorizes as pOKm = p1 · · · pg, where g = (q − 1)/(mf) and all prime ideals pi are distinct and of
degree f, with f the multiplicative order of pm modulo q. Furthermore, qOKm = q(q−1)/m with q a
prime ideal of norm q.

Proof. See, e.g., Marcus [31, pp. 76–78] or apply Theorem 5.7 of [22]. �

In case f = 1, we say that p splits completely in Km. This happens in Km if and only if
pm ≡ 1 (mod q).

Proposition 2. Let k ≥ 1 be an integer and q and odd prime. Put r = (k, q − 1). We have
q | σk(p) if and only if p splits completely in K2r, but does not split completely in Kr.

Proof. Since q - σk(q) and q is ramified, the assertion is correct for p = q, and so we may assume
p 6= q. By Fermat’s little theorem, it suffices to verify the assertion for k = r. Notice that q | σr(p)
if and only if p2r ≡ 1 (mod q) and pr 6≡ 1 (mod q). By Lemma 3 the proof is then concluded. �
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The average behavior of an arithmetic function that is of rather bounded growth is very much
influenced (and determined) by its values in the prime numbers. In light of this and Proposition 2, it
is not surprising that the fields K2r and Kr play an important role in our results and computations.

2.2.2. Character theory. In the following, q is an odd prime and m a divisor of q − 1.

Definition 4. We let Cm be the subgroup of m-th roots of unity inside (Z/qZ)∗. As a set we have

Cm = {a ∈ (Z/qZ)∗ : am ≡ 1 (mod q)}.
We have Km = Q(

∑
a∈Cm ζ

a
q ). Associated to Cm we define a character group, of Dirichlet characters

modulo q, namely

Xm = {χ : χ(a) = 1 for every a ∈ Cm}.

Under the Galois correspondence Cm is the group associated to Km and Km is the field belonging
to Xm. We have Xm

∼= Gal(Km/Q), cf. Washington [65, p. 22]. Note that X2 is the set of even
characters and that X2m = {χ ∈ Xm : χ is even} if m | (q − 1)/2. We have #Cm = m and
#Xm = (q−1)/m. The principal character, which we denote by χ0, is always in Xm. The quadratic
character is unique and of order two and so is in Xm if and only if Xm has even order, that is if
and only if (q − 1)/m is even. For notational convenience we put

X∗m = Xm \ {χ0} = {χ 6= χ0 : χ(a) = 1 for every a ∈ Cm}. (19)

A simple observation we will use is the following.

Lemma 4. (i) If χ is a character modulo m, then∑
a∈Cm

χ(a) =

{
m if χ ∈ Xm,

0 otherwise.

(ii) If a ∈ (Z/qZ)∗, then ∑
χ∈Xm

χ(a) =

{
(q − 1)/m if a ∈ Cm,
0 otherwise.

Proof. (i) If χ ∈ Xm, the claim follows from the definition and the fact that Cm is of order m. If
χ 6∈ Xm, then there exists b ∈ Cm such that χ(b) 6= 1. Using the group structure of Cm we then
infer that

χ(b)
∑
a∈Cm

χ(a) =
∑
a∈Cm

χ(ba) =
∑
a∈Cm

χ(a),

and we conclude that
∑

a∈Cm χ(a) = 0.
(ii) If a ∈ Cm, the claim follows from the definition and the fact that Xm is of order (q − 1)/m.

If a 6∈ Cm, there exists χ1 ∈ Xm such that χ1(a) 6= 1. Using the group structure of Xm we then
infer that

χ1(a)
∑
χ∈Xm

χ(a) =
∑
χ∈Xm

(χ1χ)(a) =
∑
χ∈Xm

χ(a),

and we conclude that
∑

χ∈Xm χ(a) = 0. �

We will often use the trivial observation (17), which implies that if r | (q − 1)/2, then
r∑
i=1

χ(ai) =
∑
b∈C2r

χ(b)−
∑
b∈Cr

χ(b), (20)

where the first sum is over the r solutions 0 < ai < q of xr ≡ −1 (mod q).
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2.3. The Dedekind zeta function. To any number field K we can associate its Dedekind zeta
function

ζK(s) =
∑
a

1

Nas
,

defined for <(s) > 1. Here, a runs over non-zero ideals in OK , the ring of integers of K. It is known
that ζK(s) can be analytically continued to C \ {1}, and has a simple pole at s = 1. Over OK we
have unique factorization into prime ideals, and this leads to the Euler product identity

ζK(s) =
∏
p

1

1−Np−s
, (21)

valid for <(s) > 1, where p runs over the prime ideals in OK . Around s = 1 we have

ζ ′K
ζK

(s) = − 1

s− 1
+ γK +O(|s− 1|), (22)

and thus (3) holds for α = 0. On computing the Laurent expansion up to higher order, further
constants, known as Stieltjes constants, make their appearance (cf. Lagarias [25]).

An alternative formula for γK (see, e.g., Hashimoto et al. [18]) is

γK = lim
x→∞

(
log x−

∑
Np≤x

logNp

Np− 1

)
. (23)

It shows that the existence of (many) prime ideals in OK of small norm has a decreasing effect on
γK . Taking K = Q we obtain the well-known formula

γQ = γ = lim
x→∞

(
log x−

∑
p≤x

log p

p− 1

)
. (24)

2.4. L-series factorizations. In what follows, we fix an odd prime q and put K = K1 = Q(ζq).
We want to use more explicit factorizations of Dedekind zeta functions. It is well-known that

ζK(s) =
1

1− q−s
∏
p 6=q

(
1

1− p−sfp

)(q−1)/fp
= ζ(s)

∏
χ∈X∗1

L(s, χ). (25)

The first identity in (25) is a consequence of the Euler product identity (21) and the cyclotomic
reciprocity law. For any prime p 6= q, we put gp = fp/(fp,m) and g′p = fp/(fp, 2m). Note that
g′p = gp/2 if gp is even and g′p = gp otherwise. The following factorization result should be classical,
but, to our surprise, we failed to find it in the (many!) algebraic number theory textbooks we
consulted.

Proposition 3. If q is an odd prime and m divides (q − 1)/2, then

ζKm(s) =
1

1− q−s
∏
p 6=q

(
1

1− p−sgp

)(q−1)/(mgp)

= ζ(s)
∏
χ∈X∗m

L(s, χ), (26)

and

ζK2m(s) =
1

1− q−s
∏
p 6=q

(
1

1− p−sg′p

)(q−1)/(2mg′p)

= ζ(s)
∏

χ∈X∗2m

L(s, χ) = ζ(s)
∏
χ∈X∗m
χ even

L(s, χ), (27)

where X∗m is defined in (19).
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Proof. We recall that Km is the associated field to Xm. The first identities in both (26) and (27)
are a consequence of (21) and Lemma 3; the second ones follow from Theorem 4.3 of Washington
[65]. The final identity in (27) follows on noting that χ ∈ X2m if and only if χ ∈ Xm and χ is even
(see Section 2.2.2). �

By comparing local factors in Proposition 3 we immediately obtain the following corollary.

Corollary 5. If q is an odd prime and m divides (q − 1)/2, then

ζK2m(s)2

ζKm(s)
=

1

1− q−s
∏
2|gp

(
1 + p−sgp/2

1− p−sgp/2

)(q−1)/(mgp)

= ζ(s)
∏
χ∈X∗m

L(s, χ)χ(−1). (28)

Our next result links γKm to the distribution of primes in residue classes modulo q.

Proposition 4. If m is a divisor of q − 1, then

γKm = − log q

q − 1
+ lim

x→∞

(
log x− q − 1

m

∑
n≤x

nm≡1 (mod q)

Λ(n)

n

)

= − log q

q − 1
− q − 1

m

∑
gp≥2

log p

pgp − 1
+ lim

x→∞

(
log x− q − 1

m

∑
p≤x

pm≡1 (mod q)

log p

p− 1

)
,

where Λ(n) is the von Mangoldt function, whose values are log p if n = pj, with j ≥ 1, and 0
otherwise.

First proof. Let χ be a non-principal character modulo q. As x→∞, we have the estimate

−L
′

L
(1, χ) =

∞∑
n=1

Λ(n)

n
χ(n) =

∑
n≤x

Λ(n)

n
χ(n) + o(1).

Further, we have the relation (see, e.g., [28, §55] or [64, Corollary 3.9]

γ = log x−
∑
n≤x

Λ(n)

n
+ o(1), x→∞,

which also can be deduced from (24). Moreover, logarithmic differentiation of the L-function
factorization from (26) yields

γKm = γ +
∑
χ∈X∗m

L′

L
(1, χ),

where we use the fundamental fact due to Dirichlet (1837) that L(1, χ) 6= 0. On applying this
identity and remarking that ∑

n≤x
(n,q)>1

Λ(n)

n
=

log q

q − 1
+ o(1)

as x→∞, we now obtain the asymptotic estimates

γKm = log x−
∑
n≤x

Λ(n)

n
−
∑
χ∈X∗m

∑
n≤x

Λ(n)

n
χ(n) + o(1)

= log x− log q

q − 1
−
∑
n≤x

(n,q)=1

Λ(n)

n
−
∑
n≤x

Λ(n)

n

∑
χ∈X∗m

χ(n) + o(1)
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= log x− log q

q − 1
−
∑
n≤x

Λ(n)

n

∑
χ∈Xm

χ(n) + o(1),

where in the last step we used that χ0(n) = 1 if (n, q) = 1, and χ0(n) = 0 otherwise. The first
assertion now follows on using part (ii) of Lemma 4.

The second assertion follows from the first on noting that∑
n≤x

nm≡1 (mod q)

Λ(n)

n
=
∑
pkgp≤x
k≥1

log p

pkgp
=

∑
p≤x

pm≡1 (mod q)

log p

p− 1
+
∑
gp≥2

log p

pgp − 1
+ E(x),

where

|E(x)| ≤
∑
a≥2

∑
pa>x

log p

pa
≤

∞∑
a=2

∑
n>x1/a

log n

na
�

∞∑
a=2

log x

a2x1−1/a
� log x√

x
. �

Alternative proof of the second identity. Apply (23) with K = Km and the decomposition law in
the field Km given in Lemma 3. �

Note that it is a consequence of Dirichlet’s prime number theorem in arithmetic progressions
that there exists at least one prime p with fp = m (in fact, there are infinitely many).

2.5. The quadratic case. Relevant for us will also be the particular case where Km is quadratic.
This occurs for m = (q − 1)/2, when we have K(q−1)/2 = Q(

√
q∗), where q∗ = (−1/q)q, a field of

discriminant q∗. Writing χq∗(·) for the Kronecker symbol
(
q∗

·

)
, we have

ζK(q−1)/2
(s) = ζ(s)L(s, χq∗),

from which we infer that γK(q−1)/2
, the Euler-Kronecker constant of K(q−1)/2, satisfies

γK(q−1)/2
= γ +

L′

L
(1, χq∗). (29)

If q ≡ 3 (mod 4), the field K(q−1)/2 is imaginary and we can express γK(q−1)/2
in terms of special values

of the Dedekind η-function, see Ihara [21, Section 2.2]. Assuming that the Generalized Riemann
Hypothesis (GRH) holds, in the same paper, Ihara also proved that |γK(q−1)/2

| ≤ (2 + o(1)) log log q.

Murtada and Murty [38] proved that there are infinitely many q such that |γK(q−1)/2
| ≥ log log q+O(1),

and that, under GRH, such a bound can be sharpened to log log q + log log log q + O(1). It is
conjectured that for all the primes q ≤ x we have |γK(q−1)/2

| ≤ log log x + log log log x + O(1).

Further investigations in support of such a conjecture were performed by Lamzouri [26].

3. Preliminary results and proof of Theorem 1

For a prime q, we want to compute the number of positive integers n ≤ x for which q - f(n),
with f(n) = nbσk(n), b ≥ 0 and k ∈ N. The analysis will split in two cases, depending on whether
b = 0 or b ≥ 1. In the latter case, without loss of generalization we may take b = 1. As the case
where f(n) = nσk(n) is a trivial variation of the case f(n) = σk(n), we will only consider it again
in the proof of Theorem 1 (see Section 3.6). Let us therefore concentrate for now on studying
f(n) = σk(n).



16 A. CIOLAN, A. LANGUASCO, AND P. MOREE

3.1. The Dirichlet series T (s). As already explained in Section 1, we let

T (s) =
∞∑
n=1

tn
ns

be the associated Dirichlet series, where

tn =

{
0 if q | σk(n),

1 if q - σk(n).

Since σk(n) is multiplicative, so is tn, and this further implies that T (s) has an Euler product
representation of the form

T (s) =
∏
p

∞∑
j=0

tpj

pjs
,

where the product runs over all primes p. In light of this, it is enough to study the divisibility of
the function σk(n) by a (fixed) odd prime q only in case n is a prime power.

3.2. Divisibility of σk by prime powers. We want to determine when

σk(p
a) ≡ 0 (mod q).

Since clearly σk(q
a) ≡ 1 (mod q), we will assume from now on that p 6= q. We have

σk(p
a) = 1 + pk + p2k + · · ·+ pak =

pk(a+1) − 1

pk − 1
,

and we note that the only values of a for which q | σk(pa) are{
a ≡ −1 (mod q) if fp | k,
a ≡ −1 (mod hp) if fp - k,

where hp = fp
(fp,k)

. As fp | q − 1, we conclude that the only values of a for which q | σk(pa) are{
a ≡ −1 (mod q) if fp | r,
a ≡ −1 (mod gp) if fp - r,

(30)

where

r = (k, q − 1) and gp =
fp

(fp, r)
.

Note that gp is the multiplicative order of pr modulo q. This information can be combined into a
single congruence by writing

a ≡ −1 (mod µp), (31)

where

µp =

{
q if gp = 1,

gp if gp > 1.
(32)
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3.3. An Euler product for T (s). On using (31) we obtain

T (s) =
1

1− q−s
∏
p 6=q

( ∞∑
j=0

p−js − ps
∞∑
j=1

p−jµps
)

=
1

1− q−s
∏
p6=q

1− p−(µp−1)s

(1− p−s)(1− p−µps)
, (33)

and so

T (s) = ζ(s)
∏
p 6=q

1− p−(µp−1)s

1− p−µps
= ζ(s) D(s)

∏
gp=2

(1 + p−s)−1, (34)

where

D(s) =
∏
gp 6=2

1− p−(µp−1)s

1− p−µps
. (35)

For notational convenience when using fp, gp and µp, we will always silently assume that p 6= q.
(Thus, for instance, the product in (35) is taken over the primes p 6= q with gp 6= 2.) The generating
series for T (s) was first found by Rankin [45, eq. (11)].

Using logarithmic differentiation we obtain from (34) that

T ′

T
(s) =

ζ ′

ζ
(s) +

D′

D
(s) +

∑
gp=2

log p

ps
−
∑
gp=2

log p

ps(ps + 1)
. (36)

For later use, we record that

D′

D
(1) =

∑
gp 6=2

(µp − 1) log p

pµp−1 − 1
−
∑
gp 6=2

µp log p

pµp − 1
. (37)

3.4. Reformulation using L-series. Our aim is next to relate the first sum on the right-hand
side of (36) to logarithmic derivatives of Dirichlet L-series.

Lemma 5. We have∑
p≡a (mod q)

log p

ps
= − 1

q − 1

∑
χ

χ(a)
L′

L
(s, χ)−

∑
b≥2

∑
pb≡a (mod q)

log p

pbs
.

Proof. Observe that ∑
n≡a (mod q)

Λ(n)

ns
=

∑
p≡a (mod q)

log p

ps
+
∑
b≥2

∑
pb≡a (mod q)

log p

pbs
.

We further obtain∑
n≡a (mod q)

Λ(n)

ns
=

1

q − 1

∑
χ

χ(a)
∑
n≥1

χ(n)Λ(n)

ns
= − 1

q − 1

∑
χ

χ(a)
L′

L
(s, χ),

and the proof is completed on combining these two identities. �

From now on we assume that h = (q − 1)/r is even. This ensures that the equation xr ≡
−1 (mod q) has precisely r solutions a1, . . . , ar with 0 < ai < q (cf. Section 2.1). We observe that∑

i

∑
b≥2

∑
pb≡ai (mod q)

log p

pbs
=

∑
pbr≡−1 (mod q)

b≥2

log p

pbs
.

By part 1) of Lemma 2, the contribution of a fixed prime p to the latter sum equals
∞∑
n=1

log p

p(2n+1)s
if gp = 2, and

∞∑
n=1

log p

p(2n−1)gps/2
if gp ≥ 4 is even,
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so that ∑
pbr≡−1 (mod q)

b≥2

log p

pbs
=
∑
gp=2

log p

ps(p2s − 1)
+
∑
gp≥4
2|gp

log p

pgps/2 − p−gps/2
.

Using Lemma 5 and the latter identity, we obtain

−
∑
gp=2

log p

ps
=
rλ(s)

q − 1
+
∑
gp=2

log p

ps(p2s − 1)
+
∑
gp≥4
2|gp

log p

pgps/2 − p−gps/2
,

where

λ(s) =
1

r

∑
χ

L′

L
(s, χ)

r∑
i=1

χ(ai).

Combining this with (36) we obtain

T ′

T
(s) =

ζ ′

ζ
(s)− rλ(s)

q − 1
− v(s), (38)

where

v(s) = −D
′

D
(s) +

∑
gp=2

log p

ps(ps + 1)
+
∑
gp=2

log p

ps(p2s − 1)
+
∑
gp≥4
2|gp

log p

pgps/2 − p−gps/2
.

By (20) we have

λ(s) =
1

r

∑
χ

L′

L
(s, χ)

( ∑
a∈C2r

χ(a)−
∑
a∈Cr

χ(a)

)
,

and so, by part (i) of Lemma 4,

λ(s) = 2
∑
χ∈X2r

L′

L
(s, χ)−

∑
χ∈Xr

L′

L
(s, χ).

As L(s, χ0) = ζ(s)(1− q−s), we get

L′

L
(s, χ0) =

ζ ′

ζ
(s) +

log q

qs − 1
,

therefore

λ(s) =
log q

qs − 1
+ 2

(
ζ ′

ζ
(s) +

∑
χ∈X∗2r

L′

L
(s, χ)

)
−
(
ζ ′

ζ
(s) +

∑
χ∈X∗r

L′

L
(s, χ)

)
.

By Proposition 3, this can be rewritten as

λ(s) =
log q

qs − 1
+ 2

ζ ′K2r

ζK2r

(s)−
ζ ′Kr
ζKr

(s),

which, in combination with (38), yields

T ′

T
(s) =

ζ ′

ζ
(s)− r

q − 1

(
log q

qs − 1
+ 2

ζ ′K2r

ζK2r

(s)−
ζ ′Kr
ζKr

(s)

)
− v(s).
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3.5. The Euler-Kronecker constant γk,q. For K = Q, Kr and K2r we replace ζ ′K/ζK(s) by the
estimate given in (22). Noting that v(1) = S(r, q), we then obtain, on adding(

1− r

q − 1

) 1

s− 1

to both sides of the resulting identity and on taking the limit as s→ 1+, that

γ
T

= γk,q = γ − r

q − 1

( log q

q − 1
+ 2γK2r − γKr

)
− S(r, q).

We have thus established the following lemma.

Lemma 6. Let r = (k, q − 1). If (q − 1)/r is even, then

γk,q = γ − r

q − 1

(
2γK2r − γKr +

log q

q − 1

)
− S(r, q), (39)

where S(r, q) is defined in (15).

Second proof of Lemma 6. Our starting point is the Euler product from (34), which we want to
express in terms of Dedekind zeta functions. We do this on using (28), which on splitting off the
term with gp = 2 rewrites as

ζK2r(s)
2

ζKr(s)
= (1− q−s)−1

∏
gp=2

(1 + p−s)h
∏
gp=2

(1− p−2s)−h/2E(s)h,

with

E(s) :=
∏
gp≥4
2|gp

(1 + p−sgp/2

1− p−sgp/2
)1/gp

.

Combining this with (34) yields

T (s)h = (1− q−s)−1ζ(s)hH(s)h/2ζKr(s)ζK2r(s)
−2, (40)

where
H(s) := (D(s)E(s))2

∏
gp=2

(1− p−2s)−1.

Taking the Laurent series around s = 1, we obtain

T ′

T
(s) +

(
1− 1

h

) 1

s− 1
= γ +

1

2

H ′

H
(s)− 1

h
(2γK2r − γKr)−

log q

h(qs − 1)
+O(s− 1), (41)

where we used (22) for each of the three zeta functions involved. We obtain

1

2

H ′

H
(1) =

D′

D
(1) +

E ′

E
(1)−

∑
gp=2

log p

p2 − 1
,

with
E ′

E
(1) = −

∑
gp≥4
2|gp

log p

pgp/2 − p−gp/2
,

which, on recalling (37) and (15), shows that

1

2

H ′

H
(1) = −S(r, q).

We infer that the limit s→ 1+ of the right-hand side in (41) exists and equals the right-hand side
of (39). The result then follows on invoking (3) with α = 1− 1/h. �
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3.6. The proof of Theorem 1. With Lemma 6 at our disposal, we are ready to prove Theorem 1.

Proof. We consider Sk,q(x) first. The idea is to apply Theorem 1 with S = {n : q - σk(n)}, which
is a multiplicative set. By Proposition 1 it follows that S = {n : q - σr(n)}, with r = (k, q − 1).
The assumption on h ensures, see Lemma 1, that the equation xr ≡ −1 (mod q) has r solutions
modulo q. A prime p is in S if and only if pr 6≡ −1 (mod q). It follows that p is in S if and only if
p = q or is in a union of q − 1− r arithmetic progressions modulo q. By a strong enough version
of the Prime Number Theorem in arithmetic progressions, we then see that (6) is satisfied with
δ = 1− r/(q − 1). Since LS(s) = T (s), as defined in (33), we infer that γS = γr,q = γk,q. The proof
of this case is completed on invoking Lemma 6.

For S ′k,q(x) the factor (1 − q−s)−1 in the generating series is not there anymore, and so the
associated generating series T ′(s) satisfies T ′(s) = (1− q−s)T (s). Logarithmic differentiation then
yields

γ′k,q = γ
T ′

=
log q

q − 1
+ γ

T
=

log q

q − 1
+ γk,q,

completing the proof. �

3.7. The case q = 2. Let k ≥ 1 be arbitrary. We start by noting that, since σk(n) ≡ σ1(n) (mod 2),
there is no dependency on k. It is not difficult to see that, in the cases 2 - σk(n) and 2 - nσk(n),
the generating series equal

1

1− 2−s

∏
p>2

1

1− p−2s
= (1 + 2−s)ζ(2s) and

∏
p>2

1

1− p−2s
= (1− 2−2s)ζ(2s),

respectively. The functions Sk,2(x) and S ′k,2(x) count the number of integers of the form 2e(2m+1)2 ≤
x with e,m ≥ 0, respectively the number of odd squares not exceeding x. It is then an easy exercise
to show that

Sk,2(x) =
(

1 +
1√
2

)√
x+O(log x) and S ′k,2(x) =

1

2

√
x+O(1).

3.8. The case 2 - h. Let q be an odd prime and k ≥ 1 an integer. Put r = (k, q − 1) and
h = (q − 1)/r. The asymptotic behavior of Sk,q(x) in case h is odd was first determined by Rankin
[45]. Since pq−1 = prh ≡ (−1)h (mod q) it follows that pr 6≡ −1 (mod q), and so gp 6= 2, and thus
(34) simplifies to

T (s) = ζ(s)D(s),

where D(s) is defined in (35). It follows that, asymptotically,

Sk,q(x) ∼ D(1)x and S ′k,q(x) ∼
(

1− 1

q

)
D(1)x.

Further,

γk,q = γ +
D′

D
(1) and γ′k,q = γ +

D′

D
(1) +

log q

q − 1
,

with D′/D(1) as in (37).

3.9. The constants Ck,q and C ′k,q. Let k, q, r and h be as in Sec. 3.8. Assume that h is even.
Recall the definition of X∗r in (19).

Proposition 5. We have

Ck,q =
(1− q−1)−1/h

Γ(1− 1/h)

∏
χ∈X∗r

L(1, χ)−χ(−1)/hcr,q, C
′
k,q =

(
1− 1

q

)
Ck,q,
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with

cr,q =
∏
gp=1

1− p−(q−1)

1− p−q
∏
gp=2

1√
1− p−2

∏
gp≥3

1− p−(gp−1)

1− p−gp
∏
gp≥4
2|gp

(1 + p−gp/2

1− p−gp/2
)1/gp

.

Proof. From (40) and (5), we deduce that T (s)h = ζ(s)h−1R(s), for some function R(s) that is
regular for Re(s) > 1/2 and can be explicitly written down. By a standard application of the
(Landau)-Selberg-Delange method, see, e.g., Tenenbaum [64, Chapter II.5], we obtain,

Ck,q =
R(1)1/h

Γ(1− 1/h)
,

and the proof is easily completed (the details are left to the reader). �

Remark 7. This agrees with Rankin [45, eq. (16)]. However, the constant C1,5, which he worked
out as an example (and called A), contains a typo; for L4, in his formula for A, one should read
4L4. The constant C ′1,5 was independently computed by Moree [34].

3.10. The Euler-Kronecker constant γ(q−1)/2, q. Let q be an odd prime. As p
q−1
2 ≡

(
p
q

)
(mod q)

and gp is the multiplicative order of p
q−1
2 modulo q, we infer that

gp =

{
1 if (p

q
) = 1,

2 otherwise.

In this case, formula (33) specializes to

T (s) =
1

1− q−s
∏

( p
q
)=−1

1

1− p−2s
∏

( p
q
)=1

1− p−(q−1)s

(1− p−s)(1− p−qs)
. (42)

Put q∗ =
(−1
q

)
q. Using quadratic reciprocity in the form

(
p
q

)
=
(
q∗

p

)
, we infer that

T (s)2 =
ζ(s)L(s, χq∗)

1− q−s
∏

( p
q
)=−1

1

1− p−2s
∏

( p
q
)=1

(
1− p−(q−1)s

1− p−qs

)2

.

By the (Landau)-Selberg-Delange method we obtain, noting that Γ(1/2) =
√
π,

C q−1
2
,q =

√
qL(1, χq∗)

π(q − 1)

∏
( p
q
)=−1

1√
1− p−2

∏
( p
q
)=1

1− p−(q−1)

1− p−q
, C ′q−1

2
,q

=
(

1− 1

q

)
C q−1

2
,q.

We leave it to the interested reader to check that this coincides with the formulas given in Proposition
5 on setting k = (q − 1)/2.

We recall that K(q−1)/2 = Q(
√
q∗). Using Theorem 1 and (29) we obtain

γ q−1
2
,q =

1

2
γK q−1

2

− log q

2(q − 1)
− S

(q − 1

2
, q
)

=
γ

2
+

1

2

L′

L
(1, χq∗)−

log q

2(q − 1)
− S

(q − 1

2
, q
)
.

Since

S
(q − 1

2
, q
)

= −
∑
( p
q
)=1

log p
( q − 1

pq−1 − 1
− q

pq − 1

)
+
∑

( p
q
)=−1

log p

p2 − 1
,

by formula (15), with r = (q − 1)/2, we finally obtain

γ q−1
2
,q =

γ

2
+

1

2

L′

L
(1, χq∗)−

log q

2(q − 1)
−
∑

( p
q
)=−1

log p

p2 − 1
+
∑
( p
q
)=1

log p
( q − 1

pq−1 − 1
− q

pq − 1

)
. (43)
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By Proposition 48 we have S((q − 1)/2, q) > 0. In Section 10 we will describe how to efficiently
compute γ q−1

2
,q with high accuracy.

3.10.1. Cusp form applications. Let q ∈ {3, 7}. We consider the non-divisibility of τ by q.
Using (43) it can be verified that the formulas for the corresponding Euler-Kronecker constants
−Bt, as given by Moree [34], satisfy

−Bt = γ′q−1
2
,q

= γ q−1
2
,q +

log q

q − 1
,

as expected. Another relevant case is q = 11, associated to the form R∆. Finally, the cases q = 23
and q = 31 are relevant for the type (ii) congruences, see Section 4.4.

γ value

γ1,2 −1.370971 . . .

γ1,3 −0.014384 . . .

γ1,5 −0.002812 . . .

γ2,5 0.046145 . . .

γ1,7 0.388115 . . .

γ3,7 −0.092678 . . .

γ1,11 0.282623 . . .
γ5,11 −0.195292 . . .

γ1,13 0.400611 . . .
γ2,13 0.581080 . . .
γ3,13 −0.019200 . . .
γ6,13 0.030107 . . .

Table 3. Euler-Kronecker constants for the smallest primes

4. Divisibility by exceptional primes and proof of Theorem 5

Recall that Serre and Swinnerton-Dyer proved that the exceptional congruences are of one of the
types:

(i) τw(n) ≡ nvσw−1−2v(n) (mod q) for all (n, q) = 1, and for some v ∈ {0, 1, 2}.
(ii) τw(n) ≡ 0 (mod q) whenever

(
n
q

)
= −1.

(iii) p1−wτ 2w(p) ≡ 0, 1, 2 or 4 (mod q) for all primes p 6= q.

The goal of this section is to prove Theorem 5, our main result on the divisibility of Fourier
coefficients of cusp forms. To this end, we invoke Theorem 1 and its corollary for the exceptional
primes satisfying condition (i). For primes of type (ii) we have the case w = 12, q = 23, already
worked out in 2004 by Moree [34], and the case w = 16, q = 31, which we work out in Section 4.4.
Our techniques do not apply to the primes of type (iii), which satisfy a different sort of congruence
criterion (see Section 4.5), and we must therefore skip their analysis.

4.1. Congruences of type (i). The exceptional primes q > w all have v = 0 and are given in
Table 4. For q < w, Table 5 gives the value of v if q is exceptional, or the word ‘No’ if not. These
tables are taken from Swinnerton-Dyer [62, 63].
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w 12 16 18 20 22 26
Form ∆ Q∆ R∆ Q2∆ QR∆ Q2R∆
q 691 3617 43867 283, 617 131, 593 657931

Table 4. Type (i): Exceptional primes with q > w

Form w q = 2 3 5 7 11 13 17 19 23
∆ 12 0 0 1 1 No
Q∆ 16 0 0 1 1 1 No
R∆ 18 0 0 2 1 1 1 No
Q2∆ 20 0 0 1 2 1 1 No No
QR∆ 22 0 0 2 1 No 1 1 No
Q2R∆ 26 0 0 2 2 1 No 1 1 No

Table 5. Type (i): Value of v for the exceptional primes with q < w

4.2. The behavior of τw(q) for exceptional primes q. The analysis of Swinnerton-Dyer only
pertains to those integers n coprime to the exceptional prime q. We also need to understand
the q-divisibility of τw(qe) for all natural numbers e ≥ 1. By part (2) of Classical Theorem 3 we
have τw(qe) ≡ τw(q)e (mod q), and so either all τw(qe) are q-divisible, or none is. Using a program
by Martin Raum (Julia/Nemo), but also independently, using Pari/Gp [43], we computed τw(q)
modulo q.

Numerical Observation 1. Let q be an exceptional prime for a congruence for τw of type (i). If
q < w, then q | τw(q). If q > w, then τw(q) ≡ 1 (mod q).

Using this numerical fact, the exceptional congruences of type (i) can be easily “lifted” to all
integers n.

Proposition 6. Let q be exceptional of type (i) for τw. If q < w, then τw(n) ≡ nmax{1,v}σr(n) (mod q)
with r = (w − 1 − 2v, q − 1) and v as in Table 5. If q > w, then τw(n) ≡ σr(n) (mod q) with
r = (w − 1, q − 1).

Proof. For v ≥ 1 the first assertion follows since, by assumption, it holds for (n, q) = 1 and, in
addition, q | τw(q). This implies that both sides of the congruence are divisible by q if (n, q) > 1.
Next, assume v = 0. By Table 5 we have q = 2 or q = 3. Let r = (w − 1, q − 1). For n odd we
have τw(n) ≡ σr(n) ≡ nσr(n) (mod 2). As τw(2) is even, we also have τw(n) ≡ nσr(n) (mod 2) for
even n. Along the same lines, one checks that τw(n) ≡ nσr(n) (mod 3) for n 6≡ 2 (mod 3). We
claim that τw(n) ≡ σr(n) ≡ 0 ≡ nσr(n) (mod 3) for n ≡ 2 (mod 3). Such n have a prime power
divisor pe with p ≡ 2 (mod 3), pe+1 - n and 2 - e . Using the fact that r is odd, we see that
σr(p

e) ≡
∑e

j=0(−1)jr ≡ 0 (mod 3), and hence 3 | σr(n).
In case q > w, we have v = 0. The assertion follows on noting that the congruence holds for

(n, q) = 1, and that, in addition, we have τw(qe) ≡ τw(q)e ≡ 1 ≡ σr(q
e) (mod q), for every e ≥ 1, by

Numerical Observation 1. �

Recalling Definition 1, we obtain the following corollary.

Corollary 6. Let q be exceptional of type (i) for τw. If q < w, then τw(n) ∼= nσr(n) (mod q)
with r = (w − 1 − 2v, q − 1) and v as in Table 5. If q > w, then τw(n) ∼= σr(n) (mod q) with
r = (w − 1, q − 1).

Remark 8. It is a classical result that τ(n) ≡ nσ1(n) (mod 6). Since, coefficient-wise, Q ≡ R ≡
1 (mod 6), we infer that τw(n) ≡ τ(n) ≡ nσ1(n) (mod 6).
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4.2.1. The case q < w. Corollary 6 makes clear that, disregarding theoretical considerations,
working with r (rather than v) is what matters. Doing so leads to Table 6, a variant of Table 5. In
Table 7 we give the associated Euler-Kronecker constants with six decimal accuracy.

Form w q = 2 3 5 7 11 13 17 19 23
∆ 12 1 1 1 3 No
Q∆ 16 1 1 1 1 1 No
R∆ 18 1 1 1 3 5 3 No
Q2∆ 20 1 1 1 3 1 1 No No
QR∆ 22 1 1 1 1 No 1 1 No
Q2R∆ 26 1 1 1 3 1 No 1 1 No

Table 6. Type (i): Value of r for the exceptional primes q < w

r q γ′r,q
1 2 −0.677823 . . .
1 3 0.534921 . . .
1 5 0.399547 . . .
1 7 0.712434 . . .
3 7 0.231640 . . .
1 11 0.522413 . . .
5 11 0.044497 . . .
1 13 0.614357 . . .
3 13 0.194544 . . .
1 17 0.518971 . . .
1 19 0.720414 . . .

Table 7. Type (i): Euler-Kronecker constants for q < w related to Table 6

4.2.2. The case q > w. In this case v = 0, r = (w − 1, q − 1) and the relevant table is Table 8.

form w r q γr,q
∆ 12 1 691 0.571714 . . .
Q∆ 16 1 3617 0.574566 . . .
R∆ 18 1 43867 0.57669 . . . .
Q2∆ 20 1 283 0.552571 . . .
Q2∆ 20 1 617 0.567565 . . .
QR∆ 22 1 131 0.532695 . . .
QR∆ 22 1 593 0.568078 . . .
Q2R∆ 26 5 657931 0.57701 . . . .

Table 8. Type (i): Euler-Kronecker constants for q > w related to Table 4

The computational effort in producing this table was substantial. The computation for γ5,657931
took the longest, namely about 6 days and 14 hours (Dell OptiPlex-3050 equipped with an Intel
i5-7500 processor, 3.40GHz, 16 GB of RAM and running Ubuntu 18.04.5) to determine the value of
S(5, 657931); the computation for γK5(657931) and γK10(657931) took less than 1 second on the
same machine. Despite this, we were not able to get more than 5 certified decimal digits.
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The computation for γ1,43867 took less time, namely about 4 days and 15 hours; in this case we
were not able to get more than 5 certified decimal digits either.

4.2.3. The case f = ∆. In Table 9 we recomputed, with higher precision, the values found in 2004
by Moree [34] for ∆ (we give the values of Moree in our notation, which amounts to multiplying
his values by minus one). The congruence for q = 23 is of type (ii) and is discussed in Section 4.4.

q type γ value [34]

2 (i) γ′1,2 −0.677823 . . .
3 (i) γ′1,3 0.534921 . . . 0.5349 . . .
5 (i) γ′1,5 0.399547 . . . 0.3995 . . .
7 (i) γ′3,7 0.231640 . . . 0.2316 . . .
23 (ii) 0.216691 . . . 0.2166 . . .
691 (i) γ1,691 0.571714 . . . 0.5717 . . .

Table 9. Euler-Kronecker constants related to ∆

4.3. The case q = 2. By Proposition 6, cf. Remark 8, we have τw(n) ≡ nσ1(n) (mod 2). Hence
τw(n) is odd if and only if n is an odd square, and so∑

2-τw(n)

1 =
1

2

√
x+O(1),

see also Sec. 3.7.

4.4. Congruences of type (ii). The case w = 12 and q = 23 is of this type and the analytic
number theoretical aspects of the non-divisibility of τ(n) by 23 are discussed by Ramanujan [3]
and Moree [34]. There is only one further case of this type, namely w = 16 and q = 31. The
determination of the Euler-Kronecker constant that we present here works in the same way for
q = 23 and q = 31, and is based on the congruences

τw(p) ≡


1 (mod q) if p = q;

0 (mod q) if
(
p
q

)
= −1;

−1 (mod q) if p = 2X2 +XY + wY 2/4;

2 (mod q) if p = X2 +XY + wY 2/2,

(44)

where w = (q + 1)/2, see Swinnerton-Dyer [62, p. 34], [63, p. 301] or Serre [57] (for q = 23). In
1930, a short proof using q-series was given by Wilton [67] for the exceptional prime 23, who also
determined the values τ(n) modulo 23 for every positive integer n. According to Rankin [46],
more modern proofs are based on the fact that η(z)η(23z) is a newform for the group Γ0(23) with
multiplier system given by the character χ(n) =

(
n
23

)
. Denote by Np the number of distinct roots

modulo p of the polynomial x3 − x − 1. It is known that τ(p) ≡ Np − 1 (mod 23), cf. Serre [57,
p. 437] or [7, pp. 42–43].

Let S1 denote the set of primes p with
(
p
q

)
= −1. Let S2 and S3 be the (disjoint) sets of primes

represented by the quadratic forms 2X2 + XY + wY 2/4, respectively X2 + XY + wY 2/2. Note
that the primes p in S2 ∪ S3 satisfy

(
p
q

)
= 1.

By part (2) of Classical Theorem 3 we have

τw(pe+1) = τw(p)τw(pe)− pw−1τw(pe−1) ≡ τw(p)τw(pe)−
(p
q

)
τw(pe−1) (mod q),
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e 0 1 2 3 4 5

p = q 1 1 1 1 1 1
p ∈ S1 1 0 1 0 1 0
p ∈ S2 1 −1 0 1 −1 0
p ∈ S3 1 2 3 4 5 6

Table 10. Value of τw(pe) modulo q

with e ≥ 1. Using this recurrence we can easily compute τw(pe) modulo q, see Table 10. We then
deduce that

T(ii)(s) :=
∑
q-τw(n)

1

ns
=

1

1− q−s
∏
p∈S1

1

1− p−2s
∏
p∈S2

1 + p−s

1− p−3s
∏
p∈S3

1− p−(q−1)s

(1− p−s)(1− p−qs)
. (45)

By quadratic reciprocity we have∏
p

1

1− (p
q
)p−s

=
∏
p

1

1− (−q
p

)p−s
= L(s, χ−q),

where χ−q denotes the quadratic character associated with the Kronecker symbol
(−q
·

)
. Comparison

of local factors then shows that the identity

T(ii)(s)
2 =

ζ(s)L(s, χ−q)

1− q−s
∏
p∈S1

1

1− p−2s
∏
p∈S2

(
1− p−2s

1− p−3s

)2 ∏
p∈S3

(
1− p−(q−1)s

1− p−qs

)2

holds true. Computing the logarithmic derivatives of both sides and taking their limits for s→ 1+,
we easily deduce that

γ
T(ii)

=
γ

2
+

1

2

L′

L
(1, χ−q)−

log q

2(q − 1)
−
∑

( p
q
)=−1

log p

p2 − 1
+
∑
p∈S2

log p

(
2

p2 − 1
− 3

p3 − 1

)

+
∑
p∈S3

log p

(
q − 1

pq−1 − 1
− q

pq − 1

)
. (46)

We now want to derive (46) in a different way and, to do so, we start by noticing that (44) can
be more compactly written as

τw(p) ≡

{
σ(q−1)/2(p) (mod q) if

(
p
q

)
6= 1 or p = X2 +XY + wY 2/2,

−1 (mod q) for all other p.

Let T (s) be the generating series associated to the set {n ≥ 1 : q - σ(q−1)/2(n)}. Note that
γ
T

= γ
(q−1)/2, q

. Comparison of the generating series (47) and (42) shows that

T(ii)(s) = T (s)
∏
p∈S2

(1− p−qs)(1− p−2s)
(1− p−(q−1)s)(1− p−3s)

, (47)

which by logarithmic differentiation leads to

γ
T(ii)

= γ
(q−1)/2, q

+
∑
p∈S2

log p

(
2

p2 − 1
− 3

p3 − 1
+

q

pq − 1
− q − 1

pq−1 − 1

)
.

On inserting the expression (43) for γ
(q−1)/2, q

in the above identity, one obtains (46) upon simplifi-
cation.
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form w q value Moree [34]

∆ 12 23 0.216691 . . . 0.2166 . . .
Q∆ 16 31 0.156105 . . .

Table 11. Euler-Kronecker constants for type (ii) congruences

Remark 9. The convergence acceleration technique presented in Section 10.2 can be used for the
sum over the primes in S1, but not for the prime sums over the two other sets. Thus, in practice,
nothing truly changes for this problem. To get six confirmed decimal digits in Table 11 we truncated
the prime sums at P = 109; each computation required about five minutes using Pari/Gp.

4.5. Congruences of type (iii). Haberland [16], using Galois cohomological methods, in part III
of a series of papers, proved that the case w = 16 and q = 59 is of this type. He thus established a
conjecture of Swinnerton-Dyer who had earlier proved that there cannot be further cases of this
type. Later Boylan [6], and Kiming and Verrill [23] gave different proofs. The relevant algebraic
field is non-abelian with a non solvable Galois group, and so a factorization of T (s) as given in this
paper, solely in terms of Dirichlet L-series and a regular factor, is not expected to exist. We have
to leave computing the associated Euler-Kronecker constant as an open problem.

4.6. Non-divisibility for non-exceptional primes. The Fourier coefficient τw(p) can be com-
puted by evaluating it modulo q for enough small prime q and using the bound |τw(p)| ≤ 2p(w−1)/2.
The main result of the book [12] is that this can be done in polynomial time in log p. This requires
also studying congruences for non-exceptional primes, which turns out to be way more difficult
than for the exceptional primes and is worked out in a relatively explicit way by Bosman [12, Ch. 7]
for some small primes. Put

g(x) = x12 − 4x11 + 55x9 − 165x8 + 264x7 − 341x6 + 330x5 − 165x4 − 55x3 + 99x2 − 41x− 111.

He proves, for example that for q 6= 11 we have 11 | τ(q) if and only if the prime q decomposes in
the number field Q[x]/(g(x)) as a product of primes of degree 1 and 2, with degree 2 occurring at
least once. He uses these results to show that if τ(n) = 0, then n > 2 · 1019, making some progress
towards Lehmer’s conjecture that τ(n) 6= 0.

4.7. Proof of Theorem 5. For the exceptional congruences of type (i) and (ii) we determine the
associated Euler-Kronecker constants with enough precision to ensure that they are non-zero. It
follows that the corresponding variant of Ramanujan’s Claim 1 is false for any r > 1 + δq. In each
case we also compute them with more than enough precision to decide whether they are greater
than 1/2 (in which case Landau wins) or not; see Section 10 for the algorithms employed in our
numerical computations, and Tables 7–9 for the values.

5. A detailed look at the non-divisibility claims in the unpublished manuscript

q δq E.P. Cq pp. Sec.

3 + + + 22–23 11
5 + + 06–08 2
7 + + + 11–12 6
23 + − − 36–37 17
691 + 24–25 12

Table 12. Correctness of non-divisibility claims from the unpublished manuscript
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Table 12 lists all the non-divisibility claims similar to Claim 1 made by Ramanujan in the
unpublished manuscript. They all involve the τ function (not listed are those cases where he only
claimed bounds of the form O(n/ logδ n)). The “ + ” entry indicates a correct claim, the “− ” a
false one, whereas no entry indicates that no claim was made. The first column concerns the value
of δq (see Table 1), the second the Euler product of the generating series, the third the value of
the constant Cq, and the two remaining ones give the pages numbers and section numbers in [3]
where the specific claims can be found. Rankin, using resuls from his paper [45], confirmed the
correctness of C3, C7 and the δq column [46, p. 10]. However, C23 needs minor correction (as first
pointed out by Moree [34]). The square of Ramanujan’s Euler product (17.6) for the generating
series equals the right-hand side of (47), but with the factor (1− 23−s)−1 replaced by (1− 23−s) (it
is clear from his writing that when he writes “all primes of the form 23a2 + b2,” he excludes the
prime 23). The asymptotic constant associated to his Euler product he calculated correctly, but it
has to be multiplied by 23/22 in order to obtain the true C23.

The Dirichlet series Tq(s) with q ∈ {3, 7, 23} are the easiest in the sense that they satisfy
Tq(s)

2 = ζM(s)A(s), with M quadratic (in fact, with M = Q(
√
−q)) and A(s) a regular function

for Re(s) > 1/2. In this case, we have h = 2 and δq = 1/2. As we have δq = q/(q2 − 1) for
non-exceptional q (see, e.g. Serre [56, p. 229]), it follows that for the tau function there are no
further primes with this property. For these three primes, Tq(s) can be related to the generating
series associated to {n ≥ 1 : q - τ q−1

2
(n)}, and we find

C3 = C ′1,3, C7 = C ′3,7, C23 = C11,23

∏
p∈S2

(1− p−23)(1− p−2)
(1− p−22)(1− p−3)

,

where the latter equality is immediate from (47). Using L(1, χ−3) = π/
√

27, L(1, χ−7) = π/
√

7,
and L(1, χ−23) = 3π/

√
23, where χ−q is the quadratic character modulo q, in combination with

(45), we get precisely the expressions found by Ramanujan (with the caveat pointed out above for
q = 23).

The five Euler products alluded to in Table 12 are the tip of an iceberg, Ramanujan’s work being
abundant with them; for an overview, see [1] or [44]. Therefore it comes as no surprise that his
unpublished manuscript also contains more Euler products than those considered here.

6. Bounding S(m, q)

Before we begin, let us first recall that m is a divisor of q− 1 such that h = (q− 1)/m is even and

S(m, q) = −
∑
gp 6=2

(
(µp − 1) log p

pµp−1 − 1
− µp log p

pµp − 1

)
+
∑
gp≥4
2|gp

log p

pgp/2 − p−gp/2
+
∑
gp=2

log p

p2 − 1
, (48)

with gp being the multiplicative order of pm modulo q, and µp as in (32). Our bounds are given in
Lemmas 8 and 9. They have terms with q−1/m in the denominator, and thus require m = o(log q)
for them to tend to zero. Thus, one has to think of m as at most slowly growing with q. Note
that gp | h, where h, for the reason just given, will be close in size to q − 1. To avoid technical
complications that would bring no gain, we mostly use gp ≤ q − 1 in the sequel.

6.1. An upper bound for S(m, q). In order to prove Theorem 2 we need an upper bound for
S(m, q), which, for any fixed m, tends to zero as q →∞. This is provided by Lemma 8.

6.1.1. A trivial estimate. Noticing that for j ≥ 3 we have

pj − 1

pj−1 − 1
> p >

3

2
≥ j

j − 1
,
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the argument of the first sum in (48) is seen to be positive. It thus suffices to find upper bounds
for the second and third sum in (48). We further observe that∑

gp≥4
2|gp

log p

pgp/2 − p−gp/2
+
∑
gp=2

log p

p2 − 1
≤

∑
p<q−2, gp≥4

2|gp

log p

pgp/2 − p−gp/2
+
∑
p<q−2
gp=2

log p

p2 − 1
+
∑
p≥q−2

log p

p2 − 1
,

and denote the latter three sums by S1(q), S2(q), respectively S3(q).

6.1.2. The sums S1(q) and S2(q). We first give a rough estimate of the sum S0(q;α) of the terms
in S1(q) for which gp ≥ α, where we will choose α later (think of α as being of size O(log q)). The
remainder we denote by S1(q;α).

In the sequel we will make use of the fact that log y/(y− 1) is decreasing for y > 1, and hence so
is log x/(xj − 1) = log xj/(j(xj − 1)), with j ≥ 1 any fixed real number and x > 1. We have

S0(q;α) :=
∑

p<q−2, gp≥α
2|gp

log p

pgp/2 − p−gp/2
≤

∑
p<q−2
α≤gp≤h

log p

pgp/2 − 1
≤

h∑
j=dαe

jm log 2

2j/2 − 1
≤ q2 log 2

2(2α/2 − 1)
,

where we use that there are at most jm primes p < q − 2 with gp = j. We split S1(q;α) as

S1(q;α) =
∑
p<q−2

gp=2e, e≥2
gp<α

log p

pgp/2 − p−gp/2
+

∑
p<q−2, 2|gp

P (gp)>1, gp<α

log p

pgp/2 − p−gp/2
= S1,1(q;α) + S1,2(q;α),

where P (gp) denotes the largest odd divisor of gp. Let j ≥ 1 be an integer. We have∑
p<q−2
gp=4j

log p

pgp/2 − p−gp/2
<
∑
p<q−2
gp=4j

log p

pgp/2 − 1
<
jm log((q − 1)1/(2jm))

(q − 1)1/m − 1
<

log q

2((q − 1)1/m − 1)
. (49)

To see this, we note that for any prime p satisfying gp = 4j we have p2jm ≡ −1 (mod q), hence
p2jm ≥ q − 1, and so pgp/2 = p2j ≥ (q − 1)1/m. The second inequality now follows on noting that,
by Lemma 1, there are at most jm primes p < q − 2 satisfying the congruence. First assume
that ν2(h) ≥ 2, where ν2 is the 2-adic valuation. If p contributes to S1,1(q;α), then gp = 2e with
2 ≤ e ≤ min{ν2(h), logα/ log 2}, and we thus infer, on invoking the estimate (49), that

S1,1(q;α) <
α1 log q

(q − 1)1/m − 1)
, with α1 = min

{ν2(h)− 1

2
,
logα

log 4

}
.

If ν2(h) = 1, the sum S1,1(q;α) is zero and hence the latter estimate also (trivially) holds.
We now turn our attention to S1,2(q;α), and the plan is to compare (pgp/2 − p−gp/2)m with

pgpm/2 + 1, which we know to be divisible by q by part 1) of Lemma 2. If 0 < β < 1 is fixed, it is
easy to see that

min
0<x≤β

(1− x2)m

1 + xm
=

(1− β2)m

1 + βm
≥ (1− β2)m

(1 + β)m
= (1− β)m, (50)

which holds for any integer m ≥ 1. Since for every prime p contributing to S1,2(q) we have
p−gp/2 ≤ 1/8, on applying (50) with x = p−gp/2 and β = 1/8 we obtain

(pgp/2 − p−gp/2)m ≥ cm(pgpm/2 + 1), (51)

with c = 7/8. Using (51) and (18) with d = P (gp) > 1, we conclude that

(pgp/2 − p−gp/2)m ≥ cm(pgpm/2 + 1) ≥ cmq(pgpm/(2d) + 1) ≥ cmq(pm + 1) ≥ q(cp)m.
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Taking m-th roots and noting that there are at most mα2/2 primes p with gp < α and (log x)/x is
decreasing for x ≥ e, we now infer that

S1,2(q) ≤
8

7q1/m

∑
p<mα2/2

log p

p
<

8 log(mα2/2)

7q1/m
,

where we used the estimate
∑

p<x(log p)/p < log x, valid for x > 1, due to Rosser and Schoenfeld

[49, (3.24)].
A minor variation of the argument leading to the chain of inequalities in (49) gives

S2(q) =
∑
p<q−2
gp=2

log p

p2 − 1
<
m log((q − 1)1/m)

(q − 1)2/m − 1
<

log q

(q − 1)2/m − 1
.

Remark 10. We used several times the fact that there are at most jm primes p < q for which
gp = j. In fact, there are at most φ(j)m primes with gp = j. This would lead, at the cost of
mathematical complication, to only a tiny improvement, and so we abstained from implementing it.

6.1.3. The sum S3(q). The next lemma implies that, for q ≥ 7,

S3(q) <
1.053

q − 2.1
,

which is rather sharp, as by the Prime Number Theorem we asymptotically have S3(q) ∼ q−1.

Lemma 7. For x ≥ 3, we have ∑
p>x

log p

p2 − 1
<

1.053

x
.

Proof. Put ϑ(x) =
∑

p≤x log p and x0 = 7481. For x ≥ x0 one has 0.98 · x ≤ ϑ(x) ≤ 1.01624 · x, as

was shown by Rosser and Schoenfeld [49, Theorems 9 and 10]. From this, one easily infers that, for
x ≥ x0,∑

p>x

log p

p2
=

∫ ∞
x

dϑ(t)

t2
= −ϑ(x)

x2
+ 2

∫ ∞
x

ϑ(t)

t3
dt ≤ −0.98x

x2
+ 2 · 1.01624

∫ ∞
x

dt

t2
≤ 1.0525

x
.

Since p2 − 1 = p2(1− p−2) ≥ p2(1− x−2) for p > x, for x ≥ x0 we obtain that∑
p>x

log p

p2 − 1
<

1

1− x−2
∑
p>x

log p

p2
≤ 1.0525

x(1− x−20 )
≤ 1.053

x
.

For x < 7481, we explicitly calculate the sum using∑
p>x

log p

p2 − 1
= −ζ

′(2)

ζ(2)
−
∑
p≤x

log p

p2 − 1
< 0.569961−

∑
p≤x

log p

p2 − 1
. �

6.1.4. Upper estimates for S(m, q). Since there is no prime p ≡ −1 (mod q) with p < q − 2, we
note that S2(q) = 0 in case m = 1. Notice that if α is at most twice the smallest odd prime factor of
h, then S1,2(q;α) = 0. On recalling that S(m, q) = S0(q;α) +S1,1(q;α) +S1,2(q;α) +S2(q;α) +S3(q)
and inserting the estimates for these sums derived above, we arrive at the following result for q ≥ 7
and prime; for q = 3 and q = 5 we verified the upper bound numerically.

Lemma 8. Let q be an odd prime, m a divisor of (q − 1)/2 and h = (q − 1)/m. Then, for any
3 ≤ α ≤ q − 1,

S(m, q) <
α1 log q

(q − 1)1/m − 1
+

8 log(mα2)

7q1/m
+

1.053

q − 2.1
+

q2 log 2

2(2α/2 − 1)
+

log q

(q − 1)2/m − 1
,
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with α1 = min{(ν2(h)− 1)/2, logα/ log 4}. If α is at most twice the smallest odd prime factor of h,
then the second term can be dropped. The final term can be dropped if m = 1.

Corollary 7. We have S(m, q)� (log q)(log log q)q−1/m, where the implicit constant is absolute.

Proof. This follows on setting α = 10 log q (for example) and using the trivial bound m ≤ q in the
numerator of the second term. �

We point out that in case h satisfies h ≡ 2 (mod 4) and has only odd prime factors exceeding
10 log q (for example), we have the sharper bound S(m, q)� 1/q + (log q)q−2/m.

6.2. Lower bound for S(m, q). In order to prove Theorem 3 we need not only the upper bound
for S(m, q) given in Lemma 8, but also a lower bound. This is provided by Lemma 9. A tedious
analysis gives that for j ≥ 4 and p ≥ 2 always

−
(

(j − 1)

pj−1 − 1
− j

pj − 1

)
+

1

pj/2 − p−j/2
≥ 0. (52)

We are thus left with finding an upper bound for

T (q) :=
∑
2-gp

(µp − 1) log p

pµp−1 − 1
.

As a digression, we make the following observation.

Proposition 7. If h is a power of two, then S(m, q) > 0.

Proof. If h is a power of two, then so is gp (which divides h). It follows that T (q) = 0. By Dirichlet’s
theorem on primes in arithmetic progression, the final sum in the formula (48) for S(m, q) is strictly
positive. �

Observe that

T (q) ≤
∑

gp≥3, 2-gp
p<q

(gp − 1) log p

pgp−1 − 1
+

∑
gp≥3, 2-gp

p>q

(gp − 1) log p

pgp−1 − 1
+
∑
gp=1

(q − 1) log p

pq−1 − 1
,

which we denote by T1(q), T2(q) and T3(q), respectively. We have

T2(q) ≤
∑
p>q

2 log p

p2 − 1
+
∑
p>q

q log p

p4 − 1
� 1

q
+

1

q2
.

Reasoning as before, cf. the derivation of (49), we deduce

T3(q) ≤
∑
p<q

pm≡1 (mod q)

q log p

pq−1 − 1
+
∑
p>q

q log p

pq−1 − 1
� log q

qh−1
+

1

qq−3
� log q

qh−1
. (53)

We write T1(q) = T1,1(q;α) + T1,2(q;α), where the first sum runs over the terms of T1(q) with
gp < α, where α will be chosen later. We have

T1,2(q;α) ≤
∑
p<q

α≤gp≤h

gp log p

pgp−1 − 1
≤

h∑
j=dαe

j2m log 2

2j−1 − 1
� mh3

2α−1
� qh2

2α
. (54)

The sum T1,1(q;α), we write as V1(q;α) + V2(q;α), where in the first sum we impose the additional
condition that gp is a prime itself.
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We always have that q divides (pgpm − 1)/(pm − 1), a quotient which is bounded above by
2p(gp−1)m. Letting σ′(n;α) denote the sum of the prime divisors pi < α of n, we then obtain in the
usual way

V1(q;α)� σ′(q − 1;α) log q

q1/m
.

We finally turn our attention to V2(q;α). The plan is to compare pm(pgp−1 − 1)m with pgpm − 1,
which is of course divisible by q. For p ≥ 2 and gp ≥ 3, we find, with c = 3/4,

pm(pgp−1 − 1)m ≥ cm(pgpm − 1) ≥ cmq(pgpm/d − 1) ≥ cmq(p3m − 1) ≥ 7qcmp3m/8,

where we use that gp is a composite odd integer, and so it must have a divisor 1 < d < gp. Taking
m-th roots we infer that

V2(q;α)� 1

q1/m

∑
gp≤α

gp log p

p2
� α

q1/m
.

We trivially have

σ′(q − 1;α) ≤
∑
p≤α

p� α2

logα
. (55)

Gathering all the bounds together and setting α = 10 log q, we obtain that there is an absolute
constant c1 > 0 such that

−S(m, q) ≤ c1
σ′(q − 1; 10 log q) log q

q1/m
,

which on invoking (55) leads to the following conclusion.

Lemma 9. There is an absolute constant c2 > 0 such that

−S(m, q) ≤ c2 log3 q

q1/m log log q
.

Remark 11. In case h satisfies h ≡ 2 (mod 4) and has only odd prime factors exceeding C log q
we can do much better and using the estimates (53) and (54) obtain

−S(m, q) ≤ T3(q) + T1,2(q;C log q)� log q

qh−1
+

qh2

qC log 2
� h2

qC log 2−1 .

The final estimate follows on noting that C log 2 < C log q ≤ h/2.

Remark 12. Suppose there are infinitely many primes q ≡ 3 (mod 4) with q − 1 squarefree
and having all its odd prime divisors in the interval [log q, 10 log q]. Note that for these primes
σ′(q − 1; 10 log q)� log2 q/(log log q) and so the upper bound (55) with α = 10 log q is sharp.

Remark 13. It is also possible to do the estimation without making use of inequality (52). For
that, we have to bound from above the sum∑

gp≥3

(µp − 1) log p

pµp−1 − 1
,

where now the terms with 2 | gp are included as well. Reasoning as in the derivation of (49), we
find that ∑

gp≥4
2|gp

(gp − 1) log p

pgp−1 − 1
� log3 q

q3/2
,

which is swamped by the major contribution to the error term for −S(m, q).
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7. Proof of Theorem 2

The arguments are inspired by the proof of [15, Theorem 1] and are related to the number of
zeros of Dirichlet L-series in certain regions near the line <(s) = 1. McCurley [32, Theorem 1.1]
showed that, for every q, the region

<(s) ≥ 1− 1

R log max{q, q|=(s)|, 10}
,

where R = 9.645908801, contains at most one zero β0 of
∏

χ (mod q) L(s, χ). If β0 is exceptional,

it must be real, simple, and satisfy L(β0, χq) = 0, where χq is the real, nonprincipal quadratic
character modulo q. We will need an explicit version of Page’s theorem [42] giving a lower bound
for β0. For this we use the one established by Ford et al. [15].

Lemma 10 ([15, Lemma 3]). If q ≥ 10 000 is prime and β0 an exceptional zero, then

β0 ≥ 1− 3.125 min{2π, (log q)/2}
√
q log2 q

≥ 0.9983.

Let q be a prime, a an integer coprime with q, and let

ψ(x; q, a) =
∑
n≤x

n≡a (mod q)

Λ(n)

be the Chebyshev ψ-function. The following modification of [15, Lemma 9] is an essential ingredient
in our arguments (the notation used is as introduced in the beginning of this section).

Lemma 11. Let q ≥ 10 000 be a prime and a a fixed integer coprime with q. For x ≥ exp(R log2 q)
we have ∣∣∣ψ(x; q, a)− x

q − 1

∣∣∣ ≤ 1.012xβ0

q
+

8

9
x

√
log x

R
exp
(
−
√

log x

R

)
,

where the first term is there only if there is an exceptional zero β0.

Proof. For a = 1 this is [15, Lemma 9]. The proof depends heavily on earlier work of McCurley
[32], whose arguments work for arbitrary a coprime to q. This allows for an easy adaptation of the
proof in [15] to any a coprime with q as well. �

Remark 14. For primes q ≡ 1 (mod 2r), our interest is more precisely in∑
n≤x

nr≡−1 (mod q)

Λ(n).

One could hope that this can be expressed as a linear combination of ψ(x, χ) =
∑

n≤x Λ(n)χ(n)
not involving the quadratic character modulo q, thus avoiding the contribution of the possible
exceptional zero β0. However, this is not the case by the remark after Definition 4.

With these ingredients in place, we can finally prove Theorem 2.

Proof of Theorem 2. Recall that r = (k, q − 1). The equation xr ≡ −1 (mod q) has precisely r
solutions a1, . . . , ar, with 0 < ai < q (cf. Section 2.1). On combining Proposition 4 and Lemma 6,
we have

γk,q = γ −
r∑
i=1

lim
x→∞

( log x

q − 1
−

∑
n≤x

n≡ai (mod q)

Λ(n)

n

)
− S(r, q). (56)
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Writing E(t; q, a) := ψ(t; q, a)−t/(q−1), where (a, q) = 1, and using a partial summation argument,
we obtain

lim
x→∞

( ∑
y<n≤x

n≡a (mod q)

Λ(n)

n
− log(x/y)

q − 1

)
=

∫ ∞
y

E(t; q, a)

t2
dt− E(y; q, a)

y
.

Invoking Lemma 11, we obtain, for any y ≥ exp(R log2 q) the estimate∣∣∣∣∫ ∞
y

E(t; q, a)

t2
dt− E(y; q, a)

y

∣∣∣∣ ≤ 1.012(2− β0)yβ0−1

(1− β0)q
+

8

9

2RW 2 + (4R + 1)W + 4R

eW
, (57)

with W =
√

log y/R and where the first term can be left out if there is no exceptional zero β0. On
ignoring the summands from (56) with n ≤ y, we can now use (56)–(57) and β0 ≥ 0.9983, to obtain

γk,q ≥ γ − r
( log y

q − 1
+

1.015

D
√
q
y
− D√

q log2 q log2 q +
8

9

2RW 2 + (4R + 1)W + 4R

eW

)
− S(r, q), (58)

for any q ≥ 10 000, where D = 3.125 min{2π, log q/2} and y = exp(1.44R log2 q). The largest of the
terms in between the brackets in (58) is coming from the exceptional zero and is O(q−1/2 log2 q).
Using Corollary 7 we thus conclude that there exist absolute constants c2 and c3 such that

γk,q ≥ γ − c2
r log2 q
√
q
− c3

log2 q

q1/r
= γ − F (q),

say. It is easy to see that there exists an absolute constant c1 such that F (q) < 0.077 and hence
γk,q > 1/2 for any

q ≥ e2r(log r+log log(r+2)+c1), with q ≡ 1 (mod 2r).

By Corollary 3 it then follows that the Landau approximation is better for any such value q. Using
(16) we have γ′k,q = γk,q + log q/(q − 1) > γk,q, and so we obtain the same conclusion for γ′k,q. �

Remark 15. Let q0(r) be the minimal prime such that γr,q > 1/2 for q ≥ q0(r) using (58)
and Lemma 8. Choosing C = 10, a numerical evaluation of such formulae gave q0(1) = 28 537;
q0(2) = 1 160 893; q0(3) = 2 089 575 931; q0(r) > 1010 for r ≥ 4. These bounds are too large in
order for S(r, q) to be evaluated over the whole range 3 ≤ q ≤ q0(r), q prime, q ≡ 1 (mod 2r), as
described in Section 10; in fact there we will explain that we are able to compute S(r, q) only for
1 ≤ r ≤ 6 and 3 ≤ q ≤ 3000. However, for r = 1 we can also use some already computed data on
γK1 and γK2 to prove that γ1,q > 1/2 for every odd prime q ∈ [q1(1), q0(1)], where q1(1) < 3000; see
the proof of Theorem 4. Unfortunately, the cases with r ≥ 2 are well beyond our computational
capabilities and hence we presently cannot settle the truth of Conjectures 1–2.

8. Proof of Theorem 3

Our proof will make use of the following result.

Proposition 8. If y ≥ 10q and q ≥ 11, then∑
2q<p≤y

p≡a (mod q)

log p

p− 1
≤ 2 log y + 2(log q) log log(y/q)

q − 1
.

Proof. In [15, Prop. 6] this is proved for a = 1. As it hinges on the Montgomery-Vaughan sharpening
of the Brun-Titchmarsh theorem, which holds for arbitrary progressions, it trivially generalizes. �
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Proof of Theorem 3. The argument leading to (58) is easily adapted to obtain, for any y ≥
exp(R log2 q), the upper bound

γk,q ≤ γ + r
( log y

q − 1
+

1.015

D
√
q
y
− D√

q log2 q log2 q+
8

9

2RW 2 + (4R + 1)W + 4R

eW

)
− S(r, q) + Tq(y), (59)

with

Tq(y) =
∑
n≤y

nr≡−1 (mod q)

Λ(n)

n
.

Note that for the lower bound we had dropped the sum Tq(y). Put y1 = exp(1.44R log2 q). Using
Proposition 8, we deduce that

Tq(y1) ≤ Tq(2q) +
∑

2q<p≤y1
pr≡−1 (mod q)

log p

p− 1
� log q

q1/r
+

log2 q

q
.

This estimate, together with (58) and (59), then yields

γk,q = γ − S(r, q) +O
(r log2 q
√
q

+
log q

q1/r

)
.

Taking into account the upper and lower bound for S(r, q) provided by Lemmas 8 and 9, the proof
is completed. �

9. Proof of Theorem 4

We work here under the assumption that r = 1; that is, we study the divisibility of nvσk(n)
by primes q such that (k, q − 1) = 1. We will follow the same argument used in Theorem 2 to
prove that Landau wins for large enough primes q, but, in addition, we will be able to treat all
the remaining primes q and to conclude, in each case, whether the Landau or the Ramanujan
approximation is better. For this, we will need the upper estimate established in Lemma 8 and the
following sandwich bounds for γK1 and γK2 .

Lemma 12 ([30, Section 6]). For 3 ≤ q < 30 000, we have

0.3145 · log q ≤ γK1 ≤ 1.6270 · log q,

0.5254 · log q ≤ γK2 ≤ 1.4263 · log q.

Proof. The values γK1 and γK2 (denoted by Gq and G+
q in [30]) are the Euler-Kronecker constants

of the fields K1 = Q(ζq) and K2 = Q(ζq + ζ−1q ) respectively, see Section 2.2. The lower and upper
estimates given here are taken from [30, Section 6]. �

We are now ready to prove Theorem 4.

Proof of Theorem 4. Setting r = 1 in (58) gives

γ1,q ≥ γ − log y

q − 1
− 1.015

D
√
q
y
− D√

q log2 q log2 q − 8

9

2RW 2 + (4R + 1)W + 4R

eW
− S(1, q), (60)

where q ≥ 10 000 and we recall that D = 3.125 min{2π, log q/2}, y = exp(1.44R log2 q), W =√
log y/R and R = 9.645908801. A quick numerical check using Lemma 8 and (60) reveals that

γ1,q > 1/2 for q ≥ 29 100. In the remaining q-range we use the alternative expression

γ1,q = γ − log q

(q − 1)2
− 2γK2 − γK1

q − 1
− S(1, q), (61)
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which comes from taking r = 1 in (14). Inserting the upper bound for S(1, q) given in Lemma 8 in
(61), we obtain a lower bound for γ1,q, which, using Lemma 12 and a numerical verification, is seen
to exceed 1/2 for 600 < q ≤ 29 000. Thus, to prove the first part of the statement, it remains to
check it for 3 ≤ q ≤ 600, which we do by a direct numerical evaluation of the quantities appearing
in (61). Using (16) we have γ′1,q = γ1,q + log q/(q − 1) > γ1,q and hence, for q > 600, the second
part of Theorem 4 follows immediately. In the remaining q-range a numerical verification completes
the proof. �

10. On the numerical computations

All the numerical results presented in this paper were obtained using the following considerations.
The computation of γk,q naturally splits in two parts: the evaluation of the pair γKr , γK2r , and
that of S(r, q), where r = (k, q − 1) and h = (q − 1)/r is even (and so r | (q − 1)/2). In fact, both
problems can be handled in a more general setting, i.e., for each m | (q − 1)/2.

We first remark that a logarithmic differentiation of the L-function factorization from (26)–(27)
yields

γKm = γ +
∑
χ∈X∗m

L′

L
(1, χ), γK2m = γ +

∑
χ∈X∗2m

L′

L
(1, χ).

These formulae suggest that γKm and γK2m can be computed by adapting the approach presented
in [29, 30]. Indeed, using techniques from [29, 30] we can get the values of L′/L(1, χ) for every
non-principal Dirichlet character mod q. So, after having obtained the list of the divisors m of
(q − 1)/2, in order to get γKm and γK2m , it is enough to sum L′/L(1, χ) on every non-principal
character of Xm and, respectively, X2m. Such sets of characters can be described in the following
way: recalling that q is prime, it is enough to get g, a primitive root of q, and χ1, the Dirichlet
character mod q given by χ1(g) = exp(2πi/(q−1)), to see that the set of the non-principal characters
mod q is {χj1 : j = 1, . . . , q − 2}. In order for χj1 to be in Xm, we need that χj1(a) = 1 for every
a ∈ Cm. But a ∈ Cm if and only if it can be written as a ≡ gb (mod q), with b = `(q−1)/m for some
` = 0, . . . ,m − 1. Hence χj1 ∈ Xm implies that χj1(a) = exp(2πijb/(q − 1)) = exp(2πij`/m) = 1
for every ` = 0, . . . ,m − 1, and this is equivalent to m | j. Summarizing, we can say that
Xm = {χ0} ∪ {χj1 : j = 1, . . . , q− 2; m | j}. This characterization, albeit elementary, is particularly
useful in practice since the condition m | j can be easily checked by a computer program.

Recalling that χ ∈ X2m if and only if χ ∈ Xm and χ is even, we observe that γK2m can be
obtained without further efforts by storing the sum over even characters used for γKm .

In this way it is then possible to evaluate every γKm and γK2m with essentially the same
computational cost needed to get γK1 and γK2 . Using Pari/Gp [43] we implemented this, with a
precision of 30 decimal digits, for each odd prime q ≤ 3000 and 1 ≤ m ≤ 6; this required about
33 minutes of computing time. For q > 3000, the use of the Fast Fourier Transform algorithm is
mandatory, as explained in [29, 30]; the accuracy of the latter procedure is commented on in [30].

We did not perform such FFT computations for m ≥ 2, since in these cases we would not be
able to prove an analogue of Theorem 4. To reach this goal, in fact, we should obtain the values
of S(m, q) for q up to very large bounds, see Remark 15, which is currently infeasible because
it is much harder to compute S(m, q), which is defined as in (32) but using m | (q − 1)/2 and
gp = fp/(fp,m). The prime sums involved were computed up to a certain bound P and then
we estimated the remaining tails exploiting the summation functions of Pari/Gp [43]. The slow
decay ratio of some of the summands in S(m, q) prevents us from obtaining a very good accuracy.
However, by choosing P = 108 first, and then using P = 109 or P = 1010 if necessary, we were able
to handle all the cases 3 ≤ q ≤ 3000 with 1 ≤ m ≤ 6 and m | (q − 1)/2, with sufficient accuracy
to determine the winner in the “Landau vs. Ramanujan” problem; this required about a week of
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computation time. For the cases in Tables 3, 7, 8, 9 and 11, with the choice P = 108 resulting in a
final accuracy less than 6 decimal digits, we repeated the computation using P = 109 or P = 1010.
Some practical tricks were used to improve the actual running time of this part. First, for a fixed
odd prime q we scanned the set of primes p ≤ P just once storing the partial results of each sum in
the definition of S(m, q) in a matrix having a row for each requested m (the largest possible set in
our implementation of this part is 1 ≤ m ≤ 6). Second, to have the sharpest possible estimate for
the “tails”, for every q we stored the set of gp-values used in the previous procedure so that the
evaluated upper bound for such tails were based just on the effectively used gp and not over every
divisor of q − 1. The computations with P = 108 for every odd prime up to 3000 and 1 ≤ m ≤ 6
were performed on the Dell Optiplex machine already mentioned and required about 40 hours of
computing time. The ones with P ∈ {109, 1010} were performed on six machines of the cluster of
the Dipartimento di Matematica of the University of Padova; in this case the total computing time
amounted to 45 days.

10.1. Accelerated convergence formulae for γk,r. For any J ≥ 2 we rewrite (36) as

T ′

T
(s) =

ζ ′

ζ
(s) +

D′

D
(s) +

∑
gp=2

log p

ps
−

J∑
j=2

(−1)j
∑
gp=2

log p

pjs
+ (−1)J

∑
gp=2

log p

pJs(ps + 1)
.

By Lemma 5, sums of the form
∑

p≡a (mod q)(log p)p−js can be expressed in terms L′/L(js, χ)′s and
sums of the same type, but with j replaced by 2j. The upshot is that we can write the right-hand
side in terms of L′/L(js, χ)′s with j ≤ J and with an error term of the form O(

∑
p(log p)p−(J+1)s).

The same applies to the logarithmic derivative D′/D(s). This reasoning suggests that we can
express T (s) itself in terms of L′/L(js, χ)′s with j ≤ J and a regular function for Re(s) > 1/(J +1).
In the next section we confirm this supposition.

10.1.1. Higher level L-factorability of T (s).

Definition 5. Let q be a fixed odd prime. We say a Dirichlet-series F (s) is L-factorable of level `
if there are integers j, e, eχ,j1 such that

F (s)j = ζ(s)eR(s)
∏̀
j1=1

∏
χ

L(j1s, χ)eχ,j1 , (62)

with R(s) a regular function for Re(s) > 1/(` + 1) and where χ runs over the non-principal
characters modulo q. We say that a set of primes P is L-factorable of level ` if

∏
p∈P(1− p−s)−1 is

L-factorable of level `.

Notice that the product of two L-factorable functions of level ` is L-factorable of level ` again. It
is a classical fact that the set of primes splitting completely in any prescribed subfield of Q(ζq) is
L-factorable of level 1. Thus the set of primes with fp = 1 is L-factorable of level 1. The regular
part R(s) consists of Euler products of the form

∏
fp=j

(1− p−ejs)−1, with ej ≥ 2. Each of these is

L-factorable of level 2, with the new regular part R(s) consisting of Euler products of the form∏
fp=j

(1− p−ejs)−1, with ej ≥ 3. We conclude that for arbitrary ` ≥ 1 the set of primes that split

completely in any subfield of Q(ζq) is L-factorable of level `. Given m dividing q − 1, the set of
primes with fp dividing m is also L-factorable of level `, as this is the set of primes that split
completely in Km. By inclusion-exclusion we then infer that the set of primes p with fp = m is
L-factorable of level `.

Proposition 9. Let q be an odd prime and k ≥ 1 an arbitrary integer. Then T (s) :=
∑

q-σk(n) n
−s

is L-factorable of level `, with ` ≥ 1 arbitrary.
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Proof. The Euler product (33) for T (s) consists of Euler products of the form
∏

gp=m
(1− p−ems)−1,

with m running over the divisors of q − 1 and with em ≥ 1. Recalling that gp = fp/(fp, r) with
r = (k, q − 1), we see that the set of primes with gp = m, is a union of sets of primes of the form
fp = mi. Each of these prime sets is L-factorable of level l and hence so is T (s). �

As usual, let h = (q− 1)/r. From (40) and (5) it follows that T (s) is L-factorable of level 1, with
F (s) = T (s), j = h and e = h− 1 in (62).

Remark 16. Proposition 9 can also be proved using the theory developed in Ettahri et al. [13]
(communication by Olivier Ramaré).

10.2. Special cases. In certain special cases the convergence can be improved. We start by noting
that for k ≥ 1 we have∏

(D
p
)=−1

1

(1− p−ks)2
=

ζ(ks)

L(ks, χD)

∏
p|D

(1− p−ks)
∏

(D
p
)=−1

1

(1− p−2ks)

and ∏
(D
p
)=1

1

(1− p−ks)2
= L(ks, χD)

ζ(ks)

ζ(2ks)

∏
p|D

(1 + p−ks)−1
∏

(D
p
)=1

1

(1− p−2ks)
.

To see this we partition the primes p according to the Legendre symbol
(
D
p

)
and verify that, in

each case, the Euler product factor at p on the left-hand side equals that on the right-hand side.
By logarithmic differentiation we obtain that, for k ≥ 2,∑

(D
p
)=−1

log p

pk − 1
=

∑
(D
p
)=−1

log p

p2k − 1
+

1

2

(
L′

L
(k, χD)− ζ ′

ζ
(k)−

∑
p|D

log p

pk − 1

)
(63)

and ∑
(D
p
)=1

log p

pk − 1
=
∑

(D
p
)=1

log p

p2k − 1
− 1

2

(
L′

L
(k, χD) +

ζ ′

ζ
(k)− 2

ζ ′

ζ
(2k) +

∑
p|D

log p

pk + 1

)
. (64)

Assume that r = (q − 1)/2 and q ≡ 3 (mod 4). In this case the condition gp = 2 is equivalent
with p(q−1)/2 ≡

(
p
q

)
= −1. By quadratic reciprocity we have

(
p
q

)
=
(−q
p

)
. Using (63) we conclude

that ∑
gp=2

log p

p2 − 1
=
∑
gp=2

log p

p4 − 1
+

1

2

(
L′

L
(2, χ−q)−

ζ ′

ζ
(2)− log q

q2 − 1

)
.

Moreover, in this case, the condition gp = 1 is equivalent to
(
p
q

)
= 1; so, inserting formula (64) for

k = q − 1 and k = q into (15), we can improve the convergence ratio of this sum too. In fact, both
formulae (63) and (64) can be iterated several times. Implementing this strategy we were able to
compute γ(q−1)/2,q, as described in Section 3.10, for each odd prime q ≤ 3000 with an accuracy of
50 decimal digits in less than 123 seconds of computing time.

The previous argument requires to compute L′/L(j, χ), for j ≥ 2. To obtain such values we can
use (q odd prime, <(s) > 1) that

L(s, χ) = q−s
q−1∑
a=1

χ(a)ζ(s, a/q) and L′(s, χ) = −(log q)L(s, χ) + q−s
q−1∑
a=1

χ(a)ζ ′(s, a/q),

where ζ(s, x) is the Hurwitz zeta function and ζ ′(s, x) := ∂ζ
∂s

(s, x), <(s) > 1, x > 0. Hence

L′

L
(j, χ) = − log q +

∑q−1
a=1 χ(a)ζ ′(j, a/q)∑q−1
a=1 χ(a)ζ(j, a/q)

. (65)
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10.3. An application of the convergence acceleration technique: the Shanks constant.
In 1964, Shanks [58] was the first to use (63) to study the behavior of B(x), the number of integers
less or equal to x that are the sum of two squares. We show now how this works and how to
improve some of the known results on this problem. Shanks obtained that

B(x) =
Kx√
log x

(
1 +

c

log x
+O

(
1

log2 x

))
,

as x→∞, where K is the Landau-Ramanujan constant (see (11)) and

c =
1

2
+

log 2

4
− γ

4
− 1

4

L′

L
(1, χ−4) +

1

2

∑
p≡3 (mod 4)

log p

p2 − 1
, (66)

with χ−4(·) =
(−4
·

)
being the quadratic Dirichlet character modulo 4. The associated Euler-

Kronecker constant γSB satisfies γSB = 1− 2c by Theorem 1. Iteratively using (63) Jc ≥ 1 times,
we obtain that∑

p≡3 (mod 4)

log p

p2 − 1
=

1

2

Jc∑
j=1

(
L′

L
(2j, χ−4)−

ζ ′

ζ
(2j)− log 2

22j − 1

)
+

∑
p≡3 (mod 4)

log p

p2Jc+1 − 1
, (67)

which, for Jc = 2, gives eq. (18) of [58]. Shanks wrote b instead of K, and obtained a very similar
formula whose truncated form can be written as follows:∑

p≡3 (mod 4)

log
(

1− 1

p2

)
= −

Jb∑
j=1

1

2j
log
(ζ(2j)(1− 2−2

j
)

L(2j, χ−4)

)
+

1

2Jb

∑
p≡3 (mod 4)

log
(

1− 1

p2
Jb+1

)
,

where Jb ≥ 1 is an integer. A straightforward argument proves that the last sum in (67) does not

exceed (log 3) · 41−2Jc/3, so that in order to show that this term is less that 10−α, it is enough to
choose

Jc >
1

log 2
log

(
1 +

α log 10 + log log 3− log 3

2 log 2

)
.

Similar remarks applies to Jb too. For example, for α = 100, it is enough to choose Jb = Jc = 8.
Since χ−4 is an odd primitive character, we can write L′/L(1, χ−4) in terms of the log Γ-function
and of the first χ-Bernoulli number, see, e.g., [29, §3]. Straightforward computations give

L′

L
(1, χ−4) = γ + 2 log 2 + 3 log π − 4 log Γ

(1

4

)
,

and the needed Gamma-value can be obtained using the Arithmetic-Geometric Mean (AGM)
inequality, see, e.g., Borwein-Zucker [5]. The contribution of L′/L(2j, χ−4) can be evaluated using
(65), which in this case becomes

L′

L
(2j, χ−4) = −2 log 2 +

ζ ′(2j, 1/4)− ζ ′(2j, 3/4)

ζ(2j, 1/4)− ζ(2j, 3/4)
. (68)

We remark that for j = 1 the denominator in the previous equation is an integer multiple of the
Catalan constant G, since it is well-known that 16G = ζ(2, 1/4)− ζ(2, 3/4).

Inserting (67) and (68) into (66), we obtain an explicit formula that can be directly used in any
mathematical software in which the Hurwitz zeta function is implemented. Using Pari/Gp, for
instance, and choosing Jc = 8, we can obtain at least 100 correct decimal digits of c (and, in fact,
also for K) in about 38 milliseconds; choosing Jc = 11 we get at least 1000 correct decimal digits in
less than 4 seconds of computation time; in about 383 minutes, with Jc = 16, we can get at least
31000 correct decimal digits (such computations were performed on the Dell Optiplex machine
previously mentioned, using up to 12GB of RAM). In OEIS, the Landau-Ramanujan constant K
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appears as A064533, with about 125000 digits available, while the Shanks constant c is mentioned
as A227158, with about 5000 digits available.

We finally remark that Ettahri, Ramaré and Surel [13] further boosted the idea of Shanks and
gave it a more systematic setting using group theory.

11. Outlook

11.1. Generalizations. The following result of Datskovsky and Guerzhoy [8] shows that Ramanu-
jan type congruences abound.

Classical Theorem 4. For any even integer w ≥ 12 there exists a nonzero cusp form f =∑
a(n)qn1 of weight w with rational Fourier coefficients a(n), so that for every n ≥ 1 we have

vq(a(n)− σw−1(n)) ≥ 1, where q can be any prime divisor of the numerator of the reduced fraction
Bw
2w
, vq is the q-adic valuation and Bw denotes the w-th Bernoulli number.

In case dimSw = 1, it is easy to deduce from this that for f we can take the unique cusp form of
weight w normalized so that a(1) = 1. This allows one to obtain the type (i) congruences satisfying
w > q without a coprimality condition and gives an alternative proof of the second statement in
Proposition 6.

For some congruence subgroups Γ0(N), Ramanujan-type congruences are known where the
relevant Fourier coefficients satisfy a(n) ≡ σk(n) (mod q) for all n coprime to N, see, e.g., Kulle [24].
The associated generating series will be as T (s) above, except for some possible modified Euler
product factors at primes p dividing N. These factors can be easily logarithmically differentiated
and we can express the Euler-Kronecker constant as γk,q plus possibly a sum of terms involving the
primes p dividing N. Dummigan and Fretwell [11] gave a result similar to Classical Theorem 4 for
Γ0(p), with p prime.

The divisor sums arise as Fourier coefficients of Eisenstein series. Over the years, many generalized
Eisenstein series have been considered, for example Eψ,ξ

w , which involves two Dirichlet characters
ψ and ξ (see Diamond and Shurman [10, Thm. 4.5.1]). Its Fourier coefficients are of the form∑

d|n ψ(n
d
)χ(d)dw−1 and can likely also be dealt with using our methods. The non-divisibility

asymptotics, in the special case where ψ is the principal character, were determined by Scourfield
[50, 52]. Here, if χ is a Dirichlet character modulo N, then the divisor sum

∑
d|n χ(d)dw−1 is the

n-th Fourier coefficient of the Eisenstein series of weight w and character χ on Γ0(N), see, e.g., the
book [7, p. 17].

11.2. Regarding our conjectures. One might hope that Conjectures 1 and 2 can be proved
under GRH. Indeed, the analysis of the “Landau vs. Ramanujan problem” using GRH (pioneered
by Ihara [20]) is technically far less demanding; for this, compare Moree [35] (on GRH) with Ford
et al. [15] (unconditional). However, in our case, the bottleneck is represented by the behavior and
slow decay rate of S(3, q) and S(5, q).

11.3. Some open questions.

• Solve the “Landau vs. Ramanujan problem” for non-exceptional primes.
• What are the optimal upper bounds for the prime sums S(m, q)? How do they behave on

average (with m fixed)?
• Consider the number N(x) of pairs (k, q) with 1 ≤ k, q ≤ x with q prime for which Landau

wins, that is, for which γk,q > 1/2. Is it true that Landau wins almost always in the sense
that asymptotically N(x) ∼ x2/ log x?
• Given (any) ε > 0, are there k and q such that |γk,q − 1/2| < ε?
• What is the average behavior of γk,q for q fixed?
• How is γ(q−1)/2,q distributed as q runs over the primes?
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[55] J.-P. Serre, Divisibilité des coefficients des formes modulaires de poids entier, C. R. Acad. Sci. Paris Sér. A 27

(1974), 679–682.
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