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Abstract. We compare and validate COLA (COmoving Lagrangian Acceleration) simula-
tions against existing emulators in the literature, namely Bacco and Euclid Emulator 2. Our
analysis focuses on the non-linear response function, i.e., the ratio between the non-linear
dark matter power spectrum in a given cosmology with respect to a pre-defined reference
cosmology, which is chosen to be the Euclid Emulator 2 reference cosmology in this paper.
We vary three cosmological parameters, the total matter density, the amplitude of the pri-
mordial scalar perturbations and the spectral index. By comparing the COLA non-linear
response function with those computed from each emulator in the redshift range 0 < z < 3,
we find that the COLA method is in excellent agreement with the two emulators for scales up
to k ~ 1 h/Mpc as long as the deviations of the matter power spectrum from the reference
cosmology are not too large. We validate the implementation of massive neutrinos in our
COLA simulations by varying the sum of neutrino masses to three different values, 0.0 eV,
0.058 eV and 0.15 eV. We show that all three non-linear prescriptions used in this work agree
at the 1% level at & < 1 h/Mpc. We then introduce the Effective Field Theory of Dark
Energy in our COLA simulations using the N-body gauge method. We consider two different
modified gravity models in which the growth of structure is enhanced or suppressed at small
scales, and show that the response function with respect to the change of modified gravity
parameters depends weakly on cosmological parameters in these models.
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1 Introduction

One of the main efforts in Large Scale Structure (LSS) studies aims to answer how initial
small and Gaussian density perturbations in the very early Universe evolved to the highly
non-Gaussian and non-linear matter distribution we see in our Universe today. In the next
years we will have the first data release of the first Stage-IV LSS survey, DESI [1], as well as
the launch of the Euclid satellite [2]. The bulk of the investigation in recent years is focused
on the exploration of the matter two point correlation function in Fourier space, the matter
power spectrum. In order to get fast predictions of this statistics, emulation techniques
have gained much attraction in cosmology, and they are now seen as viable alternatives for
extracting parameter constraints using the data from upcoming surveys.

Emulators are numerical interpolations that are trained using accurate N-body simu-
lation outputs based on machine learning algorithms to quickly predict the matter power
spectrum from linear to non-linear scales in the vast cosmological parameter space. Among
the emulators already available in the literature, we will focus on two that have been con-
sidered as highly effective and validated, the Euclid Emulator 2! [3] (EE2) and Bacco? [4]
in this paper, and use them to check the accuracy of predicting non-linear matter power
spectra. Both have an accuracy of about 1% on small scales for ACDM cosmologies, and
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around 3% for dynamical dark energy and massive neutrinos cosmology in predicting the
non-linear power spectrum.

The process of training these emulators heavily relies on the use of computationally
expensive and time-consuming full N-body simulations. To overcome these limitations, there
are several well established methods that allow us to quickly generate approximate non-
linear realizations of the matter density field, such as, the COLA (COmoving Lagrangian
Acceleration) approach [5-7], EZMOCKS [8], PATCHY [9], FastPM [10], GLAM [11], to
name a few. Specifically, in this work, we will consider the first of these examples, the COLA
approach. This method has been well-validated, and is known to give a good agreement
on quasi non-linear scales in ACDM and beyond-ACDM cosmologies when comparing its
prediction for the matter power spectrum to the ones from full N-body simulations [12-16].
Additionally, a new avenue using the COLA method was presented in [17]. In this paper,
it was shown that the mapping from displacements in COLA simulations and those in full
N-body simulations can be trained on simulations with a fixed value of the cosmological
parameters, and this model can be used to correct the output of COLA simulations with
different values of cosmological parameters including different masses of massive neutrinos
with very high accuracy: the power spectrum and the cross-correlation coefficients are within
1% down to k =1 h/Mpc.

This indicates that the inaccuracy in COLA’s predictions is fairly cosmological parame-
ter independent, and this can be corrected by a cosmological parameter independent model.
In this paper, we show that COLA is capable of describing the non-linear response of the
matter power spectrum to the change of cosmological parameters down to k = 1 h/Mpc
with high accuracy. This is because the inaccuracy of COLA is largely cancelled by taking
the ratio of power spectra in two different cosmologies. The accurate and fast computation
of this response function is of great importance when building emulators, as it allows us to
obtain quickly the expected non-linear prediction when parameters are varied with respect to
a fixed pre-defined reference cosmology. Given the prediction of non-linear power spectra in
a few sparsely sampled reference cosmologies by full N-body simulations, we can provide the
prediction of the matter spectrum in a wide parameter space. This can be used to further
extend the reach of the already accurate ACDM emulators to beyond-ACDM cosmologies,
for example, where running full N-body simulations are very expensive.

Within many different alternatives to the standard cosmology model, we will focus on
studying the non-linear response function in scalar-tensor theories of gravity. These theories
are possible explanations for the current accelerated expansion of our Universe. The simplest
solution in General Relativity (GR) is the addition of the Cosmological Constant, A, to the
Einstein’s field equations. Modified gravity is an alternative to the addition of this constant,
where the scalar field would naturally act as the driver of the late-time accelerated expansion.
Therefore, creating new emulators, or extending current ones, to be able to quickly predict the
small scale behavior of the matter power spectrum in these theories is of great importance
for the upcoming LSS surveys. Examples of modified gravity emulators in the literature
are [18, 19] where in both papers the emulators are built for one specific fully covariant
model, f(R).

In this work, we will use the model-independent approach of the Effective Field Theory of
Dark Energy [20, 21] (EFT of DE). Within this formalism, we can fully characterize the linear
perturbation of Horndeski theories, using four time dependent functions. Under the quasi-
static approximation [22], the modification to the matter power spectrum is characterised by
a modified Newton constant called Geg, which is a function of these four functions. In this



work, to maintain the model-independent approach, we will assume small scale modifications
are always characterised by this function in the modified Poisson equation. On large scales, we
use the N-body gauge approach developed in [23, 24] to turn our simulations fully relativistic
so that the linear power spectrum in COLA simulations agrees with that predicted by the
Boltzmann code. The advantage of this approach is that relativistic corrections can be
included in the same way as massive neutrinos and there is no additional cost in including
EFT of DE in COLA simulations compared with simulations with massive neutrinos in
ACDM models. Additional effects on small scales such as screening and baryonic effects [25,
26] can be included separately, but these are highly model dependent, and we will not discuss
these effects in this paper.

The outline of the paper is as follows. In Section 2 we introduce the numerical tools we
use in this work, our COLA implementation and the Bacco and EE2, and define the linear
and non-linear response function as well as the boost function, which is the ratio between non-
linear and linear power spectra. In Section 3 we present the results for ACDM cosmology,
varying cosmological parameters as well as the total mass of massive neutrinos. We then
move to discuss the non-linear response function in modified gravity theories in Section 4: in
Section 4.1 we present the results when considering a fixed cosmology while in Section 4.2 we
vary the values of standard cosmological parameters within a given modified gravity theory.
We present our conclusions in Section 5.

2 Methodology

2.1 COLA

In this section, we will present the methodology of each code used to model the non-linear
power spectrum. We begin by discussing the quasi N-body code COLA, used to generate fast
realizations of the non-linear cold dark matter density field. The COLA method relies on the
use of second order Lagrangian perturbation theory (2LPT) and an N-body Particle-Mesh
(PM) algorithm to simulate the non-linear structure formation of the Universe. The 2LPT
part of the code is responsible to accurately model the Universe at large scales, while the
PM part dominates the dynamics of cold dark matter and baryons (cdm+b) at mildly to
non-linear scales. For our COLA simulations we have chosen to use a “forward” approach
to initiate our simulations, that is, we have introduced the N-body gauge formalism [27]
on the publicly available COLA-FML code®. We compute using hi_class [28, 29] a linear
density field, encoding the relativistic correction, which is added at each time-step of the
simulation. Therefore, instead of using a back-scaling method, where the linear matter
power spectrum is given at z = 0 and then back-scaled to the initial redshift, zi,;, of the
simulation, we provide transfer functions as external data files from zj,; onto z = 0. This
has been shown [23, 24] to ensure that the output of these simulations correctly describe
the relativistic effects introduced by photons, neutrinos and dark energy at large scales, and
at small scales we smoothly transit to the Newtonian description of gravity. We have used
the same approach developed by [15] to introduce relativistic corrections, but have made the
modifications to accommodate N-body gauge quantities. The new Poisson equation solved

3https://github.com/HAWinther /FML
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by COLA up to the second order is the following:
K20t = 4rGna’pm (5&? + 65?)

= 47TGNa2 [pcb(sé}l)) + pGRég}){ + Pcbd&}?]

= 47rGNa2pm [fcb (5&? + 5&2))) + fGR(Sgl?{} . (2.1)
where,
)
oG = %’ PGR = Pv + Py + Pur, Jeb = pru Jer = @7 (2‘2)

dcp is the density contrast of baryons and cold dark matter, and pe, pv, py and pyr are the
background energy density of baryons and cold dark matter, massive neutrinos, photons and
massless neutrinos, respectively. All perturbative quantities are computed in the N-body
gauge, and the linear density field accounting for relativistic corrections is given by:

0pcr = 0pN" + Spur +6p) " + 6pDR + Spmesric (2.3)
where the quantity 6pXP, .. is given by Equation (2.9) of [24]. In this work, besides investi-

gating the validity of COLA with respect to emulators already available in the literature, we
will also analyze the effect introduced by modified gravity in the matter power spectrum, as
well as its dependence on the cosmological parameters in these beyond-ACDM theories. To
this end, we have also modified the same COLA code to consistently add purely relativistic
effects from the dynamical scalar field, as well as the short scale physics introduced by it. In
order to do so we further rewrite Equation (2.1) as:

E2®CR = 4nGoga®pm |:fcb (5(5]13) + 5&?)} + 4TFGNG2meGR58r)¢, rel’ (2.4)
where now
o r
5GR, I OPGR, rel. (2-5)
PGR

is the linear relativistic density field, defined in Equation (3.7) of [24], without the terms
sourced by matter density perturbations in the dark energy fluctuations, which are captured
by the Geg function in Equation (2.4). The geodesic equation of dark matter particles being
solved is then:

% +2H%x = —VOOR, (2.6)

where for GR simulations ®“R is given by Equation (2.1), and for modified gravity ones

®CR is given in Equation (2.4). Our COLA simulations have all the same specifications,
shown in Table 1. Other specifications of COLA simulations used in this paper are show in
Appendix A.

2.2 Emulators

In sight of Stage-IV LSS surveys, the efforts have been made towards producing fast and
accurate theoretical predictions of summary statistics by means of emulators. Emulation
methods interpolate the results of cosmological simulations in a broad range of models and



Parameter Value

Volume (Mpc?/h?) 10243
Number of particles 10243
Number of PM grids 20483
Initial redshift 19

Table 1. COLA simulation specifications.

Parameter  Min. Max.
h 0.6 0.8
O 0.04 0.06
Qedmb 0.23 0.40
Ng 0.92 1.01
o8 0.73 0.9
>, My 0.0eV 04eV
wo —1.15 —-0.85
Wq —-0.3 0.3

Table 2. Bacco training set cosmological parameter space.

cosmological parameters using machine learning techniques [30, 31]. Among the various
emulators produced so far, the Bacco emulator and EE2 are setting the standards in terms
of the accuracy and parameters space coverage. The Bacco emulator takes advantage of
Principal Components Analysis (PCA) to reduce the dimensionality of the interpolation
problem and applies Gaussian Process Regression to emulate each of the dimensions selected
in the PCA. It has been trained on a set of 16000 power spectra spanning the parameter
space schematised in Table 2. These power spectra have been obtained using the Cosmology
Rescaling algorithm [32] on a small suite of only 6 ACDM simulations obtained with L-
Gadget3 [33, 34]. The Cosmology Rescaling algorithm enables a much faster production
of the training set at the expenses of a modest loss of accuracy. It has been proven to be
1% accurate in ACDM and 3% accurate for dynamical dark energy (wp — w,) and massive
neutrinos implementations. The emulator intrinsic accuracy is ~ 2% up to scales of 5 h/Mpc,
so the overall accuracy is ~ 2% in ACDM and ~ 3% in the DE and massive neutrino cases.
Similarly to the Bacco emulator, EE2 performs dimensionality reduction using PCA, but,
then relies on a Polynomial Chaos Expansion to emulate the resulting components. The
power spectra are measured at 100 time-steps between z = 10 and z = 0 in a suite of 108
pair-fixed simulations [35] performed with PKDGRAV3 [36]. The cosmological parameters
space spanned of EE2 is illustrated in Table 3.

While both emulators share some similarities in their emulation techniques, the treat-
ment of massive neutrinos in their respective simulations is different. In the PKDGRAV3
simulations, dark energy and massive neutrinos are introduced in the same way as we have
implemented in our COLA code. That is, they are introduced inside the general relativistic
source term, 5plé%, as a linear density field on a Particle-Mesh (PM) grid. For the L-Gadget3
simulations of the Bacco project, they have used a cosmology rescaling algorithm [37] to



mimic the effects of massive neutrinos. This procedure is found to be 1% accurate up to
scales of 2 h/Mpc [37], and 3% accurate up to scales of 5 h/Mpc [4]. However, in [38], L-
Gadget3 simulations with massive neutrinos were performed using a hybrid approach, where
they split massive neutrinos into “fast” and “slow” components. This allows one to combine
the linear treatment of neutrinos on a PM grid, with the more accurate description of mas-
sive neutrinos as low-mass collisionless particles with large thermal velocities following CDM
trajectories, which is able to incorporate in the simulations back-reaction effects of neutrinos
that reduce the suppression introduced by them [39]. This hybrid approach, however, agrees
at below the 0.1% level in the matter power spectrum with the PM method, with the only
major difference between the different implementations seen in the massive neutrinos power
spectrum. Therefore, for the purposes of this work, all three methods used here, EE2, Bacco
and the COLA implementation are well in agreement with each other with respect to massive
neutrinos.

The non-linear boost factors for the training and test sets are computed by taking the
ratio of the simulations power spectra with the linear power spectra from CLASS [40]. The
EE2 provides ~ 1% accuracy up to k = 10 h/Mpc in the ellipsoid centered on the reference
cosmology and extending to the edges of the interpolation range.

Parameter Min. Max. Center
h 0.61 0.73 0.67
Oy 0.04 0.06 0.05
Qm 0.24 0.40 0.32

N 0.92 1.0 0.96
A 1.7x107% 25x107Y 2.1x107?
>, my 0.0 eV 0.15 eV 0.075 eV
wo —-1.3 -0.7 —1.0
We -0.7 0.7 0.0

Table 3. EE2 parameters.

In our work all EE2 non-linear matter power spectra shown, were computed from the
linear matter power spectrum in the N-body gauge using our own version of the Einstein-
Boltzmann solver hi_class, and then multiplied by the boost factor coming from EE2 2.
As EE2 has been trained using relativistic simulations with N-body gauge linear transfer
functions, our choice is therefore equivalent to theirs, and for this reason in the Figures
shown in this work the agreement at large scales between COLA and EE2 is well below
0.1% where linear theory is valid. For the Bacco non-linear power spectra, however, we have
used their own non-linear matter power spectrum prediction, that is, the linear matter power
spectrum is computed inside the emulator, and the non-linear power spectra is just the Bacco
boost factor multiplied by their linear prediction. This introduces a slight deviation between
COLA and EE2 with Bacco at linear scales. These disagreements are expected since Bacco
is not trained with relativistic simulations, nor uses the N-body gauge to compute its linear

4Throughout this work we considered only the cold dark matter plus baryons power spectrum. While the
Bacco emulator provides two distinct boost factors, one for the total matter and one for cold matter (cdm+Db)
power sepctrum, the EE2 only provides one boost factor. We have checked that the difference between the
two boost factors from the Bacco emulator is negligible and we applied the EE2 boost factor to the linear
cmb-+b power spectrum to obtain the non-linear power spectrum.



spectra. In the main text, we show comparisons with EE2 except for massive neutrinos. In
Appendix B, we will show comparisons with Bacco.

2.3 Boost and response function

The focus of this work is to study the impact of the non-linear prescriptions by compar-
ing different combinations of the cosmological parameters with different models of modified
gravity theory and GR. Since COLA is an approximate fast method, it is not capable of
predicting the non-linear power spectrum at large wave-numbers accurately. However, as we
will show, COLA is capable of describing the response of the matter power spectrum with
respect to the change of cosmological parameters up to k ~ 1 h/Mpc as long as the change
of the matter power spectrum is not too large. Note that COLA’s accuracy depends on a
number of settings, such as the number of time steps and the number of grids for the PM
part, and it is always a trade-off between accuracy and speed. In Appendix A, we detail
the specifications of COLA used in this paper. We emphasize that all the comparisons and
results using our COLA simulations shown in this work can be further improved by changing
these specifications at the cost of speed. In Appendix C, we performed convergence tests by
running high-resolution PM simulations and confirmed the robustness of our results for the
response function.

Therefore, we will compare the ratio between the linear and non-linear matter power
spectrum in different cosmologies with respect to a pre-defined reference cosmology, which in
our case will be ACDM with the cosmological parameters shown in Table 4. We define the

Parameter Value
h 0.67
Qy 0.049
Qm 0.319
N 0.96
A 2.1 x107?
>omy, 0.058 eV

Table 4. Reference parameters.

linear and non-linear response functions as

anse(k’ Z) })case(k,7 Z)
Rlin(k?,Z) = hni’ Rnon(kaz) == - (27)
Pl (k, 2) Pret (k. z)

respectively, where the superscript “case” refers to a given case cosmology being investigated,
and the superscript “ref” always refers to predictions of GR with parameters from Table 4.
We will also define the non-linear boost as the function that maps the linear matter power
spectrum to the non-linear one

Pr(ltgrsle/ref(k’ z) _ Bcase/ref(k7 Z) % Pl(i:ise/ref(k’ z), (2.8)

and then we can get the non-linear boost in a different cosmology from the reference boost
and the ratio of the response functions:

Rcase(k Z)
Bease( _ Bref k non \'V» )
( ,Z) ( ’Z) X Rc.ase(k,7 Z)

lin

(2.9)



In the following sections, we will check the validity of using COLA to compute R3%°(k, z)/ Ri2¢(k, 2)
against emulators in ACDM and then compute them in modified gravity models.

3 ACDM Analyses

3.1 Variation of cosmology parameters

In this section we compare COLA simulations with massless neutrinos with EE2 in terms
of the response function defined by Equation (2.7), by varying cosmological parameters one
at a time. Throughout this work we fixed the dark energy equation of state to that of a
cosmological constant, i.e., wg = —1 and w, = 0, as well as the Hubble constant and baryon
energy density to their reference values, h = 0.67 and €, = 0.049. In this section, the
reference cosmology is defined by Table 4 but with ) m, = 0.

After making these choices we are left with only three cosmological parameters, 2,
ns and Ag , which when varied independently alongside the fixed choices of parameters,
impact differently the matter power spectrum. That is, increasing (reducing) the value of
the amplitude of the primordial scalar perturbations, Ag, leads to a re-scaling of the matter
power spectrum amplitude up (down), while the variation of the spectral index, ng, enhances
or suppresses power at small scales. Augmenting the total amount of matter in the Universe,
while keeping the baryon densities fixed, leads to increasing the value of the dark matter
density. This imprints the matter power spectrum by first changing the scale of equality
between matter and radiation era, k.q, and by tilting the spectrum at small scales, i.e., if
we have a bigger Q.qm we will have steeper gravitational potentials, leading to more matter
clustering at small scales, while a smaller value for Q.q, gives you the opposite. To get
a better perspective of these features, Figure 1 shows the linear response and non-linear
response from COLA simulations and EE2 for massless neutrinos at z = 0. At large scales
(small k values), all curves agree with each other, while at higher k values we see non-linear
corrections in the solid blue and dashed orange curves.

In our COLA simulations, cosmological parameters were varied in the range shown in
Table 5. However, in this section, we present the results and comparisons only for the cases
which we will refer as “large”, that is, the minimum and maximum values shown in the same

Table.

Parameter Min. Max.
Qm 0.28 0.36
Ng 0.92 1.0
A 1.7x 1079 25x107°

Table 5. “Large” variation of parameters.

The difference between linear and non-linear predictions for P¢¢ /Pref in Figure 1 is
characterised by Rpon/Riin, which needs to be computed by simulations. Figure 2 show the
predictions for this function by COLA at different redshifts. In our COLA implementation,
the linear prediction from COLA and the one from hi_class have a 0.1% agreement with each
other. For the change of ,, we see oscillations on quasi non-linear scales, which describe
the smoothing of BAO oscillations in P¢¢/P' by non-linearity. For the change of ns and
Ag, the non-linearity gives a scale-dependent enhancement or suppression at large k.
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Figure 1. Non-linear and linear response functions for each variation of the cosmological parameters
with respect to the reference cosmology. Blue solid lines are computed from COLA simulations, orange
dashed lines are obtained from EE2, and dash-dotted green lines are the linear predictions computed
using hi_class.

To investigate how well COLA fairs with EE2 in predicting Ryon/Ryin , in Figure 3 we
plot the ratio between the non-linear response from COLA with respect to that of EE2 for the
same massless neutrinos case. We can see that we get 2% agreements up to k ~ 1 h/Mpc when
varying . When we vary ns we get 1% agreements, and for Ag we obtain 2% agreements
at higher redshifts, while at z < 1, they become 1% up to k ~ 1 h/Mpc. In Appendix A,
we show a comparison between EE2 and Bacco. Note that Bacco does not cover the largest
Qm and Ag used in this analysis. At k < 1 h/Mpc, the agreement between EE2 and Bacco
is comparable to that between EE2 and COLA although the agreement is much better at
k > 1 h/Mpc as expected.
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Figure 2. Ratio between the non-linear and linear response functions computed from COLA simu-
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z = 1 (dashed green), z = 2 (dash-dotted red) and z = 3 (solid-squared purple). We use the same
convention in all other figures when we show the results at these five redshifts.

In the above studies, we consider the cases where the matter power spectrum changes
up to 30% compared with the reference cosmology as shown in Figure. 1. The future surveys
have the ability to constrain the power spectrum at 1% level. In Appendix B we show the
results for small variations of the cosmological parameters, where there are 1% variations in
the matter power spectrum. In this case, COLA is able to reproduce the same results for
Rion/Rin as EE2 and Bacco with excellent precision (< 0.1%) up to k ~ 1 h/Mpc.

This shows that COLA can predict the boost factor defined in Equation (2.9) up to
k ~ 1 h/Mpc as long as the deviations of the matter power spectrum from the reference
cosmology are not too large. This means that COLA can be used to emulate the matter

~10 -
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Figure 3. Ratio between the non-linear response function computed using COLA and the EE2 for
the massless neutrinos case.

power spectrum with given B™(k, z) in a few chosen reference cosmologies where we require
full N-body simulations to obtain the non-linear boost.

3.2 Inclusion of massive neutrinos

The observation of the flavour oscillations of neutrinos confirmed that the sum of neutrino
masses is not zero. While its exact value is not yet known, massive neutrinos play an
important role in cosmology. The matter power spectrum is affected by the variation of the
sum of neutrino masses in two different ways. Firstly massive neutrinos introduce relativistic
corrections at small k£ values, where the bigger the value of their mass, the larger the deviation
from a simulation where these species are not correctly introduced [41]. The other imprint
massive neutrinos leave in the power spectrum is the suppression of the growth of structure

- 11 -



at small scales, which makes the growth scale-dependent. At a specific scale, called the
free-streaming scale, neutrinos travel freely out of the gravitational potentials generated by
cold dark matter. At the linear level, the suppression present in the dark matter power
spectrum is found to be proportional to the ratio between the neutrinos and total matter
energy densities [42], f, = Q,/Qm, therefore, the larger the mass the greater the suppression.
Since the two effects have their intensities related to the sum of the masses of neutrinos, this
highlights the importance that neutrinos have for the next generation LSS surveys.

As both emulators used in this work have been trained assuming three degenerate
massive neutrinos, we ran COLA simulations accordingly for two different values of the sum
of the masses, 0.058 eV and 0.15 eV, and we also compare both of these cases with the
massless case.

With the output of our simulations we then computed the quantity

. Pmyi
ratio,COLA __ < non

Rnon — oMy (31)
Puon

which is the non-linear response function between two different neutrino masses, where i, j
refers to one of the three masses considered: ) m, = 0.0 eV, 0.058 eV and 0.15 eV. As we
are interested in the comparison of COLA and emulators, we evaluated the same quantity
for EE2 and Bacco as well. The result is plotted in Figure 4, which shows the ratio of the
non-linear response function (3.1) for each method. The curves shown in Figure 4 show us
how the non-linear suppression between different prescriptions of the matter power spectrum
are in agreement with each other. From Figure 4, at z = 1 we can see that COLA and EE2
have a below 0.1% agreement with each other in almost the full range of scales, i.e., from
small scales to beyond 1 h/Mpc. While at z = 0 the agreement slightly degrades at k > 1
h/Mpc due to the fact that EE2 is more accurate than COLA simulations at smaller scales.
We find a similar agreement between Bacco and EE2 at k < 1 h/Mpec. Therefore, modulo
deviations smaller than 0.5% up until & = 1 h/Mpc, the three methods are in excellent
agreement, and the implementation of massive neutrinos in COLA does not introduce any
biases when compared to the well validated emulators.

4 Modified Gravity

In this section we will study how modified gravity affects the growth of structure. We will
use the model-independent formalism of the EFT of DE to introduce non-linear corrections
sourced by the scalar field. That is, we ran COLA simulations following Equation (2.4),
where the Gog function is given by

CgN (2 — QME + 2aT) + (OdB + 2o — 27 + aBaT)2
2c4 M? ’

Geg =1+ (4.1)

and a;, M? and c? functions are given in the Appendix of references [23, 24]. The common
approach of modified gravity N-body codes compute Geg by solving the scalar field fluctuation
equation under the Quasi-static approximation (QSA), and then substitute the solution into
the Poisson equation. In our approach, however, we are able to bypass this by splitting the
dark energy perturbations into two parts: one that is purely relativistic (dynamical) and
another that is sourced by matter density perturbations (QSA). In this way we are able to
model the scale-dependence of the growth function present in modified gravity theories at
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Figure 4. Ratio of non-linear response function, Equation (3.1), between COLA and EE2 (left column
plots) and between Bacco and EE2 (right column plots) for two redshifts, z = 0 (top row plots) and
z =1 (bottom row plots). Solid blue lines compare the ratio >, m, =0.0eV /> m, = 0.058 eV,
orange dashed lines compare the ratio ) m, =0.15eV />~ m, = 0.058 eV, and dotted green lines
compare the ratio _ m, =0.15€eV />  m, = 0.058 eV.

large scales by dgR, rel (Equation 2.5) , while allowing non-linearities in matter perturbations
using Geg.

We note that there is no additional cost to include dgg, rel (Equation 2.5) in our sim-
ulations compared with simulations with massive neutrinos. We just need to use Jdgg, rel
including both massive neutrinos and modified gravity effects.

Although not discussed in this work, there is one last step that is necessary to complete
the description of modified gravity simulations, i.e. the introduction of screening mechanisms.
In the FML implementation of COLA, screening mechanisms can be included either using
screening approximations or solving the exact scalar field equation using a multi-grid solver.
However, screening mechanisms are model-dependent, and, therefore, we need to first choose
a modified gravity theory, and then investigate which screening mechanism will be realised in
this theory. This spoils the model-independent approach we have followed in this work. For
this reason, we chose not to model the shielding of the fifth-force at small scales. However,
this has been well studied in the literature [43], and can be easily introduced in our formalism.

Continuing our model-independent approach, we need to select a parametrization for
the time-dependent «; functions [44]. For the sake of generality and familiarity with previous
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works, we will use the following parametrization:
a;=c;xa, =M, B, K, T, (4.2)

where the ¢;’s are constants and a is the scale factor. Throughout this work we will fix the
kineticity function, ax = 10 X a, and we will focus on only two sets of Horndeski theories [45],
one where we have apg # 0 and ay = at = 0, i.e., only-brading case, and the Jordan-Brans-
Dicke [46] like case, ag = —ap # 0 and ap = 0. Additionally, following the EFT of DE
approach, besides fixing the «; functions, we are still left to choose one more function that
fully characterizes the evolution of dark energy models in a model-independent framework,
the background evolution history, H(a). For simplicity, and due to the multiple constraints
one can get on the expansion of our Universe, we choose to fix it to an ACDM evolution with
the energy fractional densities given by Table 4 or Table 5. We emphasize that these functions
are chosen for illustrations of our approach and any functions can be used in simulations.

ar=ay=0,ag=Ccg X a ar=0,ay=cyXa= —ag
—_— A 1.00 1
cg=0.05 =025 =
1.157 =015 7 cg=0.45 7 0.95 1
| 0.90
& 1.10

© 0.851
1.051 0.80

1,001 ' ' ' 0.75+ | | |

104 1073 1072 1071 100 104 10-3 1072 1071 100
a a

Figure 5. Left: Evolution of the Geg function in the “only-braiding” gravity model i.e. ag = cg X a
and ar = ay = 0, for cg = 0.05 (solid blue), 0.15(dashed orange), 0.25 (dotted green) and 0.45
(dash-dotted red). Right: Evolution of the Geg function in the “JBD-like” gravity model, i.e.
ap = —ay = ey X a and ar = 0, for ey = 0.05 (solid blue), 0.15 (dashed orange), 0.25 (dotted
green) and 0.45 (dash-dotted red). In both cases ax = 10 x a.

We show in Figure 5 the evolution of Geg for the two models for different values of the
proportionality constants. As shown in [23, 24], the kineticity function affects the matter
power spectrum only at sufficiently large scales, k ~ 1072 h/Mpc, and due to the size of our
simulations, shown in Table 1, the specific value and functional form for ak is not relevant
for the exposition of our results, hence we keep it fixed. As discussed in Section 2, our
COLA simulations incorporate the relativistic effects of photons, neutrinos and dark energy
using the N-body gauge approach, following the same approach used by EE2. In all COLA
simulations in this modified gravity section we fix the sum of neutrinos masses to 0.058 eV.

4.1 Fixed cosmology

To investigate the interplay between modified gravity (MG) and the cosmological parameters
we will first compare the linear and non-linear response, RMIG and Rll\l/ég’, for the modified
gravity cases mentioned above, while keeping the cosmological parameters fixed to their

reference values shown in Table 4.
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Figure 6. Ratio between non-linear and linear response functions in modified gravity (MG) “only-
braiding” models with different proportionality constants cg.

From Figures 6 and 7 we can see that non-linear effects are stronger for larger values
of the constant of proportionality, in accordance with the plots shown in Figure 5. More
interestingly, from the top left plot of Figure 6, the lowest value of ¢, we see almost no
non-linear corrections in the response function up to k ~ 1 h/Mpc. In the “only-braiding”
gravity model, non-linearity introduces an enhancement, while in the “JBD-like” model, non-
linearity gives an additional suppression at large k. At small k, linear and COLA predictions
are in excellent agreement due to the correct implementation of the relativistic effects in
COLA simulations described in Section 2.

The impact of non-linear corrections in the matter power spectrum for each model
discussed is shown in Figures 8 and 9. We plot the ratio between the matter power spectrum
in modified gravity with respect to the one computed using GR with the same cosmological
parameters. If we use the quasi-static approximation and linear approximations, we see a
constant off-set caused by Geg.

The deviation from the constant offset at small k arises from relativistic corrections
that are computed by the Boltzmann code. We see that at small k values, the non-linear
(solid lines) and linear curves (dashed lines) have the same behavior, as expected, since in
our COLA implementation we have consistently introduced relativistic corrections.

At large wave-numbers, the deviations from the constant off-set arise from non-linear
effects, which are more prominent at smaller redshifts and for larger values of the modified
gravity parameters, cg (only-braiding) and ¢y (JBD) as expected as non-linearity is stronger.
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Figure 7. Ratio between non-linear and linear response functions in modified gravity “JBD-like”
models with different proportionality constants cy;.

We see that non-linearity gives an additional enhancement at large &k in the “only-braiding”
case while it gives an additional suppression in the “JBD” model. As shown in the previous

section, COLA should be able to capture these non-linear corrections accurately up to k ~
1 h/Mpec.

4.2 Varying cosmology

We now move to the next discussion where we will vary the cosmological parameters Ag, ng
and 2, as shown in Table 5. Our main goal in this section is to investigate the dependence
of modified gravity effects on these parameters. Since the effect of the Horndeski scalar field
seen in Figures 6 and 7 is very similar in different models modulo the difference between
enhancing/suppressing the growth, we chose to select only one case of modified gravity, i.e.
the only-braiding case with cg = 0.45. This value is of particular interest as the non-linear
response with respect to the linear one is roughly 10% at z = 0, and we will refer to this
value as “cB10”. Note that the effect on the matter power spectrum is around 30% on linear
scales at z = 0.

In the left hand side of Figure 10, we plot B°¢/B™ in the reference cosmology and
the model with “cB10”. The superscript “case” refers to one of the 6 cases of “large” values
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Figure 8. Ratio between modified gravity and GR power spectra in the “only-braiding” model. The
solid lines refer to the non-linear prediction, while the dashed ones to the linear one.

in Table 5. The right hand side of the plot shows the ratio:

i AN

—_ C

ReB10.GR = Prer X <Bref ) (4.3)
cB10 GR

We can see that all cases where the variation of the cosmological parameters decreased their
values from the reference ones, the ratio B¢/ B! increase in the “cB10” model compared
with the reference cosmology in GR. Note that in these cases, the effect of changing these
cosmological parameters is to decrease the amplitude of the power spectrum on small scales
while the effect of the modified gravity considered here is to enhance the amplitude. The
increase in the ratio B¢/ B is more prominent in the cases of the parameters , and
As, as these two are related to changes in the overall amplitude of the power spectrum,
while it is milder in the case of the spectral index reaching at most an increase of 2%.
When the cosmological parameters increase, we see an opposite effect. Overall, compared
with B°¢/B™f in the reference cosmology, the effect of modified gravity is fairly weak at
k <1 h/Mpc except for Qy,.
The ratio R¢Bio,gr can be rewritten as

—1

case ref

o Rnon,cBlO Rnon,cBlO 4.4

ReB1o,GR = Tacase X\ et (4.4)
lin,cB10 lin,cB10
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Figure 9. Ratio between modified gravity and GR power spectra in the “JBD-like” model. The solid
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where

case ref

case o PHOH’CBIO Rref . P non,cB10 A5

non,cB10 = Pref ’ non,cB10 — Pref ’ ( : )
non,GR non,GR
case ref

Rcase _ Plin,cBlO ref _ Plin,cBlO (4 6)

lin,cB10 — ref ’ lin,cB10 — ref .

lin,GR lin,GR

which is line with our previous definitions in Equations (2.7), where the reference non-linear
and linear matter power spectra are always computed with cosmological parameters in Table 4
and GR as the gravity theory. Thus R.gio,gr can be interpreted in two ways: how modified
gravity changes the cosmological parameter dependence of the boost factor as discussed
above, and how cosmological parameters affect the response of the matter power spectrum
to modified gravity parameters. As we have seen, the cosmological parameter dependence of
RcBio,GR is fairly weak at k < 1 h/Mpc except for y,. This property is useful when creating
emulators for the response functions for modified gravity parameters. This is consistent with
what was found in f(R) gravity in [47].

It is worth making some remarks about how general our results are when contrasted to
the great freedom we have at choosing a parametrization for the a; functions. For late-time
dark energy models, the choice of parametrization is such that as the Universe evolves, the
impact dark energy has on the matter power spectrum also increases. In this work, we have
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Figure 10. In the left panel, we show the ratio between the boost factor in each “large” cosmological
parameter variation case and that in the reference cosmology. The solid lines show this quantity in
the modified gravity “only-braiding” case (cB10) while dotted ones show this in GR. In the right
panel, we show the ratio of this ratio between modified gravity and GR. Top, middle and bottom
row plots show variations with respect €,,, the spectral index ng and the amplitude of the primordial
perturbations Ag, respectively.

chosen to make these property functions proportional to the scale factor. This was done in
order to better highlight the new features introduced by the scalar field, since making the «;
functions depending linearly on the scale factor allows them to have an impact at an earlier
period of time than the case where they were proportional to the background fractional
dark energy density, o< Qpg, another common choice in the literature. This parametrization
forces the scalar field density perturbations to only be relevant at redshifts during dark energy
domination era, z < 0.7. However, the same discussions and conclusions in the present work

~19 —



would still be valid.

5 Conclusion

In this work, we have validated COLA simulations with two existing emulators in the lit-
erature, the EE2 and the Bacco emulator. In order to do so, we have made use of the
non-linear response function, defined in Equation (2.7), where the reference cosmology is
given in Table 4. Each case cosmology corresponded to the variation of one of the following
cosmological parameters: the total matter energy density, spectral index and amplitude of
the primordial fluctuations, within the range detailed in Table 5. All COLA simulations
followed the same specifications presented in Table 1 and Appendix A. The performance of
COLA can be improved further at the cost of speed.

In Section 3.1 we have analysed how the ratio between the non-linear and linear response
functions, computed using COLA, is affected by varying the cosmological parameters to large
deviation values, i.e. the boundaries of the ranges shown in Table 5 as displayed in Figure 2.
To investigate the agreement between COLA and EE2, in Figure 3 we showed the ratio
between the non-linear response function computed using each method, and we concluded
that both predictions agree at the 2% level up until £k = 1 h/Mpc. For small variations of the
cosmological parameters (0.5% variations), the agreement is even better, being well below
the 0.1% level as shown in Appendix B, which also includes the validation with the Bacco
emulator.

To test the implementation of massive neutrinos in COLA, in Section 3.2, we computed
the non-linear suppression computed by each non-linear prescription, i.e. Equation (3.1), at
z =0 and z = 1. We used three different values of the sum of the neutrino masses, 0.0 eV,
0.058 eV and 0.15 eV, in our COLA simulations. In Figure 4, we plotted the ratio of the non-
linear suppression between the different cases of neutrino masses evaluated by each method,
COLA, EE2 and Bacco. We found that all three were in agreement at below 0.5% level at
both redshifts down to & = 1 h/Mpc, showing that the treatment of massive neutrinos in
COLA does not introduce any biases, and the non-linear response function computed using
COLA simulations can be used to extend existing emulators in the literature, as well as to
train new ones.

In Section 4 we introduced our implementation of scalar-tensor theories of gravity in
COLA via the model-independent approach of the EFT of DE. In order to do so, all non-
linearities arising from the scalar field fluctuations are encoded in the G.g function, Equation
(4.1), which functional form is found by assuming that non-linear corrections of modified
gravity are sourced only by matter density perturbations (QSA limit). At the same time, we
also implemented relativistic corrections from the scalar field perturbations via the N-body
gauge approach developed in [23, 24].

In Figures 6 and 7 we showed how non-linearities affect the response function in two
different models, the only-braiding model and the JBD-like one. The main effect corresponds
to a rescaling of the amplitude of the matter power spectrum by either enhancing the power
at small scales in the only-braiding case, or suppressing the growth of structure at these
scales in the JBD-like model as shown in Figures 8 and 9. These figures showed also that our
COLA simulations included dynamical effects of relativistic species including the scalar field
on large scales as well as non-linear clustering of dark energy driven by non-linear matter
perturbations on smaller scales.
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Based on this analysis, in Section 4.2, we have then chosen a specific case of the only-
braiding gravity, “cB10”, to investigate how modified gravity impacts the variation of cos-
mological parameters. This was done by running new COLA simulations for large variation
values of Q,,, As and ng, but with the gravity theory being described by “cB10”. As showed
in Figure 10, our results showed that the dependence of the response function with respect to
the change of the modified gravity parameter on Ag and ng is fairly weak up to k = 1 h/Mpc.
For Qy,, we saw a stronger dependence, which was also found in reference [47].

With the results of our investigations, we conclude that COLA simulations can be used
to extend emulators already available in the literature, as well as to train new ones, via
the use of the response functions computed from these simulations. This method is able to
push the regime of validity of COLA down to k& = 1 h/Mpc with accuracy below 1% if the
deviations from the reference cosmology are small enough. For beyond-ACDM cosmologies
this is particularly important, as running COLA simulations are much faster than full N-body
ones. Also, since the dependence on cosmological parameters is fairly mild in the response
function with respect to modified gravity parameters, we can use cosmology-independent
methods to include new theories of gravity into emulators, which is a very desirable feature
for the upcoming LSS surveys.

In order to go beyond k = 1 h/Mpc, we need to improve the PM part of the simulations.
There are several methods proposed to improve the accuracy of COLA and PM simulations
[17, 26, 48]. In addition, baryonic effects become significant beyond k£ = 1 h/Mpc [49] and
these effects need to be added to dark matter only simulations using the methods proposed
by [25, 26] for example. It is still an open question whether we gain any information on
cosmology and modified gravity by marginalising over parameters describing these baryonic
effects beyond k = 1 h/Mpc. Even for emulators using more sophisticated N-body codes to go
beyond k = 1 h/Mpc such as the FORGE emulator in f(R) gravity [19], our study indicates
that it is easier to emulate the response function to avoid the effect of resolution issues.
Finally, there is a halo model approach, ReACT [50, 51], to predict the non-linear power
spectrum in modified gravity models. This method requires a calibration of the concentration-
mass relation for the 1-halo term to get a precise agreement with N-body results [52]. It will
be interesting to compare our results with the prediction of ReACT for the models considered
in this paper.
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A COLA specifications

COLA is a quasi N-body code, that is, it is an approximate method that allows us to reduce
the number of time-steps that usual full N-body simulations require getting faster realizations
of the non-linear density field. Therefore, if we want to get more accurate descriptions of
clustering on small scales, we can just increase the number of time-steps in our COLA
simulations to make it closer to full N-body codes. However, there is an obvious setback
to this, as we increase time-steps we increase the time our simulations take to finish. Also,
the initial redshift of these simulations impacts the large k behavior as well, since the higher
the redshift we choose, the more time-steps between zi,; to smaller redshifts we will need.
Another parameter COLA is sensitive to, is the number of cell grids in its PM algorithm. As
COLA solves the Poisson equation using inverse and normal FFTs, by increasing the number
of cells we will be making our mesh finer and increasing the force resolution.

These specifications used in this work follow closely the discussion presented in [12]
where detailed analyses were performed to find the best specifications for COLA simulations.
All our simulations use the box size of 1024 h/Mpc with Ng = 10243 particles.

In Table 1 we chose to use 50 time-steps for our COLA simulations starting at zi,; = 19,
with the time-steps subdivided as shown in Table 6. These time steps are linearly distributed

Redshift Number of time-steps

19— 3 12
32 5
2—1 8
1—0.5 9
0.5—0 17

Table 6. Number of time-steps intervals.

in the scale factor. As we can see from this table that the COLA method generally uses a
very sparse time-stepping at higher redshifts, which can be a problem if we have a very low
force resolution. In order to not have a loss of power at small scales in our simulations, we
then chose to use a force mesh grid number of N3, = (2N,)3 = 20483 as it was shown that
increasing this to (3N,)3 has ~ 1% effects on the matter power spectrum at k < 1 h/Mpc.

In Figure 11 we show the ratio between the absolute non-linear power spectrum mea-
sured from our COLA simulation using the reference values of Table 4, and the EE2 non-linear
matter power spectrum. We use the paired-fixed simulations to reduce the cosmic variance.
We see that the ratio between the two is highly oscillatory when we go to large k values, due
to the residual sample variance effects of our COLA simulation. The time steps are chosen
to reproduce the matter spectrum better at z < 1. At z < 3, the non-linear power spectrum
from COLA agrees with EE2 at 1% level at & < 0.5 h/Mpc. As shown in this paper, COLA
gives a better accuracy up to higher k in predicting reactions of the matter power spectrum
to the change of cosmological parameters as well as massive neutrino mass. Also since the
reaction is defined as a ratio of the power spectrum, using the same initial seed, we can sup-
press the sample variance and obtain much smoother predictions. To compute the reaction,
we used fixed amplitude simulations and the same initial seed for all the simulations.

We emphasize that all the comparisons and results using our COLA simulations shown
in this work can be even further improved by increasing the temporal resolution of our
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Figure 11. Ratio between the absolute non-linear dark matter power spectrum computed using
COLA and EE2 for the reference cosmology.

simulations, i.e., increasing the total number of time-steps, the force resolution, i.e., increasing
the the number of cell grids in our PM algorithm, and the particle number. In appendix we
performed convergence tests

Finally, in the main text, we only showed comparisons between COLA and EE2 for the
prediction of the reaction. Here, for completeness, we show a comparison between EE2 and
Bacco in Figure 12. As noted in the main text, Bacco do not cover the largest values of
and A used in our analysis. In the plot, we used 0, = 0.355 and Ag = 2.45 x 10~ instead.
We get below 2% agreements in all cases.

B Small variations of cosmological parameters

In this Appendix, we show the results for small variations of cosmological parameters between
COLA and EE2. Our choice of small variations represent increasing and decreasing 0.5% of
the reference value of €1,, As and ng. This small change in the parameters has smaller effects
on the linear and non-linear response functions, as opposed to the large variation cases
considered in Figure 1. Their impact on the matter power spectrum is shown in Figure 13.
It is important to check that COLA can reproduce the response function with much better
accuracy in the case.

In Figures 14 and 15 we show the impact on the ratio of the non-linear response of this
change for COLA and EE2, and for Bacco and EE2, respectively. We see that in all cases
COLA agrees with these emulators well within the 0.1% threshold for up until £ = 1 h/Mpc.

C Convergence tests

To check the convergence of our result for the response function Ry, we ran simulations with
a large number of time steps as well as higher mass and force resolutions as a benchmark.
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Figure 12. Ratio between the non-linear response function computed using Bacco and the EE2 for
the massless neutrinos case.

The COLA method effectively converges to a standard Particle-Mesh (PM) N-body method
with a large number of time steps.

For this convergence test, we reduced the box size to 512 Mpc/h. We then increased the
number of time-steps for these simulations to 150. The choice of 150 time-steps is motivated
by the number of steps used by MG-GLAM [53], another modified gravity PM based N-Body
code. These simulations have 3 times better time resolution, 8 times better mass resolution
and 3 times better force resolution than COLA simulation used in the analysis in this paper.
We ran these higher resolution PM simulations for the “cB10” model discussed in the paper
and a corresponding LCDM model. The “cB10” model has a 30% enhancement of the linear
power spectrum compared with the LCDM model, and the amplitude of Ry, /Ry reaches
1.1, corresponding to the large variation of the cosmological parameters studied in section 3.
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Figure 13. Non-linear and linear response functions computed using COLA, EE2 and hi_class, for
small variations of the cosmological parameters.

We call these high-resolution simulations PM simulations.

We checked that Pphon(k) in the LCDM model from this PM simulation agrees with the
Euclid emulator 2 prediction at 1% level at k = 1 h/Mpc at all redshifts used in the paper
as shown in Figure 16. This is an improvement compared with the result shown in Figure 11
for COLA simulations, where we have a 4% agreement using the settings shown in Table 1.

In order to investigate the dependency of Ryon and Py, on COLA settings, we ran the
other 4 simulations, where we decreased the number of particles to 512 particles to have the
same mass resolution as the one used in the paper, varied the mesh resolution to two and
three times the number of particles per dimension and used the same time-steps as described
in Table 6. Our results are summarized in Figure 17. The "COLA 2N,” simulations have
the same settings as those used in this paper.
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Figure 14. The same ratio as in Figure 3, but for small variations of the cosmological parameters.

simulations Volume Number of particles Number of grids Number of time steps

PM 5123 10243 (3N,)3= 30723 150
COLA 3N, 5123 5123 (3N,)3=15363 50
COLA 2N, 5123 5123 (2N,)?=10243 50

Table 7. Simulations for convergence tests. The volume is in the unit of Mpc®/h3. Simulations in
the last row have the same settings as COLA simulations used in the main text.

We see that at higher redshifts the power spectrum in these COLA simulations suffers
from the effect of low mass resolution, and increasing Ny,esn does not improve the agreement
with high-resolution results. The mass resolution effect seen in simulations with Nyesh = 3N,
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Figure 15. The same ratio as in Figure 12, but for small variations of the cosmological parameters.

is consistent with what was found in [3]. We can also check that Npesh = 2N, simulations
already give us a 1% agreement in the response function, as we claim in the paper, and
increasing the force resolution pushes the agreement slightly beyond k& = 1 h/Mpc at late
times. However, we still have the problem of low mass resolution at higher redshifts. These
plots show that the number of time-steps does not affect much R, while the mass resolution
effect is under control, as the effect stays below 1% at k = 1 h/Mpc in the response function.
This result is consistent with what we found in comparison with EE2 in LCDM as shown in
section 3, and verifies the robustness of our prediction for Ry., up to &k = 1 h/Mpc in this

beyond LCDM model.
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