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ABSTRACT
We consider the ten confidently detected gravitational-wave signals in the GWTC-1 catalog which are consistent with mergers
of binary black hole systems, and perform a thorough parameter estimation re-analysis. This is made possible by using computa-
tionally efficient waveform models of the current (fourth) generation of the IMRPhenom family of phenomenological waveform
models, which consists of the IMRPhenomX frequency-domain modelsand the IMRPhenomT time-domain models.The analy-
sis is performed with both precessing and non-precessing waveform models with and without subdominant spherical harmonic
modes. Results for all events are validated with convergence tests, discussing in particular the events GW170729 and GW151226.
For the latter and the other two lowest-mass events, we also compare results between two independent sampling codes, Bilby
and LALInference. We find overall consistent results with the original GWTC-1 results, with all Jensen-Shannon divergences
between the previous results using IMRPhenomPv2 and our default IMRPhenomXPHM posteriors below 0.045 bits, but we
also discuss cases where including subdominant harmonics and/or precession influences the posteriors.
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1 INTRODUCTION

There has been rapid progress in gravitational-wave (GW) astronomy
over recent years in developing both waveform models and param-
eter estimation techniques. Still it remains challenging to achieve
robust inference results on real data, due to the complexity of fully
modelling the physics of binary black hole (BBH) mergers and also
the current limitations in sampling techniques for Bayesian inference
used in this relatively new field. This makes it interesting to revisit
older detections with the latest toolkit at our disposal, and important
to check if robust results can be obtained. Revisiting the 10 BBH
events from the first Gravitational-Wave Transient Catalog (GWTC-
1, Abbott et al. 2019b), our purpose with this paper is threefold:
First, updating the waveform models used for the analysis to the
latest generation of phenomenological models and adding subdomi-
nant harmonics will allow us to sharpen parameter estimation results.
Second, the computational efficiency of these models allows us to
perform careful studies of convergence, and to validate key results
by comparing different sampling methods and priors. Third, we will
gain insight into effects of waveform systematics on the posterior
distributions and provide a “stress-test” for the new waveform model
families.
A first comprehensive analysis of detections from the first two

observing runs of the advanced GW detector network was given in
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Abbott et al. (2019b). This analysis was based on waveform models
that describe only the dominant quadrupole content of the signals
and assume quasi-circularity (i.e. orbital eccentricity is neglected).
Bayesian parameter estimation was performed with the LALInfer-
ence (Veitch et al. 2015) code and the posterior distributions were
constructed from a combination of results with the IMRPhenomPv2
and SEOBNRv3 waveform models
These models are members of the two principal families of wave-

form models which have been used for parameter estimation by the
LIGO–Virgo(–KAGRA) collaboration (LVC/LVK), and specifically
in catalog papers (Abbott et al. 2019b, 2021c,a,b): IMRPhenom and
SEOBNR. For details, references, and a brief summary of the broader
context of waveform models see Sec. 2.2 and Table 1.
The IMRPhenomPv2 posteriors have later been reproduced in

Romero-Shaw et al. (2020) with the Bilby code (Ashton et al. 2019)
for GW parameter estimation, using the nested sampling (Skilling
2006) algorithm dynesty (Speagle 2020). For a study on the effect
of waveform systematics on the first detected event, GW150914, see
Abbott et al. (2017a). This study concluded that for signals with
higher signal-to-noise ratio (SNR) than GW150914, or in other re-
gions of the binary parameter space (lowermasses, largermass ratios,
or higher spins), we expect that systematic errors in current wave-
form models may impact GW measurements, making more accurate
models desirable for future observations.
Some limited analysis with models that contain subdominant har-

monics has also been performed: Most notably the event GW170729
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2 M. Mateu-Lucena et al.

has been studied with various waveform models (Chatziioannou
et al. 2019), some of which contain subdominant harmonics. For
the GWTC-1 catalog (Abbott et al. 2019b) all BBH events have been
cross-checked with the RapidPE algorithm (Pankow et al. 2015;
Lange et al. 2018) and a waveform bank composed of numerical
relativity (NR) simulations supplemented by waveforms from the
NRSur7dq2 model (Blackman et al. 2017). The calibration region
of NRSur7dq2 is restricted to mass ratios between 1 and 5, and
dimensionless spins up to 0.8. For RapidPE results no detailed dis-
cussion of results has been provided, but the posterior samples have
been released publicly (Abbott et al. 2019a). A similar study has been
performed also with the RIFT code (Lange et al. 2018; Healy et al.
2020), which like RapidPE is based on a likelihood interpolation
method, and a catalog of NR waveforms. A study of higher modes,
without precession, in GWTC-1 based on the approximate method
of likelihood reweighting was presented in Payne et al. (2019).
Here we present our analysis of the ten confidently detected BBH

signals in GWTC-1, which has been the first to be performed based
on state-of-the art methods in the following sense: We use waveform
models where at least for the non-precessing sector all spherical
harmonics have been calibrated to NR; the waveform models are
sufficiently computationally efficient to use wide priors and perform
systematic studies that include convergence tests and comparisons of
different samplers; and we use direct Bayesian sampling evaluating
the likelihood with these waveform models, without extra approx-
imations, such as recurring to a discrete template bank or likeli-
hood reweighting without sampling the posterior for each waveform
model. Analyses of these GWTC-1 events with precessing higher-
mode models have also later been performed by Nitz et al. (2021)
and by the LVC (Abbott et al. 2021a), finding broad agreement with
our results, but using only one of the models (IMRPhenomXPHM)
we use here and will discuss next. Two events for which the picture is
more complex, GW151226 (see also Chia et al. 2022; Vajpeyi et al.
2022) and GW170729 (see also Chatziioannou et al. 2019), will be
discussed further below after first summarizing our methodology.
The waveform models we use correspond to the current (fourth)

generation of the IMRPhenom family of inspiral–merger–ringdown
phenomenological waveform models. These models consist of the
IMRPhenomX sub-family of frequency-domain models (Pratten
et al. 2020; García-Quirós et al. 2020, 2021; Pratten et al. 2021),
and the IMRPhenomT time-domain models (Estellés et al. 2021b;
Estellés et al. 2020, 2021a). IMRPhenomX constitutes a thorough
upgrade of the previous generation of frequency-domain phenomeno-
logical waveform models based on IMRPhenomD (Husa et al. 2016;
Khan et al. 2016; Hannam et al. 2014; Bohé et al. 2016; London
et al. 2018; Khan et al. 2019, 2020), which included the first mod-
els in the IMRPhenom family to describe subdominant harmonics
(IMRPhenomHM) and both subdominant harmonics and preces-
sion (IMRPhenomPv3HM). IMRPhenomT offers advantages in the
description of precession, in particular concerning the merger and
ringdown, as described in detail in Estellés et al. (2021a) and briefly
summarized in Sec. 2.2.
Our main results are obtained with the parallel Bilby (Ashton

et al. 2019; Smith et al. 2020) sampling code. In addition, for the
three lowest-mass events we also cross-check with the independent
LALInference code (Veitch et al. 2015), and demonstrate good agree-
ment. We have added these cross-checks, which confirm our results,
after the initial versions of Nitz et al. (2021) and Chia et al. (2022)
appeared on the arXiv and showed tension for the event GW151226.
In particular, the first version of Chia et al. (2022) found a bi-modal
posterior with support for very unequal masses, in tension with both
our results and with Nitz et al. (2021). However, the results in their

final journal version (using an updated method and priors) have sig-
nificantly reduced this tension, with remaining differences consistent
with those in priors. A later study byVajpeyi et al. (2022) also studied
possible multiple peaks and prior dependency for GW151226. We
will discuss this case in detail in Sec. 3.2.2 and Appendix A. An-
other special case is GW170729, the highest-mass event of GWTC-1.
We have also performed additional runs and comparisons with the
literature for this event and discuss it in detail in Sec. 3.4.2.
The paper is organized as follows: We first present our methods in

Sec. 2: our conventions, the observational data used, our waveform
models, and the setup for running parameter estimation. In Sec. 3 we
present our parameter estimation results, and we conclude in Sec. 4.
Further details are presented in two appendices: In appendix A we
present checks on the sampler convergence, and compare results for
the three lowest mass events between the Bilby and LALInference
samplers. Finally in appendix B we test aggressive settings of our
multibanding algorithm to accelerate waveform evaluation.

2 METHODS

2.1 Notation and conventions

Masses refer to the source frame unless we note explicitly that we
refer to the detector frame. Source frame masses are inferred as-
suming a standard cosmology (Ade et al. 2016) (see Appendix B
of Abbott et al. (2019b)). Individual component masses are de-
noted by 𝑚𝑖 , and the total mass is 𝑀𝑇 = 𝑚1 + 𝑚2. The chirp
mass is M = (𝑚1 𝑚2)3/5𝑀−1/5

𝑇
, and we define mass ratios as

𝑞 = 𝑚2/𝑚1 ≤ 1 and 𝑄 = 𝑚1/𝑚2 ≥ 1.
We also report two effective spin parameters which are commonly

used in waveform modelling and parameter estimation. The param-
eter 𝜒eff (Santamaría et al. 2010; Ajith et al. 2011) captures those
dominant spin effects which do not depend on spin precession, and
is defined as

𝜒eff =
𝑚1 𝜒1 + 𝑚2 𝜒2

𝑚1 + 𝑚2
, (1)

where the 𝜒𝑖 are the projections of the dimensionless component
spin vectors onto the orbital angular momentum. The effective spin
precession parameter 𝜒p (Schmidt et al. 2015) is designed to capture
the dominant effect of precession, and corresponds to an approximate
average of the spin component in the precessing orbital plane over
many precession cycles, see Schmidt et al. (2015) and Eq. (4.7) in
Pratten et al. (2021). Both 𝜒eff and 𝜒p are dimensionless, and thus
independent of the frame (source or detector).
When referring to specific spherical harmonic modes of the

GW signal we will always consider pairs of both positive
and negative modes, e.g. when we refer to the example list
of multipoles (𝑙, 𝑚) = (2,±2), (2,±1) we will use the notation
(𝑙, |𝑚 |) = (2, 2), (2, 1) or simply (2, 2), (2, 1).

2.2 Waveform models used

Threemain approaches have been used to construct waveformmodels
for comparable-mass coalescences of quasi-circular BBHs, which
have become standard tools of GW data analysis:

• The effective one-body (EOB) approach (Buonanno & Damour
1999) models the Hamiltonian and energy flux, which yield a system
of ordinary differential equations. This is solved numerically, which
is however computationally expensive. The Hamiltonian and flux,
and any further quantities used in the construction of the waveform,

MNRAS 000, 1–20 (2022)



PE with current waveform models for GWTC-1 3

Family Full name Precession Multipoles (ℓ, |𝑚 |) included Ref.

SEOBNR

SEOBNRv2 × (2, 2) Taracchini et al. (2014)
SEOBNRv3 X (2, 2) Babak et al. (2017)
SEOBNRv4_ROM × (2, 2) Bohé et al. (2017)
SEOBNRv4HM_ROM × (2, 2), (2,1), (3, 3), (4, 4), (5,5) Cotesta et al. (2018, 2020)
SEOBNRv4P X (2, 2), (2, 1) Ossokine et al. (2020)
SEOBNRv4PHM X (2, 2), (2, 1), (3, 3), (4, 4), (5,5) Ossokine et al. (2020)

IMRPhenom - 3rd Generation

IMRPhenomD × (2, 2) Husa et al. (2016); Khan et al. (2016)
IMRPhenomHM × (2, 2), (2, 1), (3, 3), (3, 2), (4,4), (4, 3) London et al. (2018)
IMRPhenomPv2 X (2, 2) Hannam et al. (2014); Bohé et al. (2016)
IMRPhenomPv3 X (2, 2) Khan et al. (2019)
IMRPhenomPv3HM X (2, 2), (2, 1), (3, 3), (3, 2),(4, 4), (4, 3) Khan et al. (2020)

IMRPhenomX

IMRPhenomXAS × (2, 2) Pratten et al. (2020)
IMRPhenomXHM × (2, 2), (2, 1), (3, 3), (3, 2), (4,4) García-Quirós et al. (2020, 2021)
IMRPhenomXP X (2, 2) Pratten et al. (2021)
IMRPhenomXPHM X (2, 2), (2, 1), (3, 3), (3, 2),(4, 4) Pratten et al. (2021)

IMRPhenomT

IMRPhenomT × (2, 2) Estellés et al. (2021b); Estellés et al. (2020)
IMRPhenomTHM × (2, 2), (2, 1), (3, 3), (4,4), (5,5) Estellés et al. (2020)
IMRPhenomTP X (2, 2) Estellés et al. (2021b); Estellés et al. (2021a)
IMRPhenomTPHM X (2, 2), (2, 1), (3, 3),(4, 4), (5,5) Estellés et al. (2021a)

Table 1. The table lists waveform models from the IMRPhenom and SEOB families relevant to this paper. Only the latest generation of IMRPhenom waveforms
has been used to obtain the results in this paper, however SEOB and older IMRPhenom waveforms have been used in relevant literature we compare to, and we
list them for convenience of the reader.

For precessing models, the multipoles correspond to those in a co-precessing frame.

can be calibrated to NR simulations. Two families of such models
have been developed: The SEOBNR family has been regularly used
for parameter estimation by the LVC/LVK, and a list of models is
given in Table 1. An alternative is the TEOBResumS model (Nagar
et al. 2018).

• The IMRPhenom models describe the amplitude and phase of
the spherical harmonic modes piecewise as closed-form expressions
in the inspiral, merger and ringdown. These expressions have been
calibrated to NR for the late phase of the coalescence, and for the
third and current fourth generation to EOB for the early inspiral.
These models are computationally much more efficient than EOB
models, and can be used for Bayesian parameter estimation without
further approximations.

• Another approach has been to construct numerical interpolants
of discrete data sets; such types of models are often referred to as
reduced-order models (ROMs) or surrogate models. This approach
has been used to accelerate the evaluation of EOB models – e.g. the
SEOBNRv4HM_ROM model (Cotesta et al. 2018), see Table 1 – or
directly to interpolate data sets of NR waveforms (Blackman et al.
2017). In the latter case, validity is restricted to the parameter space
where NR waveforms are available, with small extensions through
extrapolations. Since SNRs for current ground-based detectors are
relatively small, posteriors are typically wide, and for GW data anal-
ysis it is convenient to use EOB or IMRPhenom models, which can
be used for larger regions of parameter space.

For a list of IMRPhenom and SEOB waveform models, which are
most directly relevant for this paper, see Table 1.
In this work we present new parameter estimation results which

we have obtained with the most recent waveform models of the IM-
RPhenomX and IMRPhenomT families, and compare with previous
results from the GWTC-1 catalog (Abbott et al. 2019b), and also with
Chatziioannou et al. (2019) and Payne et al. (2019) for GW170729.
Parameter estimation for the GWTC-1 catalog paper (Abbott et al.

2019b) has used two precessing waveformmodels: IMRPhenomPv2
(Hannam et al. 2014; Bohé et al. 2016) is a predecessor of our

updated precessing phenomenological waveform models IMRPhe-
nomXPHM (Pratten et al. 2021) and IMRPhenomTPHM (Estellés
et al. 2021a)), and is based on the non-precessing IMRPhenomD
(Husa et al. 2016; Khan et al. 2016) model. SEOBNRv3 (Babak
et al. 2017) is based on the non-precessing SEOBNRv2 (Taracchini
et al. 2014) model and is a predecessor of SEOBNRv4PHM (Os-
sokine et al. 2020), constructed within the effective-one-body (EOB)
framework (Buonanno & Damour 1999, 2000), which is based on
solving a system of ordinary differential equations for the dynamics
of the binary.
For the GW170729 event an analysis with higher mode models

has already been performed (Chatziioannou et al. 2019), using the
non-precessing IMRPhenomHM (London et al. 2018) and SEOB-
NRv4HM_ROM (Cotesta et al. 2018, 2020) models, with which we
will also compare. The latter is an example of the reduced-ordermod-
els (ROMs) which are often used to accelerate the evaluation of EOB
waveforms. Preliminary analyses of GW170729 with our IMRPhe-
nomXAS and IMRPhenomT models have already been presented in
García-Quirós et al. (2020) and Estellés et al. (2020).
We now turn to describing the new IMRPhenomX and IMR-

PhenomT families. Phenomenological frequency-domainmodels are
constructed as piecewise closed-form expressions that are calibrated
to post-Newtonian (PN) or EOB inspiral results and NR waveforms.
Such explicit descriptions of the waveform can be evaluated very
rapidly. The corner stone of the IMRPhenomX family is IMRPhe-
nomXAS (Pratten et al. 2020), which models the (ℓ, |𝑚 |) = (2, 2)
modes of non-precessing signals, and has been extended to in-
clude the (ℓ, |𝑚 |) = (2, 1), (3, 3), (3, 2), (4, 4) modes by IMRPhe-
nomXHM (García-Quirós et al. 2020, 2021). All the modes have
been calibrated to around 500 numerical waveforms as reported in
García-Quirós et al. (2021), whereas in the previous generation of
IMRPhenom waveforms only the dominant (ℓ, |𝑚 |) = (2, 2) modes
have been calibrated to 19 NR waveforms (Husa et al. 2016; Khan
et al. 2016).
IMRPhenomXPHM (Pratten et al. 2021) augments IMRPhe-
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nomXHM to account for spin precession following previous phe-
nomenological models (Schmidt et al. 2011, 2012; Hannam et al.
2014) in employing an approximate map between non-precessing
and precessing waveforms, where the signal of the precessing sys-
tem in a non-inertial co-precessing frame is identified with an ap-
propriate non-precessing signal, and where the final spin is adjusted
to account for the effect of spin components orthogonal to the in-
stantaneous axis of the orbital plane. The non-precessing signal with
adjusted final spin is then mapped to a precessing signal by employ-
ing a time-dependent rotation from the non-inertial co-precessing
frame to the inertial frame where the signal is observed. This proce-
dure is often referred to as “twisting up” in the literature. IMRPhe-
nomXPHM implements two approximate descriptions for the Euler
angles that define the time-dependent rotation: an orbit-averaged
effective single-spin description at the next-to-next-to-leading PN
order (NNLO, Blanchet et al. 2011; Marsat et al. 2013), or an ap-
proximation based on a multiple scale analysis of the PN equations
(Chatziioannou et al. 2013), which is the default choice. For a de-
tailed discussion of the procedure and the conventions employed to
describe precessing waveforms in the frequency domain see Pratten
et al. (2021).
IMRPhenomXPHM also allows to choose among different ap-

proximations for the final spin of the remnant black hole. Version 0
is equivalent to the estimate implemented in IMRPhenomPv2, where
the in-plane spin contribution is captured by the effective precession
spin 𝜒p. Version 1 is equivalent to version 0, with the replacement of
𝜒p by the x-component of the spin, 𝜒𝑥 . Versions 2 and 3 attempt in
different ways to incorporate the full double-spin effects, with the lat-
ter relying on precession-averaged quantities that arise in the context
of the MSA formalism (Chatziioannou et al. 2013). Version 3 is the
default in the LALSuite (LIGO Scientific Collaboration 2020) im-
plementation.We refer the reader to Sec. IV D of Pratten et al. (2021)
for a thorough discussion of these options. The IMRPhenomT family
of models (Estellés et al. 2021b; Estellés et al. 2020, 2021a) extends
to the time domain the methods that have been used to construct
the frequency-domain model IMRPhenomXHM and calibrate it to
a catalog of numerical waveforms. The main motivation for devel-
oping a time domain model is that the morphology of the waveform
is often simpler to understand in the time domain, in particular for
the late inspiral, merger, and ringdown, where rapid changes are not
“smeared out” by a Fourier transform. This allows a cleaner sepa-
ration of inspiral, merger and ringdown, which can be valuable for
tests of general relativity, this is however not directly relevant for
the present paper. Precession is again described by the “twisting up”
approach (Estellés et al. 2021b; Estellés et al. 2021a), however the
time domain model indeed allows some key improvements over IM-
RPhenomXPHM: First, in order to obtain explicit expressions for
the spherical harmonic modes of the precessing frequency-domain
models, the stationary phase approximation (SPA) is used to com-
pute approximate Fourier transforms. This also makes it difficult to
incorporate analytical knowledge about the ringdown frequencies in
the ringdown portion of a precessing waveform. This is however
simple in the time domain, where the ringdown waveform can be
simply modelled as a damped sinusoid, with the complex ringdown
frequency determined by the final spin and mass. This allows a sim-
ple analytical approximation to the Euler angles during ringdown,
based on the effective precessional motion observed in NR signals
(O’Shaughnessy et al. 2013), which can be derived analytically in
the small opening angle limit. (A derivation is presented in Estellés
et al. (2021b), see also Marsat & Baker (2018).) In consequence,
the merger and ringdown of precessing waveforms is typically more
accurately described in our time-domain model.

IMRPhenomTPHM also offers an improvement of the inspiral de-
scription by departing from the previous approach of using closed-
form expressions for the Euler angles that describe the precession of
the orbital plane, and by default a numerical integration of the equa-
tions for the spin dynamics is used, which can be carried out without
significant increase of computational cost (Estellés et al. 2021a). For
amore detailed discussion of the differences between IMRPhenomX-
PHM and IMRPhenomTPHM regarding the treatment of precession
see Estellés et al. (2021c).
For lower-mass events, despite the gain in accuracy of describing

precession, there is however some loss of accuracy for the phase of the
dominant harmonic, which is constructed based on a calibrated ex-
tension of the TaylorT3 PN approximant (Blanchet 2006). The choice
of this approximant was motivated by the explicit time dependence
of the orbital frequency as a closed-form expression, but it is known
(Buonanno et al. 2009) to be less accurate than other numerical PN
approximants, and in consequence turns out to be more difficult to
calibrate to NR. Resolving this weakness of the underlying “carrier
phase” in IMRPhenomT will be the goal of future work, and will
allow to use this model also for lowmass events. As discussed above,
the primary motivation for the IMRPhenomT family was to improve
the treatment of the late part of the waveform, which is more relevant
for higher-mass systems. We thus perform parameter estimation with
the IMRPhenomT family only for higher-mass events.
For IMRPhenomXPHMwehave implemented the “multibanding”

method (Vinciguerra et al. 2017; García-Quirós et al. 2021) to accel-
erate waveform evaluation, based on interpolation and the choice of
an accuracy parameter. In appendix B we discuss parameter estima-
tion results with a more aggressive choice of multibanding settings,
as would be appropriate for accelerated parameter estimation runs,
e.g. for the initial exploration of newly detected events.

2.3 Methodology for Parameter estimation

2.3.1 Data

We use public GW strain data from the Gravitational Wave Open
Science Center (GWOSC, Vallisneri et al. 2015; LIGO Scientific
Collaboration, Virgo Collaboration 2019a), and power spectral den-
sities (PSDs, LIGO Scientific Collaboration, Virgo Collaboration
2019b) and calibration uncertainties (LIGO Scientific Collabora-
tion, Virgo Collaboration 2019c) included in the GWOSC release for
GWTC-1. The Virgo detector officially joined the detector network
on August 1, 2017. However, Virgo data for the event GW170729 is
also publicly available from GWOSC, and following the example of
Abbott et al. (2019b) and Chatziioannou et al. (2019) we have used
Virgo data also to analyse this event, in addition to the later events,
but with the exception of GW170823, which was only observed by
the LIGO detectors.
Table 2 lists the trigger times corresponding to the GW events,

indicates the detector data sets we use for each event, the duration
of data we analyze, the minimal frequency we use to compute the
likelihood function (and also as a reference frequency to define the
GW phase and, for precessing systems, the component spins), and
the sampling rate used. All of these parameters correspond to the
choices made in Abbott et al. (2019b). The sampling rate used in Ab-
bott et al. (2019b) is 2048Hz, corresponding to a Nyquist frequency
of 1024Hz. We have used this as our default setting to facilitate
comparisons, together with GWOSC data sets sampled at 4KHz.
For high-mass events this is sufficient. For the three low-mass events
GW151012, GW151226 and GW170608 however, the |𝑚 | = 3, 4
harmonics can reach higher frequencies than 1024Hz, and we have
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PE with current waveform models for GWTC-1 5

Event Trigger time Duration Low freq. Sampling rate
GW150914 1126259462.4 8 20 2048
GW151012 1128678900.4 8 20 2048/4096
GW151226 1135136350.6 8 20 2048/4096
GW170104 1167559936.6 4 20 2048
GW170608 1180922494.5 16 20 2048/4096
GW170729∗ 1185389807.3 4 20 2048
GW170809∗ 1186302519.7 4 20 2048
GW170814∗ 1186741861.5 4 20 2048
GW170818∗ 1187058327.1 4 16 2048
GW170823 1187529256.5 4 10 2048

Table 2. Data settings of each event from Abbott et al. (2019b) where *
indicates that the threeLIGOandVirgo detectorswere taking data and all three
data sets were used for our analysis. Note that for GW151012, GW151226
and GW170608 we extended the analysis also for a higher sampling rate.

performed additional parameter estimation runs with a sampling rate
of 4096Hz and the GWOSC 16 kHz data sets (Nyquist frequency
of 2048Hz). For these analyses we have computed PSDs with the
BayesWave code (Cornish & Littenberg 2015; LIGO Scientific Col-
laboration, Virgo Collaboration 2021), which has been used by the
LVC to produce the PSDs provided in the GWOSC data release. We
have checked that we can reproduce the public PSDs when setting
the sampling rate to 2048Hz and using the 16 kHz data sets, and
then used the same settings to produce PSDs at twice the sampling
rate. These agree well with the PSDs using a lower sampling rate up
to approximately 1 kHz; see Fig. 1 for the example of data around
the GW151226 event. We also extend the calibration envelope files
to 2048Hz. In LIGO Scientific Collaboration, Virgo Collaboration
(2018), we can find the plots for the magnitude and phase quanti-
ties of the O2 events. For GW170608, we extracted the data from
20Hz to 2048Hz from these plots. However, for the O1 events such
plots are not publicly available. For that reason, we performed a lin-
ear extrapolation in frequency of the calibration uncertainties from
1024Hz to 2048Hz with the public data available in LIGO Scientific
Collaboration, Virgo Collaboration (2019c).

2.3.2 Bayesian sampling algorithms

For our standard runs we use the parallel Bilby (Ashton et al. 2019;
Smith et al. 2020) implementation of the dynesty (Speagle 2020)
algorithm, based on nested sampling (Skilling 2006). In Appendix
A we also compare with results obtained with the LALInference
code (Veitch et al. 2015). For both Bilby and LALInference we
sample the component masses in terms of the mass ratio and chirp
mass. We also use the default settings of the Bilby code apart from
the following choices: we fix the minimal (walks) and maximal
(maxmcmc) number of Markov Chain Monte Carlo (MCMC) steps to
200 and 15000 respectively. We vary the number of nested sampling
live points, setting nlive = 512, 1024, 2048, and 4096 for the three
lowest mass events, and we vary the number of autocorrelation times
to use before accepting a point, nact = 10, 30, 50, in order to study
the convergence of results. As explained in appendix A, we choose
nlive = 2048 and nact = 30 as the standard settings to report
our main results. In order to speed up calculations we use distance
marginalization as described in Thrane & Talbot (2019).
In this paper we only discuss the most relevant results, however the

complete posterior data sets are included in our Zenodo data release
(Mateu-Lucena et al. 2021).

2.3.3 Priors

In this paper we analyze the posterior probability densities of the
source parameters 𝜃 from compact binary merger signals, computed
using Bayes’ theorem,

𝑝(𝜃 |𝑑,H) = L(𝑑 |𝜃,H)𝜋(𝜃 |H)
Z(𝑑 |H) (2)

where L(𝑑 |𝜃,H) is the likelihood, 𝜋(𝜃 |H) the prior and Z(𝑑 |H)
the evidence for a given model (H ) and data (𝑑).
The prior incorporates previous knowledge about the source pa-

rameters. The intention of our prior choices is to be uninformative,
however, ambiguities arise when it is not possible to choose a natural
quantity in which to prescribe a flat prior. For several quantities no
problems arise: We use an isotropic prior for the sky location, the
prior for the inclination angle is uniform in its cosine, and the priors
of the polarization angle and phase of coalescence are uniform. For
precessing spins, we use uniform distributions in the dimensionless
component spin magnitudes and isotropically distributed spin tilts,
as also used in Abbott et al. (2019b) and Romero-Shaw et al. (2020).
We allow dimensionless component spin magnitudes up to 0.99.
The distance prior used for the GWTC-1 catalog (Abbott et al.

2019b) is uniform in luminosity distance volume (described by a
second-order power law, 𝜋(𝑑𝐿) ∝ 𝑑2

𝐿
), which distributes mergers

uniformly through a stationary Euclidean universe and does not take
the expansion of the universe into account. The effect of the ex-
pansion of the universe can be neglected for small redshifts, how-
ever for larger redshifts it is more appropriate to use a prior that
factors in our knowledge about cosmological expansion. (See the
discussions in Appendix C of Abbott et al. (2021c) and section
3.2.3 of Romero-Shaw et al. (2020).) We will use the simpler prior
“uniform in luminosity distance volume” for all events, however
for the furthest events (GW170729 and GW170823) we also com-
pare with a prior uniform in the comoving volume and source-frame
time (UniformComovingVolume prior in the Bilby code) using the
Planck2015 cosmology (Ade et al. 2016), following the Bilby catalog
(Romero-Shaw et al. 2020).
Regarding the masses, the GWCT-1 catalog applies the LALInfer-

ence (Veitch et al. 2015) prior, which is uniform in the component
masses 𝑚1 and 𝑚2 with cuts in M𝑐 and 𝑞. The Bilby re-analysis
of GWTC-1 (Romero-Shaw et al. 2020) uses a prior that is flat in
chirp mass and mass ratio, but then the samples are reweighted to
the LALInference choice using the Jacobian given in Eq. (21) of
Veitch et al. (2015). We follow this approach here for our default
runs for all events, and present posteriors reweighted for a prior that
is flat in component masses, consistent with Abbott et al. (2019b) and
Romero-Shaw et al. (2020). A very different choice has been used re-
cently in Nitz & Capano (2021) to re-analyse the signal GW190521,
which is consistent with the creation of an intermediate-mass black
hole in a heavy black hole merger. Using a prior that is flat in mass
ratio𝑄 ≥ 1, they found amulti-modal source-frame total mass poste-
rior. We analyse this event in a parallel paper (Estellés et al. 2021c).
with improved waveform models and confirm the multi-modality,
although we also find significant differences with respect to Nitz &
Capano (2021). In order to check whether similar multi-modalities
appear for themost massive events in GWTC-1, we rerunGW170729
with a prior that is flat in mass ratio 𝑄 ≥ 1 and detector-frame total
mass (a prior that is flat in source-frame masses adds complications
to using distance marginalization, which we use to reduce the com-
putational cost).
We also select GW170729 (see Sec. 3.4.2) and the three lowest-

mass events (see appendix A) to compare results with the new
prior implemented in Bilby that applies the uniform prior in com-
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Figure 1. Comparison of PSDs of the two LIGO interferometers (H1 and L1) for GW151226 between the public data files provided in the 16 kHz GWOSC data
release with a sampling rate of 2048Hz (labeled with GWTC-1), and our PSDs produced with the BayesWave code, using a sampling rate of 4096Hz. One can
see that both PSD data sets are very similar up to a frequency of almost 1 kHz, where artefacts show up in the public PSD. These artefacts (decrease of the PSD)
are similar to the high-frequency artefacts (near 2 kHz) that can be seen in the PSDs we have produced with BayesWave.

ponent masses while the mass ratio and chirp mass are sampled
(by using the two classes UniformInComponentsChirpMass and
UniformInComponentsMassRatio in the Bilby code), using the
same component mass prior choices as the LALInference code.
The limits of themass and luminosity distance priors vary between

different events. We take these limits from the LALInference config-
uration files of the runs from Abbott et al. (2019b) and we check that
the inferred parameters do not rail against the prior bounds.

2.3.4 Management of parameter estimation runs

In total we have performed 364 runs with parallel Bilby (Smith et al.
2020). In order to simplify the management of runs, and to avoid
human errors when editing configuration files for each run, we have
developed a Python code to generate configuration files from simpler
descriptions which we call pseudo-config files. These pseudo-config
files allow us to loop over parameters such as the waveform model,
nlive or nact. Furthermore, we use this Python code to submit
several runs to the slurm (Yoo et al. 2003) queuing system with one
command, and to track version numbers of the codes we use when
the jobs start running.

3 RESULTS

3.1 Summary of the black hole mergers in GWTC-1

Table 3 contains a summary of our results using precessing wave-
formmodels, with error estimates obtained from 90% posterior cred-
ible intervals, including for comparison also the results obtained for
GWTC-1 (Abbott et al. 2019b) with IMRPhenomPv2. Our new re-
sults are in general within the error estimates of the IMRPhenomPv2
results, as can be expected from the initial analysis with subdominant
harmonics performed for the GWTC-1 catalog, see appendix B of
Abbott et al. (2019b): There all BBH events have been cross-checked
with the RapidPE algorithm (Pankow et al. 2015; Lange et al. 2018)
and a waveform catalog of NR simulations supplemented by wave-
forms from the NRSur7dq2 model (Blackman et al. 2017); samples
were released with Abbott et al. (2019a). NRSur7dq2 is however re-
stricted to mass ratios 𝑞 ≤ 2 and dimensionless 𝜒𝑖 ≤ 0.8. A “modest
influence on the interpretation of observations” below the statistical

measurement uncertainty is found, and for GW170729 a Bayes fac-
tor of “approximately 1.4 for higher modes versus a pure quadrupole
model”, which we compare with our results below.

However, the use of multi-mode waveforms in full Bayesian pa-
rameter estimation is now standard in GW data analysis, and it is thus
interesting to update the results of GWTC-1 to the methods used for
O3 events (Abbott et al. 2021a,b), and to compare results. Differ-
ences between our default runs using IMRPhenomXPHM and the
IMRPhenomPv2 results from the GWTC-1 release are shown in Fig.
2 in terms of the Jensen-Shannon (JS) divergence, for a definition
see e.g. Eq. (B1) of Abbott et al. (2019b). The JS divergence takes
values between 0 and 1 bits, where 0 means that there is no difference
between two distributions, and 1 means that both distributions have
a maximum divergence. The posteriors for the model with higher
modes and precession are generally close to the results obtained
with IMRPhenomPv2– all divergence values between both posterior
distributions are smaller than 0.045, which is smaller than the diver-
gence between IMRPhenomPv2 and SEOBNRv3 runs performed in
the GWTC-1 paper, where the largest value is for GW151226 and
the effective spin 𝜒eff , 𝐽𝑆𝜒eff = 0.14 bits, see Fig. 16 of Abbott et al.
(2019b).

Among the extrinsic parameters, the sky location (declination 𝛿
and right ascension 𝛼) does not show significant changes, while the
distance 𝐷𝐿 and the angle 𝜃𝐽𝑁 between total angular momentum
and the line of sight have the largest divergences.

An overview of recovered values for the effective spin and mass
ratio for the different events is shown in Fig. 3. One of the trends that
can be observed (see also the detailed results in Table 3) is that the
effective spins 𝜒eff inferred with IMRPhenomXPHM have typically
increased over the values inferred with IMRPhenomPv2, although
they are still consistent within the error estimates for all events. The
event least following this trend is the highest-mass event GW170729,
which is also one of the two events where 𝜒eff has support only for
positive values (GW151226 being the other).

In Table 4, we show the matched-filter SNRs obtained for runs
with different models, as well as the Bayes factors between the signal
and noise hypotheses for each of these runs, and compare these
Bayes factors against our default IMRPhenomXPHM runs. Bayes
factors andSNRs are in general very consistent for differentwaveform
models, confirming the expectation that neither precession, higher
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Approx. 𝑞 𝑚1/𝑀� 𝑚2/𝑀� 𝑀𝑇 /𝑀� M/𝑀� 𝑀f/𝑀� 𝜒f 𝜒eff 𝜒p 𝐷L/Mpc 𝜃𝐽𝑁 /𝑟𝑎𝑑
GW150914

Pv2 0.86+0.11−0.16 35.3+3.7−2.4 30.3+2.3−3.4 65.7+2.7−2.5 28.4+1.2−1.1 61.6+2.7−2.6 0.80+0.12−0.08 −0.03+0.08−0.09 0.39+0.38−0.27 450+120−140 2.72+0.27−0.52
XP 0.85+0.12−0.16 35.6+3.7−2.6 30.0+2.5−3.4 65.7+2.8−2.6 28.4+1.2−1.2 61.7+2.7−2.8 0.80+0.11−0.08 −0.02+0.08−0.11 0.42+0.36−0.29 440+140−140 2.63+0.32−0.54

XPHM 0.87+0.11−0.15 35.0+3.3−2.3 30.2+2.3−3.2 65.2+2.5−2.4 28.2+1.1−1.1 61.2+2.4−2.6 0.81+0.10−0.08 −0.02+0.08−0.10 0.44+0.34−0.30 490+120−120 2.76+0.24−0.33
TPHM 0.88+0.10−0.15 35.0+3.4−2.1 30.7+2.1−2.9 65.7+2.7−2.3 28.4+1.1−1.0 61.7+2.4−2.4 0.80+0.10−0.08 −0.01+0.09−0.09 0.43+0.34−0.30 480+120−130 2.78+0.23−0.37

GW151012
Pv2 0.61+0.30−0.30 22.6+9.6−4.3 13.8+3.2−3.9 36.9+5.9−3.0 15.2+1.2−0.9 34.9+6.2−3.0 0.77+0.13−0.12 0.04+0.20−0.15 0.33+0.35−0.22 1090+390−400 1.99+0.84−1.64
XP 0.65+0.27−0.31 22.0+8.9−3.8 14.1+2.9−3.8 36.6+5.4−2.8 15.2+1.2−0.9 34.4+5.6−2.8 0.79+0.13−0.11 0.05+0.21−0.14 0.38+0.36−0.25 1120+400−380 1.84+0.96−1.49

XPHM 0.57+0.32−0.28 24.2+10.5−5.1 13.6+3.5−4.0 38.3+6.9−3.7 15.5+1.5−1.1 36.2+7.2−3.7 0.79+0.13−0.12 0.12+0.21−0.17 0.36+0.37−0.23 1060+460−400 1.66+1.08−1.25

GW151226
Pv2 0.54+0.30−0.25 14.0+5.6−2.9 7.6+1.8−1.8 21.6+3.7−1.3 8.9+0.3−0.2 20.3+3.9−1.4 0.84+0.12−0.09 0.20+0.13−0.06 0.47+0.32−0.26 440+150−160 1.05+1.66−0.66
XP 0.62+0.30−0.30 13.0+5.5−2.3 8.0+1.7−2.1 21.2+3.3−1.0 8.8+0.3−0.2 19.8+3.5−1.1 0.84+0.11−0.09 0.18+0.13−0.06 0.48+0.32−0.26 460+150−160 1.01+1.71−0.62

XPHM 0.52+0.34−0.25 14.2+6.2−3.2 7.4+2.0−1.9 21.7+4.3−1.4 8.8+0.2−0.2 20.3+4.3−1.4 0.88+0.14−0.11 0.20+0.13−0.07 0.57+0.28−0.31 470+130−160 0.79+1.92−0.44

GW170104
Pv2 0.63+0.26−0.19 31.2+5.7−4.8 19.8+4.1−3.7 51.1+4.1−3.3 21.4+1.6−1.4 48.2+4.1−3.3 0.79+0.12−0.09 −0.05+0.13−0.15 0.38+0.32−0.23 990+350−350 1.10+1.59−0.70
XP 0.67+0.25−0.20 30.4+5.5−4.4 20.3+4.0−3.9 51.0+3.9−3.2 21.4+1.6−1.4 47.9+3.8−3.2 0.81+0.11−0.10 −0.02+0.13−0.15 0.43+0.33−0.27 1040+350−370 1.19+1.51−0.78

XPHM 0.71+0.22−0.22 29.3+5.0−3.7 20.8+3.6−4.1 50.1+3.7−3.0 21.2+1.7−1.4 47.1+3.5−2.9 0.81+0.11−0.09 −0.02+0.13−0.15 0.43+0.33−0.28 1120+340−390 0.89+1.87−0.57

GW170104
Pv2 0.68+0.25−0.29 11.0+3.9−1.6 7.6+1.2−1.7 18.7+2.1−0.6 7.9+0.1−0.1 17.6+2.3−0.7 0.78+0.11−0.08 0.04+0.14−0.05 0.34+0.33−0.22 330+100−100 2.42+0.45−1.95
XP 0.72+0.22−0.29 10.8+3.4−1.4 7.7+1.1−1.6 18.6+1.7−0.5 7.9+0.1−0.1 17.5+1.8−0.6 0.77+0.12−0.07 0.04+0.11−0.04 0.34+0.37−0.22 330+100−100 2.43+0.44−1.96

XPHM 0.72+0.22−0.28 10.8+3.2−1.4 7.8+1.1−1.6 18.6+1.5−0.5 7.9+0.2−0.1 17.5+1.6−0.6 0.78+0.11−0.07 0.05+0.11−0.04 0.35+0.36−0.23 350+100−100 2.41+0.46−1.99

GW170729
Pv2 0.63+0.28−0.22 51.2+12.3−9.1 32.4+7.7−7.7 84.0+11.1−8.7 35.0+4.6−3.7 78.3+10.3−7.9 0.87+0.08−0.11 0.36+0.15−0.21 0.44+0.28−0.24 2840+1060−1070 0.93+1.82−0.64
XP 0.62+0.28−0.21 51.7+11.4−9.4 31.8+8.1−7.4 83.7+10.5−8.4 34.7+4.6−3.6 77.9+9.8−7.7 0.89+0.08−0.10 0.35+0.15−0.19 0.50+0.28−0.27 2890+1060−1070 0.94+1.82−0.65
TP 0.6+0.29−0.22 53.2+14.9−10.4 31.8+7.8−7.1 85.8+12.1−9.3 35.4+4.2−3.4 79.9+11.3−8.5 0.89+0.09−0.10 0.36+0.13−0.16 0.50+0.25−0.25 2870+1020−990 0.91+1.83−0.60

XPHM 0.58+0.29−0.19 52.5+9.2−9.5 30.5+8.4−7.7 82.6+9.7−8.0 34.1+4.6−4.0 77.5+8.8−7.5 0.86+0.09−0.15 0.30+0.17−0.25 0.42+0.33−0.26 2750+1230−1120 1.05+1.68−0.69
TPHM 0.52+0.27−0.18 57.3+12.0−10.9 29.4+8.8−7.2 87.1+11.0−9.3 35.1+4.5−3.9 81.7+9.9−8.5 0.87+0.10−0.15 0.33+0.18−0.24 0.43+0.29−0.25 2490+1160−880 1.08+1.62−0.71

GW170809
Pv2 0.68+0.24−0.20 34.9+6.9−5.1 23.7+4.2−4.1 58.8+4.4−3.2 24.8+1.6−1.3 55.3+4.3−3.2 0.80+0.12−0.09 0.06+0.14−0.12 0.38+0.35−0.25 1030+240−300 2.57+0.34−0.48
XP 0.69+0.24−0.21 34.8+6.8−5.0 23.9+4.1−4.3 58.9+4.3−3.3 24.9+1.7−1.3 55.3+4.2−3.2 0.81+0.12−0.10 0.08+0.13−0.13 0.44+0.36−0.29 1050+250−320 2.53+0.37−0.47

XPHM 0.72+0.22−0.22 33.8+6.5−4.4 24.1+3.9−4.4 58.1+3.9−3.0 24.6+1.5−1.2 54.5+3.7−2.9 0.82+0.12−0.10 0.08+0.14−0.13 0.46+0.35−0.30 1130+240−270 2.64+0.31−0.41
TPHM 0.78+0.17−0.22 32.5+5.7−3.5 25.3+3.1−4.2 58.0+3.7−2.9 24.8+1.5−1.2 54.5+3.5−2.8 0.79+0.10−0.08 0.09+0.14−0.13 0.37+0.32−0.24 1090+240−290 2.64+0.31−0.43

GW170814
Pv2 0.84+0.13−0.19 30.5+4.1−2.4 25.4+2.3−3.1 56.0+2.7−2.2 24.2+1.1−0.9 52.3+2.5−2.2 0.85+0.09−0.11 0.07+0.10−0.09 0.57+0.30−0.36 590+120−160 0.69+1.70−0.39
XP 0.83+0.13−0.18 30.3+3.9−2.4 25.2+2.2−3.1 55.5+2.6−2.1 23.9+1.1−0.9 52.1+2.5−2.1 0.80+0.10−0.08 0.06+0.10−0.09 0.40+0.35−0.27 610+130−200 0.68+1.75−0.42

XPHM 0.82+0.14−0.18 30.6+4.0−2.7 24.8+2.4−3.2 55.5+2.5−2.2 23.9+1.1−0.9 52.1+2.4−2.1 0.79+0.10−0.08 0.06+0.10−0.09 0.38+0.35−0.26 610+140−190 0.69+1.77−0.40
XPHM* 0.83+0.13−0.18 30.5+3.8−2.5 25.3+2.3−3.1 55.8+2.6−2.2 24.0+1.1−0.9 52.3+2.4−2.1 0.81+0.10−0.09 0.08+0.10−0.09 0.44+0.33−0.3 610+130−170 0.67+1.68−0.36
TPHM 0.77+0.18−0.19 31.8+5.1−3.2 24.6+2.8−3.4 56.7+2.8−2.4 24.3+1.0−0.9 52.8+2.5−2.1 0.86+0.09−0.11 0.12+0.10−0.10 0.58+0.28−0.35 630+100−140 0.60+1.80−0.32

GW170818
Pv2 0.75+0.19−0.20 35.4+5.5−3.9 26.5+3.6−4.2 62.0+3.7−3.1 26.5+1.5−1.3 57.8+3.8−3.1 0.85+0.09−0.11 −0.11+0.14−0.16 0.56+0.27−0.32 1050+310−280 2.44+0.35−0.35
XP 0.78+0.17−0.21 34.9+5.8−3.6 27.2+3.4−4.2 62.3+3.9−3.3 26.7+1.6−1.4 58.1+3.8−3.3 0.86+0.10−0.11 −0.05+0.14−0.16 0.59+0.28−0.36 1130+320−330 2.46+0.37−0.37

XPHM 0.78+0.17−0.19 34.8+5.3−3.7 26.9+3.3−4.0 61.8+3.7−3.2 26.5+1.6−1.3 57.7+3.6−3.1 0.85+0.10−0.11 −0.05+0.13−0.16 0.55+0.31−0.34 1190+320−340 2.51+0.35−0.37
XPHM* 0.76+0.19−0.19 35.1+5.4−3.9 26.4+3.6−4.1 61.6+3.6−3.1 26.3+1.6−1.3 57.5+3.6−3.2 0.85+0.09−0.10 −0.09+0.15−0.17 0.57+0.28−0.32 1130+330−310 2.48+0.35−0.34
TPHM 0.77+0.18−0.20 35.1+5.8−3.8 26.9+3.4−4.0 62.3+3.6−3.1 26.6+1.5−1.3 58.3+3.5−3.1 0.84+0.10−0.10 −0.06+0.14−0.15 0.52+0.30−0.31 1090+340−320 2.47+0.36−0.36

GW170823
Pv2 0.74+0.20−0.23 39.3+8.2−5.5 28.9+5.0−5.7 68.2+7.7−5.7 29.0+3.2−2.5 63.9+7.2−5.4 0.83+0.11−0.10 0.06+0.16−0.16 0.47+0.34−0.30 1940+650−710 1.53+1.24−1.16
XP 0.73+0.21−0.25 39.2+8.2−5.6 28.4+5.1−6.4 67.5+7.4−5.8 28.6+3.2−2.6 63.1+6.9−5.5 0.84+0.11−0.11 0.06+0.16−0.17 0.52+0.33−0.33 1930+670−700 1.68+1.06−1.27

XPHM 0.77+0.18−0.24 37.7+7.2−4.9 28.5+4.7−5.7 66.1+6.9−5.2 28.2+3.0−2.3 61.8+6.4−4.9 0.84+0.10−0.10 0.07+0.16−0.17 0.52+0.32−0.32 2170+650−720 1.28+1.53−0.96
TPHM 0.79+0.17−0.23 37.8+7.2−4.7 29.2+4.4−5.2 67.0+7.0−5.3 28.6+3.0−2.3 62.8+6.5−5.0 0.81+0.10−0.09 0.07+0.17−0.16 0.43+0.34−0.27 2050+640−700 1.80+1.03−1.49

Table 3. Inferred source parameter values of the first 10 BBH detections, given as posterior median values with 90% credible intervals. Masses correspond to
the source frame. We compare the public IMRPhenomPv2 (Pv2) results (Abbott et al. 2019b) with those obtained with the new generation of phenomenological
waveform models. IMRPhenomXP (XP) and the default version of IMRPhenomXPHM (XPHM) are listed for all events, IMRPhenomTPHM (TPHM) is
included for high-mass events, IMRPhenomTP (TP) for GW170729 and an alternative version of IMRPhenomXPHM (NNLO angles and final spin version 2)
is included for GW170814 and GW170818, indicated by a *.
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mode effects, nor general waveform systematics effects can be clearly
identified for any of the GWTC-1 events.
In the rest of this section, we will discuss all ten BBH

events from GWTC-1 individually, grouping them into low-mass
(GW151012, GW151226, GW170608), medium-mass (GW170104
and GW170814) and high-mass (GW150914, GW170729,
GW170809, GW170818, GW170823) events. Note that we just make
this distinction for convenience, and the only events that clearly stand
out in terms of total mass are the two lightest ones (GW170608 and
GW151226) and the heaviest (GW170729).

3.2 Low-mass events

To leading order in the post-Newtonian expansion the duration Δ𝑇
of the inspiral starting at a frequency 𝑓0 is

Δ𝑇 =
5

256 𝑓0𝜂𝜋8/3

(
𝑓0𝐺𝑀

𝑐3

)−5/3
,

where 𝑀 is the total mass of the system, 𝜂 = 𝑚1𝑚2/(𝑚1 + 𝑚2)2 is
the symmetric mass ratio, 𝐺 is Newton’s constant, and 𝑐 is the speed
of light. The observable part of the waveform is thus significantly
longer for lower-mass systems.
In general, the chirp mass is the best measured intrinsic parameter

(Cutler & Flanagan 1994), since it is the quantity that appears in the
PN waveform at leading order (Blanchet 2006).
In Fig. 4, we compare several parameter estimation runs for

GW151012, GW151226 and GW170608 with the standard set-
tings mentioned in Sec. 2.3.2: using distance marginalization,
nlive = 2048 and nact = 30. We compare the whole IMRPhe-

Table 4.Network matched-filter SNRs with 90% credible intervals and log10
signal-to-noise Bayes factors for runs with the IMRPhenomX and IMRPhe-
nomT families, where XPHM∗ denotes the version with NNLO Euler angles
and final spin option 2. The last column shows the Bayes factor against our
default IMRPhenomXPHM runs.

Event Approx. SNR log10 BF BFXPHM

GW150914

XAS 25.1+0.1−0.1 124.07 ± 0.07 0.99+0.24−0.19
XHM 25.1+0.1−0.1 124.08 ± 0.07 1.01+0.24−0.20
THM 25.1+0.1−0.1 123.83 ± 0.07 0.57+0.14−0.11
XP 25.1+0.1−0.1 124.05 ± 0.07 0.95+0.23−0.19
TPHM 25.1+0.1−0.1 123.86 ± 0.07 0.61+0.15−0.12
XPHM 25.1+0.1−0.1 124.07 ± 0.07 1.00

GW151012

XAS 9.2+0.2−0.3 10.13 ± 0.06 0.58+0.12−0.10
XHM 9.4+0.3−0.4 10.27 ± 0.06 0.81+0.16−0.14
THM 9.4+0.3−0.4 10.37 ± 0.06 1.02+0.20−0.17
XP 9.2+0.2−0.3 10.25 ± 0.06 0.77+0.15−0.13
XPHM 9.3+0.3−0.4 10.36 ± 0.06 1.00

GW151226

XAS 12.4+0.2−0.2 22.04 ± 0.06 0.26+0.06−0.05
XHM 12.4+0.2−0.3 22.03 ± 0.06 0.26+0.06−0.05
THM 12.4+0.2−0.3 22.22 ± 0.06 0.40+0.10−0.08
XP 12.5+0.2−0.3 22.60 ± 0.07 0.95+0.23−0.18
XPHM 12.6+0.3−0.3 22.62 ± 0.07 1.00

GW170104

XAS 13.9+0.1−0.2 32.10 ± 0.06 0.79+0.17−0.14
XHM 13.9+0.1−0.2 32.11 ± 0.06 0.81+0.18−0.14
THM 13.9+0.1−0.2 31.95 ± 0.06 0.57+0.12−0.10
XP 13.9+0.1−0.2 32.28 ± 0.06 1.21+0.26−0.21
XPHM 14.0+0.2−0.2 32.20 ± 0.06 1.00

GW170608

XAS 15.5+0.1−0.2 39.27 ± 0.07 0.93+0.23−0.18
XHM 15.5+0.1−0.2 39.24 ± 0.07 0.86+0.21−0.17
THM 15.5+0.1−0.2 39.33 ± 0.07 1.06+0.26−0.21
XP 15.5+0.1−0.2 39.29 ± 0.07 0.96+0.24−0.19
XPHM 15.5+0.2−0.2 39.31 ± 0.07 1.00

GW170729

XAS 10.7+0.3−0.3 15.97 ± 0.06 0.64+0.14−0.11
T 10.7+0.3−0.3 16.12 ± 0.06 0.93+0.20−0.16
XHM 10.9+0.3−0.4 16.32 ± 0.06 1.47+0.31−0.26
THM 10.9+0.3−0.4 16.35 ± 0.06 1.56+0.34−0.28
XP 10.7+0.3−0.3 16.03 ± 0.06 0.74+0.16−0.13
TP 10.8+0.3−0.3 16.13 ± 0.06 0.94+0.20−0.17
TPHM 10.9+0.3−0.4 16.39 ± 0.06 2.16+0.47−0.39
XPHM 10.8+0.3−0.3 16.16 ± 0.06 1.00

GW170809

XAS 12.6+0.2−0.2 24.12 ± 0.06 0.97+0.21−0.17
XHM 12.6+0.2−0.2 24.10 ± 0.06 0.93+0.21−0.17
THM 12.6+0.2−0.2 23.95 ± 0.06 0.66+0.15−0.12
XP 12.6+0.2−0.2 24.13 ± 0.06 1.00+0.22−0.18
TPHM 12.6+0.2−0.2 23.79 ± 0.06 0.45+0.10−0.08
XPHM 12.6+0.2−0.3 24.13 ± 0.06 1.00

GW170814

XAS 17.4+0.1−0.2 53.73 ± 0.07 1.38+0.33−0.27
XHM 17.5+0.1−0.2 53.69 ± 0.07 1.25+0.30−0.24
THM 17.4+0.1−0.2 53.57 ± 0.07 0.95+0.23−0.18
XP 17.4+0.1−0.2 53.62 ± 0.07 1.06+0.26−0.21
TPHM 17.5+0.2−0.2 54.14 ± 0.07 3.48+0.85−0.68
XPHM* 17.5+0.1−0.2 53.89 ± 0.07 1.97+0.48−0.39
XPHM 17.5+0.1−0.2 53.60 ± 0.07 1.00

GW170818

XAS 11.7+0.2−0.3 19.91 ± 0.06 0.25+0.06−0.05
XHM 11.8+0.2−0.3 20.11 ± 0.06 0.39+0.09−0.07
THM 11.8+0.2−0.3 19.97 ± 0.06 0.29+0.07−0.05
XP 11.9+0.2−0.3 20.27 ± 0.07 0.57+0.13−0.11
TPHM 11.9+0.2−0.3 20.32 ± 0.06 0.63+0.15−0.12
XPHM* 12.0+0.2−0.3 20.73 ± 0.07 1.64+0.39−0.31
XPHM 11.9+0.2−0.3 20.51 ± 0.06 1.00

GW170823

XAS 12.0+0.1−0.2 22.91 ± 0.05 0.78+0.15−0.13
XHM 12.0+0.1−0.2 22.90 ± 0.06 0.77+0.15−0.13
THM 12.0+0.1−0.2 22.81 ± 0.06 0.63+0.12−0.10
XP 12.0+0.1−0.2 23.07 ± 0.05 1.13+0.22−0.19
TPHM 12.0+0.2−0.2 22.73 ± 0.06 0.52+0.10−0.09
XPHM 12.0+0.1−0.2 23.01 ± 0.06 1.00
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Figure 3. Violin plots of the IMRPhenomXPHM default results for 𝜒eff and
q, where the short horizontal lines indicate the 90% credible intervals. The
events are sorted by the M values. Plots created with the PESummary code
(Hoy & Raymond 2020).

nomX family (the aligned-spin, precessing, dominant and subdomi-
nant mode models), the more recent aligned-spin time domain model
IMRPhenomTHMwith higher-modes content, and the previous IM-
RPhenomPv2 results taken from the fist catalog (Abbott et al. 2019b).
As mentioned in Sec. 2.3.1, for these low-mass events we use a sam-
pling rate of 4096Hz and the GWOSC 16 kHz data sets, and PSDs
and calibration envelopes files which go up to 2048Hz. All mod-
els show good agreement in total mass and 𝜒eff . GW151012 and
GW151226 are the events with the largest uncertainty in mass ratio.
We note that the initial preprint version of Chia et al. (2022) and

also Nitz et al. (2021) have reported results for GW151226 that are
in tension with ours, including multi-modal posteriors. In order to
further increase the confidence in our results we have therefore also
performed tests with a different sampling method in Bilby and with
the independent LALInference code for the three lowest mass events.
These checks confirm our results as discussed in Appendix A. We
also show how lowering the sampling rate can result in bi-modal
posteriors. As discussed in the appendix, the remaining differences
between our results and the published results of Chia et al. (2022), as
well as the results of Nitz et al. (2021), seem to be largely consistent
with differences in prior choices.

3.2.1 GW151012

This is the low-mass event with the smallest SNR (9.3+0.3−0.4 for
IMRPhenomXPHM) and Bayes factor, see Table 4. Apart from
GW151226, this is the only event where we find some visual dif-

GW151226 GW170814 GW170818
XP vs XAS 3.63+0.86−0.69 0.77+0.18−0.15 2.27+0.53−0.43

XPHM vs XHM 3.85+0.92−0.74 0.80+0.19−0.16 2.54+0.60−0.48
TPHM vs THM - 3.66+0.89−0.71 2.22+0.52−0.42
TPHM vs XPHM - 3.48+0.85−0.68 0.63+0.15−0.12
TPHM vs XPHM* - 1.76+0.43−0.35 0.38+0.09−0.07
XPHM* vs XHM - 1.58+0.38−0.31 4.18+0.98−0.80
XPHM* vs XPHM - 1.97+0.48−0.39 1.64+0.39−0.31

Table 5. Comparison of Bayes factors between precessing and aligned-
spin IMRPhenomX and IMRPhenomT waveform models for GW151226,
GW170814 and GW170818.

ferences in the mass posteriors between our results and those of Nitz
et al. (2021). Nitz et al. (2021) recover slightly more unequal masses
posteriors in their results but consistent with our own results.
From our analysis, Bayes factor differences for different waveform

models are within the error estimates, except for a small suppression
of IMRPhenomXAS and IMRPhenomXP in comparison to IMR-
PhenomXPHM of 0.58+0.12−0.10 and 0.77

+0.15
−0.13 respectively. As can be

seen in Fig. 4, the models with higher modes shift the mass ratio
posterior toward more unequal masses. Runs with our two different
precession versions (NNLO and MSA angles) and with different fi-
nal spin descriptions show very consistent posterior distributions and
Bayes factors that are consistent within the error estimates.

3.2.2 GW151226

This event shows support only for positive values of 𝜒eff , and very
mild support for precession, with a Bayes factor of 3.85+0.92−0.74 between
IMRPhenomXHM and IMRPhenomXPHM in favor of precession,
see Table 5. Some differences are seen in Fig. 4 regarding the mass
ratio posterior, and in particular IMRPhenomTHM shifts the mass
ratio support toward more equal masses, compared with the other
models. Fig. 5 also shows that adding higher mode content shifts the
precession parameter 𝜒p toward larger values, but again all results
are consistent within error estimates. See also Appendix A for further
consistency tests and comparisons with other results on this event.

3.2.3 GW170608

GW170608 is the event with the lowest mass, the closest luminosity
distance, and with the highest SNR of the low-mass events. Bayes
factors for all waveform models are consistent within the error esti-
mates, and posterior distributions are visually very similar, including
for all versions of IMRPhenomXPHM which we have run (MLA
and MSA Euler angles and the four final spin versions for each angle
description). JS divergences between the various posteriors back up
this finding, with the divergences for all pairs of waveforms and most
parameters below 0.02. Only the divergences for spin magnitudes
between precessing and aligned-spin waveforms, which are expected
to differ more, reach higher values (up to 0.16 between IMRPhe-
nomXPHM and IMRPhenomTHM).

3.3 Medium-mass events

Fig. 6 provides a comparison of posteriors for several key quantities
for the two medium-mass events GW170104 and GW170814. For
these, all different models recover essentially the same total mass
and 𝜒eff posterior distributions. We discuss further details below.
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Figure 4. Posterior distributions for total mass, mass ratio, effective spin and luminosity distance for all three low-mass events and different waveform models.

Figure 5. Joint posterior distributions for 𝜒p and 𝜒eff of GW151226, esti-
mated with IMRPhenomXP (pink), IMRPhenomXPHM (blue) and IMRPhe-
nomPv2 (orange) (Abbott et al. 2019b). Here and in similar figures throughout
the paper, the central panel shows the 2D joint posterior with contours mark-
ing 90% credible intervals, while the smaller panels on top and to the right
show the corresponding 1D distributions for the individual parameters, with
the 90% credible interval indicated by the dashed lines.

3.3.1 GW170104

This is the first event of the O2 observing run, and the fourth loudest
BBH event at an SNR of 14.0+0.2−0.2 for all the waveform models that
we have considered. Bayes factors for different models are consis-
tent within error estimates, apart from the Bayes factor of IMRPhe-
nomTHM, which is suppressed relative to IMRPhenomXPHM by
0.57+0.12−0.10, see Table 4. (IMRPhenomTPHMwas only run for higher-
mass events.) The higher-mode models shift the posterior marginally
toward more equal masses and larger distance. We also find that
IMRPhenomXPHM versions give consistent results regarding pos-
terior distributions and Bayes factors, and we do not list these results
separately but rather refer to our data release for full details.

3.3.2 GW170814

GW170814 is the second loudest BBH event with an SNR of
17.5+0.1−0.2, and a well recovered sky position due to being observed by
both LIGO (Hanford and Livingston) detectors and the Virgo detec-
tor. Indeed GW170814 was the first BBH published as a coincident
observation between the three LIGO–Virgo detectors (Abbott et al.
2017b).
Apart from the effective precession parameter 𝜒p, the posterior dis-

tributions for different waveform models are rather similar for other
quantities, with only marginal differences for masses and mass ratio.
Just as GW151226, and to a lesser degree GW170818, GW170814
does however show marginal support for precession, as expressed
by the Bayes factors listed in Table 5, and it is an interesting case
from the point of view of waveform systematics. GW170814 shows
the largest value of the JS divergence when comparing our IM-
RPhenomXPHM results to the GWTC-1 IMRPhenomPv2 results,
corresponding to 𝐽𝑆𝜒p = 0.042 for the effective in-plane spin 𝜒p.
The default version of IMRPhenomXPHM in fact recovers a lower
value of 𝜒p than IMRPhenomPv2, see Table 3. However it turns
out that when using the NNLO Euler angles rather than the MSA
angles for IMRPhenomXPHM, a larger value of 𝜒p = 0.44+0.33−0.30 is
recovered, and also a larger Bayes factor of 1.97+0.48−0.39 with respect to
the default IMRPhenomXPHM version (see Tables 3 and 4). Indeed
both IMRPhenomXAS and IMRPhenomXHM recover marginally
better Bayes factors than the default version of IMRPhenomXPHM.
Also IMRPhenomTPHMhas a higher Bayes factor, 3.48+0.85−0.68 against
the default version of IMRPhenomXPHM and 1.76+0.43−0.35 against the
NNLO angles version of IMRPhenomXPHM. IMRPhenomTPHM
also recovers a higher value of 𝜒p = 0.58+0.28−0.35, very close to the value
for IMRPhenomPv2, even though the non-precessing time-domain
model IMRPhenomTHM is marginally disfavored when comparing
to IMRPhenomXHM, with a Bayes factor ratio of about 1.3 in Table
4. These results suggest that this event is a case where the default
choice for modelling precession in IMRPhenomXPHM, the MSA
description of the precession Euler angles, is less accurate than the
NNLO description, and thus an improved precession treatment for
the frequency domain is needed to obtain robust results for this event.
Furthermore IMRPhenomTPHMmight recover an even higherBayes
factor, were it not for the shortcomings of the model in the inspiral,
already in the absence of precession, and it will thus be interesting
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Figure 6. Posterior distributions for total mass, mass ratio, effective spin and luminosity distance are compared for the medium-mass events and different
waveform models.

to re-analyze this event again in the future with improved waveform
models.
Comparisons of posterior distributions for the mass ratio, total

mass, 𝜒eff and 𝜒p for this event using our different precessing wave-
form models are shown in Fig. 7.

3.4 High-mass events

Fig. 8 shows a comparison of posteriors for several key quantities.
For high mass events, we also add the IMRPhenomTPHMwaveform
model to our comparisons.

3.4.1 GW150914

GW150914was the first detection of a GW signal (Abbott et al. 2016)
and has the highest SNR of events consistent with BBH mergers to
date (in the O1, O2 (Abbott et al. 2019b) and O3a (Abbott et al.
2021c) observing runs).
Bayes factors in Table 4 are consistent between different models

within error estimates, apart from IMRPhenomTHM and IMRPhe-
nomTPHM, which are disfavored by factors of 0.57+0.14−0.11 (THM) and
0.61+0.15−0.12 (TPHM) with respect to the default IMRPhenomXPHM
version. Posterior results show only very marginal deviations, see
Fig. 8 and Tables 3, 4. The same holds for all the eight versions of
IMRPhenomXPHM we have tested (NNLO and MSA Euler angles
and four final spin versions for each angle description): the default
version of IMRPhenomXPHM has the largest Bayes factor, and the
most disfavored version of IMRPhenomXPHM (NNLO angles with
final spin version FS2) has a Bayes factor of 0.69+0.17−0.13 with respect to
the default version, which is still broadly consistent within the error
estimates. Posteriors between different IMRPhenomXPHM versions
are in general very similar and without noteworthy changes.

3.4.2 GW170729

This is the most massive and most distant BBH merger detected dur-
ing O1 and O2, with substantial support for unequal masses (Abbott
et al. 2019b). In consequence, a first set of parameter estimation
runs with different waveform models with higher-mode content was
performed in Chatziioannou et al. (2019). It is thus particularly inter-
esting to compare our results with the IMRPhenomX and IMRPhe-
nomT families against these earlier results, and also against those
obtained by Payne et al. (2019) through approximate reweighting
of IMRPhenomD results to the NRHybSur3dq8 target waveform.
In addition, we test how posterior distributions for this event change

with differentmass and distance priors. GW170729 is also interesting
since its recovered effective spin is positive within error estimates.
Unfortunately the SNR is relatively low, at 10.8+0.3−0.3 for IMRPhe-
nomXPHM and 10.9+0.3−0.4 for IMRPhenomTPHM. Only GW151012
has lower SNR within our set of ten events. Consequently, poste-
rior distributions for GW170729 are relatively broad. We find that
all eight versions of IMRPhenomXPHM yield Bayes factors and
posterior distributions that are consistent within error estimates.
The more massive component of the binary, with central values

just above 50, 𝑀� from various posteriors, see Table 3, is situated
near the lower end of the pair-instability supernova (PISN) mass
gap. That hypothetical gap is placed between approximately 52 and
133 solar masses by Woosley (2017), with the edges however un-
certain – see Woosley & Heger (2021) for a more recent overview.
IMRPhenomTPHM, which recovers the largest Bayes factor, also
recovers the highest value for the larger mass, 𝑚1 = 57.312.0−10.9 𝑀� ,
potentially situating it beyond the onset of the mass gap.

a. Higher-mode content: As demonstrated by the Bayes factors
in Table 6, we find weak evidence of higher-order mode content in
this event.
These Bayes factors in favour of higher modes are larger (in the

range 1.9–2.9 including uncertainties) for aligned-spin IMRPhe-
nomX and for precessing IMRPhenomT models, but below 2 for
precessing IMRPhenomX and aligned-spin IMRPhenomT models.
This different behaviour of the two model families is consistent with
IMRPhenomX having a more accurate aligned-spin sector but IMR-
PhenomT providing improved treatment of precession as described
in Sec. 2.2. In either case, our Bayes factors are lower than the
value of 5.1 found by Chatziioannou et al. (2019) between the older
aligned-spin models IMRPhenomHM and IMRPhenomD, but the
aligned-spin IMRPhenomX and precessing IMRPhenomT values
are slightly larger than the value of 1.4 obtained by Abbott et al.
(2019b) using the RapidPE method (Pankow et al. 2015; Lange et al.
2018) with a catalog of NR and NRSur7dq2 (Blackman et al. 2017)
waveforms. We thus find that when using improved waveform mod-
els the Bayes factors are more consistent with the RapidPE method
than what was found by Chatziioannou et al. (2019), and the Bayes
factor in favor of higher-mode content is lower.
In Fig. 9we see that IMRPhenomPv2 and the corresponding newer

precessing model for the dominant quadrupole, IMRPhenomXP,
give very similar results, while the non-precessing multi-mode wave-
formmodels recover lowermass ratio and higher luminosity distance,
as was also observed by Chatziioannou et al. (2019) and Payne et al.
(2019). The non-precessing likelihood-reweighted results of Payne
et al. (2019) (not plotted) are in very good agreement with our IM-

MNRAS 000, 1–20 (2022)



12 M. Mateu-Lucena et al.

Figure 7. Comparison of posteriors for GW170814, indicating 90% credible intervals. Upper panel: total mass, mass ratio, and spin parameters for the MSA
(blue) and NNLO (pink) versions of IMRPhenomXPHM and for IMRPhenomTPHM (green). Lower panel: distance and inclination (left) and sky position
(right) are shown for the dominant-mode models IMRPhenomXAS, IMRPhenomXP (light and dark pink) and IMRPhenomPv2 (orange), and the multi-mode
models IMRPhenomXHM, IMRPhenomXPHM (light and dark blue) and IMRPhenomTHM (green).

RPhenomXHM and IMRPhenomTHM posteriors for most parame-
ters, with the peak for 𝜒eff shifted down towards 0 but its posterior
still well consistent within 90% credible intervals. Adding not only
higher modes but precession, we obtain more evidence for unequal
masses for IMRPhenomTPHM, as seen in Fig. 10.
In Figs. 9 and 10 we also directly compare the frequency and time

domain families IMRPhenomX and IMRPhenomT. We can see that
the distribution of likelihood values across the posterior for IMR-
PhenomTPHM is shifted toward larger values, and indeed we obtain
a Bayes factor of 2.16+0.47−0.39 in favor of IMRPhenomTPHM when
compared to IMRPhenomXPHM, while the aligned-spin versions,
IMRPhenomTHM and IMRPhenomXHM, give much more similar
results.

b. Comparison of different mass and distance priors: Given
that GW170729 is the furthest event of the first catalog and has sup-
port for unequal masses, we compare the different distance and mass
prior choices explained in Sec. 2.3.3, in order to see their influence

Hypotheses Model properties PhenomX PhenomT

HM vs ℓ = 2 = |𝑚 | aligned 2.27+0.48−0.40 1.69+0.36−0.30
precessing 1.35+0.29−0.24 2.31+0.50−0.41

Table 6. Comparison of Bayes factors between models of the IMRPhe-
nomX and IMRPhenomT families concerning the hypothesis that the signal
of GW170729 contains higher modes, for the precessing and non-precessing
waveform models. The IMRPhenomX aligned check compares IMRPhe-
nomXHM against IMRPhenomXAS, the IMRPhenomX precessing check
compares IMRPhenomXPHM against IMRPhenomXP, the IMRPhenomT
aligned check compares IMRPhenomTHM against IMRPhenomT, and the
IMRPhenomT precessing check compares IMRPhenomTPHM against IM-
RPhenomTP.

on the posterior distributions. For this study we run IMRPhenomX-
PHM using nlive = 2048 and nact = 10. Fig. 11 shows that there
is a shift to lower distance and masses when we change from the
power-law distance prior to the prior that is uniform in comoving
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Figure 8. Posteriors for total mass, mass ratio, 𝜒eff and luminosity distance are shown for high-mass events and different waveform models.

source-frame volume. As discussed in Sec. 2.3.3, the standard power-
law distance prior distributes the mergers uniformly throughout an
Euclidean universe, which is only a good approximation at relatively
close distances (small redshifts). However, at larger distances, it is
not a good approximation, and including proper cosmological infor-
mation in the prior is required, which the comoving volume prior
achieves better (Abbott et al. 2021c; Romero-Shaw et al. 2020). On
the other hand, varying the mass priors does not affect the posteriors
noticeably. This is as expected because masses are more strongly
constrained by the data, hence the prior has a smaller influence on
the posterior – at least for the GWTC-1 events.
In order to quantify how much the posteriors change, we compute

the JS divergence between the results. In Table 7 we show, for every
possible combination of results, which parameter has the highest di-
vergence. If we compare the results that have different mass priors, all
divergences are below 0.003, meaning that the posterior results only
vary very minimally. Comparing different distance priors we obtain
higher divergences, where the luminosity distance is the parameter
with the largest values, 𝐽𝑆𝑑𝐿

= 0.015 and 0.012.

3.4.3 GW170809

The posterior for this event is consistent with vanishing spins (both
𝜒eff and 𝜒p), and 𝜃𝐽𝑁 is relatively well measured to correspond to
a face-off orientation. The masses are slightly more unequal than for
GW150914 and the total mass is slightly smaller. The event is how-
ever located at approximately twice the distance, corresponding to
only about half the SNR of 12.6+0.2−0.3 for IMRPhenomXPHM. Similar
to GW150914, the Bayes factors for theMSA-angle based versions of
IMRPhenomXPHM, IMRPhenomXHM and IMRPhenomXAS are

also consistent within error estimates, while the NNLO-based ver-
sions of IMRPhenomTHM and even more of IMRPhenomTPHM
are disfavored. MSA versions recover slightly higher 𝜒p than the
NNLO-based versions, otherwise we find no visible differences in
posteriors between IMRPhenomXPHM versions.
In Fig. 8 one can see that the waveforms with subdominant modes

have more support for equal masses. This effect is strongest for IM-
RPhenomTPHM, which is however disfavored by the Bayes factor.
In addition, the higher-mode models marginally shift the total mass
to lower values, and the luminosity distance to higher values.
Using the RapidPE method with a catalog of higher-mode NR

waveforms, Abbott et al. (2019b) found a revised 𝜒eff distribution
which is symmetric about a median value of zero, while our higher-
mode models show no such effect.

3.4.4 GW170818

GW170718 is a heavy event most consistent with a negative effective
spin, 𝜒eff = −0.11+0.14−0.16 for IMRPhenomPv2 (Abbott et al. 2019b).
However, in our analysis, using the IMRPhenomX and IMRPhe-
nomT families, the effective spin parameter is shifted toward zero,
as can be seen in Fig. 12. Unfortunately, this is also the third faintest
event, which limits the information that can be extracted, compared
to other events. There is weak evidence for precession, with a Bayes
factor for XPHM against XHM of 2.54+0.60−0.48, see Table 5.
The IMRPhenomX and IMRPhenomT families show good con-

sistency in Figs. 8 and 12, and a comparison of posteriors for different
IMRPhenomXPHM versions with the results for IMRPhenomPv2
is shown in Fig. 13. IMRPhenomXPHM with NNLO Euler angles
obtains a weakly higher Bayes factor than the default version, by a

MNRAS 000, 1–20 (2022)



14 M. Mateu-Lucena et al.
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Figure 9. Posterior distributions of GW170729 for the total mass, mass ratio, luminosity distance, inclination, component masses, mass ratio and effective
spin, using the dominant-mode models IMRPhenomPv2 (orange, Abbott et al. 2019b) and IMRPhenomXP (light pink), the subdominant-mode models
IMRPhenomHM (purple), SEOBNRv4HM (olive green, Chatziioannou et al. 2019), IMRPhenomXHM (light blue) and IMRPhenomTHM (light green). All
contours are at 90% credible intervals.

PowerLaw - FlatCompMass UnifComovVo - FlatCompMass PowerLaw - UniCompMass PowerLaw - UniformQ
PowerLaw - FlatCompMass - 𝐽𝑆𝐷𝐿

= 0.0152 𝐽𝑆𝑟𝑎 = 0.0029 𝐽𝑆M = 0.0009
UnifComovVo - FlatCompMass - 𝐽𝑆𝐷𝐿

= 0.0128 𝐽𝑆𝐷𝐿
= 0.0119

PowerLaw - UniCompMass - 𝐽𝑆𝑟𝑎 = 0.0030
PowerLaw - UniformQ -

Table 7. Maximum Jensen-Shannon (JS) divergence values between the posterior distributions for GW170729 estimated with IMRPhenomXPHM using
different priors in distance and masses, as explained in Sec. 2.3.3. PowerLaw refers to a power-law distance prior. UnifComovVo denotes a distance prior that is
uniform in comoving volume. FlatCompMass is used for a prior uniform in 𝑞 ≤ 1 and M𝑐 , with samples afterwards reweighted to a flat prior in component
masses. UniCompMass denotes directly using a flat prior in component masses while still sampling in 𝑞 andM𝑐 . Finally, UniformQ is a prior flat in mass ratio
𝑄 ≥ 1.

factor 1.64+0.39−0.31 (see Tables 4 and 5), and the corresponding pos-
teriors for 𝜒eff and the luminosity distance are more similar to the
IMRPhenomPv2 results.

3.4.5 GW170823

GW170823 is the second most massive and second most distant
event. The SNR is relatively low at 12.0+0.1−0.2 for IMRPhenomXPHM,
limiting the information that can be extracted. Indeed, in Fig. 8
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Figure 10. Posterior distributions of GW170729 for the mass ratio, total mass, chirp mass, effective spin parameter, luminosity distance, inclination and log
likelihood using the dominant-mode models IMRPhenomXP and IMRPhenomTP (light pink and orange respectively) and the subdominant-mode models
IMRPhenomXHM (light blue), IMRPhenomXPHM (dark blue) and IMRPhenomTHM (light green), IMRPhenomTPHM (dark green). All contours are at 90%
credible intervals.

we find very good agreement between the posteriors obtained with
different waveform models.

Due to the large distance we compare two distance priors, uniform
in comoving volume and proportional to the luminosity distance
squared, as we do in Sec. 3.4.2 for GW170729. As expected, we
find that the differences between both priors are smaller than for
GW170729. The luminosity distance is the parameter with the high-
est JS divergence when comparing the two distance prior choices;
however, all divergence values are lower than 0.007. The impact of
the distance prior is very minor, as illustrated by Fig. 14, where we
compare the runs with different priors all using IMRPhenomXPHM.

We find the Bayes factors between different IMRPhenomXPHM
versions to be consistent within error estimates, and find no notable
differences in the respective posterior distributions for the source
parameters.

4 CONCLUSIONS

In this paper we have obtained parameter estimation results for the
BBH events in GWTC-1 with the new fourth generation of phe-
nomenological waveform models. This has served as a stress test
before using these models for new events observed in the second
half of the third observing run (O3b), as presented in Abbott et al.
(2021b), and in a reanalysis of O1, O2 and O3a events as part of Ab-
bott et al. (2021a). Our results overall confirm the expectations that
subdominant harmonics and waveform systematics only have minor
consequences for parameter estimation results for these ten events,
and no major problems have been encountered using the IMRPhe-
nomX and IMRPhenomT families.
However, we have put particular emphasis on providing a more

in-depth study of this set of events than previous works, considering
different waveform models along with tests of convergence and com-
parisons of different sampling algorithms. This has been particularly
important for the event GW151226, where the initial arXiv version
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Figure 11. Comparison of posterior distributions for GW170729 estimated with IMRPhenomXPHM using different distance and mass priors. Here the string
PowerLaw denotes our standard power-law distance prior. UnifComovVo denotes a distance prior that is uniform in comoving volume. FlatCompMass runs use
a prior uniform in 𝑞 ≤ 1 and M𝑐 , with samples afterwards reweighted to a flat prior in component masses. UniCompMass denotes the more recent method to
directly ensure a flat prior in component masses while still sampling in 𝑞 andM𝑐 . Finally, UniformQ denotes a flat prior in mass ratio 𝑄 ≥ 1. All these priors
are described in Sec. 2.3.3. All contours are at 90% credible intervals.

Figure 12. Comparison of posterior distributions for 𝜒p and 𝜒eff of
GW170818, estimated with IMRPhenomTPHM (green), IMRPhenomXP
(pink), IMRPhenomXPHM (blue) and IMRPhenomPv2 (orange, from Ab-
bott et al. (2019b)). 90% credible intervals are indicated.

of Chia et al. (2022) had suggested that other results, including our
analysis, may be inaccurate. But various recent publications (Nitz &
Capano 2021; Vajpeyi et al. 2022), as well as the final journal version
of Chia et al. (2022), now find broadly consistent results: the event
is compatible with a broader range of mass ratios than reported in
the initial LVC studies, and while results by different groups disagree
in the relative posterior weight assigned to more or less unequal
configurations, consensus appears to have been reached that these
remaining differences are consistent with differences in priors.
For the other GWTC-1 event where results have been less stable

in past studies, the heavy GW170729, we find consistent results with

previous,more limited higher-modes analyses byChatziioannou et al.
(2019) and Payne et al. (2019). Results between different waveforms
are consistent at 90% credible level, but the IMRPhenomTPHM
model tends to prefer higher primary masses, making it more likely
to be a signal from a binary containing a black hole in the PISNmass
gap. Still, the uncertainties both on the GW parameter estimation and
the astrophysical predictions are too large to make a decisive claim
on this interpretation.
Given the high computational cost of Bayesian parameter esti-

mation, not many other GW events have been analysed in similar
detail. In two parallel papers (Colleoni et al. 2021; Estellés et al.
2021c)1 Our re-analysis shows excellent agreement between the
latest generations of non-precessing waveform models, where sub-
dominant harmonics are calibrated to NR simulations, and broad
consistency between different precessing models with subdominant
harmonics. In particular we find good agreement between our IM-
RPhenomX and IMRPhenomT families. GW190521 is the shortest
signal detected so far (only approximately 0.1 seconds long), and
much more challenging: due to the lack of information in such a
short signal, waveforms that correspond to very different sources
fit the signal well, and the posterior distribution is multi-modal.
We can however show good consistency between different sampling
codes – LALInference (Veitch et al. 2015) and Bilby (Ashton et al.
2019; Smith et al. 2020) – and different choices of mass priors. We
also confirm our expectation that for events where only the merger
and ringdown are observable, our description of precession in the

1 Note that we have updated our results for GW190412 to include the pre-
cessing time domain model IMRPhenomTPHM in Estellés et al. (2021a).
we have provided even more detailed analyses of two selected events from

the third observing run O3: GW190412 (Abbott et al. 2021c, 2020a,b) and
GW190521 (Abbott et al. 2020b,c). The results found in these two papers
complement our findings in the present paper:
GW190412 was the first event where subdominant spherical harmonic

modes could be clearly identified.
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Figure 13. Comparison of posterior distributions of GW170818 for the mass ratio, the effective spin parameter, the luminosity distance and the inclination using
the MSA (blues) and NNLO (pinks) IMRPhenomXPHM versions and IMRPhenomPv2 (orange) results from Abbott et al. (2019b). 90% credible intervals are
indicated.

Figure 14. Comparison of the posterior distributions for GW170823 esti-
mated with IMRPhenomXPHM using different distance priors (proportional
to the luminosity distance squared and uniform in the comoving volume and
source frame time, labeled by PowerLaw and UnifComovVo respectively).

time domain (IMRPhenomTPHM) improves significantly over our
frequency-domain model (IMRPhenomXPHM).
Meanwhile, the GWTC-1 events studied in this paper suggest

that for lower-mass signals there is no simple preference for either
the IMRPhenomX or IMRPhenomT family: The IMRPhenomTHM
and IMRPhenomTPHMmodels are typically characterized by lower
Bayes factors when compared to their IMRPhenomX counterparts.
The reason is likely that for lower-mass events the higher accuracy of
the phase of the (2, 2) mode for IMRPhenomXmakes the frequency-
domain model more accurate than the current time-domain version.
The exception is GW170814, which has a total mass of about 56 solar
masses, but does show some support for precession, see the Table

5 of Bayes factors. In this case IMRPhenomTPHM is also favored
over IMRPhenomXPHM.

Given that the IMRPhenomX models are both computationally
cheaper and simpler to use (time-domain models require a careful
choice of starting frequency to ensure consistent start times between
different modes and a careful treatment of Fourier transforms when
usingmatched filtering in the frequency domain), use of the IMRPhe-
nomX family is preferred for lower-mass events. Still, the example
of GW170814 suggests that a comparison with IMRPhenomTPHM
may provide further insight into such events when support for spin
precession is found.

For higher masses, preference tilts toward IMRPhenomTPHM,
as the accuracy of the phasing during inspiral is less relevant. For
GW170729, which has a median value of the total mass in the de-
tector frame above 120 solar masses (122.7+14.3−15.7 𝑀� for the IM-
RPhenomXPHM default run), both IMRPhenomXPHM and IMR-
PhenomTPHM provide consistent results, but support for IMRPhe-
nomTPHM is marginally larger than for IMRPhenomXPHM. For
GW170729 the better accuracy of the inspiral phasing for IMRPhe-
nomX is much less relevant, while the treatment of precession in
the time-domain model is superior. For GW170729 the advantage
of IMRPhenomTPHM is however still rather small, while for the
even heavier GW190521 we find (Estellés et al. 2021c) that IMR-
PhenomTPHM gives significantly better results.

Finally, the computational efficiency of the IMRPhenomX and
IMRPhenomT models has allowed us to also systematically test
the influence of variations in priors and sampler settings. We have
verified that changes in the mass and distance priors only have very
marginal influence on results. Perhaps most interestingly, we have
checked that, choosing a prior that emphasizes large mass ratios, we
have not found any multi-modal posteriors for any of the GWTC-1
events, as has been the case for GW190521 (Nitz & Capano 2021;
Estellés et al. 2021c).

In summary, we consider that detailed studies of waveform sys-
tematics and parameter estimation robustness, as performed in this
paper, are essential for the robust interpretation of GW detections.
Along with providing publicly available data sets that allow to repro-
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duce an analysis, such investigations are an important step forward
for the reliable astrophysical interpretation of GWs.
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APPENDIX A: CONVERGENCE TEST AND COMPARISON
OF SAMPLING METHODS

In order to set up appropriate sampler settings, we performed a
convergence study for all the different events and waveform approx-

imants. That convergence test consists in comparing several sampler
settings from low to high resolution in order to get the most con-
verged result but with an affordable computational cost. In our case
we test two different numbers of live points for the Nested Sampling
algorithm, nlive = 512 and 2048, and also the number of autocor-
relation times: nact = 10, 30, and for completeness we also test
nact = 50 for IMRPhenomXHM and IMRPhenomTHM.
For all the BBH events where we performed the convergence

test, we get the same conclusion: default settings of nlive = 2048
and nact = 30 result in sufficiently accurate posteriors at mod-
erate computational cost. In Fig. A1 we show a comparison for
GW170729 using different waveform models and sampler settings.
Using nlive = 512 both the histograms and the 2D plots show fluc-
tuations, indicating insufficient convergence. However, when we in-
crease nlive to 2048, the posterior distributions are much smoother.
Comparing the number of autocorrelation times when we use a large
number of nlive, changing the nact value does not make an impor-
tant difference.
We can get a more quantitative perspective from Table A1, where

we show the maximum JS divergence values corresponding to the
posteriors of Fig. A1. As commented above, the highest differences
appear when we change from low to high nlive, but not when we
change the nact configuration.We decided to use nlive = 2048 and
nact = 30 as the default setting because if we compare with the same
run but using nact = 50, we obtain an indistinguishable distribution:
the divergences between both posterior distributions are smaller than
0.001 bits.
In addition we perform further tests for the three lowest-mass

events, motivated by the results in Nitz et al. (2021) and in particular
the initial arXiv version of Chia et al. (2022) for GW151226, which
are, or were, to some degree in tension with our results.
As mentioned in the introduction, a large part of this tension has

been resolved with improvements in the sampling technique em-
ployed by Chia et al. (2022), as they report in their final journal
version. A consensus seems to now have emerged that the event is
consistent with a broader range of mass ratios than found by initial
LVC studies, but no clear preference for unequal masses persists, and
that remaining differences seem to be largely consistent with differ-
ences in prior choices. In addition, we note that the results of Nitz
et al. (2021) have been obtained at half our sampling rate (i.e. only
2048Hz, according to the data release of Nitz et al. 2021), and the
discrepant results in the initial arXiv version of Chia et al. (2022)
had been obtained at an even lower sampling rate of 1024Hz (using
the sampling code described in Venumadhav et al. 2019), while for
the final results (using the updated method from Roulet et al. 2022)
they used 2048Hz. See also the discussion of this point in the note at
the end of the journal version of Chia et al. (2022), phrased in terms
of the Nyquist frequency (half the sampling rate).
A reduced sampling rate implies a lower cutoff frequency corre-

sponding to the Nyquist frequency, and will reduce the higher-mode
content. While the effect on the recovered SNR is very small, we find
a significant effect on the posterior distributions of some quantities,
as we will discuss below.
We first compare the results for this event from our stan-

dard Bilby runs with alternative sampling choices: As previ-
ously shown in Fig. 11 for GW170729, we again compare our
standard method of reweighting the standard-prior runs to a
prior that is flat in component masses, against directly sam-
pling with the alternative flat-in-component-masses prior (using
the two Bilby classes UniformInComponentsChirpMass and
UniformInComponentsMassRatio, as discussed in Sec. 2.3.3).
Furthermore we compare with results for the LALInference code
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(Veitch et al. 2015), which is part of the LALSuite (LIGO Scien-
tific Collaboration 2020) package for GW data analysis, using its
implementation of parallel-tempered Markov Chain Monte Carlo
(MCMC) sampling. LALInference samples in mass ratio and chirp
mass, reweighting to a prior that is flat in component masses as
described in Veitch et al. (2015). We use essentially standard LAL-
Inference settings with eight temperatures, but a large number of 60
independent chains in order to have a broad distribution of chains cov-
ering the parameter space. These runs employ the same dataset, PSDs
and calibration envelopes as the Bilby runs, discussed in Sec. 3.2,
but we do not employ the distance marginalization used for our Bilby
runs.
In Fig. A2 we show a comparison between different runs for

GW151226, employing two different sampling rates (our default
4096Hz and a lower one at 2048Hz), the two different mass priors,
and different sampling settings (nlive of 2048 and 4096 at fixed
nact=30), all with Parallel Bilby, as well as the standard LALInfer-
ence run as described above, and the results reported in Nitz et al.
(2021) (results data for Chia et al. (2022) have not been released).
We observe that while all our runs are consistent, employing the
Bilby prior defined by the UniformInComponentsChirpMass and
UniformInComponentsMassRatio classes (labelled “UniComp-
Mass" in the plot) reproduces LALInference results best, as expected,
meaning that our results are well converged. For this event we also
observe that differences with respect to the results reported in Nitz
et al. (2021) are broadly consistent with the differences we observe
between different sampling rates in our runs.
We also perform runs that aim to reproduce the bimodal results

of the initial arXiv version of Chia et al. (2022) with LALInference,
using their initial sampling rate of 1024Hz. In Fig. A3we can observe
that indeed reducing our sampling rate by a factor of four we find a
bimodality in the mass ratio distribution, and increased support for
smaller mass ratio 𝑞 (we can not show direct comparisons since the
initial posterior data of Chia et al. (2022) have not been released). In
this figure we also plot the results of a LALInference run with the
standard 4096Hz sampling rate but with a prior restricted to 𝑞 ≤ 0.4,
aimed at improving the sampling of more unequal mass ratios. We
find that this restricted run shows very good agreement with that
using the standard unrestricted prior, enhancing the posterior region
corresponding to higher spins, but remaining consistent with the
low-q portion of the standard run and not producing an additional
peak. We thus conclude that the bimodality initially found by Chia
et al. (2022) could at least partially be explained by the reduction of
the higher-mode content when a low sampling rate is used that will
cut off part of the merger–ringdown signal. However, while in the
final journal version of Chia et al. (2022) they also increased their
sampling rate (to 2048Hz, half ours), they report that the dominant
effect in changing their results to the new, less discrepant posteriors
was in improving their relative binning sampling algorithm. For a
full explanation of the results for GW151226 found by other studies
it would also be interesting to compare results using the different
PSD estimates employed, but the PSD used in Chia et al. (2022) is
not publicly available. (The PSD used in Nitz et al. (2021) can in
principle be reproduced from configuration files in their data release.)
To conclude the discussion of this event, the recentwork byVajpeyi

et al. (2022) has directly compared the posterior weight between
equal and unequal mass configurations, contributing to the consensus
picture hinted at above: consistency with a range of mass ratios,
no strong preference for one end of the scale, and some remaining
dependence of results on prior choice.
For the other two low-mass events, similar consistency is achieved

between our different runs. In particular, forGW170608 our runswith

a sampling rate of 4096Hz show excellent agreement, for both mass
priors in Parallel Bilby and for LALInference, while for GW151012
small differences are visible between the standard prior Bilby run
and the alternative prior and LALInference runs. However, differ-
ences between our different runs for this event are much smaller than
differences with the results reported in Nitz et al. (2021), as can be
observed in Fig. A4. Despite the small differences, the overall self-
consistency of our results for GW151012 and GW170608 suggests
that the results presented in Nitz et al. (2021) cannot be explained
by different choices of the prior and sampling rate, and further ex-
amination of the convergence of those results and the influence of
the choice of PSD estimation would be needed to understand the
discrepancies.

APPENDIX B: MULTIBANDING

As mentioned in Sec. 2.2, in order to accelerate the evaluation of
the waveform model, IMRPhenomXHM and IMRPhenomXPHM
implement the multibanding interpolation method described for non-
precessing systems in García-Quirós et al. (2021), and extended to
precession in Pratten et al. (2021). The method uses interpolation
from an appropriately chosen unequally spaced coarse frequency grid
to the equally spaced fine grid used for data analysis. The grid spacing
of the coarse grid is controlled by two threshold parameters, which
are related to the local interpolation error for the phase and amplitude.
The parameter controlling the accuracy of the non-precessing modes
is called MB, and the parameter controlling the accuracy of the Euler
angles evaluation used to construct the precessing waveform is PMB.
We want to quantify the loss of accuracy and gain in computa-

tional speed for runs with a very aggressive multibanding threshold.
To do that, we perform a comparison between the default version
of IMRPhenomXPHM (MB = 10−3 and PMB = 0, i.e. no multi-
banding for the Euler angles) using nlive = 512, 2048 and nact
= 10, 30 respectively, with two aggressive multibanding runs (MB
= PMB = 0.1) using nlive = 512, 1024 and nact = 10. In Fig.
B1 we show this comparison for GW170104, which has the lowest
total mass from the medium-mass events group. Results for the other
events are contained in our data release (Mateu-Lucena et al. 2021).
We find, not surprisingly, that for the low resolution runs (nlive
= 512 and nact = 10) convergence is poor with and without the
aggressive multibanding threshold. However, when we increase the
number of live points to 1024 and 2048, the posterior distributions
become smoother even using aggressive multibanding, and agree
well with the distributions obtained with less aggressive multiband-
ing. Comparing the computational resources of the runs in Table B1,
we can observe that with an aggressive multibanding threshold the
cost of each likelihood evaluation is reduced by approximately half.
Although using a more aggressive multibanding threshold is not as
accurate as runs without this acceleration, due to the approximations
used, we see that in our case the change of the posterior distributions
is very small. Thus, aggressive multibanding is particularly appro-
priate for quick exploratory runs, e.g. to tune prior bounds for masses
or distance.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure A1. GW170729 convergence test comparing posterior distributions for the mass ratio, chirp mass, luminosity distance and inclination using IMRPhe-
nomTHM, IMRPhenomXHM and IMRPhenomXPHM (one per row) and with different sampler settings (nlive = 512, 2048 and nact=10,30,50) for each
waveform, displaying 90% credible contours.
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N512 NA10 N512 NA30 N2048 NA10 N2048 NA30 N2048 NA50

IMRPhenomTHM

N512 NA10 - 𝐽𝑆𝑡1 = 0.006 𝐽𝑆𝑡2 = 0.020 𝐽𝑆𝑡2 = 0.019 𝐽𝑆𝑡2 = 0.019
N512 NA30 - 𝐽𝑆𝑡2 = 0.023 𝐽𝑆𝑡2 = 0.021 𝐽𝑆𝑡1 = 0.024
N2048 NA10 - 𝐽𝑆𝑟𝑎 = 0.001 𝐽𝑆𝑟𝑎 = 0.001
N2048 NA30 - 𝐽𝑆𝑡1 = 0.001
N2048 NA50 -

N512 NA10 N512 NA30 N2048 NA10 N2048 NA30 N2048 NA50

IMRPhenomXHM

N512 NA10 - 𝐽𝑆𝑟𝑎 = 0.007 𝐽𝑆𝑡2 = 0.019 𝐽𝑆𝑟𝑎 = 0.024 𝐽𝑆𝑟𝑎 = 0.025
N512 NA30 - 𝐽𝑆𝑡2 = 0.023 𝐽𝑆𝑡2 = 0.023 𝐽𝑆𝑡2 = 0.023
N2048 NA10 - 𝐽𝑆𝑟𝑎 = 0.005 𝐽𝑆𝑟𝑎 = 0.004
N2048 NA30 - 𝐽𝑆𝑟𝑎 = 0.001
N2048 NA50 -

N512 NA10 N512 NA30 N2048 NA10 N2048 NA30

IMRPhenomXPHM

N512 NA10 - 𝐽𝑆𝑟𝑎 = 0.021 𝐽𝑆𝑟𝑎 = 0.039 𝐽𝑆𝑟𝑎 = 0.038
N512 NA30 - 𝐽𝑆𝑟𝑎 = 0.012 𝐽𝑆𝑟𝑎 = 0.009
N2048 NA10 - 𝐽𝑆𝑟𝑎 = 0.001
N2048 NA30 -

Table A1. Maximum Jensen-Shannon (JS) divergence values between the posterior distributions for GW170729 estimated with IMRPhenomTHM, IMRPhe-
nomXHM and IMRPhenomXPHM using different sampler settings, where N is short for nlive and NA is short for nact.

Figure A2. Comparison of the recovered posterior distributions for GW151226 for different values of the sampling rate (srate) and mass priors in Parallel
Bilby (PB), a standard run in LALInference (LI mcmc), and the results reported for this event in Nitz et al. (2021) (denoted as 3-OGC in the legend). For brevity,
nlive has been abbreviated as “N” and nact as “NA” in the legend. FlatCompMass refers to a run using a prior uniform in 𝑞 ≤ 1 andM𝑐 and then reweighted
to a flat prior in component masses. UniCompMass refers to directly using a uniform prior in component masses.

nlive nact MB PMB CPU h L.eval. Cost/L.eval.[ms]
2048 30 10−3 0 1765 2.24 × 108 28.30
512 10 10−3 0 154 1.67 × 107 33.11
1024 10 10−1 10−1 157 3.46 × 107 16.34
512 10 10−1 10−1 77 1.71 × 107 16.32

Table B1. Computational cost comparison between runs on GW170104 us-
ing IMRPhenomXPHM with different multibanding thresholds and sampler
settings, where MB and PMB correspond to the multibanding thresholds of
the aligned-spin modes and the Euler angles evaluation, respectively. The
number of likelihood evaluations and the mean cost of each evaluation in ms
are also shown.
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Figure A3. Comparison of the recovered posterior distributions for
GW151226 in LALInference (LI mcmc) for two different values of the sam-
pling rate (srate = 1024 and 4096Hz) and two different mass-ratio prior
choices (the default one and one restricted to 𝑞 ≤ 0.4). The mass-ratio
histograms have been normalized to equal height for ease of visibility.

Figure A4. Comparison of the recovered posterior distributions for
GW151012 for different values of the sampling rate (srate) and mass priors
in Parallel Bilby (PB), a standard run in LALInference (LI mcmc), and the
results reported for this event in Nitz et al. (2021) (denoted as 3-OGC in the
legend). For brevity, nlive has been abbreviated as “N” and nact as “NA” in
the legend. FlatCompMass refers to a run using a prior uniform in 𝑞 ≤ 1 and
M𝑐 and then reweighted to a flat prior in component masses. UniCompMass
refers to directly using a uniform prior in component masses.
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Figure B1. Comparison of the GW170104 posterior distributions for the total mass, mass ratio and effective spin obtained with IMRPhenomXPHM using
different sampler settings (nlive and nact) and multibanding thresholds for the aligned-spin modes (XHMMB) and for the Euler angles (XPMB) where 0.001
is the multibanding default value.
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