Factors predisposing to humoral autoimmunity against brain-antigens in health and disease *Analysis of 49 autoantibodies in over 7000 subjects*

Vinicius Daguano Gastaldi, Justus Bh Wilke, Cosima A. Weidinger, Carolin Walter, Nadine Barnkothe, Bianca Teegen, Felix Luessi, Winfried Stöcker, Fred Lühder, Martin Begemann, Frauke Zipp, Klaus-Armin Nave, Hannelore Ehrenreich

PII:	S0889-1591(22)00421-4
DOI:	https://doi.org/10.1016/j.bbi.2022.10.016
Reference:	YBRBI 4965
To appear in:	Brain, Behavior, and Immunity
Received Date:	9 August 2022
Revised Date:	24 September 2022
Accepted Date:	22 October 2022

Please cite this article as: Daguano Gastaldi, V., Bh Wilke, J., Weidinger, C.A., Walter, C., Barnkothe, N., Teegen, B., Luessi, F., Stöcker, W., Lühder, F., Begemann, M., Zipp, F., Nave, K-A., Ehrenreich, H., Factors predisposing to humoral autoimmunity against brain-antigens in health and disease *Analysis of 49 autoantibodies in over 7000 subjects, Brain, Behavior, and Immunity* (2022), doi: https://doi.org/10.1016/j.bbi.2022.10.016

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier Inc.

Factors predisposing to humoral autoimmunity against brain-antigens in health and disease: Analysis of 49 autoantibodies in over 7000 subjects

 Vinicius Daguano Gastaldi MSc¹, Justus BH Wilke MSc¹, Cosima A. Weidinger BSc¹, Carolin Walter BSc¹, Nadine Barnkothe¹, Bianca Teegen MD², Felix Luessi MD³,
 Winfried Stöcker MD², Fred Lühder PhD⁴, Martin Begemann MD¹, Frauke Zipp MD³, Klaus-Armin Nave PhD⁵ and Hannelore Ehrenreich MD, DVM¹

 ¹Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, *City Campus*, Göttingen
 ²Institute for Experimental Immunology, affiliated to Euroimmun, Lübeck
 ³Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University, Mainz
 ⁴Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center of the Georg August University, Göttingen
 ⁵Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, *City Campus*, Göttingen GERMANY

Running title: Autoantibody seroprevalence & predisposition

Keywords: Age, gender, genetic predisposition, immune check-point genotypes, NMDAR1-AB, GWAS, *APOE4*, brain injury

Word counts: Abstract: 250; Text Body: 3691 words; References: 88; Display Items: 5

*Correspondence:

Prof. Hannelore Ehrenreich, MD, DVM Clinical Neuroscience Max Planck Institute for Multidisciplinary Sciences, City Campus Hermann-Rein-Str.3 37075 Göttingen GERMANY

Phone +49-551-3899615; Fax +49-551-3899670 E-Mail: <u>ehrenreich@mpinat.mpg.de</u>

ABSTRACT

Background: Circulating autoantibodies (AB) against brain-antigens, often deemed pathological, receive increasing attention. We assessed predispositions and seroprevalence/characteristics of 49 AB in >7000 individuals.

Methods: Exploratory cross-sectional cohort study, investigating deeply phenotyped neuropsychiatric patients and healthy individuals of GRAS Data Collection for presence/characteristics of 49 brain-directed serum-AB. Predispositions were evaluated through GWAS of NMDAR1-AB carriers, analyses of immune check-point genotypes, *APOE4* status, neurotrauma. Chi-square, Fisher's exact tests and logistic regression analyses were used.

Results: Study of N=7025 subjects (55.8% male; 41±16 years) revealed N=1133 (16.13%) carriers of any AB against 49 defined brain-antigens. Overall, age dependence of seroprevalence (OR=1.018/year; 95% CI [1.015-1.022]) emerged, but no disease association, neither general nor with neuropsychiatric subgroups. Males had higher AB seroprevalence (OR=1.303; 95% CI [1.144-1.486]). Immunoglobulin class (N for IgM:462; IgA:487; IgG:477) and titers were similar. Abundant were NMDAR1-AB (7.7%). Low seroprevalence (1.25%-0.02%) was seen for most AB (e.g. amphiphysin, KCNA2, ARHGAP26, GFAP, CASPR2, MOG, Homer-3, KCNA1, GLRA1b, GAD65). Non-detectable were others. GWAS of NMDAR1-AB carriers revealed three genome-wide significant SNPs, two intergenic, one in *TENM3*, previously autoimmune disease-associated. Targeted analysis of immune check-point genotypes (*CTLA4, PD1, PD-L1*) uncovered effects on humoral anti-brain autoimmunity (OR=1.55; 95% CI [1.058-2.271]) and disease likelihood (OR=1.43; 95% CI [1.032-1.985]). *APOE4* carriers (~19%) had lower seropositivity (OR=0.766; 95% CI [0.625-0.933]). Neurotrauma predisposed to NMDAR1-AB seroprevalence (IgM: OR=1.599; 95% CI [1.022-2.468]).

Conclusions: Humoral autoimmunity against brain-antigens, frequent across health and disease, is predicted by age, gender, genetic predisposition, and brain injury. Seroprevalence, immunoglobulin class, or titers do not predict disease.

INTRODUCTION

Autoantibodies (AB) in general and brain-directed AB in particular have received increasing attention in the last decades (1-6). Human protein microarrays containing large numbers of antigens in a native conformation, identified abundant and ubiguitous natural IgG AB in human sera, many of which apparently belong to the normal autoimmune repertoire (7-9). Brain-directed AB, dependent on the antigen, can substantially modulate brain function - provided they gain sufficient access to the brain (10, 11). This access is usually limited, but quite excessively possible upon intrathecal synthesis or disruption of the blood-brain-barrier (BBB), as found e.g. due to genetic predisposition (Apolipoprotein E ε4 allele [APOE4] genotype), after traumatic brain injury or stroke, during systemic inflammatory processes and encephalitides, or even under anesthesia (12-16). The 'how-when-where' conditions of intrathecal AB synthesis are still obscure. AB against the N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB), exhibiting the highest seroprevalence presently known for anti-brain AB (10, 17), are particularly interesting. By acutely downregulating NMDAR1 surface expression, they can exert a spectrum of behavioral, neurological, or psychopathological effects, resembling the pharmacology of ketamine-like agents, even including antidepressive properties (3, 9, 18, 19). In case of sudden BBB leakiness, they bind in large amounts to brain tissue which virtually acts as 'targeting sponge' or 'immunoprecipitator' of these AB, massively and specifically extracting them from the circulation (11). Similarly, other brain-directed AB, e.g., against CASPR2 or GABA-a, can bind to respective sites in brain and exert their specific effects (4, 20-23). Intriguingly, Lupus AB can act as positive allosteric modulators at GluN2A-containing NMDAR and impair spatial memory (24). Therefore, serological testing for braindirected AB is an important diagnostic measure in patient care but any expected contribution to clinical syndromes has to be carefully appraised in each individual context.

Associations of e.g. NMDAR1-AB with teratoma/tumors (18), or with infections like Herpes (25) or Influenza A/B (10, 11) were reported. However, the (patho)physiological roles of AB – e.g., those of NMDAR1-AB, highly seroprevalent across mammals (26) - are still incomprehensible. Notably, all naturally occurring NMDAR1-AB have pathogenic potential, irrespective of epitope and immunoglobulin (Ig) class (27). Overall, considerable mysteries have remained for both scientists and clinicians

3

regarding syndromic or disease relevance of AB. This lack of understanding is not infrequently of disadvantage for AB-carrying patients. who may get immunosuppressive treatment too hastily (28). We have to ask under which conditions brain-directed AB in serum do gain pathological significance. Can they help distinguish between health and disease states? In other words, are carriers of these AB more likely to belong to disease groups? Are particular lg classes more relevant than others regarding disease indication? In a nutshell, do peripheral serum titers by themselves tell us anything meaningful for diagnostic conclusions? Can we identify any solid predictors of seroprevalence?

Considering the high and ever-increasing clinical relevance of these questions, the present study was designed to investigate seroprevalence and potential predictors of 49 brain-directed AB in >7000 subjects, healthy or suffering from neuropsychiatric diseases, i.e. schizophrenia, schizoaffective, affective, personality disorders, addiction, autism spectrum, stroke, neurodegenerative and autoimmune diseases. Importantly, we find age, gender, genetic predisposition and brain injury associated with serum AB. However, neither seroprevalence nor Ig class nor titers are solid predictors of any disease. These results question a straightforward pathogenic role of these brain-directed AB and should appeal for more fundamental research to gain a better understanding of their (patho)physiological significance.

METHODS AND MATERIALS

Subjects

Subject data collection in the scope of the extended GRAS (Göttingen Research Association for Schizophrenia) database has been approved by the ethical committee of the Georg-August-University of Göttingen (master committee) as well as by the respective local regulatories/ethical committees of collaborating centers, all in accordance with Helsinki Declaration (29). Individuals were recruited all across Germany and are mostly of German origin. A total of N=7,025 participants are evaluated in this study, with N=4,266 of them previously analyzed for 24 serum AB (17). Of the N=2,759 new individuals, N=1,030 are healthy controls (mostly anonymized blood donors of Department of Transfusion Medicine, Göttingen). The

4

remaining 1,729 individuals add to existing subgroups of the GRAS Data Collection. The newly formed autoimmune group (n=701) and 37 individuals with neurodegenerative disorders were recruited at Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz. For overview of antigens screened and AB seroprevalence in disease groups see Tables 1 and 2.

Serological analyses

Serological analyses were performed as described earlier (17). Briefly, serum samples of all individuals were tested for AB presence using biochip mosaics (Euroimmun, Lübeck, Germany) that contained nonfixed nitrogen-frozen tissue cryosections (4mm; rat hippocampus, monkey cerebellum) and recombinant cell substrates (formalin- or acetone-fixed transfected HEK293 cells). Recombinant protein (autoantigen) expression was validated by immunological methods employing human or commercially available monospecific animal antibodies. A total of 49 different neural antigens, previously associated with autoimmunity/autoimmune disease (2, 25, 30-54) were evaluated: NMDAR1, AGNA, AMPAR, amphiphysin, ANNA-3, AP3B2, AQP4, ARHGAP26, AT1A3, CARPVIII, CASPR2, CNTN1, CNTN2, CV2, DPPX, DRD2, ERC1, flotillin 1/2, GABA-a, GABA-b, GAD65, GFAP, GLRA1b, GluRD2, Homer-3, Hu, IgLON5, ITPR1, KCNA1, KCNA2, LGI1, Ma2, MAG, MBP, mGluR1, mGluR5, MOG, Myelin, neurexin, neurochondrin, NF155, NF186, PCA-2, recoverin, Ri, Sez6l2, Tr/DNER, Yo, Zic-4. Table 1 lists the most frequent antigens with respective references (2, 25, 30-54).

Genotyping

A semi-custom Axiom® myDesignTM genotyping array (Affymetrix, Santa Clara, CA, USA), based on a CEU (Caucasian residents of European ancestry from Utah, USA) marker backbone including 518,722 single nucleotide polymorphisms (SNPs), and a custom marker set including 102,537 SNPs was used for genotyping (detailed description (10)). A total of 493,925 variants passed quality control, had minor allele frequency > 0.05, were in Hardy–Weinberg equilibrium (p > 0.001) and therefore included in genetic analyses.

Genetic association analyses

PLINK v1.90 (55) was used for all genetic association analyses, including calculations of relatedness, principal components, and LD-based clumping (index variant *p* value threshold=0.01). A total of 254,250 variants and 5,393 individuals were available after

these steps. For related individuals, one was randomly excluded in each pair (second to third-degree relatives, PIHAT > 0.185). We executed two different approaches: (ii) A genome-wide association study (GWAS) with NMDAR1-AB seropositivity as target phenotype (254,250 SNPs – Bonferroni threshold 1.97e-07) and (i) a hypothesis-driven strategy, including all 9 directly genotyped SNPs available in our array of immune-checkpoint genes (*cytotoxic T-lymphocyte-associated protein 4 [CTLA-4]*: rs231777, rs3087243, rs11571316; *programmed cell death protein 1 [PD-1]*: rs28680420; *programmed cell death protein ligand 1 [PD-L1]*: rs1411262, rs2890658, rs2297137, rs2297136, rs4143815; Bonferroni threshold 0.0055). All *p* values adjusted using "p.adjust" from R (56).

APOE Genotyping

APOE genotyping was done using KASP by Design assay (LGC/Biosearch[™] Technologies, Berlin, Germany), targeting APOE SNPs rs7412 and rs429358, as described earlier (57). Plates were run using LightCycler® 480 II (Roche Diagnostics Ltd., Rotkreuz, Switzerland) and the measured values exported using LightCycler® 480 software (v1.5.0.39). Final genotype assignment was done using R (56).

Neurotrauma evaluation

Neurotrauma (NT) information was available for a subset of GRAS individuals (N=2061), all based on semi-standardized interviews that were additionally complemented by medical/discharge letters (Table 3). Based on conditions underlying categories, an **overall severity score** was calculated. For each individual, the NT with highest severity gave an initial rank. Any preceding or repeated NT, provoking potential accumulation of consequences, received additional NT scores, dependent on category, all summed up with initial rank (Table 3). Subjects were then dichotomously divided into 2 groups: Individuals with severity score of \geq 2.5 considered as severe head injury (NT+) and <2.5 as not having had severe head injury (NT-).

Statistical Analysis

Chi-square tests and Fisher's exact tests were used to compare categorical variables between groups, with odds ratios and Wald confidence intervals calculated using R package "epitools" (58). Logistic regression analysis was employed to assess effects of disease status, age, gender, neurotrauma, *APOE4* genotype on seropositivity. Titer values were compared by Wilcoxon Rank Sum test with healthy controls as reference, using R package "e1071" (59). Statistical tests were conducted using R (56) with

RStudio (60). Statistical significance was set to 0.05 after Bonferroni correction where indicated. Figures were plotted using R package "ggplot2" (61) or GraphPad Prism (62).

RESULTS

Distribution of 15 most seroprevalent brain-directed AB across disease & health

A comprehensive overview of the 15 most seroprevalent of our selected 49 braindirected AB across disease groups and health, i.e., NMDAR1-AB, amphiphysin, KCNA2, ARHGAP26, GFAP, CASPR2, MOG, Homer-3, KCNA1, GLRA1b, GAD65, Ma2, Yo, NF115, and AP3B2, is presented in Table 2. Information includes number of seropositive subjects, gender, mean age, Ig classes, and titer range. AB below cutoff of ≤0.25% were NF186, CNTN1, myelin, neurochondrin, flotillin1/2, CNTN2, IgLON5, AMPA, Sez6l2, recoverin, neurexin, mGluR1, ITPR1, GABA-b, LGI1, mGluR5, DRD2, CV2, Hu, Tr/DNER, AQP4, GluDR2, Zic-4, ERC1 (*data not shown*). Non-detectable in N=7025 subjects were GABA-a, MBP, AT1A3, Ri, AGNA, CARPVIII, PCA-2, ANNA-3, DPPX, MAG, all expected to be extremely rare (63, 64). For brief biological description of the 15 most seroprevalent brain-directed AB see Table 1. Analysis of 49 defined anti-brain AB in serum of >7000 subjects, healthy or diagnosed with neuropsychiatric diseases, revealed >16% carriers of one or more of these selected AB.

Impact of disease status, age or gender on seroprevalence of brain-directed AB

Using logistic regression with any seroprevalence of all 49 brain-directed AB (no matter which Ig class or titer) as dependent variable, we first evaluated the overall impact of age, gender and disease versus health. Neither general disease status nor individual disease groups predicted AB seropositivity (all p>.05). The same negative result was obtained when only NMDAR1-AB, with highest seroprevalence, or all non-NMDAR1-AB together (all p>.05) were checked analogously. Age is strongly predictive of seropositivity when all 49 AB (OR=1.018/year, 95% CI [1.015-1.022], p=2.95e-21) or only NMDAR1-AB (OR=1.029/year, 95% CI [1.023-1.034], p=2.2e-27) are considered. However, age is just weakly predictive for non-NMDAR1-AB (OR=1.007/year, 95% CI [1.002-1.012], p=.0028) (Figure 1 A, B). In contrast, gender is not (yet) significantly associated with seropositivity when considering just NMDAR1-AB (p=.052). Here,

significance is driven by the heterogeneous non-NMDAR1-AB 'bag' – with higher seroprevalence of males (OR=1.365, 95% CI [1.155-1.615], p=.0003) (Figure 1 A, B). Interestingly, but still unexplained, IgM seropositivity is not associated with gender in any of the tested scenarios (all p>.05).

Influence of anti-brain AB Ig class and titer regarding health or disease status

Evaluating the above obtained negative results on disease versus health status separately for the different Ig classes of brain-directed AB, including IgG, did not result in any appreciable association with disease (all p>.05). We then tested whether the distribution of AB titers was different between health and disease using Wilcoxon Rank Sum test. Positive individuals for either any disease or for each disease group separately were paired with matching healthy controls regarding age and gender to the maximum possible extent. For each individual, the highest titer (independent of Ig class) for each AB was selected, i.e., one individual could contribute to the comparison with 2 or 3 titers if seropositive for different AB. Importantly, no differences in titer distribution were found regardless of disease group (all p>.05).

Genome-wide association study of NMDAR1-AB carriers versus non-carriers

We next started a number of approaches to identify potential genetically predisposing factors for seroprevalence of AB against brain-antigens. An ideal readout for GWAS are NMDAR1-AB, most abundant for still unknown reasons, whereas low seroprevalence is seen for most other screened AB, some even being non-detectable. A Manhattan plot illustrating the GAS of NMDAR1-AB carriers is presented in Figure 1 C. GWAS revealed three genome-wide significant SNPs, two intergenic (rs155850 – risk allele T on chromosome3 and rs10159862 – risk allele G on chromosome10), and one intronic in *TENM3* (rs6820921 – risk allele C on chromosome4), a gene associated with childhood autoimmune diseases (65).

Targeted analysis of immune check-point genotypes (CTLA4, PD1, PD-L1)

Subsequently, we performed a hypothesis-driven analysis on 9 SNPs of immunecheckpoint genes, *CTLA-4*, *PD-1*, or its ligand, *PD-L1*. We had previously shown in a smaller sample that *CTLA4* genotypes predispose to serum NMDAR1-AB in humans (19). Now, we also included SNPs in *PD-1* and *PD-L1* in our analyses of 49 braindirected AB in a population of N=5223 individuals with information available on all originally screened 9 SNPs, 5 of which were found here to be risk SNPs (*CTLA-4* - 2

SNPs, *PD-1* - 1 SNP, *PD-L1* - 2 SNPs; Table 4). A model, accumulating these 5 risk SNPs, and analyzing in a dichotomous fashion the presence of 0-3 versus 4-5 risk genotypes, uncovered effects not only on humoral anti-brain autoimmunity (OR=1.55; 95% CI [1.058-2.271]), but very interestingly also on disease likelihood (OR=1.43; 95% CI [1.032-1.985]). Subdivision of disease entities revealed that an association with 'classical' psychiatric diseases does not reach significance (p=0.223), whereas an association is observed between number of immune-checkpoint risk genotypes and probability of neurodegenerative disease (OR=2.04; 95% CI [1.326–3.131]; p=.0009; Figure 1 D).

Potential roles of APOE4 genotypes for seroprevalence of brain-directed AB

Determination of *APOE4* genotypes in our population resulted in the expected range of around 20% (heterozygous 17.41%; homozygous 1.24%). Surprising at first view, however, regression analysis revealed that *APOE4* carriers with their known 'leaky' BBB (12, 13, 66-68) have a lower chance of being AB seropositive (OR=0.766, 95% CI [0.625-0.933], p=.009). Due to effects of brain-bound AB, seropositive compared to seronegative *APOE4* carriers might have a higher prevalence or severity of neuropsychiatric phenotypes. However, evaluating just presence/absence of a disease as readouts did not yet support this idea (p>.05 for all chi-squares).

Influence of previous neurotrauma on seroprevalence of brain-directed AB

As an environmental risk factor, we evaluated neurotrauma in a dichotomous fashion, dependent on symptom severity (Table 3). Indeed, neurotrauma was associated with a higher chance of carrying serum NMDAR1-AB of the IgM class (OR=1.599; 95% CI [1.022-2.468], p=.036).

DISCUSSION

The present work has been designed to provide a thus far lacking, comprehensive investigation of brain-directed serum AB which should assist clinicians as well as basic researchers in putting AB findings in more solid perspective. We investigated seroprevalence and potential predictors of 49 selected, brain-directed AB in >7000 subjects, healthy or suffering from neuropsychiatric diseases, a number never

analyzed and reported before. In fact, thousands of different AB, likely belonging to the physiological autoimmune repertoire of individual mammals, circulate in blood (7). Brain-directed AB may gain pathophysiological significance as they can substantially modulate brain function when crossing the BBB in sufficient amounts or upon their intrathecal production (1). Here, we report humoral autoimmunity against brain-antigens equally frequent across health and disease, with overall >16% carriers of one or more of these selected AB, and with age, gender, genetic predisposition and brain injury as predictors. We note that our present AB selection represents only a small part of circulating AB (7), but findings obtained with them may be widely representative.

The global age association of AB seroprevalence seemed mainly driven by NMDAR1-AB. We note, however, that grouping all non-NMDAR1-AB, due to their overall low seroprevalence, essentially generates a 'mixed bag', i.e., not all AB may follow the same rules. Nevertheless, there seems to be a general tendency of age association at least for many of these AB. Significance of gender association in turn is driven by the heterogeneous non-NMDAR1-AB 'bag' – with higher seroprevalence of males. This is somewhat unexpected, since females are more affected by autoimmune disorders (69-74). Together, the observed age and gender dependence of seroprevalence of our selected 49 anti-brain AB, their apparent lack of disease association, both general and with neuropsychiatric subgroups, and their similar overall Ig class distribution and titer ranges may represent a more general picture to be expected from thousands of serum AB (7, 8).

As NMDAR1-AB of the IgG class are often connected to autoimmune encephalitis, we screened the literature to compare the titer values found here with those of patients with confirmed anti-NMDAR encephalitis. In a recently published Dutch cohort of anti-NMDAR encephalitis patients (n=104), two sets of NMDAR-1 IgG titer ranges, also determined by commercial cell-based assays from Euroimmun, were reported: (i) Subjects <45 years with titer median 1:800 (range 1:100-1:6,400) and (ii) subjects >45 years with titer median 1:32, ranges 1:10-1:1,000), which we expected, as no individuals in our cohort were diagnosed with anti-NMDAR encephalitis. Notably, however, out of 55 individuals, positive for NMDAR-1 IgG, 18 (32.73%) had titers of 1:100 or higher, thus were comparable to numbers presented in the Dutch study (75).

In our genetic approaches to identify potential predisposing factors for seroprevalence of AB against brain-antigens, we performed a GWAS of NMDAR1-AB carriers versus non-carriers. Even though the obtained genome-wide significant hits do not allow deeper mechanistic insight at this point (as with most GWAS studies), they underline a genetic influence at least on NMDAR1-AB carrier status. An interesting find, however, may be *TENM3*, a gene previously associated with childhood autoimmune diseases (65), which encodes a large transmembrane protein expressed in neurons, possibly involved in the regulation of neuronal development (76).

Next, we conducted a hypothesis-driven analysis of immune-checkpoint genotypes (SNPs) for CTLA-4, PD-1, or its ligand, PD-L1, that resulted in 5 SNPs associated with AB seroprevalence. These genes are expressed by T-cells and serve as control elements of their immune response. Immune checkpoint inhibitors block these molecules and enhance antitumor T-cell activity (77, 78). While providing clinical benefits in a percentage of patients with advanced cancers, they are usually associated with a remarkable spectrum of immune-related adverse events, including autoimmunity (79, 80). CTLA-4 for example is an important regulator of the immune response, i.e., reactivity to foreign and self-antigens. Allelic variation of CTLA-4 or CTLA-4 blockade by anti-CTLA4 treatment influences the signaling threshold of CD4 T-cells (79, 81), thereby augmenting antitumor immunity but also exacerbating or inducing autoimmune disease. We had previously shown in a smaller sample that CTLA4 genotypes predispose to serum NMDAR1-AB in humans (19). Accumulating 5 risk SNPs of immune-checkpoint genes revealed effects not only on humoral anti-brain autoimmunity, but also on likelihood of neurodegenerative disease. Provided replication in independent samples, this would indicate a role of the genetic immune checkpoint constellation also for neurodegeneration.

APOE4 genotypes are known to be risk factors for various diseases, e.g., Morbus Alzheimer, or to predict unfavorable outcomes, e.g., of stroke or brain injury. These risks may be related to their negative influence on BBB integrity (12, 13, 66-68). We thus wondered whether such genetically induced higher accessibility of brain tissue to the immune system would be reflected in humans by enhanced seroprevalence of AB directed against brain-antigens, as hypothesized by some authors for ischemic stroke or brain injury (82). Determination of *APOE4* genotypes in our population resulted in the expected range of around 20%. Surprising at first view, however, *APOE4* carriers

11

have a lower chance of being AB seropositive. This phenomenon is in good agreement with our earlier findings in *ApoE* KO mice (19) and may well be explained by the chronically leaky BBB. Brain-directed AB can under these circumstances readily cross the dysfunctional BBB and specifically bind to brain tissue, which acts as 'immunoprecipitator', as demonstrated in experimental work in *ApoE* KO mice (11). This finding spontaneously suggested that seropositive compared to seronegative *APOE4* carriers might have a higher prevalence or severity of neuropsychiatric phenotypes due to the effects of bound AB. However, just appraising presence of a disease did not back this assumption. We note as important limitations, that we did not consider in this study the severity of disease symptoms, and that the immunoprecipitator role of the brain, efficiently extracting AB from the circulation, may lead to false negative seroprevalence data.

A recognized inducer of acute BBB breakdown is traumatic brain injury. In addition, multiple, mechanistically widely unexplained, late downstream sequelae of neurotrauma are known, e.g., various organ dysfunctions and increased risk of mental health problems (83-85). Some of these consequences might be autoimmune-mediated and autoimmunity in turn a corollary of BBB disruption (82). In fact, a standardized small brain lesion in mice led to BBB breakdown and months later to increased NMDAR1-AB seroprevalence (19). Here we show also in humans first exploratory signals that neurotrauma, as environmental risk factor, was associated with a higher chance of carrying serum NMDAR1-AB of the IgM class. As after ischemic stroke, this finding may indicate potential long-term consequences of ongoing presence of circulating AB, e.g. years later neuropsychiatric symptoms including cognitive dysfunction and fatigue (86).

LIMITATIONS

Despite evaluating >7000 subjects with >16% seropositive individuals among them, total N numbers can never be large enough, particularly when subgroups are to be assessed. In addition to some limitations already mentioned above, appraising a 'mixed bag of AB', put together to compare with the highly frequent NMDAR1-AB, has its clear confines, as not all AB may follow the same rules. But it certainly is a worthwhile start in our struggle to understand their roles and functions. In contrast, NMDAR1-AB can be analyzed separately, and GWAS even resulted in genome-wide

significant hits, however, of still unknown function. Certainly, a replication GWAS would be desirable to confirm our findings. Also, detection of autoantibodies was limited here to commercially available *in vitro* diagnostic assays, as we focused on clinical relevance. However, in some cases, the use of live cell-based assays for NMDAR1-AB may be desirable which are believed to be more sensitive (87). The fact that the 49 AB are just a selection and 'represent' probably thousands of others may be seen as another limitation. Here, use of tissue-based assays can be useful for the identification of novel CNS-directed autoantibodies (88), but this was clearly not the purpose of the present study. Another limitation is that not all potential predisposing factors could be investigated here. Viral infections are among them, and also other influences, e.g., the microbiome, have been suggested, but could not be included in the present study.

CONCLUSIONS

Humoral autoimmunity against brain-antigens is frequent across health and disease, and predicted by age, gender, genetic predisposition, and brain injury. Important for clinical practice, seroprevalence, Ig class or titers alone do not predict disease. Nevertheless, serological testing of brain-directed AB is of high diagnostic and therapeutic importance once their syndrome relevance is carefully considered in full context using multimodal approaches (including cerebrospinal fluid analysis, magnetic resonance imaging and electroencephalography). Much work needs to be done to better understand the physiological significance of circulating AB and to clearly identify situations that lead to their pathological consequences.

Acknowledgements

The authors thank all subjects for participating in the study, and the many colleagues who have contributed over the past decades to the extended GRAS Data Collection.

List of abbreviations

Apolipoprotein E ε4 allele - APOE4 Autoantibodies - AB Blood-brain-barrier - BBB Cytotoxic T-lymphocyte-associated protein 4 - CTLA-4 Genome-wide association study - GWAS Göttingen Research Association for Schizophrenia - GRAS Immunoglobulin - Ig Neurotrauma - NT Programmed cell death protein 1 - PD-1 Programmed cell death protein 1 - PD-1 Single nucleotide polymorphism - SNP

Declarations

Ethical approval

The GRAS data collection has been approved by the ethical committee of the Georg-August-University of Göttingen (master committee) as well as by the respective local regulatories/ethical committees of all collaborating centers.

Data availability statement

Due to the data privacy agreement, specific patient data will not be shared.

Conflict of Interest Statement

Winfried Stöcker is head and Bianca Teegen full-time employee of a diagnostic reference laboratory, integrated into patient care, collaborating with the company *Euroimmun*, nowadays *PerkinElmer*. All other authors declare no subject-related conflict of interest.

Funding

This work was supported by the Max Planck Society, the Max Planck Förderstiftung, the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), via DFG-Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), DFG-TRR 274/1 2020 – 408885537, as well as CRC-TR128 and CRC-TR1292. VDG received support from the IMPRS-Genome Science PhD program. The funders of the study had no role in the study design, data collection, data analysis, data interpretation, writing of the report, or the decision to submit the article for publication. All authors had full access to the data in the study and had final responsibility for the decision to submit for publication.

Author Contributions

Concept, design: HE and VDG Drafting manuscript and display items: HE, VDG and JBHW. Data acquisition: VDG, JBHW, CoW, CaW, NB, BT, FL, WS, FL, MB, FZ, KAN, HE. All authors read and approved the final version of the manuscript.

LEGEND to FIGURE 1

A. Predicted NMDAR1-AB seropositivity per age group and gender. Note the strong association between predicted seropositivity and age. Males are more likely to be NMDAR1-AB seropositive, although the lower limit of the CI goes slightly below 1.

B: Predicted non-NMDAR1-AB seropositivity per age group and gender. Males are more likely to be non-NMDAR-1 AB seropositive, but the association between predicted seropositivity and age is weaker compared to NMDAR1-AB. *Note that we are considering a 'mixed bag' of AB which may not all follow the same laws.*

C. Manhattan plot of genome-wide association analysis for NMDAR1-AB seropositivity. The x axis represents chromosomal position and the y axis gives the significance (–log10(P); 2-tailed) of association as calculated by PLINK's Genotypic (2df) test.

D. Chi-square comparison between dichotomously divided groups of individuals with 0-3 versus 4-5 immune-checkpoint risk genotypes in the accumulation model. Individuals with 4-5 risk genotypes are more likely to be AB seropositive and to have a disease diagnosis. Dividing the latter into classical psychiatric and neurodegenerative disease diagnoses reveals that the disease association of the accumulation model is mainly driven by neurodegeneration.

REFERENCES

1. Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT (2009): Losing your nerves? Maybe it's the antibodies. *Nat Rev Immunol*. 9:449-456.

2. Pruss H (2021): Autoantibodies in neurological disease. *Nat Rev Immunol*. 21:798-813.

3. Ehrenreich H (2017): Autoantibodies against the N-Methyl-d-Aspartate Receptor Subunit NR1: Untangling Apparent Inconsistencies for Clinical Practice. *Front Immunol*. 8:181.

4. Giannoccaro MP, Wright SK, Vincent A (2019): In vivo Mechanisms of Antibody-Mediated Neurological Disorders: Animal Models and Potential Implications. *Front Neurol*. 10:1394.

5. Pollak TA, Lennox BR, Muller S, Benros ME, Pruss H, Tebartz van Elst L, et al. (2020): Autoimmune psychosis: an international consensus on an approach to the diagnosis and management of psychosis of suspected autoimmune origin. *Lancet Psychiatry*. 7:93-108.

6. Endres D, Lungen E, Hasan A, Kluge M, Frohlich S, Lewerenz J, et al. (2022): Clinical manifestations and immunomodulatory treatment experiences in psychiatric patients with suspected autoimmune encephalitis: a case series of 91 patients from Germany. *Mol Psychiatry*.

7. Nagele EP, Han M, Acharya NK, DeMarshall C, Kosciuk MC, Nagele RG (2013): Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. *PLoS One*. 8:e60726.

8. Cohen IR, Efroni S (2019): The Immune System Computes the State of the Body: Crowd Wisdom, Machine Learning, and Immune Cell Reference Repertoires Help Manage Inflammation. *Front Immunol*. 10:10.

9. Ehrenreich H (2018): Autoantibodies against N-methyl-d-aspartate receptor 1 in health and disease. *Curr Opin Neurol*. 31:306-312.

10. Hammer C, Stepniak B, Schneider A, Papiol S, Tantra M, Begemann M, et al. (2014): Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. *Mol Psychiatry*. 19:1143-1149.

11. Castillo-Gomez E, Kastner A, Steiner J, Schneider A, Hettling B, Poggi G, et al. (2016): The brain as immunoprecipitator of serum autoantibodies against N-Methyl-D-aspartate receptor subunit NR1. *Ann Neurol.* 79:144-151.

12. Montagne A, Nation DA, Sagare AP, Barisano G, Sweeney MD, Chakhoyan A, et al. (2020): APOE4 leads to blood-brain barrier dysfunction predicting cognitive decline. *Nature*. 581:71-76.

13. Zerche M, Weissenborn K, Ott C, Dere E, Asif AR, Worthmann H, et al. (2015): Preexisting Serum Autoantibodies Against the NMDAR Subunit NR1 Modulate Evolution of Lesion Size in Acute Ischemic Stroke. *Stroke*. 46:1180-1186.

14. Wilke JBH, Hindermann M, Berghoff SA, Zihsler S, Arinrad S, Ronnenberg A, et al. (2021): Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis. *Mol Psychiatry*. 26:7746-7759.

15. Spieth L, Berghoff SA, Stumpf SK, Winchenbach J, Michaelis T, Watanabe T, et al. (2021): Anesthesia triggers drug delivery to experimental glioma in mice by hijacking caveolar transport. *Neurooncol Adv.* 3:vdab140.

16. Teller J, Jung C, Wilke JBH, Schimmelpfennig S-D, Hindermann M, Hinken L, et al. (2022): Autoantibodies against NMDAR subunit NR1 disappear from blood upon anesthesia. *Brain, Behavior, & Immunity - Health*.100494.

17. Dahm L, Ott C, Steiner J, Stepniak B, Teegen B, Saschenbrecker S, et al. (2014): Seroprevalence of autoantibodies against brain antigens in health and disease. *Ann Neurol*. 76:82-94.

18. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. (2008): Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. *Lancet Neurol*. 7:1091-1098.

19. Pan H, Steixner-Kumar AA, Seelbach A, Deutsch N, Ronnenberg A, Tapken D, et al. (2021): Multiple inducers and novel roles of autoantibodies against the obligatory NMDAR subunit NR1: a translational study from chronic life stress to brain injury. *Mol Psychiatry*. 26:2471-2482. 20. Kreye J, Wright SK, van Casteren A, Stoffler L, Machule ML, Reincke SM, et al. (2021): Encephalitis patient-derived monoclonal GABAA receptor antibodies cause epileptic seizures. *J Exp Med*. 218.

21. Giannoccaro MP, Menassa DA, Jacobson L, Coutinho E, Prota G, Lang B, et al. (2019): Behaviour and neuropathology in mice injected with human contactin-associated protein 2 antibodies. *Brain*. 142:2000-2012.

22. Fernandes D, Santos SD, Coutinho E, Whitt JL, Beltrao N, Rondao T, et al. (2019): Disrupted AMPA Receptor Function upon Genetic- or Antibody-Mediated Loss of Autism-Associated CASPR2. *Cereb Cortex*. 29:4919-4931.

23. Dawes JM, Weir GA, Middleton SJ, Patel R, Chisholm KI, Pettingill P, et al. (2018): Immune or Genetic-Mediated Disruption of CASPR2 Causes Pain Hypersensitivity Due to Enhanced Primary Afferent Excitability. *Neuron*. 97:806-822 e810.

24. Chan K, Nestor J, Huerta TS, Certain N, Moody G, Kowal C, et al. (2020): Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. *Nat Commun.* 11:1403.

25. Pruss H, Finke C, Holtje M, Hofmann J, Klingbeil C, Probst C, et al. (2012): N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. *Ann Neurol*. 72:902-911.

26. Pan H, Oliveira B, Saher G, Dere E, Tapken D, Mitjans M, et al. (2019): Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. *Mol Psychiatry*. 24:1489-1501.

27. Castillo-Gomez E, Oliveira B, Tapken D, Bertrand S, Klein-Schmidt C, Pan H, et al. (2017): All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class. *Mol Psychiatry*. 22:1776-1784.

28. Ehrenreich H, Gastaldi VD, Wilke JBH (2022): Quo Vaditis Anti-Brain Autoantibodies: Causes, Consequences, or Epiphenomena? *Biol Psychiatry*. 92:254-255.

29. Ribbe K, Friedrichs H, Begemann M, Grube S, Papiol S, Kastner A, et al. (2010): The crosssectional GRAS sample: a comprehensive phenotypical data collection of schizophrenic patients. *BMC Psychiatry*. 10:91.

30. Dalmau J, Tuzun E, Wu HY, Masjuan J, Rossi JE, Voloschin A, et al. (2007): Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. *Ann Neurol*. 61:25-36.

31. Ma J, Zhang T, Jiang L (2017): Japanese encephalitis can trigger anti-N-methyl-d-aspartate receptor encephalitis. *Journal of Neurology*. 264:1127-1131.

32. De Camilli P, Thomas A, Cofiell R, Folli F, Lichte B, Piccolo G, et al. (1993): The synaptic vesicleassociated protein amphiphysin is the 128-kD autoantigen of Stiff-Man syndrome with breast cancer. *Journal of Experimental Medicine*. 178:2219-2223.

33. Dalmau J, Geis C, Graus F (2017): Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System. *Physiol Rev.* 97:839-887.

34. Abboud H, Probasco JC, Irani S, Ances B, Benavides DR, Bradshaw M, et al. (2021): Autoimmune encephalitis: proposed best practice recommendations for diagnosis and acute management. *J Neurol Neurosurg Psychiatry*. 92:757-768.

35. Hart IK, Waters C, Vincent A, Newland C, Beeson D, Pongs O, et al. (1997): Autoantibodies detected to expressed K+ channels are implicated in neuromyotonia. *Ann Neurol*. 41:238-246.

36. Jarius S, Wandinger KP, Horn S, Heuer H, Wildemann B (2010): A new Purkinje cell antibody (anti-Ca) associated with subacute cerebellar ataxia: immunological characterization. *Journal of Neuroinflammation*. 7:21.

37. Fang B, McKeon A, Hinson SR, Kryzer TJ, Pittock SJ, Aksamit AJ, et al. (2016): Autoimmune Glial Fibrillary Acidic Protein Astrocytopathy: A Novel Meningoencephalomyelitis. *JAMA Neurol*. 73:1297-1307.

38. Tanaka J, Nakamura K, Takeda M, Tada K, Suzuki H, Morita H, et al. (1989): Enzyme-linked immunosorbent assay for human autoantibody to glial fibrillary acidic protein: higher titer of the antibody is detected in serum of patients with Alzheimer's disease. *Acta Neurol Scand*. 80:554-560.

39. Zhang Z, Zoltewicz JS, Mondello S, Newsom KJ, Yang Z, Yang B, et al. (2014): Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein and Its Breakdown Products. *PLoS ONE*. 9:e92698.

40. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, et al. (2010): Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactinassociated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. *Brain*. 133:2734-2748.

41. Sabatino JJ, Pröbstel A-K, Zamvil SS (2019): B cells in autoimmune and neurodegenerative central nervous system diseases. *Nature Reviews Neuroscience*. 20:728-745.

42. Xiao BG, Linington C, Link H (1991): Antibodies to myelin-oligodendrocyte glycoprotein in cerebrospinal fluid from patients with multiple sclerosis and controls. *Journal of Neuroimmunology*. 31:91-96.

43. Zuliani L, Sabater L, Saiz A, Baiges JJ, Giometto B, Graus F (2007): Homer 3 autoimmunity in subacute idiopathic cerebellar ataxia. *Neurology*. 68:239-240.

44. Hoftberger R, Sabater L, Ortega A, Dalmau J, Graus F (2013): Patient with homer-3 antibodies and cerebellitis. *JAMA Neurol*. 70:506-509.

45. Hutchinson M, Waters P, McHugh J, Gorman G, O'Riordan S, Connolly S, et al. (2008): Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. *Neurology*. 71:1291-1292.

46. Swayne A, Tjoa L, Broadley S, Dionisio S, Gillis D, Jacobson L, et al. (2018): Antiglycine receptor antibody related disease: a case series and literature review. *Eur J Neurol*. 25:1290-1298.

47. Solimena M, Folli F, Denis-Donini S, Comi GC, Pozza G, De Camilli P, et al. (1988): Autoantibodies to Glutamic Acid Decarboxylase in a Patient with Stiff-Man Syndrome, Epilepsy, and Type I Diabetes Mellitus. *New England Journal of Medicine*. 318:1012-1020.

48. Voltz R, Gultekin SH, Rosenfeld MR, Gerstner E, Eichen J, Posner JB, et al. (1999): A Serologic Marker of Paraneoplastic Limbic and Brain-Stem Encephalitis in Patients with Testicular Cancer. *New England Journal of Medicine*. 340:1788-1795.

49. Jarius S, Wildemann B (2015): 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook. *J Neuroinflammation*. 12:168.

50. Mathey EK, Derfuss T, Storch MK, Williams KR, Hales K, Woolley DR, et al. (2007): Neurofascin as a novel target for autoantibody-mediated axonal injury. *J Exp Med*. 204:2363-2372.

51. Kira J-I, Yamasaki R, Ogata H (2019): Anti-neurofascin autoantibody and demyelination. *Neurochemistry International*. 130:104360.

52. Newman LS, McKeever MO, Okano HJ, Darnell RB (1995): β-NAP, a cerebellar degeneration antigen, is a neuron-specific vesicle coat protein. *Cell*. 82:773-783.

53. Honorat JA, Lopez-Chiriboga AS, Kryzer TJ, Komorowski L, Scharf M, Hinson SR, et al. (2019): Autoimmune gait disturbance accompanying adaptor protein-3B2-IgG. *Neurology*. 93:e954-e963.

54. Peterson K, Rosenblum MK, Kotanides H, Posner JB (1992): Paraneoplastic cerebellar degeneration. I. A clinical analysis of 55 anti-Yo antibody-positive patients. *Neurology*. 42:1931-1937.

55. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. (2007): PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet*. 81:559-575.

56. R Core Team (2021): R: A Language and Environment for Statistical Computing. 4.1.0 ed: R Foundation for Statistical Computing.

57. He C, Holme J, Anthony J (2014): SNP Genotyping: The KASP Assay. In: Fleury D, Whitford R, editors. *Crop Breeding: Methods and Protocols*. New York, NY: Springer New York, pp 75-86.

58. Aragon TJ (2020): epitools: Epidemiology Tools. 0.5-10.1 ed.

59. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2021): e1071: Misc Functions of the Department of Statistics, Probability Theory Group, TU Wien. 1.7-9 ed.

60. RStudio Team (2020): RStudio: Integrated Development for R. 1.4.1103 ed: RStudio, PBC.

61. Wickham H (2016): *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

62. Software G (2021): GraphPad Prism. v9.3.1 ed: GraphPad Software.

63. Saether SG, Schou M, Stoecker W, Teegen B, Borowski K, Vaaler A, et al. (2017): Onconeural Antibodies in Acute Psychiatric Inpatient Care. *J Neuropsychiatry Clin Neurosci*. 29:74-76.

64. Mantere O, Saarela M, Kieseppa T, Raij T, Mantyla T, Lindgren M, et al. (2018): Anti-neuronal anti-bodies in patients with early psychosis. *Schizophr Res.* 192:404-407.

65. Li YR, Li J, Zhao SD, Bradfield JP, Mentch FD, Maggadottir SM, et al. (2015): Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. *Nat Med*. 21:1018-1027.

66. Pendlebury ST, Poole D, Burgess A, Duerden J, Rothwell PM, Oxford Vascular S (2020): APOEepsilon4 Genotype and Dementia Before and After Transient Ischemic Attack and Stroke: Population-Based Cohort Study. *Stroke*. 51:751-758.

67. McFadyen CA, Zeiler FA, Newcombe V, Synnot A, Steyerberg E, Gruen RL, et al. (2021): Apolipoprotein E4 Polymorphism and Outcomes from Traumatic Brain Injury: A Living Systematic Review and Meta-Analysis. *J Neurotrauma*. 38:1124-1136.

68. Knox EG, Aburto MR, Clarke G, Cryan JF, O'Driscoll CM (2022): The blood-brain barrier in aging and neurodegeneration. *Mol Psychiatry*.

69. Gleicher N, Barad DH (2007): Gender as risk factor for autoimmune diseases. *J Autoimmun*. 28:1-6.

70. Hayter SM, Cook MC (2012): Updated assessment of the prevalence, spectrum and case definition of autoimmune disease. *Autoimmun Rev.* 11:754-765.

71. Ngo ST, Steyn FJ, McCombe PA (2014): Gender differences in autoimmune disease. *Front Neuroendocrinol*. 35:347-369.

72. Roberts MH, Erdei E (2020): Comparative United States autoimmune disease rates for 2010-2016 by sex, geographic region, and race. *Autoimmun Rev.* 19:102423.

73. Voskuhl RR (2020): The effect of sex on multiple sclerosis risk and disease progression. *Multiple Sclerosis Journal*. 26:554-560.

74. Huang X, Zhang Q, Zhang H, Lu Q (2022): A Contemporary Update on the Diagnosis of Systemic Lupus Erythematosus. *Clin Rev Allergy Immunol*.

75. Bastiaansen AEM, de Bruijn MAAM, Schuller SL, Martinez-Hernandez E, Brenner J, Paunovic M, et al. (2022): Anti-NMDAR Encephalitis in the Netherlands, Focusing on Late-Onset Patients and Antibody Test Accuracy. *Neurology - Neuroimmunology Neuroinflammation*. 9:e1127.

76. Tucker RP, Chiquet-Ehrismann R (2006): Teneurins: A conserved family of transmembrane proteins involved in intercellular signaling during development. *Developmental Biology*. 290:237-245.

77. Yao S, Zhu Y, Chen L (2013): Advances in targeting cell surface signalling molecules for immune modulation. *Nature Reviews Drug Discovery*. 12:130-146.

78. Pardoll DM (2012): The blockade of immune checkpoints in cancer immunotherapy. *Nature Reviews Cancer*. 12:252-264.

79. Luhder F, Hoglund P, Allison JP, Benoist C, Mathis D (1998): Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. *J Exp Med*. 187:427-432.

80. Poto R, Troiani T, Criscuolo G, Marone G, Ciardiello F, Tocchetti CG, et al. (2022): Holistic Approach to Immune Checkpoint Inhibitor-Related Adverse Events. *Front Immunol*. 13:804597.

81. Maier LM, Anderson DE, De Jager PL, Wicker LS, Hafler DA (2007): Allelic variant in CTLA4 alters T cell phosphorylation patterns. *Proc Natl Acad Sci U S A*. 104:18607-18612.

82. Javidi E, Magnus T (2019): Autoimmunity After Ischemic Stroke and Brain Injury. *Front Immunol*. 10:686.

83. Izzy S, Chen PM, Tahir Z, Grashow R, Radmanesh F, Cote DJ, et al. (2022): Association of Traumatic Brain Injury With the Risk of Developing Chronic Cardiovascular, Endocrine, Neurological, and Psychiatric Disorders. *JAMA Netw Open*. 5:e229478.

84. Krishnamoorthy V, Vavilala MS (2022): Traumatic Brain Injury and Chronic Implications Beyond the Brain. *JAMA Netw Open*. 5:e229486.

85. Ledoux AA, Webster RJ, Clarke AE, Fell DB, Knight BD, Gardner W, et al. (2022): Risk of Mental Health Problems in Children and Youths Following Concussion. *JAMA Netw Open*. 5:e221235.

86. Deutsch NR, Worthmann H, Steixner-Kumar AA, Schuppner R, Grosse GM, Pan H, et al. (2021): Autoantibodies against the NMDAR subunit NR1 are associated with neuropsychiatric outcome after ischemic stroke. *Brain Behav Immun*. 96:73-79.

87. Thouin A, Gastaldi M, Woodhall M, Jacobson L, Vincent A (2021): Comparison of N-methyl-d-aspartate receptor antibody assays using live or fixed substrates. *Journal of Neurology*. 268:1818-1826.
88. Endres D, von Zedtwitz K, Matteit I, Bünger I, Foverskov-Rasmussen H, Runge K, et al. (2022): Spectrum of Novel Anti–Central Nervous System Autoantibodies in the Cerebrospinal Fluid of 119 Patients With Schizophreniform and Affective Disorders. *Biological Psychiatry*. 92:261-274.

Table 1. Characteristics of the top 15 most frequent anti-brain antigens for autoantibody seroprevalence screening

					First description
Antigen	Full name	Location	Function	Associated diseases/syndromes	of autoimmune
NMDAR1	Glutamate ionotropic receptor NMDA type subunit 1	Extracellular	Obligatory subunit of tetrameric NMDA- receptors, which have a major role in excitatory neurotransmission	Anti-NMDAR-encephalitis(30), Herpes simplex encephalitis(25), Japanese encephalitis(31)	Dalmau 2007, Ann Neurol(30)
Amphiphysin	Amphiphysin	Intracellular/ synaptic	Presynaptic vesicle protein, involved in vesicle endocytosis	Stiff-person syndrome(32, 33), breast cancer(32), SCLC(2), (limbic) encephalomyelitis(2), neuropathy(34)	De Camilli 1993, <i>J Exp Med(32)</i>
KCNA2	Potassium voltage-gated channel subfamily A member 2	Extracellular	Voltage gated potassium channel, neuronal excitability	Neuromyotonia(35)	Hart 1997, Ann Neurol(35)
ARHGAP26	Rho GTPase activating protein 26	Intracellular/ somata/neuropil	Clathrin independent endocytosis	Subacute inflammatory cerebellar ataxia(36)	Jarius 2010, J Neuroinflamm(36)
GFAP	Glial fibrillary acidic protein	Intracellular	Part of cytoskeleton, maintenance of astrocytic structure	Autoimmune GFAP astrocytopathy(37), meningoencephalitis(34), Alzheimer's disease(38), traumatic brain injury(39)	Fang 2016, JAMA Neurol(37)
CASPR2	Contactin-associated protein 2	Extracellular/ neuropil	Cell adhesion protein, antigen is VGKC associated protein	Neuromyotonia(2, 40), Morvan's syndrome(2, 40), neuropathic pain(2), limbic encephalitis(34, 40), cerebellitis/cerebellar degeneration(34)	Irani 2010, <i>Brain(40)</i>
MOG	Myelin oligodendrocyte glycoprotein	Extracellular/ outer myelin sheet	Cell adhesion molecule in oligodendrocytes, maintenance of myelin structure	Acute disseminated encephalomyelitis(2, 41), multiple sclerosis(41, 42), neuromyelitis optica spectrum disorder(41), cortical/subcortical encephalitis(34), brainstem encephalitis(34)	Xiao 1991, J Neuroimmunol
Homer-3	Homer protein homolog 3	Intracellular/ cytoplasm	Postsynaptic calcium responses in dendritic spines of Purkinje cells, modulating activity of metabotropic glutamate-receptors	Cerebellar ataxia(43), cerebellitis(44)	Zuliani 2007, <i>Neurology(43)</i>
KCNA1	Potassium voltage-gated channel subfamily A member 1	Extracellular	Voltage gated potassium channel, neuronal excitability	Neuromyotonia(35)	Hart 1997, Ann Neurol(35)
GLRA1b	Glycine receptor alpha 1 isoform b	Extracellular	Alpha1 subunit of inhibitory glycine receptor	Progressive encephalopathy with rigidity and myoclonus(45, 46), epilepsy(46)	Hutchinson 2008, Neurology(45)
GAD65	Glutamate decarboxylase 2	Intracellular/ cytoplasm	Intracellular / presynaptic protein involved in neurotransmitter synthesis	Stiff-person syndrome(33, 47), limbic encephalitis(34), cerebellitis/cerebellar degeneration(34), encephalomyelitis(34)	Solimena 1988, N Eng J Med(47)
Ma2	PNMA family member 2	Intracellular/ nuclear	Possibly involved in positive regulation of the apoptotic process	Limbic encephalitis(34, 48), brainstem encephalitis(34, 48), diencephalic encephalitis(34)	Voltz 1999, New Eng J Med(48)
Yo	Cerebellar degeneration related protein 2	Intracellular/ nuclear	DNA binding protein	Paraneoplastic cerebellar degeneration(49, 54), cerebellitis/cerebellar degeneration(34)	Peterson 1992, Neurology(54)
NF155	Neurofascin 155 kD isoform	Extracellular	Glial cell adhesion, expressed in cell bodies of oligodendrocytes	Multiple sclerosis(50, 51), chronic inflammatory demyelinating polyneuropathy(51)	Mathey 2007, <i>J Exp Med(50</i>)
AP3B2	Adaptor Related Protein Complex3Subunit Beta2	Intracellular/ Golgi apparatus	Neuron specific vesicle coat protein, controlling levels of selected membrane proteins in synaptic vesicles	Paraneoplastic cerebellar degeneration(49, 52), autoimmune cerebellar ataxia(53)	Newman 1995, <i>Cell(52)</i>

Disorders/diseases	Schizophrenia Schizoaffective	Affective	Personality & Addiction	Neuro- developmental	Stroke	Neuro- degenerative	Autoimmune	ALL Diseases	Healthy Controls	ALL Subjects
No. Individuals [†]	2043 (1818-2043)	267 (264-267)	334 (193-333)	141	442	349 (310-349) 701		4277 (3909-4265)	2748 (2391-2735)	7025 (6300-7000)
Male, %	64.90%	50.56%	56.29%	65.25%	54.75%	59.89%	27.39%	55.74%	55.93%	55.81%
Age, yr ± SD	40.3 ± 13.1	47.7 ± 15.4	35 ± 12.9	29.7 ± 9.9	68.3 ± 12.5	61.6 ± 14.8	41.7 ± 13.7	44.8 ± 16.9	35 ± 13.1	41 ± 16.2
Any AB Total No.	2043	267	334	141	442	349	701	4277	2748	7025
Seropositive No. (%)	346 (16.94)	62 (23.13)	34 (10.18)	12 (8.51)	147 (33.26)	41 (11.75)	91 (12.98)	733 (17.14)	400 (14.56)	1133 (16.13)
Seropositive, males	230	38	25	7	87	27	34	448	240	688
lgM / IgA / IgG #	134 / 148 / 141	21 / 26 / 25	7 / 20 / 13	6/5/5	69 / 58 / 49	31 / 25 / 17	39 / 39 / 47	307 / 321 / 297	155 / 166 / 180	462 / 487 / 477
NMDAR-1 Total No.	2043	264	333	141	442	341	701	4265	2735	7000
Seropositives, No. (%)	158 (7.73)	31 (11.74)	12 (3.6)	3 (2.13)	84 (19)	31 (9.09)	34 (4.85)	353 (8.28)	183 (6.69)	536 (7.66)
Seropositives, males	94	17	7	1	46	22	12	199	117	316
IgM / IgA / IgG No.	87 / 91 / 12	15 / 17 / 4	3/10/0	2/2/0	56 / 39 / 4	28 / 20 / 15	22 / 23 / 3	213 / 202 / 38	105 / 107 / 17	318 / 309 / 55
Titer range IgM	1:10-1:3200	1:10-1:320	1:32-1:320	1:10-1:100	1:10-1:1000	1:10-1:1000	1:10-1:1000	1:10-1:3200	1:10-1:1000	1:10-1:3200
Titer range IgA	1:10-1:3200	1:10-1:100	1:10-1:100	1:32-1:32	1:10-1:1000	1:10-1:1000	1:10-1:1000	1:10-1:3200	1:10-1:1000	1:10-1:3200
Titer range IgG	1:10-1:320	1:32-1:100	-	-	1:10-1:32	1:32-1:1000	1:32-1:100	1:10-1:1000	1:10-1:320	1:10-1:1000
IgM / IgA / IgG median	1:32 / 1:32 / 1:32	1:100 / 1:32 / 1:66	1:32 / 1:32 / -	1:32 / 1:32 / -	1:32 / 1:32 / 1:10	1:32 / 1:100 / 1:100	1:32 / 1:100 / 1:32	1:32 / 1:32 / 1:32	1:32 / 1:32 / 1:32	1:32 / 1:32 / 1:32
KCNA2 Total No.	1816	267	193	141	442	349	701	3909	2391	6300
Seropositives, No. (%)	26 (1.43)	5 (1.87)	3 (1.55)	1 (0.71)	8 (1.81)	4 (1.15)	4 (0.57)	51 (1.3)	35 (1.46)	86 (1.37)
Seropositives, males	24	4	3	1	6	2	1	41	24	65
IgM / IgA / IgG, No.	1/6/20	1/0/4	1/0/2	0/0/1	0/2/6	0/3/1	0/2/2	3 / 13 / 36	3/8/26	6/21/62
liter range IgM	1:32	1:10	1:32	-	-	-	-	1:10-1:32	1:10-1:32	1:10-1:32
Titer range IgA	1:32-1:320	-	-	-	1:10-1:320	1:100-1:320 1:10-1:100		1:10-1:320	1:10-1:100	1:10-1:320
Liter range IgG	1:10-1:1000	1:32-1:32	1:100-1:320	1:100	1:10-1:3200	1:32	1:10-1:10	1:10-1:3200	1:10-1:1000	1:10-1:3200
IgM / IgA / IgG median	1:32 / 1:100 / 1:66	1:10/-/1:32	1:32/-/1:210	-/-/1:100	-/1:100/1:66	- / 1:320 / 1:32	-/1:32/1:10	1:32 / 1:100 / 1:32	1:10 / 1:32 / 1:66	1:21 / 1:32 / 1:32
Amphiphysin Total No.	2043	264	333	141	442	310	701	4234	2726	6960
Seropositives, No. (%)	28 (1.37)	6 (2.27)	3 (0.9)	0 (0)	10 (2.26)	1 (0.32)	0 (0)	48 (1.13)	39 (1.43)	87 (1.25)
Seropositives, males	21	3	2	0	0/0/0	1	0	33	22	55
Igivi / IgA / IgG, No.	1/7/23	1/1/5	2/3/3	07070	0/6/6	0/1/0	0/0/0	4/18/37	4/14/29	8/32/66
Titer range Igivi	1:320	1:100	1:32	-	-	-	-	1:32-1:320	1:10-1:320	1:10-1:320
Titer range IgA	1.10-1.32	1.02	1.10-1.100	-	1.10-1.100	1.32	-	1.10-1.100	1.10-1.100	1.10-1.100
	1.10-1.100	1.10-1.100	1.10-1.100		1.10-1.32	-	-	1.10-1.100	1.10-1.100	1.10-1.100
	1.320 / 1.32 / 1.32	1.100 / 1.32 / 1.32	1.32 / 1.100 / 1.10	- 1/1	-/ 1.32 / 1.21	-/ 1.32/-	- 701	2000	1.100 / 1.32 / 1.32	6200
Soropositivos No. (%)	22 (1 21)	207	1 (0.52)	0 (0)	9 (2 04)	0 (0)	1 (0 14)	3909	2391	58 (0.02)
Seropositives, NO. (76)	22 (1.21)	4 (1.3)	1 (0.32)	0 (0)	9 (2.04)	0 (0)	1 (0.14)	37 (0.93)	21 (0.00)	37
IgM / IgA / IgG No	5/7/16	1/2/2	0/0/1	0/0/0	1/2/8	0/0/0	0/0/1	7/11/28	1/2/20	8/13/48
Titer range IgM	1.320-1.1000	1.320	01011	0/0/0	1.100	0/0/0	0/0/1	1.100-1.1000	1.100	1.100-1.1000
Titer range IgA	1.100-1.1000	1.100-1.320		-	1.100	_		1.100-1.1000	1.320-1.1000	1.100-1.1000
Titer range IgA	1.100-1.3200	1.100-1.320	1.320		1.100-1.100		1.320	1.100-1.1000	1:100-1:1000	1.100-1.1000
Intel runge ige	1.320 / 1.320 / 1.320	1.320 / 1.210 / 1.210	- / - / 1:320	-/-/-	1.100 / 1.100 / 1.320	-/-/-	- / - / 1:320	1.320 / 1.100 / 1.320	1.100 / 1.660 / 1.320	1.320 / 1.320 / 1.320
ARHGAP26 Total No	2043	264	333	141	442	310	701	4234	2726	6960
Seropositives No. (%)	16 (0 78)	6 (2 27)	3 (0.9)	0 (0)	10 (2 26)	0 (0)	0 (0)	35 (0 83)	24 (0.88)	59 (0.85)
Seropositives males	14	4	3	0	8	0	0	29	18	47
IaM / IaA / IaG. No	0 / 5 / 15	0/1/5	0/1/2	0/0/0	0/2/9	0/0/0	0/0/0	0/9/31	0/9/19	0 / 18 / 50
Titer range IgM	-	-	-	-	-	-	-	-	-	-
Titer range IgA	1:10-1:320	1:10	1:320	-	1:32-1:100	-	-	1:10-1:320	1:10-1:100	1:10-1:320
Titer range IgG	1:10-1:320	1:10-1:320	1:32	-	1:10-1:100	-	-	1:10-1:320	1:10-1:100	1:10-1:320
IgM / IgA / IgG median	- / 1:32 / 1:32	- / 1:10 / 1:100	- / 1:320 / 1:32	- / - / -	- / 1:66 / 1:32	-/-/-	- / - / -	- / 1:32 / 1:32	- / 1:32 / 1:32	- / 1:32 / 1:32

Table 2. Overview of the top 15 most frequent brain autoantibodies according to identified seroprevalence

Table 2 – continued.

Disorders/diseases	Schizophrenia Schizoaffective	Affective	Personality & Addiction	Neuro- developmental	Stroke	Neuro- degenerative	Autoimmune	ALL Diseases	Healthy Controls	ALL Subjects
No. Individuals [†]	2043 (1818-2043)	267 (264-267)	334 (193-333)	141	442	349 (310-349)	701	4277 (3909-4265)	2748 (2391-2735)	7025 (6300-7000)
Male, %	64.90%	50.56%	56.29%	65.25%	54.75%	59.89%	27.39%	55.74%	55.93%	55.81%
Age, yr ± SD	40.3 ± 13.1	47.7 ± 15.4	35 ± 12.9	29.7 ± 9.9	68.3 ± 12.5	61.6 ± 14.8	41.7 ± 13.7	44.8 ± 16.9	35 ± 13.1	41 ± 16.2
CASPR2 Total No.	2043	264	333	141	442	341	701	4265	2735	7000
Seropositives, No. (%)	24 (1.17)	3 (1.14)	0 (0)	2 (1.42)	2 (0.45)	0 (0)	9 (1.28)	40 (0.94)	13 (0.48)	53 (0.76)
Seropositives, males	19	1	0	0	0	0	5	25	4	29
IgM / IgA / IgG, No.	12/3/9	2/1/1	0/0/0	1/1/0	1/0/1	0/0/0	4/1/6	20 / 6 / 17	7/0/6	27 / 6 / 23
Titer range IgM	1:10-1:32	1:32	-	1:10	1:10	-	1:10-1:320	1:10-1:320	1:10-1:100	1:10-1:320
Titer range IgA	1:10-1:32	1:10	-	1:32	-		1:100	1:10-1:100	-	1:10-1:100
Titer range IgG	1:10-1:100	1:32	-	-	1:10	•	1:10-1:1000	1:10-1:1000	1:10-1:32	1:10-1:1000
IgM / IgA / IgG median	1:10 / 1:10 / 1:10	1:32 / 1:10 / 1:32	-/-/-	1:10 / 1:32 / -	1:10 / - / 1:10	-/-/-	1:32 / 1:100 / 1:100	1:10 / 1:32 / 1:32	1:10/-/1:21	1:10 / 1:32 / 1:32
MOG Total No.	2043	265	333	141	442	310	701	4234	2726	6960
Seropositives, No. (%)	17 (0.83)	0 (0)	1 (0.3)	0 (0)	8 (1.81)	3 (0.97)	1 (0.14)	30 (0.71)	11 (0.4)	41 (0.59)
Seropositives, males	9	0	1	0	3	1	1	15	8	23
IgM / IgA / IgG, No.	11/5/2	0/0/0	0/1/0	0/0/0	6/2/1	3/0/0	0/0/1	20/8/4	8/2/1	28 / 10 / 5
Liter range IgM	1:10-1:320	-	-	-	1:10-1:100	1:10-1:100	-	1:10-1:320	1:10-1:320	1:10-1:320
Liter range IgA	1:10-1:32	-	1:10-1:10	-	1:10-1:10	-	-	1:10-1:32	1:10-1:100	1:10-1:100
liter range IgG	1:10-1:32	-	-	-	1:10	-	1:100	1:10-1:100	1:32	1:10-1:100
IgM / IgA / IgG median	1:32 / 1:10 / 1:21	-/-/-	-/1:10/-	-/-/-	1:32 / 1:10 / 1:10	1:32/-/-	-/-/1:100	1:32 / 1:10 / 1:32	1:66 / 1:32 / 1:32	1:32 / 1:10 / 1:32
Homer-3 Total No.	1816	207	193	141	442	349	701	3909	2391	6300
Seropositives, No. (%)	12 (0.66)	1 (0.37)	1 (0.52)	1 (0.71)	2 (0.45)	0 (0)	1 (0.14)	18 (0.46)	13 (0.54)	31 (0.49)
Seropositives, males	11	1	1	0		0	0	14	8	22
IgM / IgA / IgG, No.	0/8/7	0/0/1	0/0/1	0/1/0	0/2/0	0/0/0	0/1/0	0/12/9	3/6/7	3/18/16
Titer range Igivi	-	-	-	-	-	-	-	-	1:100-1:320	1:100-1:320
Titer range IgA	1:100-1:1000	-	-	1:1000	1:320-1:3200	-	1:320	1:100-1:3200	1:100-1:320	1:100-1:3200
I iter range igG	1:10-1:320	1:1000	1:100	-	-	-	-	1:10-1:1000	1:32-1:1000	1:10-1:1000
Igivi / IgA / IgG median	-/ 1:320 / 1:100	-/-/1:1000	-/-/1:100	-/ 1:1000/-	-/ 1:1000/-	-/-/-	-/ 1:320/-	-/1:320/1:100	1:100 / 1:210 / 1:100	6200
Coronacitivas No. (9/)	010	207	193	141	442	0.(0)	701	3909	2391	0000
Seropositives, NO. (%)	0 (0.44)	2 (0.75)	1 (0.52)	0 (0)	4 (0.9)	0 (0)	2 (0.29)	17 (0.43)	12 (0.3)	29 (0.40)
JaM / JaA / JaC No	0	2	0/0/1	0/0/0	2	0/0/0	0/2/0	1/5/11	0	2/0/10
Titor range IgM	1.100	0/0/2	0/0/1	07070	0/0/4	0/0/0	0/2/0	1.100	1.10 1.1000	1.10 1.1000
Titer range IgA	1.100	-	-		-	-	- 1.32-1.100	1.100	1.10-1.1000	1.10-1.1000
Titer range IgA	1.32-1.100	-	1.320	-	- 1·10_1·1000	-	1.52-1.100	1.10_1.1000	1.10-1.100	1.10-1.100
Internange igo	1.10-1.100	- / - / 1:660	-/-/1.320		-/-/1.1000	-/-/-		1.10-1.1000	1.320 / 1.10 / 1.100	1.10-1.1000
GI RA1h Total No	2043	264	333	141	442	310	701	4234	2726	6960
Seronositives No. (%)	5 (0 24)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	10 (1 43)	15 (0 35)	13 (0.48)	28 (0.4)
Seronositives, NO. (70)	2	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	10 (1.43)	6	6	12
IgM / IgA / IgG No	2/2/1	0/0/0	0/0/0	0/0/0	0/0/0	0/0/0	0/1/9	2/3/10	2/1/10	4/4/20
Titer range InM	1.32-1.32	01010	07070	-	-	-	-	1.32-1.32	1.10-1.32	1.10-1.32
Titer range IgA	1.10-1.32	-	-	_	_	-	1.10	1.10-1.32	1.10-1.02	1.10-1.32
Titer range lgG	1.10-1.32					-	1.10	1.10-1.10	1.10-1.320	1.10-1.32
IaM / IaA / IaG median	1.32 / 1.21 / 1.100	-/-/-	-/-/-	-/-/-	_/_/_	-/-/-	-/1.10/1.32	1.32 / 1.10 / 1.32	1.10-1.020	1.32 / 1.10 / 1.32
<u></u>			. , ,	1 ''	,,		1 7 1.10 7 1.02		1	

Table 2 – continued.

Disorders/diseases	Schizophrenia Schizoaffective	Affective	Personality & Addiction	Neuro- developmental	Stroke	Neuro- degenerative	Autoimmune	ALL Diseases	Healthy Controls	ALL Subjects
No. Individuals [†]	2043 (1818-2043)	267 (264-267)	334 (193-333)	141	442	349 (310-349)	701	4277 (3909-4265)	2748 (2391-2735)	7025 (6300-7000)
Male, %	64.90%	50.56%	56.29%	65.25%	54.75%	59.89%	27.39%	55.74%	55.93%	55.81%
Age, yr ± SD	40.3 ± 13.1	47.7 ± 15.4	35 ± 12.9	29.7 ± 9.9	68.3 ± 12.5	61.6 ± 14.8	41.7 ± 13.7	44.8 ± 16.9	35 ± 13.1	41 ± 16.2
GAD65 Total No.	2043	264	333	141	442	341	701	4265	2735	7000
Seropositives, No. (%)	9 (0.44)	1 (0.38)	1 (0.3)	0 (0)	3 (0.68)	0 (0)	3 (0.43)	17 (0.4)	9 (0.33)	26 (0.37)
Seropositives, males	8	1	1	0	2	0	0	12	7	19
IgM / IgA / IgG, No.	0/1/8	0/0/1	0/0/1	0/0/0	0/0/3	0/0/0	0/1/3	0/2/16	1/4/7	1 / 6 / 23
Titer range IgM	-	-	-	-	-	-	-	-	1:32	1:32
Titer range IgA	1:100	-	-	-	-	-	1:100	1:100-1:100	1:32-1:100	1:32-1:100
Titer range IgG	1:10-1:100	1:320	1:320	-	1:32-1:100	-	1:100-1:3200	1:10-1:3200 (1:32)	1:10-1:320	1:10-1:3200
IgM / IgA / IgG median	- / 1:100 / 1:32	- / - / 1:320	- / - / 1:320	-/-/-	- / - / 1:32	-1-1-	- / 1:100 / 1:1000	- / 1:100 / 1:32	1:32 / 1:100 / 1:32	1:32 / 1:100 / 1:32
Ma2 Total No.	2043	264	333	141	442	310	701	4234	2726	6960
Seropositives, No. (%)	7 (0.34)	1 (0.38)	4 (1.2)	0 (0)	2 (0.45)	0 (0)	0 (0)	14 (0.33)	8 (0.29)	22 (0.32)
Seropositives, males	4	1	3	0	1	0	0	9	2	11
IgM / IgA / IgG, No.	3/2/2	0/1/0	0/4/0	0/0/0	1/0/1	0/0/0	0/0/0	4/7/3	3/2/4	7/9/7
Titer range IgM	1:10-1:320	-	-	-	1:32	-	-	1:10-1:320	1:32-1:100	1:10-1:320
Titer range IgA	1:10-1:32	1:32	1:10-1:32	-	-	-	-	1:10-1:32	1:32-1:320	1:10-1:320
Titer range IgG	1:32-1:32	-	-	-	1:10	-	-	1:10-1:32	1:10-1:100	1:10-1:100
IgM / IgA / IgG median	1:320 / 1:21 / 1:32	- / 1:32 / -	- / 1:32 / -	-/-/-	1:32 / - / 1:10	-/-/-	-/-/-	1:100 / 1:32 / 1:32	1:32 / 1:100 / 1:100	1:32 / 1:32 / 1:32
Yo Total No.	2043	264	333	141	442	310	701	4234	2725	6959
Seropositives, No. (%)	5 (0.24)	1 (0.38)	0 (0)	1 (0.71)	1 (0.23)	1 (0.32)	1 (0.14)	10 (0.24)	10 (0.37)	20 (0.29)
Seropositives, males	4	1	0	1	1	1	0	8	6	14
IgM / IgA / IgG, No.	0/2/3	0/1/0	0/0/0	0/0/1	0/0/1	0/1/0	0/0/1	0/4/6	1/4/7	1 / 8 / 13
Titer range IgM	-	-	-	-	-	-	-	-	1:10	1:10
Titer range IgA	1:10-1:100	1:10	-	-	-	1:32-1:32	-	1:10-1:100	1:10-1:32	1:10-1:100
Titer range IgG	1:10-1:100	-	-	1:100	1:32	-	1:10000	1:10-1:10000	1:10-1:100	1:10-1:10000
IgM / IgA / IgG median	- / 1:32 / 1:10	- / 1:10 / -	-/-/-	-/-/1:100	- / - / 1:32	- / 1:32 / -	- / - / 1:10000	- / 1:32 / 1:66	1:10 / 1:21 / 1:10	1:10 / 1:32 / 1:32
NF155 Total No.	1816	267	193	141	442	349	701	3909	2391	6300
Seropositives, No. (%)	5 (0.28)	0 (0)	0 (0)	0 (0)	3 (0.68)	0 (0)	6 (0.86)	14 (0.36)	3 (0.13)	17 (0.27)
Seropositives, males	3	0	0	0	2	0	1	6	1	7
IgM / IgA / IgG, No.	2/0/3	0/0/0	0/0/0	0/0/0	2/0/1	0/0/0	5/1/2	9/1/6	2/0/1	11/1/7
Titer range IgM	1:10-1:10	-	-	-	1:10-1:32 (1:21)	-	1:32-1:32	1:10-1:32	1:10-1:32 (1:21)	1:10-1:32
Titer range IgA	-	-	-	-	-	-	1:100 (1:100)	1:100 (1:100)	-	1:100 (1:100)
Titer range IgG	1:10-1:100	-	-	-	1:10	-	1:10-1:32 (1:21)	1:10-1:100	1:32	1:10-1:100
IgM / IgA / IgG median	1:10 / - / 1:32	- / - / -	- / - / -	-/-/-	1:21 / - / 1:10	- / - / -	1:32 / 1:100 / 1:21	1:32 / 1:100 / 1:32	1:21 / - / 1:32	1:32 / 1:100 / 1:32
AP3B2 Total No.	1816	267	193	141	442	349	701	3909	2391	6300
Seropositives, No. (%)	9 (0.5)	2 (0.75)	0 (0)	0 (0)	3 (0.68)	0 (0)	1 (0.14)	15 (0.38)	2 (0.08)	17 (0.27)
Seropositives, males	5	2	0	0	2	0	1	10	2	12
IgM / IgA / IgG, No.	1/6/3	0/2/0	0/0/0	0/0/0	0/3/0	0/0/0	0/1/1	1/12/4	0/1/1	1 / 13 / 5
Titer range IgM	1:32	-	-	-	-	-	-	1:32	-	1:32
Titer range IgA	1:10-1:100	1:10-1:100	-	-	1:10-1:100	-	1:10	1:10-1:100	1:10	1:10-1:100
Titer range IgG	1:10-1:320	-	-	-	-	-	1:100	1:10-1:320	1:32	1:10-1:320
IgM / IgA / IgG median	1:32 / 1:32 / 1:32	- / 1:32 / -	-/-/-	-/-/-	- / 1:32 / -	- / - / -	- / 1:10 / 1:100	1:32 / 1:32 / 1:66	- / 1:10 / 1:32	1:32 / 1:32 / 1:32

†Range accounts for missing determinations; Ig class numbers do not always add up to the total number of seropositives, due to double and triple positives; No. = number; yr = years; SD = standard deviation; Ig = immunoglobulin.

Table 3: Severity Categories for Neurotrauma (NT)

Category	Conditions	Initial rank	Additional NT(s)
Mild	Head bump, nausea, laceration, or unconsciousness for <15s	1	+ 0.5
Moderate	Hematoma, hospitalization, or unconsciousness between 15s - 1h	2	+ 2
Severe	Concussion, coma, fracture, bleeding/ edema, or unconsciousness for >1h	3	+ 3

Table 4. SNPs in checkpoint inhibitor genes predispose to AB seropositivity

		AAB	8 Positive	AAB	Negative			AAB Positive AAB Negative		Negative					
SNP	Allele	Ν	%	N	%	Ρ	Genotype	Ν	%	Ν	%	Р	Gene	Seropositivity	
43	A	283	52.21%	4604	45.08%		AA	80	29.52%	1056	20.67%				
0872						0.010	AG	123	45.39%	2495	48.83%	0.016	CTLA-4	Extracellular IqA	
rs3	G	259	47.79%	5608	54.92%		GG	68	25.09%	1558	30.50%				
316	Α	260	48.33%	4228	41.65%		AA	66	24.53%	889	17.51%				
5713						0.020	AG	128	47.59%	2450	48.27%	0.058	CTLA-4	Extracellular IqA	
rs11	G	278	51.67%	5924	58.35%		GG	75	27.88%	1737	34.22%			U	
120	т	163	36.88%	3046	30.15%		тт	33	14.93%	494	9.78%				
36804							0.024	тс	97	43.89%	2058	40.75%	0.095	PD-1	IgM NMDAR-1
rs28	С	279	63.12%	7056	69.85%		сс	91	41.18%	2499	49.47%				
37	A	31	34.44%	2381	22.39%		AA	9	20.00%	269	5.06%				
2971						0.058	AG	13	28.89%	1843	34.68%	0.0004	PD-L1	IgG NMDAR-1	
rs2	G	59	65.56%	8251	77.61%		GG	23	51.11%	3202	60.26%				
36	G	30	33.33%	5246	49.34%		GG	6	13.33%	1311	24.66%				
2971:						0.022	AG	18	40.00%	2624	49.36%	0.049	PD-L1	IgG NMDAR-1	
rs2	A	60	66.67%	5386	50.66%		AA	21	46.67%	1381	25.98%				

• A selection of 49 anti-brain autoantibodies was analyzed in >7000 subjects

- Brain-directed autoantibodies are frequent across health and disease
- Neither seroprevalence nor immunoglobulin class nor titers alone predict disease
- Age, gender, genetic factors, and brain injury emerge as predictors of serum AB