UNIVERSITAT ZU LUBECK
INSTITUT FUR
NEURO- UND BIOINFORMATIK

Fast Multiple Sequence Alignment
Schnelles Multiples Sequenz Alignment

Masterarbeit

im Rahmen des Studiengangs
Informatik
der Universitat zu Liibeck

vorgelegt von
David Gmelin

ausgegeben und betreut von
Prof. Dr. Bernhard Haubold

Liibeck, den 22. September 2022 (modified November 10, 2022)

IM FOCUS DAS LEBEN

Notice

For this version, the ‘ Fidesstattliche Frklirung’ was removed for privacy reasons.
I also adapted a twisted number in the covid results table.

David Gmelin - Liibeck, den November 10, 2022

Acknowledgements I would like to thank two people in particular. There is Bernhard, for
the opportunity to write my thesis in his group and for the expertise. Also Swantje, for
the emotional support and for understanding my occasional moods.

Abstract Sequencing technologies are continuously improving and provide access to an
increasing amount of data. This gives rise to many opportunities to gather new insights
about the sequenced organisms. However, handling such volumes of data is a challenge on
its own and established, alignment-based, methods for sequence comparison are reaching
their capacities. The alternative, alignment-free methods scale better to large datasets
and are especially useful for phylogeny reconstruction. But their effectiveness comes with
the disadvantage of loosing information about the underlying alignment structure (Vinga,
2014). In this thesis, the approach of anchor alignments is implemented. Anchor align-
ments have already shown good results in phylonium (Klotzl and Haubold, 2019) for
alignment-free distance estimation. The goal of this thesis is to make the underlying
alignment accessible and to evaluate the results against alignment-based methods.

The resulting program par is faster than classical alignment-based approaches. The align-
ments are accurate on very closely related genomes that are currently collected during
pangenomic outbreaks. However, as the sequences become more divergent, the accuracy
starts to drop quickly.

Kurzfassung Methoden zur Genomsequenzierung verbessern sich stetig und ermdoglichen
den Zugang zu immer groferen Datenmengen. Dadurch ergeben sich viele Moglichkeiten,
neue Erkenntnisse tiber die sequenzierten Organismen zu gewinnen. Die Bewéltigung sol-
cher Datenmengen ist jedoch eine Herausforderung an sich bei der die etablierten, auf
Alignment basierenden Methoden zum Sequenzvergleich an ihre Grenzen stoflen. Die Al-
ternative, alignment-freie Methoden eignen sich besser fiir grole Datenmengen und sind
insbesondere fir die Rekonstruktion von Phylogenien niitzlich. Thre Effektivitat hat den
jedoch den Nachteil, dass die zugrundeliegenden Alignments verloren gehen. In dieser ar-
beit ist der Ansatz der Anker-Alignments implementiert. Mit Anker-Alignments konnten
bereits in phylonium (Klotzl and Haubold, 2019) als alignment-freier Ansatz zur Distanz-
schiatzung gute Ergebnisse erziehlt werden. Das Ziel dieser Arbeit ist es, das zugrunde-
liegende Alignment zugénglich zu machen und die Ergebnisse mit Alignment-basierten
Methoden zu vergleichen.

Das daraus resultierende Programm par ist schneller als klassische, alignment-basierte
Anséitze. Die Alignments sind prézise fiir sehr eng verwandte Genome, die derzeit bei
pangenomischen Ausbriichen gesammelt werden. Bei weiter entfernten Sequenzen nimmt
die Genauigkeit jedoch schnell ab.

vii

Contents

1 Introduction

2 Theoretical Background

2.1 Sequence Alignment
2.2 Alignment-Free Distance Estimation
2.3 String Matching
2.4 (Enhanced) Suffix Arrays Lo oo
2.5 Suffix Array Construction L
3 Implementation
3.1 Input and Preprocessing
3.2 ESArevisited
3.3 Finding the Anchors
3.4 Sorting and optional filtering
3.5 Pile Anchors on Reference

4 Evaluation Method

4.1 Scoring Approach
4.2 Data e

4.2.1 Simulated data

422 Realdata

5 Results

5.1 Benchmarking Suffix Array Libraries
5.2 Simulated data
5.3 Real Data
5.4 Comparison to Phylonium

6 Discussion

1 Introduction

A good way to compare items is to place them next to each other and examine their
similarities. On the most abstract level, the alignment of genomes in biology can be
described as such a form of comparison. Sequence alignment is a very common early step
in molecular biology and, because of its complexity, it is a cornerstone of the link between
biology and computer science, bioinformatics. In a survey published in Nature that ranks
the top 100 most cited papers of all time (Van Noorden et al., 2014), the popular alignment
tools ClustalW (Thompson et al., 1994) and BLAST (Altschul et al., 1990) came 10th
and 12th, respectively.

Sequence alignments are useful for a wide range of applications in biology. They can be
used for phylogenetic reconstruction, to detect patterns within genomes, for comparative
genomics, and for predicting protein function (Iantorno et al., 2014; Zhang et al., 2022).
With the ongoing advances in sequence technologies, an increasing number of genome
sequences are becoming available. This generates the interest in alignment strategies that
help analysing genomes. However, as even more and longer sequences become available,
the runtime and memory consumption of these methods may become unacceptable or even
unfeasible. Tools that are able to handle larger genomes require large server infrastructure
and take several hours to complete (Earl et al., 2014). This sets the stage for alignment-
free methods. Alignment-free methods are based on alternative dissimilarity metrics that
allow to skip the expensive process of residue-by-residue sequence alignment (Vinga and
Almeida, 2003). Alignment-free methods have been increasingly popular in the last two
decades, especially in phylogeny reconstruction. More recently, alignment-free methods
have become able to not only estimate phylogenetic tree topologies but also to determine
phylogenetic distances correctly (Morgenstern, 2021). In Zielezinski et al. (2017) the
results of various alignment-free tools were compared in detail.

In the alignment-free tools andi (Haubold et al., 2014) and its faster successor phylonium
(Klotzl and Haubold, 2019) the authors implemented the idea of anchor distances to esti-
mate evolutionary distances. Anchor distances are based on micro-alignments of regions
that are anchored by exact matches. Both approaches proved to be orders of magnitudes
faster than classical alignment tools while still being accurate on closely related genomes.
Even among similar alignment-free methods they were found to be among the fastest
(Zielezinski, 2019). However, the actual sequence alignments that are used in andi and
phylonium to generate the distance matrices stay implicit and cannot be accessed. The
goal of this thesis is to make the alignments accessible and to provide them in a way
that makes them comparable to classical alignment tools. This could prove to be another
advantage of the anchor matching method. The resulting explicit alignments can be eval-
uated in further analyses, e.g. for specific sequence segments. Additionally, alignments

1 Introduction

allow bootstrapping of phylogenies. Bootstrapping is a common method to measure con-
fidence of individual nodes in phylogenetic trees but require sequence alignments. As the
name suggests, alignments are usually not returned in alignment-free methods.

This thesis is structured as follows: Chapter 2 surveys the theoretical background of this
work. It describes different approaches on sequence comparison. Furthermore, I take
a look at suffix trees and suffix arrays that are a central data structure of this thesis
and in sequence comparison. In Chapter 3, I describe the details of the implementation
and application of my program par that generates the alignments. The short Chapter 4
explains my approach to evaluate the alignments and Chapter 5 presents the results of
my evaluation experiments. In Chapter 6, I will discuss the results and propose ideas for
further improving par.

2 Theoretical Background

In this chapter I introduce the concepts underlying alignment-based sequence comparison
and alignment-free sequence comparison. The field of multiple sequence alignment has
been reviewed by Dewey (2019); Chatzou (2016) and Armstrong et al. (2019). Katoh
(2021) provides an up-to-date collection of multiple alignment tools for specific problems.
Haubold (2013) and Zielezinski et al. (2017) do the same for alignment-free sequence
comparison. Following the concepts for sequence comparison, I present methods for string
matching.

2.1 Sequence Alignment

The importance of sequence comparison and hence sequence alignment is described in
Gustield (1997) as the ‘first fact of biological sequence analysis’”> According to Gusfield ‘In
biomolecular sequences (DNA, RNA or amino acid sequences), high sequence similarity
usually implies significant functional or structural similarity’.

To find regions of high similarity among sequences, genes or genomes is the goal of sequence
alignment. More precisely, sequence alignment aims to find positions in two or more
sequences that are homologous and assigns them to one another. In biology, the term
homology indicates similarity in a sense that two or more genes or segments on the DNA
have descended from a common ancestor due to speciation events (Kehr et al., 2014;
Haubold and Wiehe, 2004).

A sequence alignment can be described as a matrix where each row belongs to a sequence to
be aligned and each column corresponds to the characters of that sequence. The characters
should be arranged in such a way that the number of matching (equal) characters in a
column is maximal. This is done by introducing gaps (*-’) at certain positions that shift
the sequences by one position. An example for a pairwise alignment of two short strings
can be seen in Figure 2.1.

For alignments, a distinction is made between local and global alignment. The function
of local alignments is to find subregions of high similarity among the compared sequences.
In this case, aligning complete sequences is not necessary or even not advised, since only
parts of the sequences might be related. Global alignment, on the contrary, attempts to
align the entire sequences. The optimal global alignment between a pair of sequences can
be computed using the Needleman- Wunsch-Algorithm (Needleman and Wunsch, 1970).
An algorithm to find optimal local alignments is the algorithm by Smith and Waterman
(1981). In this context, optimal means that these algorithms are guaranteed to find the

2 Theoretical Background

- AGT A - C C A
T A G A A A C C A

Figure 2.1: Exemplary pairwise alignment for the sequences S;=AGTACCA and
So=TAGAAACCA. Note that the solution is not always unique, since the gap can also
be placed before the second A in S; and not behind it.

best possible solution (Haubold and Wiehe, 2006). Multiple sequence alignment (MSA)
is an extension of the pairwise alignment to more than two sequences. But multiple align-
ment is more than a ‘generalization for generalization’s sake’ (Gusfield, 1997). Application
areas for multiple and pairwise sequence alignments can be even inverse to each other.
Whereas pairwise alignments are of great use to discover similar sequences that are not
known to be similar the goal of multiple alignments is to discover unknown subpatterns
and similarities for sequences that are known to be similar and related. (Gusfield, 1997)

To find the optimal alignment between multiple sequences is known to be a NP-complete
problem (Wang and Jiang, 1994), which makes it not solvable for more than a few and short
sequences. For this reason algorithms for MSAs are based on heuristics. Such heuristic
algorithms are not guaranteed to yield optimal alignments, but they are applicable for
longer sequences. The greedy progressive multiple alignment (Feng and Doolittle, 1987)
is a standard approach in traditional multiple sequence alignment methods. Progressive
alignment strategies are used in popular tools like ClustalW (Thompson et al., 1994) and
MAFFT (Katoh et al., 2002) that aim to globally align the given sequences. The idea
of the progressive method is to align very similar sequences first because they potentially
provide more reliable information about the real alignment (Feng and Doolittle, 1987;
Jones and Pevzner, 2004). For the progressive alignment the evolutionary relationship
between the sequences is assumed to be known and given in form of a phylogenetic tree,
the ‘guide tree’. The leafs of said tree represent sequences to be aligned. Starting at the
leafs, the closest related sequences are aligned first into a ‘profile’. This profile, which is
an alignment of at least two sequences, is kept and the next nearest sequence or profile is
aligned. This way, the multiple alignment is build successively along the tree for each node.
The final, complete alignment of all sequences is build at the root of the tree. (Katoh,
2021; Batzoglou, 2005; Chatzou, 2016). In its original form this algorithm is prone to
local minima leading to suboptimal results. This means that the alignment of two very
closely related sequences might be incompatible with the best possible global result. To
overcome this problem, several heuristics exist to prevent progressive aligners to either
avoid local minima directly or to correct errors afterwards by iteratively realigning critical
parts (Zhang et al., 2022; Katoh et al., 2002). Another, even more critical limitation for
these types of alignments is that they consider insertions, deletions and substitutions to be
the only allowed evolutionary operations. They result in global alignments of the complete
sequences from start to their end. Other, more elaborate events such as duplications and
rearrangements are not considered (Dewey, 2019).

2.1 Sequence Alignment

Whole genome alignment

The availability of long, complete genome sequences motivates the interest in being able to
align them in full. Classical alignment algorithms are too computationally expensive and
not suitable for these tasks. Additionally, it is not guaranteed that the homologous regions
are collinear, i.e. are conserved in the same order (Chatzou, 2016). The reason for this
might be mutation events like duplication or rearrangements but also that the genomes
are not completely available, contain sequencing gaps or are in the form of ‘draft’ genomes
(Angiuoli and Salzberg, 2010). So-called whole genome alignment approaches consider a
multiple genome alignment not to consist of global collinear sequences but as a set of
multiple blocks of segments that share high local similarity. The blocks do not have to
be related among each other (Chatzou, 2016). They represent collinear, homologous and
rearrangement-free regions that are often referred to as Locally Collinear Blocks (LCBs)
(Darling et al., 2004). LCBs are much smaller than whole-genomes and can be handled
by standard MSA approaches that are based on progressive alignment (Armstrong et al.,
2019).

The idea behind most approaches for WGA is to distinguish between the problem of
finding homologous regions and to produce an alignment on the nucleotide-level (Dewey,
2019). In a first step they search for small segments, so-called anchors, using fast local
alignment algorithms. Next, the anchors are used to compute chains that form collinear
and rearrangement free regions, the LCBs (Armstrong et al., 2019; Ohlebusch, 2013).
The identification of LCBs is often guided using graphs, since graphs provide a convenient
data structure to identify subpatterns within the alignments, e.g. with circles. Kehr et al.
(2014) provides an overview over different graph structure approaches for whole genome
alignment. Finding anchors and chains of collinear regions serves to reduce the search
space for the sequence alignment. In a third step, regions that are much shorter than the
initial sequences can be aligned using any global alignment algorithm.

Usage of Sequence Alignments

Sequence alignments play an important role in the analysis of genomic sequences. As
functional elements are biologically important, they are assumed to be more restricted to
evolutionary changes and remain conserved within different genomes (Batzoglou, 2005).
Thus, conserved regions may indicate some type of functionality.

An important use case for sequence alignments is searching in databases. For newly
sequenced genes, functions and relationships might be unknown. It is common practice
to search databases for similar sequences or genes for which the function is already known
(Jones and Pevzner, 2004; Zhang et al., 2022). A prominent example of such tools are tools
based on the BLAST (Altschul et al., 1990). BLAST stands for Basic Local Alignment
Search Tool and is an effective heuristic to find local alignments between DNA sequences,
RNA sequences or protein sequences. It is a collection of programs that are specialized
for different applications like protein-protein comparison, nucleotide-protein comparison
or comparison of a large number of sequences. BLAST, also other database searches, aim

2 Theoretical Background

at finding regions of high local similarity (Gusfield, 1997). This helps to discover similar
sequences or segments of sequences.

In addition to database searching, a comparison of sequences can reveal unknown related
subpatterns. Sequence alignment can be used to find relevant regions that indicate some
kind of functionality in the first place. As mentioned above, the extension from two
to multiple sequences can help to discover even more or broader similarities among the
sequences compared.

Reconstructing phylogenies is another important application for multiple sequence align-
ments. Phylogenies are a central tool for genomic research. For instance, they help, in
identifying viruses during outbreaks (Gorbalenya et al., 2020). They correspond to the
very intuitive metaphor of representing relationships as a tree. A famous representative of
this is a sketch of the ‘Tree of Life’ in one of Darwin’s notebooks. Most methods for the re-
construction of phylogenies are based on sequence alignments (Felsenstein, 2004), which is
still considered the gold standard. However, with the often-mentioned further increase in
available genomic data, the applicability of fast whole-genome alignment methods is also
reaching its limits. In the supplementary material of (Earl et al., 2014) computational
resources and runtimes were published. Here it can be seen that many tools required
large computer cluster and long runtimes, even for relatively few genomes. Alignments
for thousands of genomes is a challenge that alignhment tools cannot solve at the moment
(Armstrong et al., 2019).

Besides, some alignment tools themselves rely on phylogenies as input data to guide the
alignments. This seems to be a chicken or egg dilemma, since determining phylogenies
is one of their fields of usage. For this reason, alignment-free sequence analysis offers an
attractive alternative to alignment-based methods. Alignment-free methods benefit from
the fact that a sequence alignment is not necessarily required to calculate the similarity
between sequences (Haubold, 2013).

2.2 Alignment-Free Distance Estimation

Alignment-Free (AF) methods aim to compare sequences without actually having to align
them. AF-methods have been increasingly popular for phylogeny reconstruction in the
last 20 years (Zielezinski, 2019). They provide fast algorithms for distance estimation
between genomes. The resulting distances can then be used to construct phylogenetic
trees using standard clustering algorithms like neighbor joining (Saitou and Nei, 1987).
As in alignment-based methods, the idea of AF-methods is based on the assumption that
similar sequences share similar subsequences (Zielezinski et al., 2017). Following Haubold
(2013), AF methods can be broadly classified into methods based on word counts or on
match lengths. One of the earliest methods developed is based on the comparison of
common substrings of fixed length. In its initial approach, the sequence is split into words
of fixed length k, the k-mers. Subsequently, the frequency of said k-mers is compared
with other sequences. This results in an estimated distance between two sequences or in
a matrix of distances for multiple sequences compared.

2.3 String Matching

R

I B "]
Figure 2.2: Example of anchor pairing: The blue anchors on the left are equidistant

and form a pair, the orange anchors on the right are not equally spaced and are not
considered. The anchors do not have to start at the same positions in the sequence.

An example for methods based on match length is kr (Haubold et al., 2009). In kr, the
average match length is computed to estimate the distance between sequences. The idea
of kr is based on the observation that matches are interrupted by mismatches, i.e. a
mutation. Thus, for higher mutation rates, the expected match length decreases. For
example, the expected match length for two random sequences and a substitution rate of
0.01 is 100, whereas the expected match length for a rate of 0.02 decreases to 50.

Anchor Distances

In Haubold et al. (2014) the concept of anchor distances is implemented. The method
is based on the comparison between short and exact alignments. For anchor distances,
maximal matches between two sequences are computed and termed anchor if they are
maximal, unique and longer than a threshold. If the distance between at least two anchors
is equally spaced on both sequences, the anchored regions are united to form an anchor
pair. An example of the anchor pairs is shown in Figure 2.2, anchor pairs that are not
equidistant are not considered (Haubold et al., 2014). The number of mismatches per site
is estimated by counting the mismatches for the anchor pairs and the regions they cover.
Using the Jukes-Cantor equation (Jukes and Cantor, 1969), the number of mismatches is
used to estimate the evolutionary distance between both sequences (Klotzl, 2020).

The anchor distance metric is implemented in the tools andi and its faster successor
phylonium (Klotzl and Haubold, 2019). In andi, the anchors are computed for each pair
of sequences whereas phylonium calculates only the matches between a reference and each
genome. Both, phylonium and andi performed well in a benchmark study for alignment-
free methods (Zielezinski, 2019).

2.3 String Matching

Finding matches is an essential part of many alignment tools. The search for matches boils
down to the question “Does a longer text T contain a shorter pattern P, and if so, where?”
which we will refer to as the exact matching problem. We will look at some approaches
to solve this problem in the past leading to the structure that was used for this thesis,
namely the enhanced suffix array (ESA) (Abouelhoda et al., 2004).

2 Theoretical Background

The naive way to find P in T is by comparing them for each position. We start at the first
position in P (P][0]) and search for a matching character along 7. If the first position of
the pattern matches at a position ¢ in 7" we continue to compare the subsequent characters
in both strings, that is P[1] and T'[i + 1]. The text T contains P if the complete query
sequence can be processed that way and we report ¢ as the starting position of P in T'. If
a mismatch is found the pattern does not start at 7'[i 4+ 1]. Either way we continue the
comparison at the next position in T, T'[i + 1] and again, the first character in P.

The naive approach is simple and easy to implement but has a worst case runtime of
O(|P| x |T'|) which makes this ineffective for large strings. The runtime can be improved
if we can skip the comparison for characters where we might already know the result. To
do so, many algorithms preprocess one of the inputs in some form. One famous approach
to solve the exact matching problem is the algorithm developed by Knuth, Morris and
Pratt (Knuth et al., 1977). The Knuth-Morris-Pratt algorithm effectively preprocesses the
query to achieve an overall runtime of O(|P|+ |T'|). The basic idea is that we do not have
to always restart the comparison at the first character of P after a mismatch. The pattern
can be shifted by more than one position if the location of the mismatch is known and the
number of shifts can be determined by preprocessing the pattern (Gusfield, 1997). The
Knuth-Morris-Pratt algorithm takes O(|T|) in the worst case for the actual comparison
and additional runtime of O(|P|) for preprocessing each pattern. Other algorithms like
the Boyer-Moore Algorithm (Boyer and Moore, 1977) can solve the matching problem in
O(|P|+ |T) as well.

However, a disadvantage of these approaches is that the time spend with preprocessing
cannot be reused for other queries. If the goal is to match multiple queries on the same
reference, the additional runtime for processing the reference is added each time for every
query. Gusfield (1997) redefines this task as the substring problem. Here the text T is
provided in advance. After some linear or O(|T|) preprocessing time the exact matching
problem must be solved in O(|P|). In other words, for a known sequence one has to be
able to search for patterns inside this sequence in time only dependent on the length of
the pattern, not the text.

Suffix Tree

A structure that allows us to search efficiently inside a known sequence is the suffix tree
(Weiner, 1973). The suffix tree has several applications, one of them is the substring
problem (Gusfield, 1997) that can be answered in optimal, linear time. Abouelhoda et al.
(2004) describe the suffix tree as “one of the most important data structures in string
processing” especially for very large and not changing sequences like genomes. An example
of a suffix tree is shown in Figure 2.3. For a given string 7" a suffix tree is a rooted directed
tree that contains a leaf for every suffix of T'. Every leaf is labelled with the starting index
of said suffix. Starting from root, the path through the tree to a leaf corresponds to the
suffix spelled out that belongs to that leaf (Haubold and Wiehe, 2006). The edges in this
tree contain substrings of 7. Common substrings of suffixes are aggregated into a common
path. A node indicates a position where the substrings differ. Therefore, every node has

2.4 (Enhanced) Suffix Arrays

Figure 2.3: Suffix tree for SSACTTGACAAS

at least two outgoing edges. This means that for each node in the tree the following
leaves belong to suffices containing the text up to this node. Usually T" is appended with
a unique character (typically ‘$’) that is not contained in the rest of 7" to mark its end.

To search for a pattern P we start at the root node and follow the outgoing edge that has
the same label as the first character in P. This is repeated at each succeeding node and
the next character in P. That way we can move along the tree. If we are able to process P
completely, P is a substring of T'. The labels of the leaf-nodes that are descendants of the
current node contain the starting positions of P in T'. If we reach a leaf or if no outgoing
edge matches the next character in P we know that T contains the prefix of P up to the
current position. For the second case, when we are still at an internal node, we know that
the prefix of P is contained in 7" multiple times and retrieve the starting indices again by
checking the descending leafs. This way it is possible to decide the substring problem in
optimal time.

Fo all its undisputed ingenuity, the suffix tree is often criticized for its space consumption
(Manber and Myers, 1993). Moreover, it is noted that despite its importance in theory it
is not that common in practice (Abouelhoda et al., 2004). In comparison, the suffix array
introduced by Manber and Myers (1993) has gained wider use.

2.4 (Enhanced) Suffix Arrays

The suffix array (SA) was introduced by Manber and Myers (1993) to provide a data
structure similar to the suffix tree that is simpler and more space efficient. In its initial
form, SA requires 4n bytes for n = |T| < 23 characters and can solve the substring
problem in O(|P|log|T|) time using binary search. This can be further improved to
O(|P|+log |T'|) using an additional table that contains the longest common prefix (LCP)
(Manber and Myers, 1993). The suffix array of a string T is a sorted list or table that

2 Theoretical Background

[[0-0] [1-[1.4]

|[1.1]] 2.2 [2-(3.4)] 5.5

Figure 2.4: LCP-interval tree for SSACTTGACAA: The indices at the nodes and
leafs denote the positions at the ESA.

i | SA|LCP | CLD.L | CLD.R | S[SAJi]..] Icp-intervals |
019 -1 - 10 $

1] 8 0 -) AS

2 7 1 3 AAS$ 1

31 95 1 - 4 ACAAS 9
410 2 - - ACTTGACAAS 0

) 6 0 2 7 CAAS$ 1

6 | 1 1 - - CTTGACAAS

7| 4 0 6 8 GACAAS

8 | 3 0 - 9 TGACAAS 1

9 | 2 1 - - TTGACAAS
10| - -1 1 - -

Figure 2.5: Enhanced Suffix Array for T=ACTTGACAA

contains all suffices of T in alphabetical order. The LCP-array contains the length of the
common prefix of an element with its predecessor in the sorted suffix array.

In Abouelhoda et al. (2004) the idea of the enhanced suffiz array (ESA) is presented to
make more use of the information contained in the LCP-array and enhancing the suffix
array by adding additional tables. Henceforth, two concepts of additional tables, the
LCP-intervals and the child table that allow to answer the substring problem in optimal
linear time O(n) will be shown. These concepts are based on Abouelhoda et al. (2004)
and further developed in Ohlebusch (2013).

Using LCP-intervals it is possible to implicitly build a suffix tree or an equivalent structure
at least, the LCP-interval tree. This LCP-interval tree is conceptual and does not have
to be actually build but its structure resembles the initial suffix tree (see Figure 2.4). In
a sense, a LCP-interval groups the elements of a SA that share a common prefix into

10

2.4 (Enhanced) Suffix Arrays

a subinterval. We define the LCP interval more formally as this is necessary for the
definition of the child table.

Definition 2.4.1. (Taken from Ohlebusch (2013, Definition 4.3.1)) An interval [i..j], 0 <
1< j<ninan LCP—array is called LCP-interval of value [if and only if

1. LCP[i] <
2. LCP[k] >l for all k with i+ 1 < k < j,
3. LCP|

4. LCP[j +1] <

k]zlforat least one k with i +1 < k < j,

We also define an index l-index if LCP[k] = [for i + 1 < k < j for interval [7, j]. The
[-indices define the shortest LCP and therefore a local minimum of their I-interval. They
set the level of this interval and the nodes of the LCP-interval tree. For example in the
interval [1..4] from Figure 2.5 all suffices start with A and are on level 1, they also share
a common node in Figure 2.4.

The local minima inside the LCP-array indicate boundaries between LCP-intervals and
hence different paths or sections on the LCP-interval tree. To be able to traverse the LCP-
interval tree top-to-bottom similarly to the search on a suffix tree we need an additional
table, the child array (Ohlebusch, 2013). The child array contains the information of two
pointers CLD.L and CLD.R, a left and a right one respectively. We define CLD.L and
CLD.R according to Ohlebusch (2013, Theorem 4.3.25):

1. If LCPJi] < LCP[j+1], then CLD[j+1].L stores the first l-index of the LCP-interval
i-]

2. If LCP[i] > LCP[j+1], then CLD[i].R stores the first [-index of the LCP-interval
i-d]

In other words CLD.L and CLD.R point to the first local minimum of the interval on

their left or right side respectively. CLD represents a tree that recursively splits the suffix

array at the local LCP minima in two (Ohlebusch, 2013). This can also be illustrated by a

simple conceptual algorithm to construct the child array presented in Frith and Shrestha

(2018). This algorithm is shown in Listing 2.1. It rather helps to explain the idea behind
the child array and is not indented to be efficient.

The pointers in the child array can be considered to be similar to the edges in the suffix tree
that allow a guided search through the (virtual) LCP-interval tree. A complete traversal
of the suffix array from Figure 2.5 would start at position 0 which points, by definition, to
the last element of the suffix array at position 10 (step 1). Since this is the last element of
the array it only has a left child at ¢ = 1 that points to its right sibling with LCP=0, that
is position 5 (2). At position 5 there are two pointers. On the left hand to the a-interval
with LC'P = 1 and to the right hand where we are still on the interval with LO'P = 0.
CLDI5].L points to the first minimum of [2..5] which is 2 (3). CLD[2].R points to position
3 and 4 (step 4 and 5). CLD[5].R points (3 as well) to its right sibling at position 7 that

11

2 Theoretical Background

fn makeChildTable
requires startPos, endPos, idx, LCP, CLD
if endPos — startPos < 2

return

5 end

mid < argmin(LCP[startPos+1..endPos])
CLDJidx] < mid
makeChildTable(startPos, mid, mid—1)
makeChildTable(mid+1, endPos, mid)

Listing 2.1: Simple recursive algorithm to construct the child table, adapted from
Frith and Shrestha (2018)

points to position 8 (4-5). That way the complete tree can be traversed in five steps at
most.

To save memory, CLD.L and CLD.R can be merged into one single array by placing
CLD[i].LL at CLD[i-1].R without overriding information. If there is a pointer at CLDIi].L,
CLDJi-1].R is always empty because CLD[i].L points to the minimum of the interval that
ends at i-1. Since the boundary between the two intervals must be between position i-1
and position i there cannot be any pointer at CLD[i-1].R we can put CLD[i].L there.

2.5 Suffix Array Construction

Using the ESA, the searching time can be reduced to O(|P|), making the search inde-
pendent of the size of the text. For this to work for the substring problem, the initial
suffix array needs to be constructed. It is possible to convert between suffix arrays and
suffix trees and vice versa in linear time (Ohlebusch, 2013). For the sake of completeness
it should be noted that constructing the suffix tree first and using this to build the SA
leads to a hypothetical linear solution since the suffix tree can be constructed in linear
time as well (Gusfield, 1997). But this misses the point of the suffix array, which is to
replace the extensive space consumption of suffix trees. Also it is possible to naively build
a suffix array using any sorting algorithm. To order the suffixes their first characters are
compared. If they differ, sorting is possible, otherwise their next characters are compared.
For a text of size n, the runtime of the naive approach can be estimated by expecting that
each comparison takes O(n) in worst case. The overall runtime depends on the sorting
algorithm but the commonly used quicksort with an expected complexity of O(nlogn)
would result in an overall runtime of O(n?logn) for example.

Specialized suffix array construction algorithms achieve significant improvements by taking
into consideration that the elements to be sorted are related and nested. When Manber
and Myers (1993) published their concept of the SA, they applied a technique called
prefiz-doubling based on Karp et al. (1972) to reduce the runtime to O(nlogn) for a text

12

2.5 Suffix Array Construction

of size n. Here the suffixes are sorted into buckets according to their first character.
Successively these buckets are sorted for twice the number of leading characters, hence
the name prefix-doubling. Sorting according to the first character can be done in O(n) in
at most O(loga n) iterations so this approach takes about O(nlogn) (Puglisi et al., 2007).
In the early 2000 several approaches to construct the SA in O(n) were introduced (Ko
and Aluru, 2003; Kim et al., 2003; Kéarkkainen and Sanders, 2003), which are reviewed
and surveyed thoroughly in Puglisi et al. (2007).

Most effective algorithms then and today are based on the idea of induced sorting (Xie
et al., 2020). The idea of these algorithms is to sort a well selected subset of suffices
first. The resulting order can be used in subsequent steps to determine the order of the
remaining suffices (Ohlebusch, 2013; Dhaliwal et al., 2012). These algorithms use divide-
and-conquer (and merge) strategies for sorting the suffices. The key difference between
the approaches is the selection criterion for the subsets, which as a consequence effects the
conquering, inducing and merging process as well (Shrestha et al., 2014). For example,
the Skew-Algorithm by Karkkainen and Sanders (2003) selects the suffices S of a text T
as follows:
S ={T;...]i mod 3 # 0}

The suffices in S are associated with 3-grams containing the first three characters of their
suffix. The 3-grams can be sorted in linear time using a radiz-sort (Ohlebusch, 2013). In
the next phase, the remaining elements with S = {7;...]i mod 3 = 0} are sorted using
the information gained from sorting the first step. If two comparing characters equal, it
is sufficient to compare the ranks of their direct successors.

Another algorithm, the SA-IS (suffix array induced sorting) algorithm introduced by Nong
et al. (2011) is the designated best-known linear-time algorithm in both theory and prac-
tice (Timoshevskaya and Feng, 2014; Shrestha et al., 2014). Here, the suffices are classified
into S-type and L-type suffices, depending on whether they are smaller (S) or larger (L)
than their right neighbouring character. In addition the LMS-suffices (leftmost S-type)
are identified. The LMS suffices are sorted and used to induce the order of the L-type suf-
fices. The SA-IS algorithm is based on the algorithm by Ko and Aluru (2003) who proved
that the order of L-type suffices can induce the order of the S-type suffices (Ohlebusch,
2013).

It should be noted that in practice algorithms with worse than linear complexity can
perform better than linear algorithms (Puglisi et al., 2007). The program often referred
to as ‘best in practice’ algorithm (Timoshevskaya and Feng, 2014) is libdivsufsort! with
a worst-case run time O(nlogn), reviewed by Fischer and Kurpicz (2017). More recently
a new implementation of the SA-IS algorithm, libsais?, seems to outperform libdivsufsort.
The author states that this algorithm is still based on SA-IS but improves its performance
by better exploiting recent hardware developments 3.

Thttps://github.com /y-256/libdivsufsort, accessed 08.09.2022
2https://github.com/IlyaGrebnov/libsais, accessed 08.09.2022
3https://encode.su/threads/3579-New-saca-and-bwt-library-(libsais), accessed 11.09.2022

13

https://github.com/y-256/libdivsufsort
https://github.com/IlyaGrebnov/libsais
https://encode.su/threads/3579-New-saca-and-bwt-library-(libsais)

3 Implementation

In this section we will take a look at the implementation of the alignment-program par (Pile
Anchors on Reference) and explain the algorithms used. The objective of par is to return
the explicit anchor alignments that stay implicit in phylonium. Phylonium computes the
suffix array for a single reference sequence and piles all other queries on the reference.
The alignments with the query that overlap among the reference are used for pairwise
distance computation. Similar to phylonium, 1 start in par with building the enhanced
suffix array for the reference sequence. In a next step, the queries and the reference are
compared. In contrast to phylonium, the resulting alignments are not used for distance
computation. Instead, the aligning segments are piled on the reference to build blocks of
multiple sequence alignments. These blocks are further split and printed to the multiple
alignment format MAF.

Par is implemented in Go Programming Language. Most parts were written in literate
programming style (Knuth, 1992) using noweb (Ramsey, 1994). Par is available at

https://github.com/dadidange /par_ lp.

The program roughly consists of the following steps:

—_

. read the input sequences,

build the ESA for the reference,

find the anchors in queries and reference,

filter for orthologies (optional, to fit phylonium)

pile the anchors

A T o

print the alignment

3.1 Input and Preprocessing

The idea of par is to work on Unix-based systems like Linux on the command line using
text-files as input. Apart from some options that are not mandatory, the program expects
DNA-sequences in Fasta-format. Fasta-files are plain text files and widely used in biology
and bioinformatics. They can contain single or multiple nucleotide sequences. Each
sequence starts with a header or definition line that begins with a greater that (‘>’)
character, which is followed by an identifier and optional comments. Subsequent lines up

15

https://github.com/dadidange/par_lp

3 Implementation

to the next ‘>’ contain the actual nucleotide characters. There is no mandatory length
for the sequence lines, but it became convention to insert a line break after 70 or 80
characters, depending on the definition. For par, the header is reduced to only contain the
sequence identifier. The actual sequence is checked for characters that are not ‘ACGT’
that are replaced by an ‘N’

Par needs a reference to build the ESA for. The reference is picked either by the user or a
sequence of median length is picked. This choice has proven to be more robust to outliers
than choosing extremes in Klotzl (2020). I exploited other criteria for picking references,
for example sequences that minimize their total evolutionary distance to other sequences,
but this had little or no effect on the results.

3.2 ESA revisited

The enhanced suffix array (ESA) is the central data structure of the program. While
its concept was explained in the previous section (see Section 2.4), the algorithms for its
application and implementation are discussed below.

By default, the ESA is calculated for both strands of the reference sequence. For this
purpose, the reverse complement is appended at the end of the initial sequence, separated
by a '#’ so that the matches cannot span both strands.

Constructing the ESA The ESA as we use it contains three tables or arrays, namely the
sorted suffix array, the LCP-array and the child array. For par the suffix array can be
build using three different libraries, libdivsufsort and the suffixarray package! in the GO
standard library (GoSais). Libdivsufsort is one of the most widely used libraries and
is used in phylonium (Klotzl, 2020). Libsais was published more recently, later than
phylonium and is said to outperform libdivsufsort. We benchmarked these approaches in
Section 5.1.

Based on the suffix array, the LCP-array is build using the Kasai algorithm (Kasai et al.,
2001).

Child Array The algorithm to construct the child array from the LCP-array is based on
Ohlebusch (2013, Algorithm 4.11) and is shown in Listing 3.1. It loops through the LCP-
array and adds its elements to a stack. A decrease in the LCP-array indicates a local
minimum, that is, a node in our tree. Therefore, a right child, left child or both are added
at these positions. Building the child array takes again O(|T'|) (Ohlebusch, 2013) and
completes the construction of the ESA for our purposes.

Thttps://pke.go.dev/index /suffixarray

16

https://pkg.go.dev/index/suffixarray

3.3 Finding the Anchors

fn buildCld

requires LCP

let n < |LCP|

push(0) // store indices in a stack

for k <~ 1 to n+1 do
while LCP[k] < LCP[top()] do
last < pop()
while LCP[top()] = LCP|[last] do
CLD.R[top()] « last
last < pop()
end
if LCP[k] < LCP[top()] then
CLD[top()].R « last
else
CLD[k].L < last
end
end
push(k)
end
output CLD

Listing 3.1: Construction of the child array, Ohlebusch (2013)

3.3 Finding the Anchors

The ESA allows us to effectively find anchor pairs or groups between the queries and
the chosen reference sequence. This process is based on three algorithms, GetInterval,
GetMatch and AnchorMatches. The function that operates directly on the ESA and the
child array in particular is GetInterval.

GetInterval returns the subinterval or child-interval of a given interval ¢ that starts with
a character c. Its pseudo-code algorithm can be seen in Listing 3.2 which is modified
from Ohlebusch (2013) and Klotzl (2020). GetInterval starts by looking for singletons,
i.e. intervals that only contain one element. If that is not the case it iterates across the
child array looking for the interval that starts with ¢. The algorithm shown is different
to the textbook approach in one small detail, the loop starting at line 17. This adaption
considers that two intervals might end at the same position in the suffix array. Given a
child interval {i,j} that is the last child interval of its parent {h,j} with h < i < j, we
cannot take CLDJ[j] to find the first minimum in {7, j}. CLD[j] might point to the an other
local minimum of the larger interval that lies outside {7, j}. Instead we use CLD[h] that
points to the next minimum of {h, j}, i.e. a right sibling or child. Since {7, j} must be a

17

3 Implementation

child of {h,j} we can follow the right pointers until we will eventually arrive at the first
local minimum inside {4, j}.

GetMatch is the function that calls Getinterval and enables us to find matches between
our reference and any query sequence. More precisely, it returns the longest prefix of
a query that matches any suffix of the reference. GetMatch calls GetInterval once per
character at most and tries to extend the matching characters for the length of the LCP
in that interval to save unnecessary calls. If the LCP and the following characters still
match, GetInterval gets called again in the next iteration with the new interval and the
remaining characters in the query. GetMatch runs in O(o|P|) time with o as the size of
the Alphabet. Since our alphabet is constant (o = 4) it runs in O(|P]) time (Ohlebusch,
2013).

AnchorMatches The anchoring step is the last one in the process of finding matches. The
corresponding algorithm is adapted from (Klotzl, 2020, Listing 3.1) and can be seen in
Listing 3.4. The algorithm finds a list of regions that are homologous in the reference and
a query sequence by calling GetMatch for every suffix from the query. As a result, it always
finds the maximal match starting at each position. If the criteria for minimum length and
uniqueness apply, the distance to the previous anchor gets examined. If the matches on
both, query and reference sequence are equidistant and on the same strand the region and
both anchors are merged into a single new region of anchor pairs. These anchor regions
approximate local, gap-free alignments that start and end with exact matches. Recall
the anchors that form a pair from Figure 2.2. Both anchors are assembled into one local
alignment that we assume to be homologous. In further functions, the region as a whole
is processed rather than the individual anchors.

Anchor Threshold In phylonium and par the default threshold for minimum length is
defined by the following equation which is taken from Haubold et al. (2009, Eq.4).

-] z—k] z—ky\ |S]
PX*>a)=1-=S27(")p| = - T
o gotli))

This describes the probability that a common substring or shustring (Shortest Unique
Substring) (Haubold et al., 2009) is larger than x for two unrelated sequences with length
|S]. The threshold can also be defined by the user.

3.4 Sorting and optional filtering

The function AnchorMatches returns a list of local pairwise alignments between query
and reference sequence of which we say that they are homologous. These alignments are

18

3.5 Pile Anchors on Reference

arranged in the order of their matching position at the query sequence. We sort them in
their appropriate order in the reference sequence, as this is needed in subsequent steps.

The first step in which this is required is optional and comes from phylonium. Due to
duplication events it is possible that multiple segments within a sequence overlap on the
reference. In phylonium, such overlapping segments are removed and only one is left since
multiple comparisons of the same sequence would bias the distance estimation. Only
the element that belongs to the chain that aligns the maximum number of nucleotides is
kept. The best chain is calculated by iterating through the sorted alignments. For each
sequence the predecessor with the highest score that does not overlap is identified and the
own score is set to predecessor.Score+own.Score with score being the number of aligning
nucleotides. Subsequently the sequence with the highest score and its predecessors are
chosen to be the elements that are further considered for comparison.

This step is optional for par as the ability to align duplications might be desirable for whole
genome alignments. However, the option to remove them is kept to produce an alignment
that better corresponds to phylonium. We compared both approaches in Section 5.3.

3.5 Pile Anchors on Reference

The next step is to find overlapping segments between sequences to group them into
alignment blocks. We consider one block to consist of different anchors that overlap with
their matching positions on the reference. A block is framed by the earliest starting and
latest ending index on the reference sequence of its contained alignments. The algorithm
for piling the alignments into alignment blocks is shown in Listing 3.5. We have a list that
contains a list of alignments for each sequence. Furthermore, we have a list of pointers
indicating which alignment to check next for each sequence. First, we pick the sequence
with the earliest start and add it to the block. Then we iterate through the pointers and
compare the indices of the alignment it points to with the block coordinates. The block
coordinates are the start of the earliest alignment and the end of the alignment furthest
to the back. We check the alignment positions on the reference and pile the alignments on
the reference when they overlap. Figure 3.1 depicts the piling process for two sequences.
If an element is added, the pointer is incremented to point to the next alignment on that
sequence. The alignments are sorted by their starting positions on the reference. This
allows them to be processed in their order in the list without the possibility to overlook
an alignment. If the alignment pointed to by the pointer does not overlap with the
current region, the subsequent alignment does not either, because it starts later than its
predecessor. The piling process is repeated until no further element can be added to the
block. If there are still alignments left, a new block is added and the remaining alignments
are processed in the same way.

When all alignments are processed, each block is divided into multiple printing blocks to
comply with the output format MAF.

19

3 Implementation

Qla Q1b
Q1 | .., [10..20], [25..34], .. 10 20 25 34
s e
Q2 ., [14..28], .. ") o
Q2

Figure 3.1: Example of the piling process. On the left, the list of alignments that
stores the alignment coordinates with respect to the reference sequence. On the right,
how the overlapping alignments are piled on the reference.

MAF We chose the Multiple Alignment Format (MAF?) as output format. MAF is a
simple line-oriented text based format used by many alignment tools (Armstrong et al.,
2019). MAF was used as well in the Alignathon project (Earl et al., 2014) for benchmark-
ing MSA tools. MAF-files can store a series of multiple sequence alignments in a separate
block for each alignment. Each sequence inside a block is on a single line that contains
additional information in this order: name of the sequence, zero based starting position of
the current alignment in the sequence, size of the alignment without gaps, strand direc-
tion, size of complete source sequence and finally all aligning nucleotides including possible
gaps. Optional lines for additional information can be added as well. Apart from it being
widely used, another advantage of MAF is that it contains more information than other
alignment formats like Fasta or Phylip. This makes it easier to convert downwards to one
of these formats while conversion in the other direction is not possible. For an example of
our interpretation of the MAF format see Figure 3.2b.

Since the official format definition lacks some details about how gaps and orthologies are
handled, we followed the specification of Dutheil et al. (2014, Figure 1). No alignments
are added consecutively to a block, as this could lead to gaps in the reference sequence.
Whether these gaps can also lead to further gaps in alignments of other sequences is not
always predictable, if the sequences are not to be run through several times. Therefore,
an alignment block is split into multiple synteny blocks according to the ends of the
alignments it contains. The first block starts at the start of the first aligning position and
ends at the earliest end of the alignments it contains. The remainder of the alignments that
go beyond that position is added to a new block as well as some possible new alignments
that overlap within that next segment. As a result, an alignment can only contain gaps
at the beginning and not at trailing positions. Figure 3.2 depicts how the alignment from
Figure 3.1 is split into multiple blocks.

Zhttps://genome.ucsc.edu/FAQ/FAQformat.html#format5

20

https://genome.ucsc.edu/FAQ/FAQformat.html#format5

3.5 Pile Anchors on Reference

Qla Qlb
Q2
Qla [Q2b | Q3c |

Rt | R [R3
(Q2a | qQ2b |

(a) Piled blocks (top) that are split for printing
(bottom).

##maf version=1 scoring=none
#optional comment

a

sR 10 10 + 47 ACGGCTCTAA
sQl4 10 4+ 43 ACGGCTCTAA
s Q212 6 + 38 -——-CTCTAA

a

sR 208 + 47 GTTATACA
s Q2 18 8 + 38 GTTATACA
s QL 17 3 + 43 —ACA

a
sR 286 + 47 GGTCCA
s Q2206 + 34 GGTCCA

(b) MAF output generated by par (exemplary
illustration). The values in blue are arbitrarily
chosen and cannot be derived from the right
figure.

Figure 3.2: Split alignment blocks and print to MAF: (a) depicts how a single align-
ment block (top) is split into multiple blocks. The MAF file in (b) shows how the

blocks could be displayed.

21

3 Implementation

22

fn GetInterval

requires S, SA, CLD, LCP // ESA
input [i..j] //Interval to check
input ¢ //character to check

ifi=j:
if S[[SA[i]]] = ¢
output [i..j]
else
output L //empty interval
end
end

//find interval boundaries

lower < i

upper < CLDj]

while upper < lower:
//iterate through children
upper < CLD[upper]

end

1 + LCP[upper]

while LCP[upper| = I:
if S[SA[lower| + 1] = ¢
//found match
output [lower..upper—1]
end
//increment interval boundaries
lower < upper
if lower = j:
break
end
upper = CLD[upper]
end
//final check for last child interval
if S[SA[lower| + 1] = c:
output [lower..j]
else
// no suiting child intervals for c
output L
end

Listing 3.2: Method Getlnterval, based on Ohlebusch (2013) and Klotzl (2020)

3.5 Pile Anchors on Reference

fn GetMatch
requires S, SA, CLD, LCP // ESA

input Q

in < [0..[S]]
k<0

while k < |Q]:
[i..j] « Getlnterval(in, Q[k])
if [i.j] = L:
itk =0:
output L
else
output in
end
end
I < min(|Q], LCP(j])
//compare prefix
forp=Xktol
if S[SA[i] + p] '= Q[p):
output [i..j]
end
end
k 1
in + [i.]
end
output in

Listing 3.3: Method GetMatch, based on Ohlebusch (2013) and Klotzl (2020)

23

3 Implementation

24

fn AnchorMatches
requires esa, threshold
input query

last « L // empty match
homologies <— 1 // empty list of homologies
current <— homology(0,0) // starting homology

while q < |Q]:
match < getMatch(esa, Qlq..])
if isAnchor(match):
if ¢ — lastQQ == match.start — last.start and match.strandDir == last.strandDir:
//form pair if equidistant and on same strand
current.len = q 4+ m.len — current.start
else:

homologies.append(current)
current <— m
end
lastQ < q
last <— match
end
q < q + max(1, match.len) //advance in query
end
output homologies

Listing 3.4: Method AnchorMatches, based on Klétzl (2020)

fn pileBlocks
input H //list of sorted lists of homologies
requires b //empty block

n < size(H)
next < zeros(n)//pointer to next element for each sequence

s < argmin;(H;[0].refStartldx)
b.Add(Hg[nexts])
nexts ++ // point to next in sequence
while added:
added < false
for i =0 to n:
if H;[next;].overlaps(b):
b.add(H;[next;])
next; ++
added < true

Listing 3.5: Method pileBlocks

4 Evaluation Method

In this chapter, I introduce my approach to evaluating the results of par.

Apart from par, we also tested the alignment tools mugsy (Angiuoli and Salzberg, 2010)
and sibeliaZ (Minkin and Medvedev, 2020). Mugsy is a popular tool for fast multiple
alignment that performs well for closely related genomes. On more distantly related
genomes, however, it is outperformed by cactus (Armstrong et al., 2020) in Earl et al.
(2014). SibeliaZ is a more recent alignment tool that was also developed for closely re-
lated genomes and showed good results alongside cactus (Minkin and Medvedev, 2020).
Both tools, sibeliaZ and cactus seem to require memory that exceeds the range of per-
sonal computers. We decided for sibeliaZ and against cactus for additional evaluation,
since cactus is even more memory extensive and did not terminate in some experiments
conducted in the sibeliaZ paper (Minkin and Medvedev, 2020).

Evaluating whole genome alignments is difficult since the true alignment and evolutionary
history is rarely known (Dewey, 2019). Compared to global alignments, scoring metrics
like the sum-of-pairs score cannot be considered. The sum-of-pairs method returns the
sum of pairwise scores for all pairwise alignments (Batzoglou, 2005). This scoring scheme
cannot be used here because whole genome alignments can consist of multiple blocks.
They take into account that genomes might consist of highly conserved regions that share
homology that are interrupted by regions that are not related at all. Therefore, the rating
could be artificially improved by skipping positions that contain mutations and result in
low scores.

To work with a ground truth, many studies use simulated data to evaluate their results.
The Alignathon project (Earl et al., 2014), which is one of the largest and most cited
benchmark study for whole genome alignment, relied on simulated data for most of their
experiments as well (Dewey, 2019). Unfortunately, they also relied on large server infras-
tructures, so their results are not reproducible on standard personal computers. Also,
they only evaluated accuracy and did not measure time consumption. For the Alignathon
some tools ran on large servers, e.g. cactus on a 64 core machine with 1 terabyte of RAM
for over 500 hours. Again, this makes these results difficult to reproduce on personal com-
puters. What we have taken from the Alignathon study, however, is the scoring method
using the mafComparator tool for scoring MAF files.

25

4 Evaluation Method

4.1 Scoring Approach

The mafComparator estimates precision and recall to measure performance. This tool
compares two MAF files by performing homology tests as follows. Given two sets of
pairwise alignments A and B a pair of positions in A is picked. The homology test returns
true if the pair picked exists in B and false otherwise. MafComparator runs twice through
each MAF file to count the number of overall pairs in the first run and to perform the
sampling process in the second run. If we consider one MAF file to be the ‘truth’ T and
the other to be a ‘prediction’ P we can evaluate the alignment accuracy of P by calculating
the measures of precision and recall.

NP
T

. N
precision = —5 recall

Precision indicates the ration of correct alignments among the predicted alignments by
P and recall defines the ratio of true alignments predicted in P among all alignments.
Both measures are often summarized using their harmonic mean to form the F-measure
or F-Score that is defined as

recision - recall
=22

precision + recall

In addition to the form of accuracy described above, we chose to measure time and memory
consumption to measure performance. These three categories can provide a good reference
for possible use cases since the optimal alignment result in terms of accuracy is often
infeasible. While we are confident about the time and space efficiency of par we estimate
it to have a worse accuracy compared to other tools, since it originates from an alignment-
free approach. This way, we can put the loss of accuracy in perspective to a gain in
speed.

We measured time and space consumption using the ‘time’-command for Unix operating
systems. For memory consumption we measured the mazimum resident set size. For
time we summed the values for CPU-seconds the process spend in user-mode and in sys-
tem(kernel)-mode. We ran all tests under a Intel Xeon W-2245 CPU clocked at 3.90GHz
with 32GB RAM available.

4.2 Data

Many tools (Darling et al., 2010; Paten et al., 2008; Angiuoli and Salzberg, 2010; Arm-
strong et al., 2020; Minkin and Medvedev, 2020) use simulated data for evaluation since
they can provide some kind of ‘true’ alignment. A disadvantage of this method is that
the models on which the simulations are based on are only assumed to be correct and are
often an abstraction of reality Chatzou (2016). Another way to evaluate alignments can
be to compare them to other alignments calculated with other tools. An advantage of

26

4.2 Data

this approach is that the results can be compared directly and put into perspective. This
is particularly useful, as we again expect par to perform worse in terms of accuracy but
faster and more efficiently. In direct comparison with other results, we can assess how
much can be achieved with a given saving of resources.

We tested the performance on simulated data to examine the behaviour of par for different
settings and on empirical data to compare its results to other tools.

4.2.1 Simulated data

Different properties of the input data can influence the results of the performance. Using
synthetic data the influence of these properties can be examined individually and as iso-
lated as possible. We wanted to check the change in performance with regard to changing
mutation rates, an increasing number of genomes and an increasing genome size. The
change in mutation rate is expected to influence the outcome of the alignment results in
terms of accuracy whereas the increasing genome size and number of genomes should influ-
ence the time and memory consumption. The synthetic data was created with the ms tool
(Hudson, 2002) that generates DNA sequences according to the Wright-Fisher-Model.

4.2.2 Real data

Although tests on simulated data are helpful to estimate fields of applications for the
alignment tools and their limits it is important to find out to what extent this applies to
reality. Due to the absence of known truths we decided to evaluate accuracy against the
alignments output by mugsy. From this, the task results in how much of mugsy’s results
can be obtained with par.

We used two datasets for real data.

Escherichia Coli We chose to evaluate the tools on a set of 29 whole Escherichia coli (E.
coli) genomes that were previously used for phylonium and other benchmarks (Haubold
et al., 2014; Leimeister et al., 2018; Angiuoli and Salzberg, 2010). The genomes have an
average length of 4.9Mbp and an average substitution rate of 0.002.

Covid We also downloaded a set of 619 covid genomes from Germany on NCBI (as of
August 2022) and randomly sampled 100, 200 and 300 respectively. This aims to test
the performance of par on outbreak data consisting of many, closely related genomes.
Compared to the E. coli genomes the covid genomes are more closely related with a
substitution rate of 0.0002 and over 150 times shorter with about 30Kbp per sequence.

27

5 Results

5.1 Benchmarking Suffix Array Libraries

We benchmarked four different approaches to suffix sorting, the C-libraries libdivsufsort
and libsais, the suffizarray package in the GO standard library (GoSais) and a naive
sorting algorithm. We created three different random DNA sequences with 50kbp, 5Mbp
and 50Mbp length respectively and took an arbitrary 5Mbp sequence out of the Eco29
dataset. As shown in Figure 5.1 libsais outperforms the other libraries with the naive
approach being at least 10 times slower. Libdivsufsort is slightly quicker than GoSuf on
the largest random sequence and the E. coli sequence. So GoSuf seems to be competitive
in terms of suffix array construction. Unfortunately, the data type returned by GoSais
is not compatible with the calculation of the ESA, for instance the actual suffix array is
not made public. This makes the use of (GoSais impractical, in particular since the two C
libraries are still faster.

Figure 5.1: Average runtime in Milliseconds over 10 runs

dataset Sais | DivSufSort | GoSais | Naive
rand-50K || 1.47 5.78 5.60 17.37
rand-5M 211 298 292 2012
rand-50M || 2097 3779 4299 | 31204
e. coli 240 318 379 2873

5.2 Simulated data

Increasing Mutation Rates

As a first test, we evaluated the alignment quality as a function of mutation rates. In-
creasing mutation rates should increase the difficulty of finding a suitable alignment. We
computed alignments for 10 sequences with 30kbp each. This was repeated for an increas-
ing ratio of segregating sites, starting from 150 (0.5%) up to 6000 (20%). We took the
average results over 10 runs.

Figure 5.2 shows the accuracy of par, mugsy and sibeliaZ over an increasing number of
mutations. For small mutation rates the tools achieve comparable accuracy while mugsy
performs the best. For a mutation probability higher than 10% both, par and sibeliaZ

29

5 Results

1
£ 0.8
]
>
e
0.6
—=— par
— mugsy
——sibeliaz
04 T T I T

I
0 0.1 0.2 0.3 0.4
mutation rate

Figure 5.2: F-scores as a function of mutation rate on simulated data.

start to drop quickly. The curvature in par’s accuracy follows a similar curve as mugsy’s
accuracy, but it starts to drop earlier. SibeliaZ drops heavily between a mutation rate of
0.1 and 0.2 but remains constant at about 0.6% accuracy.

To benchmark resource consumption we added phylonium as well, even though it does not
produce actual alignments. This serves as an orientation for par, anything other than a
similar scaling would be surprising.

Time and space consumption as a function of mutation rate are shown in Figure 5.3. For
these comparably small and few sequences par is the fastest of the tools compared. It is
around 10 times faster than phylonium, 100 times faster than mugsy and at least 250 times
faster than sibeliaZ. For mutation rates up to 0.1% mugsy and par have similar memory
consumption. However, simultaneously to the drop in accuracy the memory consumption
of mugsy starts to rise and drop again. Par and phylonium never use more than 10 MB of
RAM, mugsy never more than 50 MB. Space consumption of sibeliaZ is worse by orders
of magnitude since depending on the mutation rate, 2000-3500 MB of RAM is used.

Par and phylonium have similar time spend on the CPU and are more than 20 times faster
than mugsy or sibeliaZ. Also, par and phylonium are constant over increasing mutation
rates in both, time and memory consumption. SibeliaZ consumes up to a third less time
for increasing mutation rates whereas mugsy needs more time and memory for increasing
mutation rates.

If we concentrate on par and phylonium, par is slightly faster at the expense of higher
memory consumption than phylonium. This might be due to further processing of the
alignments after the calculation of the ESA. To count mismatches, phylonium needs to
compare sequences at the nucleotide level. Although the code is highly optimized, all
overlapping alignments must be pairwise compared. This takes more time than the piling
process in par, where only the indices need to be compared. However, in phylonium only

30

5.2 Simulated data

time memory consumption
101 E L/_\I : W
1 103
— /f 1
& S i
100 - 1
= < 2
a Ci 10% 4
o]
10-! | g] H/f\
S Sn S L IR e o
1072 A i
T T T T T T T T T T
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4
mutation rate mutation rate
‘ —— par —— mugsy —— sibeliaz phylonium

Figure 5.3: Time (left) and memory (right) consumption as a function of mutation
rate.

two alignments have to be held in memory at the same time, whereas in par all aligning
elements are kept in memory simultaneously.

Increasing Size and Number of Genomes

Next we evaluate the resource consumption as a function of genome size or and sample
size. We evaluated genomes with sequences created using ms with about 2% segregating
sites. We created genomes with length ranging from 10kbp to 5Mbp. For each length
we had 10 genomes to be aligned and measured the mean performance over 10 runs. For
the dataset with an increasing number of genomes to be aligned we created 10 to 200
sequences per test with a genome length of 30kbp each. All tools produced alignments
with over 99% accuracy when they were able to finish, except for sibeliaZ on 200 genomes.
Par and phylonium finished all tests within seconds.

For increasing genome length, phylonium and par produce similar runtimes, being almost
one hundred times faster than mugsy and sibeliaZ. Phylonium consumes the least memory
and par and mugsy scale very similar with increasing genome length. Par’s alignments
score not very differently than mugsy’s, both ranging above 99% accuracy. Unfortunately,
stbeliaZ does not seem to react well to the simulated data and is unable to produce
reasonable alignments for this type of genomes longer than 100kbp on our machine.

Mugsy does not terminate on any run on our machine for more than 100 genomes even
though the peak memory consumption is similar to par’s. SibeliaZ produces an alignment
with only 58% accuracy. At the same time, its time and resource consumption drops
slightly. It is possible that sibeliaZ is not able to finish all alignments and returns its

31

5 Results

time memory consumption
10% 4]
102 é | W
1 103 |
10! 4 =
2 10° 5 -
g =
Z 10 £ 10°
& £
1072 o g
1073 10!
S v
10* 10° 10° 10* 10° 106
genome length genome length
‘ —— par —=— mugsy —— sibeliaz phylonium

Figure 5.4: Time (left) and memory (right) consumption as a function of genome
length.

current state, providing at least some alignments. Par terminates in under a second with
an accuracy above 99.9%.

5.3 Real Data

Covid Data

For the 100 Covid Genomes mugsy, par and sibeliaZ produced valid alignments. Par
terminated after 0.16 seconds and returned an alignment with an accuracy of 99.88%
compared to mugsy which terminated after 90 seconds. SibeliaZ had almost identical
accuracy (99.%) but took about 105 seconds to finish. For the 200 and 300 genomes both
mugsy and sibeliaZ did not finish at all. Par terminated after 0.25 and 0.40 seconds

respectively. Par was also able to align all 619 covid genomes, which took less than one
second.

Eco29

On the Eco29 dataset all tools finished their alignments. We ran mugsy and sibeliaZ in
default mode and par twice for each of the 29 genomes. The first run was with settings to
filter for genomes with overlapping multiple homologous segments within the same genome
and the second one allowing a sequence to align multiple times at the same positions on
the reference (see Section 3.4). Running par for every genome also allows to evaluate the
choice of the reference since this might change the outcome as well. See Table 5.2 for an

32

5.3 Real Data

time

aligned genomes

memory consumption

102 E /\ ’_°—°/—\
1 103 A
10! A ae)]
= &
= 10° A = 102
& %
g
10-1 /
10! E
1072 T T T T | T T T T T
0 50 100 150 200 0 50 100 150 200

aligned genomes

‘+ par —=— mugsy —— sibeliaz

phylonium

Figure 5.5: Time (left) and memory (right) consumption as a function of number of
genomes compared.

dataset tool F-score | cpu time | memory | elapsed clock time
(s) (MB) (s)
n100 mugsy | 1.0000 93.53 161 91.06
n100 par 0.9988 0.20 24 0.16
nl00 | sibeliaZ | 0.9987 | 121.70 593 105.51
n200 par - 0.32 34 0.25
n300 par - 0.50 51 0.40

Table 5.1: Performance on the covid data

overview over all results. We listed the results for the run of par’s choice of the reference
seperately to the average results over al references. For both results, with and without
filtering, the reference picked by par yields better results than other sequences on average.
Also, both do not pick the reference that achieves the best possible results. In general, the
results of par are less accurate compared to sibeliaZ. Mugsy’s alignments were considered
as gold standard. Therefore it achieves 100%.

SibeliaZ and mugsy agree on 94% of the alignment, taking 1897 and 6905 seconds on
the CPU, respectively. This means that mugsy took almost 2 hours on our system to
finish the alignment. Par took on average around 11 seconds but at the cost of only
68% agreement for the reference it picked. This result gets even worse when the step for
filtering homologies that overlap is skipped. The result for the default reference without
filtering is at 60% and also on average, the results are worse without filtering. Mugsy
and SibeliaZ both detect overlapping homologs, so an increase in agreement would be less
surprising. The decline in F-score for par is mainly caused by a decline in precision (see

33

5 Results

tool F-score | Precision | Recall | cpu time | memory | elapsed clock time
(s) (MB) (s)
mugsy 1.0000 1.0000 1.0000 6905 2884 6767
par (filter) 0.6876 0.7376 0.6439 10.32 663 04.87
parAll (filter) 0.6178 0.6771 0.5681 11 696 5.12
par (no filter) 0.6074 0.5632 0.6591 10.15 667 05.51
parAll (no filter) | 0.5880 0.5981 0.5813 10 705 5.19
sibeliaZ 0.9487 0.9379 0.9597 1897 3467 148.08

Table 5.2: Performance on the Eco29 data. ParAll denotes the average results for
each possible reference. Par depicts the result for the reference with median length

picked by par.

filter |- *

no filter -

|
04 045 05 055 0.6 0.65 0.7
F-Score

Figure 5.6: Distribution of results without (blue/bottom) and with filtering (green/-
top) for overlapping homologies.

Table 5.2, column 3). The precision for the run without filtering drops by 8 points from
67% to 59%, whereas recall even increases by 1.5%. This means that par finds a few
more correct alignments. In return, however, it also identifies many more false positive
alignments. A possible explanation could be that without filtering, par finds too much or

too short segments that are not considered by mugsy.

Figure 5.6 shows how the results for both par approaches are distributed. The best and the
worst results for both approaches are similar. For many sequences though, the approach
with filtering leads to better results than for the approach without filtering. For the
filtering approach the median is much closer to the upper quantile. The approach without
filtering leads to worse results in general but is also more evenly distributed which brings

the median further down.

34

5.4 Comparison to Phylonium

5.4 Comparison to Phylonium

As seen above, par and phylonium show similar behaviour in terms of runtime and memory
consumption. Their alignment results are difficult to compare directly, though. Phylo-
nium prints a distance matrix whereas the result of par is a multiple sequence alignment.
But, both results can be used to compute a phylogeny and the resulting phylogenies can
be compared instead. Figure 5.7 shows phylogenies generated from the results of par,
phylonium and mugsy. The trees of phylonium and par show the same topology apart
from a small detail, the position of E. coli UMNO0O26 annotated in green. Both trees are
also similar to the tree based on the alignment by mugsy. The main difference of both
trees is the clade at the bottom where strain of E. coli CFT073 (blue) is located at an
earlier branch by mugsy.

35

5 Results

0.001

S. boydii CDC 3083-94

S. sonnei Ss046

E. coli IAT1

oli SE11

E. coli O139:H28 str. E24377A
S. flexneri 2a str. 301

S. flexneri 2a str. 2457T
S. flexneri 5 str. 8401

E. coli HS
E. coli ATCC 8739
E. coli BW2952
E. coli str. K-12 substr. DH10B

E. coli str. K-12 substr. MG1655
E. coli str. K-12 su . W3110
E. coli O157:HT str. Sakai

E. coli O157:HT EDL933
E. coli 055:H7 str. CB9615

S. dysenteriae SA197

coli UMNO026

5

E. coli SM;
E. coli TAI39
E. coli CFT073
E. coli ED1a
E. coli APEC O1
E. coli UTI8Y
E. coli S88
E. coli 536
E. coli O127:H6 str. E2348/69

3

(a) par

E. coli O157:H7
E. coli O157:H7 a
E. coli 05

S. dysente

(c) mugsy

E

0.001

S. boydii CDC 3083-94
S. boydii $h227
S. sonnei Ss046

E. coli TATL

E. coli SE11

E. coli 0139:H28 s
S. flexneri 2a

E24377A
2457T

S. flexneri 2a str. 301

S. flexneri 5 str. 8401

E. coli ATCC 8739

E. coli HS
E. coli str. K-12 substr. MG1655
E. coli str. K-12 substr. W3110
E. coli BW2952

. DH10B
JHT str. Sakai

E. coli O157:H7 str. EDL933

E. coli O55:H7 str. CB9615

S. dysenteriae Sd197

E. coli TAI39

E. coli S\

3
coli EDla
E. coli CFT073
E. coli APEC O1
E. coli UTI8Y
E. coli S88
E. coli 536
E. coli O127:H6 str. £2348/69
coli UMNO026

(b) phylonium

li O139:H28 str. E24377A
S. flexneri 2a str. 301

S. flexneri 2a str. 2457T

S. flexneri 5 str. 8401

9
substr. MG1655

E. coli str. K-12 substr. W3110

substr. DHI0B

akai
HT7 str. CB9615
Sd197

E. coli APEC O1
i UTI8Y
E. coli S88
E. coli EDla
E. coli CFT073

E.
E. coli O127:H6 str. E2348/69

Figure 5.7: Phylogenies produced by par (a) and phylonium (b) and mugsy (c).

36

6 Discussion

Increasing availability of large amounts of homologous sequence data provides a high
demand for tools that are able to process them. Multiple sequence alignments can reveal
information about the compared sequences such as their function or evolutionary distances
between the genomes. The ability to create alignments for thousands of large and closely
related genomes is a challenge that alignment-based methods are currently not able to
solve (Armstrong et al., 2019). Alignment-free sequence methods are fast and accurate
and offer a solution to address the challenge of comparing large sequences. However, they
have the disadvantage that their results are difficult to attribute to specific segments on
the genome. For most alignment-free methods, information on sequence localization is
lost (Vinga, 2014).

With phylonium, Klotzl and Haubold (2019) presented a fast and accurate alignment-free
tool based on micro-alignments. The micro-alignments were then taken to estimate the
pairwise distances between the sequences. The purpose of this thesis was to reimplement
the process of generating such micro-alignments and to construct a common multiple
sequence alignment from them. The result is the tool par (Pile Anchors on Reference),
which produces a multiple sequence alignment based on anchor matches.

In Chapter 5, the quality of these alignments was compared to the established multiple
sequence alignment methods mugsy and sibeliaZ. For closely related sequences par pro-
duces accurate alignments that are quite competitive with those generated by mugsy and
sibeliaZ. 1 illustrated this using simulated data sets. But also on empirical data like the
covid dataset it was possible to obtain par results that agreed with mugsy. For increasing
evolutionary distances, the accuracy of par starts to drop. Likewise, mugsy has already
been criticized for a decline in accuracy on more distantly related genomes (Earl et al.,
2014). It is a known issue that finding homologies is simpler with less evolutionary distance
(Armstrong et al., 2019). For par, however, the accuracy drops even earlier compared to
mugsy and on the E. coli genomes compared to sibeliaZ as well. The alignments on the
E. coli data are only at around 68% accuracy, which is not adequate. In contrast, the
trees on the E. coli dataset produced by par, like those produced with phylonium, are still
accurate when compared to mugsy. This suggests that the alignments found using anchor
matches are still sufficient to provide useful statistical information about the sequences.
The estimated substitution rates on that basis are still good. Yet, for the evolutionary dis-
tance of the E.coli genomes, the anchor matches in par are less sufficient for constructing
accurate explicit alignments.

On a more positive note, par uses less time and memory than the competition. This makes
it possible to generate results in the first place when other tools fail, for example at aligning
more than 100 covid genomes on a personal computer. Thus, a use for par could be on

37

6 Discussion

Figure 6.1: Reference biased alignment. The blue matches that are also located on
the reference are found whereas the red matches are not detected.

large datasets of closely related genomes, e.g. as generated during pathogenic outbreaks.
It could be helpful when regular alignment-based methods fail, whether the underlying
cause is that they take too much time or the hardware requirements are too demanding.
Therefore, the area of application overlaps with that of alignment-free methods such as
phylonium. As both methods are based on anchor matches to a single reference, this is
not surprising. In contrast to other alignment-free methods, it is possible to construct
actual alignments using the anchor matches. This could be of use for a larger range of
tasks in sequence analysis than mere distance computation, including the bootstrapping
of phylogenies. Bootstrapping is a common approach to generating support values for
individual nodes in phylogenies.

Possible Improvements

In par only a single sequence, the reference, is indexed and all other sequences are com-
pared to it. This is a reason for the speed of par, but relying on a single reference effects
accuracy at a certain point. As in any reference-based alignment method it is difficult to
find matches that are not located on the reference. Matches that are only located on the
query sequences are not found, since the queries are only compared with the reference.
Figure 6.1 displays an example for this case. Here, the blue regions are detected and
aligned since they occur in the reference sequence R as well. The regions in red could be
compared between ()1 and ()2 but they are lost from the analysis because they are absent
in R.

A way of improving the accuracy of par could be to examine the sequences further to
find additional alignments. For example, long segments that are not found to contain any
matches on the reference could be indexed and compared to other sequences. This would
be at the expense of speed, but even compared to fast alignment tools like mugsy, par
could afford to trade runtime for accuracy and still finish first. Also, an attempt could

38

be made to extend the matches on the other sequences after they cannot be continued on
the reference. Additionally, the possibility to choose more than one sequence for indexing
could be added. This would be similar to andi , where every sequence is indexed. Andji is
not as fast as phylonium but still faster than mugsy. Here, a hybrid way to index only a
part of the sequences and not every sequence could be a sensible solution. The new and
faster calculation of the suffix array using libsais could be helpful here as well, since the
repeated calculation of the suffix array is a bottleneck.

Finally, in order to investigate the use of anchor matches, they could be used as seeds for
other alignment-based methods. One approach to this could be similar to Leimeister et al.
(2018). They used filtered spaced word matches to generate seeds for mugsy. Similarly,
the anchor matches could be used as seeds as well, since they provide good alignments
already.

39

Bibliography

MI Abouelhoda, S Kurtz, and E Ohlebusch. Replacing suffix trees with enhanced suffix
arrays. Journal of Discrete Algorithms, 2(1):53-86, 2004. doi: https://doi.org/10.1016/
S1570-8667(03)00065-0.

SE Altschul, W Gish, W Miller, EW Myers, and DJ Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403-410, 1990. doi: https://doi.org/10.1016/
S0022-2836(05)80360-2.

SV Angiuoli and SL Salzberg. Mugsy: fast multiple alignment of closely related whole
genomes. Bioinformatics, 27(3):334-342, 12 2010. doi: 10.1093/bioinformatics/btq665.

J Armstrong, IT. Fiddes, M Diekhans, and B Paten. Whole-genome alignment and
comparative annotation. In ANNUAL REVIEW OF ANIMAL BIOSCIENCES, VOL
7, volume 7 of Annual Review of Animal Biosciences, pages 41-64. 2019. doi:
10.1146/annurev-animal-020518-115005.

J Armstrong, G Hickey, M Diekhans, I Fiddes, AM Novak, A Deran, Q Fang, D Xie,
S Feng, J Stiller, D Genereux, J Johnson, VD Marinescu, J Alfoldi, RS Harris,
K Lindblad-Toh, D Haussler, E Karlsson, ED Jarvis, G Zhang, and B Paten. Pro-
gressive cactus is a multiple-genome aligner for the thousand-genome era. NATURE,
587(7833):246+, NOV 12 2020. doi: 10.1038/s41586-020-2871-y.

S Batzoglou. The many faces of sequence alignment. Briefings in Bioinformatics, Volume
6, Issue 1(Pages 6-22), 2005. doi: https://doi.org/10.1093 /bib/6.1.6.

RS Boyer and JS Moore. A fast string searching algorithm. Commun. ACM, 20(10):
762-772, oct 1977. doi: 10.1145/359842.359859.

Magis C Chang JM Kemena C Bussotti G Erb I Notredame C Chatzou, M. Multiple
sequence alignment modeling: methods and applications. Briefings in bioinformatics,

17(6)(1009-1023), 2016. doi: https://doi.org/10.1093/bib/bbv099.

A Darling, B Mau, F Blattner, and N Perna. Mauve: multiple alignment of conserved
genomic sequence with rearrangements. Genome research, 14:1394-403, 08 2004. doi:
10.1101/gr.2289704.

AE Darling, B Mau, and NT Perna. progressivemauve: Multiple genome alignment with
gene gain, loss and rearrangement. PLOS ONE, 5(6):1-17, 06 2010. doi: 10.1371/
journal.pone.0011147.

CN. Dewey. Whole-Genome Alignment, pages 121-147. Springer New York, New York,
NY, 2019. doi: 10.1007/978-1-4939-9074-0_ 4.

41

Bibliography

J Dhaliwal, SJ Puglisi, and A Turpin. Trends in suffix sorting: A survey of low memory
algorithms. In Proceedings of the Thirty-Fifth Australasian Computer Science Confer-
ence - Volume 122, ACSC 12, page 91-98, AUS, 2012. Australian Computer Society,
Inc. ISBN 9781921770036.

JY Dutheil, S Gaillard, and E Stukenbrock. Malffilter: a highly flexible and extensible
multiple genome alignment files processor. BMC Genomics, 15, 2014. doi: 10.1186/
1471-2164-15-53.

D Earl, N Nguyen, G Hickey, RS Harris, S Fitzgerald, K Beal, I Seledtsov, V Molodtsov,
BJ Raney, H Clawson, J Kim, C Kemena, JM Chang, I Erb, A Poliakov, and M et. al
Hou. Alignathon: a competitive assessment of whole-genome alignment methods.
GENOME RESEARCH, 24(12):2077-2089, DEC 2014. doi: 10.1101/gr.174920.114.

J Felsenstein. Inferring Phylogenies. Sinauer, 2004. ISBN 9780878931774.

DF Feng and RF Doolittle. Progressive sequence alignment as a prerequisitetto correct
phylogenetic trees. Journal of Molecular Evolution, 25(4):351-360, 1987.

J Fischer and F Kurpicz. Dismantling divsufsort, 2017.

MC Frith and AMS Shrestha. A simplified description of child tables for sequence simi-
larity search. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
15(6):2067-2073, 2018. doi: 10.1109/TCBB.2018.2796064.

AE Gorbalenya, SC Baker, RS Baric, RJ de Groot, C Drosten, AA Gulyaeva, BL.
Haagmans, C Lauber, AM Leontovich, BW Neuman, D Penzar, S Perlman, LLM
Poon, DV Samborskiy, TA. Sidorov, I Sola, J Ziebuhr, and Coronaviridae Study Grp.
The species severe acute respiratory syndrome-related coronavirus: classifying 2019-
ncov and naming it sars-cov-2. Nature Microbiology, 5(4):536-544, APR 2020. doi:
10.1038 /s41564-020-0695-z.

D Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, 1997. doi: 10.1017/CB0O9780511574931.

B Haubold. Alignment-free phylogenetics and population genetics. Briefings in Bioinfor-
matics, 15(3):407-418, 11 2013. doi: 10.1093/bib/bbt083.

B Haubold and T Wiehe. Comparative genomics: methods and applications. Naturwis-
senschaften, 91(9):405-421, SEP 2004. doi: 10.1007/s00114-004-0542-8.

B Haubold and T Wiehe. Introduction to Computational Biology: An Evolutionary Ap-
proach. Birkhduser Basel, 2006. ISBN 978-3-7643-6700-8. doi: https://doi.org/10.1007/
3-7643-7387-3.

B Haubold, P Pfaffelhuber, M Domazet-Los”0, and T Wiehe. Estimating mutation dis-
tances from unaligned genomes. Journal of Computational Biology, 16(10):1487-1500,
2009. doi: 10.1089/cmb.2009.0106.

42

Bibliography

B Haubold, F Klotzl, and P Pfaffelhuber. andi: Fast and accurate estimation of evolu-
tionary distances between closely related genomes. Bioinformatics, 31(8):1169-1175, 12
2014. doi: 10.1093/bioinformatics/btu815.

RR Hudson. Generating samples under a Wright—Fisher neutral model of genetic variation
. Bioinformatics, 18(2):337-338, 02 2002. doi: 10.1093/bioinformatics/18.2.337.

S Tantorno, K Gori, N Goldman, M Gil, and C Dessimoz. Who Watches the Watchmen?
An Appraisal of Benchmarks for Multiple Sequence Alignment, pages 59-73. Humana
Press, Totowa, NJ, 2014. ISBN 978-1-62703-646-7. doi: 10.1007/978-1-62703-646-7_ 4.
URL https://doi.org/10.1007/978-1-62703-646-7_ 4.

NC Jones and PA Pevzner. An Introduction to Bioinformatics Algorithms. MIT Press,
Cambridge MA, 2004.

TH Jukes and CR Cantor. Evolution of protein molecules. In Mammalian Protein
Metabolism, pages 21-132. Academic Press, 1969.

J Kéarkkainen and Sanders. Simple linear work suffix array construction. In Automata,
Languages and Programming Proceedings, volume 2719 of Lecture Notes in Computer
Science, pages 943-955, 2003.

RM Karp, RE Miller, and AL Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. In Proceedings of the Fourth Annual ACM Symposium on
Theory of Computing, page 125-136, New York, NY, USA, 1972. Association for Com-
puting Machinery. ISBN 9781450374576. doi: 10.1145/800152.804905.

T Kasai, G Lee, H Arimura, A Setsuo, and K Park. Linear-time longest-common-prefix
computation in suffix arrays and its applications. volume 2089, pages 181-192, 06 2001.
doi: 10.1007/3-540-48194-X_17.

K Katoh. Multiple Sequence Alignment Methods and Protocols: Methods and Protocols.
01 2021. ISBN 978-1-0716-1035-0. doi: 10.1007/978-1-0716-1036-7.

K Katoh, K Misawa, K Kuma, and T Miyata. MAFFT: a novel method for rapid multiple
sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14):
3059-3066, 07 2002. doi: 10.1093/nar/gkf436.

B Kehr, K Trappe, M Holtgrewe, and R Knut. Genome alignment with graph data
structures: A comparison. BMC bioinformatics, 15:99, 04 2014. doi: 10.1186/1471-
2105-15-99.

DS Kim, JS Sim, H Park, and K Park. Linear-time construction of suffix arrays. In
Combinatorial Pattern Matching, pages 186—199. Springer Berlin Heidelberg, 2003. doi:
https://doi.org/10.1007/3-540-44888-8 14.

F Klotzl. Fast Computation of Genome Distances. PhD thesis, University of Liibeck, Oct
2020.

43

https://doi.org/10.1007/978-1-62703-646-7_4

Bibliography

F Klotzl and B Haubold. Phylonium: fast estimation of evolutionary distances from large
samples of similar genomes. Bioinformatics, 36(7):2040-2046, 12 2019. doi: 10.1093/
bioinformatics/btz903.

DE Knuth. Literate Programming. The Center for the Study of Language and Information
Publications, 1992.

DE Knuth, Morris JH, and VR Pratt. Fast pattern matching in strings. SIAM Journal
on Computing, 6(2):323-350, 1977. doi: 10.1137/0206024.

P Ko and S Aluru. Space efficient linear time construction of suffix arrays. volume 3,
pages 200-210, 01 2003. doi: 10.1016/j.jda.2004.08.002.

CA Leimeister, T Dencker, and B Morgenstern. Accurate multiple alignment of distantly
related genome sequences using filtered spaced word matches as anchor points. Bioin-
formatics, 35(2):211-218, 07 2018. doi: 10.1093/bioinformatics/bty592.

U Manber and G Myers. Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5):935-948, 1993. doi: 10.1137/0222058.

I Minkin and P Medvedev. Scalable multiple whole-genome alignment and locally collinear
block construction with sibeliaz. NATURE COMMUNICATIONS, 11(1), DEC 10 2020.
doi: 10.1038/s41467-020-19777-8.

B Morgenstern. Sequence comparison without alignment: The spam approaches. In
K Katoh, editor, Multiple Sequence Alignment: Methods and Protocols, volume 2231
of Methods in Molecular Biology, pages 121-134. 2021. doi: 10.1007/978-1-0716-1036-
7_8.

SB Needleman and CD Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443-453,
1970. doi: https://doi.org/10.1016/0022-2836(70)90057-4.

Ge Nong, Sen Zhang, and Wai Hong Chan. Two efficient algorithms for linear time suffix
array construction. [EEE Transactions on Computers, 60(10):1471-1484, 2011. doi:
10.1109/TC.2010.188.

E Ohlebusch. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements,
and Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

B Paten, J Herrero, K Beal, S Fitzgerald, and E Birney. Enredo and pecan: Genome-wide
mammalian consistency-based multiple alignment with paralogs. Genome research, 18:
1814-28, 11 2008. doi: 10.1101/gr.076554.108.

SJ. Puglisi, WF Smyth, and AH Turpin. A taxonomy of suffix array construction algo-
rithms. ACM Comput. Surv., 39(2), jul 2007. doi: 10.1145/1242471.1242472.

N Ramsey. Literate programming simplified. IEEE Software, 11(5):97-105, 1994. doi:
10.1109/52.311070.

N Saitou and M Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425, 07 1987.

44

Bibliography

A Shrestha, M Frith, and P Horton. A bioinformatician’s guide to the forefront of suffix
array construction algorithms. Briefings in bioinformatics, 15, 01 2014. doi: 10.1093/
bib/bbt081.

TF Smith and MS. Waterman. Identification of common molecular subsequences. Journal
of Molecular Biology, 147(1):195-197, 1981. doi: 10.1016,/0022-2836(81)90087-5.

JD Thompson, DG Higgins, and TJ Gibson. CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research, 22(22):4673-4680, 11
1994. doi: 10.1093/nar/22.22.4673.

N Timoshevskaya and W Feng. Sais-opt: On the characterization and optimization of the
sa-is algorithm for suffix array construction. In 2014 IEEE 4th International Conference
on Computational Advances in Bio and Medical Sciences (ICCABS), pages 1-6, 2014.
doi: 10.1109/ICCABS.2014.6863917.

R Van Noorden, B Maher, and R Nuzzo. The top 100 papers. Nature News, 514(7524):
550, 2014.

S Vinga. Editorial: Alignment-free methods in computational biology. Briefings in Bioin-
formatics, 15(3):341-342, 05 2014. doi: 10.1093/bib/bbu005.

S Vinga and J Almeida. Alignment-free sequence comparison—a review. Bioinformatics,
19(4):513-523, 03 2003. doi: 10.1093/bioinformatics/btg005.

L Wang and T Jiang. On the complexity of multiple sequence alignment. J. Comp. Biol,
pages 337-348, 1994.

P Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory (swat 1973), pages 1-11, 1973. doi: 10.1109/SWAT.1973.13.

Jing Yi Xie, Ge Nong, Bin Lao, and Wentao Xu. Scalable suffix sorting on a multicore
machine. IEEE Transactions on Computers, 69(9):1364-1375, 2020. doi: 10.1109/TC.
2020.2972546.

Y Zhang, Q Zhang, J Zhou, and Q Zou. A survey on the algorithm and development of
multiple sequence alignment. Briefings in Bioinformatics, 23(3), 03 2022. doi: 10.1093/
bib/bbac069.

A Zielezinski, S Vinga, J Almeida, and W Karlowski. Alignment-free sequence comparison:
Benefits, applications, and tools. Genome Biology, 18:186, 10 2017. doi: 10.1186/s13059-
017-1319-7.

Girgis HZ Bernard G et al. Zielezinski, A. Benchmarking of alignment-free sequence
comparison methods. Genome Biology 20, 20:144, 2019.

45

	Abstract
	Contents
	Introduction
	Theoretical Background
	Sequence Alignment
	Alignment-Free Distance Estimation
	String Matching
	(Enhanced) Suffix Arrays
	Suffix Array Construction

	Implementation
	Input and Preprocessing
	ESA revisited
	Finding the Anchors
	Sorting and optional filtering
	Pile Anchors on Reference

	Evaluation Method
	Scoring Approach
	Data
	Simulated data
	Real data

	Results
	Benchmarking Suffix Array Libraries
	Simulated data
	Real Data
	Comparison to Phylonium

	Discussion
	Bibliography

