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Abstract

Despite the success of convolutional neural networks (CNNs) in many academic
benchmarks for computer vision tasks, their application in the real-world is still
facing fundamental challenges. One of these open problems is the inherent lack of
robustness, unveiled by the striking effectiveness of adversarial attacks. Current
attack methods are able to manipulate the network’s prediction by adding specific
but small amounts of noise to the input. In turn, adversarial training (AT) aims to
achieve robustness against such attacks and ideally a better model generalization
ability by including adversarial samples in the trainingset. However, an in-depth
analysis of the resulting robust models beyond adversarial robustness is still pend-
ing. In this paper, we empirically analyze a variety of adversarially trained models
that achieve high robust accuracies when facing state-of-the-art attacks and we
show that AT has an interesting side-effect: it leads to models that are significantly
less overconfident with their decisions, even on clean data than non-robust models.
Further, our analysis of robust models shows that not only AT but also the model’s
building blocks (like activation functions and pooling) have a strong influence on
the models’ prediction confidences.
Data & Project website: https://github.com/GeJulia/robustness_
confidences_evaluation

1 Introduction

Convolutional Neural Networks (CNNs) have been shown to successfully solve problems across
various tasks and domains. However, distribution shifts in the input data can have a severe impact on
the prediction performance. In real-world applications, these shifts may be caused by a multitude
of reasons including corruption due to weather conditions, camera settings, noise, and maliciously
crafted perturbations to the input data intended to fool the network (adversarial attacks). In recent
years, a vast line of research (e.g. [25, 36, 44]) has been devoted to solving robustness issues,
highlighting a multitude of causes for the limited generalization ability of networks and potential
solutions to facilitate the training of better models.

A second, yet equally important issue that hampers the deployment of deep learning based models
in practical applications is the lack of calibration concerning prediction confidences. In fact, most
models are overly confident in their predictions, even if they are wrong [31, 45, 57]. Specifically,
most conventionally trained models are unaware of their own lack of expertise, i.e. they are trained to
make confident predictions in any scenario, even if the test data is sampled from a previously unseen
domain. Adversarial examples seem to leverage this weakness, as they are known to not only fool the
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network but also to cause very confident wrong predictions [46]. In turn, adversarial training (AT)
has shown to improve the prediction accuracy under adversarial attacks [22, 25, 65, 87]. However,
only few works so far have been investigating the links between calibration and robustness [45, 60],
leaving a systematic synopsis of adversarial robustness and prediction confidence still pending.

In this work, we provide an extensive empirical analysis of diverse adversarially robust models with
regard to their prediction confidences. Therefore, we evaluate more than 70 adversarially robust
models and their conventionally trained counterparts, which show low robustness when exposed to
adversarial examples. By measuring their output distributions on benign and adversarial examples for
correct and erroneous predictions, we show that adversarially trained models have benefits beyond
adversarial robustness and are less over-confident.

To cope with the lack of calibration in conventionally trained models, Corbière et al. [13] propose to
rather use the true class probability than the standard confidence obtained after the Softmax layer,
such as to circumvent the overlapping confidence values for wrong and correct predictions. However,
we observe that exactly these overlaps are an indicator for insufficiently calibrated models and can
be mitigated by the improvement of CNNs building blocks, namely downsampling and activation
functions, that have been proposed in the context of adversarial robustness [17, 28].

Our work analyzes the relationship between robust models and model confidences. Our experiments
for 71 robust and non-robust model pairs on the datasets CIFAR10 [43], CIFAR100 and ImageNet
[19] confirm that non-robust models are overconfident with their false predictions. This highlights
the challenges for usage in real-world applications. In contrast, we show that robust models are
generally less confident in their predictions, and, especially CNNs which include improved building
blocks (downsampling and activation) turn out to be better calibrated manifesting low confidence in
wrong predictions and high confidence in their correct predictions. Further, we can show that the
prediction confidence of robust models can be used as an indicator for erroneous decisions. However,
we also see that adversarially trained networks (robust models) overfit adversaries similar to the ones
seen during training and show similar performance on unseen attacks as non-robust models. Our
contributions can be summarized as follows:

• We provide an extensive analysis of the prediction confidence of 71 adversarially trained
models (robust models), and their conventionally trained counterparts (non-robust models).
We observe that most non-robust models are exceedingly over-confident while robust models
exhibit less confidence and are better calibrated for slight domain shifts.

• We observe that specific layers, that are considered to improve model robustness, also impact
the models’ confidences. In detail, improved downsampling layers and activation functions
can lead to an even better calibration of the learned model.

• We investigate the detection of erroneous decisions by using the prediction confidence. We
observe that robust models are able to detect wrong predictions based on their confidences.
However, when faced with unseen adversaries they exhibit a similarly weak performance as
non-robust models.

Our analysis provides a first synopsis of adversarial robustness and model calibration and aims to
foster research that addresses both challenges jointly rather than considering them as two separate
research fields. To further promote this research, we released our modelzoo1.

2 Related Work

In the following, we first briefly review the related work on model calibration which motivates our
empirical analysis. Then, we revise the related work on adversarial attacks and model hardening.

Confidence Calibration. For many models that perform well with respect to standard benchmarks,
it has been argued that the robust or regular model accuracy may be an insufficient metric [2, 13, 18,
79], in particular when real-world applications with potentially open-world scenarios are considered.
In these settings, reliability must be established which can be quantified by the prediction confidence
[58]. Ideally, a reliable model would provide high confidence predictions on correct classifications,
and low confidence predictions on false ones [13, 57]. However, most networks are not able to

1https://github.com/GeJulia/robustness_confidences_evaluation

2

https://github.com/GeJulia/robustness_confidences_evaluation


instantly provide a sufficient calibration. Hence, confidence calibration is a vivid field of research
and proposed methods are based on additional loss functions [32, 35, 45, 48, 52], on adaptions of the
training input by label smoothing [54, 60, 63, 75] or on data augmentation [20, 45, 76, 88]. Further,
[58] present a benchmark on classification models regarding model accuracy and confidence under
dataset shift. Various evaluation methods have been provided to distinguish between correct and
incorrect predictions [13, 56]. Naeini et al. [56] defined the networks expected calibration error
(ECE) for a model f by with 0 ≤ p ≤ ∞

ECEp = E[|ẑ − E[1ŷ=y|ẑ]|p]
1
p (1)

where the model f predicts ŷ = y with the confidence ẑ. This can be directly related to the
over-confidence o(f) and under-confidence u(f) of a network as follows [81]:

|o(f)P(ŷ 6= y)− u(f)P(ŷ = y)| ≤ ECEp, (2)

where [55]
o(f) = E[ẑ|ŷ 6= y] u(f) = E[1− ẑ|ŷ = y], (3)

i.e. the over-confidence measures the expectation of ẑ on wrong predictions, under-confidence
measures the expectation of 1 − ẑ on correct predictions and ideally both should be zero. The
ECE provides an upper bound for the difference between the probability of the prediction being
wrong weighted by the networks over-confidence and the probability of the prediction being correctly
weighted by the networks under-confidence and converges to this value for the parameter p→ 0 (in
eq. 1]). We also recur to this metric as an aggregate measure to evaluate model confidence. Yet, it
should be noted that the ECE metric is based on the assumption that networks make correct as well
as incorrect predictions. A model that always makes incorrect predictions and is less confident in its
few correct decisions than it is in its many erroneous decisions can end up with a comparably low
ECE. Therefore, ECE values for models with an accuracy below 50% are hard to interpret.

Most common CNNs are over-confident [31, 45, 57]. Moreover, the most dominantly used activation
in modern CNNs [34, 39, 69, 73] remains the ReLU function, while is has been pointed out by Hein
et al. [35] that ReLUs cause a general increase in the models’ prediction confidences, regardless of
the prediction validity. This is also the case for the vast majority of the adversarially trained models
we consider, except for the model by [17] to which we devote particular attention.

Adversarial Attacks. Adversarial attacks intentionally add perturbations to the input samples, that
are almost imperceptible to the human eye, yet lead to (high-confidence) false predictions of the
attacked model [25, 53, 74]. These attacks can be classified into two categories: white-box and
black-box attacks. In black-box attacks, the adversary has no knowledge of the model intrinsics [4],
and can only query its output. These attacks are often developed on surrogate models [10, 42, 78] to
reduce interaction with the attacked model in order to prevent threat detection. In general, though,
these attacks are less powerful due to their limited access to the target networks. In contrast, in
white-box attacks, the adversary has access to the full model, namely the architecture, weights,
and gradient information [25, 44]. This enables the attacker to perform extremely powerful attacks
customized to the model. One of the earliest approaches, the Fast Gradient Sign Method (FGSM)
by [25] uses the sign of the prediction gradient to perturb input samples into the direction of the
gradient, thereby increasing the loss and causing false predictions. This method was further adapted
and improved by Projected Gradient Descent (PGD) [44], DeepFool (DF) [53], Carlini and Wagner
(CW) [5] or Decoupling Direction and Norm (DDN) [65]. While FGSM is a single-step attack,
meaning that the perturbation is computed in one single gradient ascent step limited by some ε bound,
multi-step attacks such as PGD iteratively search perturbations within the ε-bound to change the
models’ prediction. These attacks generally perform better but come at an increased cost of the
attack. AutoAttack [14] is an ensemble of different attacks including an adaptive version of PGD,
and has been proposed as a baseline for adversarial robustness. In particular, it is used in robustness
benchmarks such as RobustBench [15].

Adversarial Training and Robustness. To improve robustness, adversarial training (AT) has
proven to be quite successful on common robustness benchmarks. Some attacks can be simply
defended by using their adversarial examples in the training set [25, 65] through an additional loss
[22, 87]. Furthermore, the addition of more training data, by using external data, or data augmentation
techniques such as the generation of synthetic data, has been shown to be promising for more robust
models [6, 26, 27, 62, 68, 80]. RobustBench [15] provides a leaderboard to study the improvements
made by the aforementioned approaches in a comparable manner in terms of their robust accuracy.
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Madry et al. [50] observed that the performance of adversarial training depends on the models’
capacity. High-capacity models are able to fit the (adversarial) training data better, leading to
increased robust accuracy. Later research investigated the influence on increased model width and
depth [26, 85], and quality of convolution filters [24]. Consequently, the best-performing entries
on RobustBench [15] are often using Wide-ResNet-70-16’s or even larger architectures. Besides
this trend, concurrent works also started to additionally modify specific building blocks of CNNs
[17, 29]. Grabinski et al. [28] showed that weaknesses in simple AT, like FGSM, can be overcome by
improving the network’s downsampling operation.

Adversarial Training and Calibration. Only a few but notable prior works such as [45, 60] have
investigated adversarial training with respect to model calibration. Without providing a systematic
overview, [45] show that AT can help to smoothen the prediction distributions of CNN models.
Qin et al. [60] investigate adversarial data points generated using [5] with respect to non-robust
models and find that easily attackable data points are badly calibrated while adversarial models
have better calibration properties. In contrast, we analyze the robustness and calibration of pairs of
robust and non-robust versions of the same models rather than investigating individual data points.
[77] introduce an adversarial calibration loss to reduce the calibration error. Further, [72] propose
confidence calibrated adversarial training to force adversarial samples to show uniform confidence,
while clean samples should be one hot encoded. Complementary to [15], we provide an analysis of
the predictive confidences of adversarially trained, robust models and release conventionally trained
counterparts of the models from [15] to facilitate future research on the analysis of the impact of
training schemes versus architectural choices. Importantly, our proposed large-scale study allows
a differentiated view on the relationship between adversarial training and model calibration, as
discussed in Section 3. In particular, we find that adversarially trained models are not always better
calibrated than vanilla models especially on clean data, while they are consistently less over-confident.

Adversarial Attack Detection. A practical defense besides adversarial training, can also be
established by the detection and rejection of malicious input. Most detection methods are based on
input sample statistics [23, 30, 33, 37, 47, 49], while others attempt to detect adversarial samples via
inference on surrogate models, yet these models themselves might be vulnerable to attacks [12, 51].
While all of these approaches perform additional operations on top of the models’ prediction, we show
that simply taking the models’ prediction confidence can be used as a heuristic to reject erroneous
samples.

3 Analysis

In the following, we first describe our experimental setting in which we then conduct an extensive
analysis on the two CIFAR datasets with respect to robust and non-robust model2 confidence on
clean and perturbed samples as well as their ECE. Further, we observe by computing the ROC
curves of these models that robust models are best suited to distinguish between correct and incorrect
predictions based on their confidence. In addition we point out that the improvement of pooling
operations or activation functions within the network can enhance the models’ calibration further.
Last, we also investigate ImageNet as a high resolution dataset and observe that the model with the
highest capacity and AT can achieve the best performance results and calibration.

3.1 Experimental Setup

We have collected 71 checkpoints of robust models [1, 3, 7–9, 11, 16, 17, 21, 22, 26, 27, 38, 40, 41,
59, 61, 62, 64, 67, 68, 70, 71, 80, 83, 84, 86, 87, 89, 90] listed on the `∞-RobustBench leaderboard
[15]. Additionally, we compare each appearing architecture to a second model trained without AT or
any specific robustness regularization, and without any external data (even if the robust counterpart
relied on it). Training details can be found in appendix A.

Then we collect the predictions alongside their respective confidences of robust and non-robust
models on clean validation samples, as well as on samples attacked by a white-box attack (PGD),
and a black-box attack (Squares). PGD (and its adaptive variant APGD [14]) is the most widely
used white-box attack and adversarial training schemes explicitly (when using PGD samples for

2The classification into robust and non-robust models is based on the models’ robustness against adversarial
attacks. We consider a model to be robust when it achieves considerably high accuracy under AutoAttack [14].
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training) or implicitly (when using the faster but strongly related FGSM attack samples for training)
optimize for PGD robustness. In contrast, the Squares attack alters the data at random with an allowed
budget until the label flips. Such samples are rather to be considered out-of-domain samples even for
adversarially trained models and provide a proxy for a model’s generalization ability. Thus, Squares
can be seen as unseen attack for all models while PGD might be not for some adversarially trained,
robust models.
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Figure 1: Mean model confidences on their correct (x-axis) and incorrect (y-axis) predictions over the
full CIFAR10 dataset (top) and CIFAR100 dataset (bottom), clean (left) and perturbed with the attacks
PGD (middle) and Squares (right). Each point represents a model. Circular points (purple color-map)
represent non-robust models and diamond-shaped points (green color-map) represent robust models.
The color of each point represents the models accuracy, darker signifies higher accuracy (better) on
the given data samples. The star in the bottom right corner indicates the optimal model calibration and
the gray area marks the area were the confidence distribution of the network is worse than random,
i.e. more confident in incorrect predictions than in correct ones.

3.2 CIFAR Models

CIFAR10 [43] is a simple ten class dataset consisting of 50,000 training and 10,000 validation images
with a resolution of 32× 32. Since it is significantly cheaper to train on CIFAR10 in comparison to
e. g. ImageNet, and its low resolution allows to discount additional costs of adversarial training, most
entries on RobustBench [15] focus on CIFAR10.
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Figure 2: Overconfidence (lower is better) bar plots of robust models and their non-robust counter-
parts trained on CIFAR10. Non-robust models are highly overconfident, in contrast, their robust
counterparts are less over-confident.

Figure 1 shows an overview of all robust and non-robust models trained on CIFAR10 in terms
of their accuracy as well as their confidence in their correct and incorrect predictions. Along the
isolines, the ratio between confidence in correct and incorrect predictions is constant. The gray
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area indicates scenarios where models are even more confident in their incorrect predictions than in
their correct predictions. Concentrating on the models’ confidence, we can see that robust models
(marked by a diamond) are in general less confident in their predictions, while non-robust models
(marked by a circle) exhibit high confidence in all their predictions, both correct and incorrect. This
indicates that non-robust models are not only more susceptible to (adversarial) distribution shifts
but are also highly over-confident in their false predictions. Practically, such behaviour can lead to
catastrophic consequences in safety-related, real-world applications. Robust models tend to have
lower average confidence and a favorable confidence trade-off even on clean data (Figure 1, top
left). When adversarial samples using PGD are considered (Figure 1, top middle), the non-robust
models even fall into the gray area of the plot where more confident decisions are likely incorrect. As
expected, adversarially trained models not only make fewer mistakes in this case but are also better
adjusted in terms of their confidence. Black-box attacks (Figure 1,top right) provide non-targeted out
of domain samples. Adversarially trained models are overall better calibrated to this case, i.e. their
mean confidences are hardly affected whereas non-robust models’ confidences fluctuate heavily.

Samples
Robustness Clean PGD Squares

non-robust models 0.6736± 0.1208 0.6809± 0.1061 0.6635±0.1156
robust models 0.1894±0.1531 0.2688± 0.1733 0.2126± 0.1431

Table 1: Mean ECE (lower is better) and standard deviation
over all non-robust model versus all their robust counterparts
trained on CIFAR10. Robust model exhibit a significantly
lower ECE on all samples.

Four models stand out in Figure 1 (top
left): two robust and two non-robust
models which are much less confident
in their true and false predictions than
others. These less confident models
are indeed trained from two different
model architectures, with and without
adversarial training. [59] uses a hyper-
sphere embedding which normalizes
the features in the intermediate layers
and weights in the softmax layer, the other model [11] uses an ensemble of three different pretrained
models (ResNet-50) to boost robustness. These architectural changes have a significant impact on
the absolute model confidence, yet, do not necessarily lead to a better calibration. These models are
under-confident in their correct predictions and tend to be comparably confident in wrong predictions.

Table 1 reports the mean ECE over all robust models and their non-robust counterparts. Robust
models are better calibrated which results in a significantly lower ECE 3. Figure 13 further visualizes
the significant decrease in over-confidence of robust models w.r.t. their non-robust counterparts.

CIFAR100, although otherwise similar to CIFAR10, includes 100 classes and can be seen as a more
challenging classification task. This is reflected in the reduced model accuracy on the clean and
adversarial samples (Figure 1 , bottom). On this data, robust models are again less over-confident.
They are slightly closer to the optimal calibration point in the lower right corner even on clean data
and perform significantly better on PGD samples where the confidences of non-robust models are
again reversed (middle). The Squares attack again illustrates the stable behavior of robust models’
confidences4. We also report the ECE values for CIFAR100 in the Appendix. Please note that the
accuracy of the CIFAR100 models is not very high (ranging between 56.87% and 70.25% even
for clean samples), resulting in an unreliable calibration metric. Especially under PGD attacks,
non-robust networks make mostly incorrect predictions such that the ECE collapses to being the
expected confidence value of incorrect predictions (see eq. [1]), regardless of the confidences of the
few correct predictions. In this case, ECE is not meaningful.

Another interesting observation is that non-robust models can achieve higher accuracy on the clean
data and, quite surprisingly, on the applied black-box attacks (Figure 1, right). This indicates that
most robust models overfit white-box attacks used during training and are not generalizing very well
to other attacks. While making more mistakes, robust models still have a favorable distribution of
confidence over non-robust models in this case.

Model confidences can predict erroneous decisions. Next, we evaluate the prediction confi-
dences in terms of their ability to predict whether a network prediction is correct or incorrect. We
visualize the ROC curves for all models and compare the averages of robust and non-robust models
in Figure 3 (top row for CIFAR10, bottom row for CIFAR100), which allows us to draw conclusions
about the confidence behavior. While robust and non-robust models perform on average very sim-

3The models’ full empirical confidence distributions are given in Figure 10 in the Appendix.
4The models’ full empirical confidence distributions are given in Figure 11 in the Appendix

6



CIFAR10

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Clean Samples

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Squares Samples

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

CIFAR-10-C Samples

CIFAR100

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Clean Samples

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Squares Samples

robust models
non-robst models
random baseline

Figure 3: Average ROC curve for all robust and all non-robust models trained on CIFAR10 (top) and
CIFAR100 (bottom). Standard deviation is marked by the error bars. The dashed line would mark a
model which has the same confidence for each prediction. We observe that the models confidences
can be an indicator for the correctness of the prediction. However, on PGD samples the non-robust
models fail while the robust models can distinguish correct from incorrect predictions based on the
prediction confidence.
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Figure 4: Average ROC curve over all robust and non-robust models of confidence on clean correctly
classified samples and perturbated wrongly classified samples. The robust model confidences can be
used as threshold for detection of white-box adversarial attacks (PGD). For black-box adversarial
attacks (Squares) the robust as well as non-robust models can partially detect the erroneous samples.

ilarly on clean data, robust model confidences can reliably predict erroneous classification results
on adversarial examples where non-robust models fail. Also, for out-of-domain samples from the
black-box attack Squares (middle right) and common corruptions [36] (right), robust models can
reliably assess their prediction quality and can better predict whether their classification result is
correct.

Robust model confidences can detect adversarial samples. Further, we evaluate the adversarial
detection rate of the robust models based on their ROC curves (averaged over all robust models) in
Figure 4, comparing the confidence of correct predictions on clean samples and incorrect predictions
caused by adversarial attacks. We observe different behavior for gradient-based, white-box attacks
and black-box attacks. While non-robust models fail completely against gradient based attacks they
are almost as good as robust models for the detection of black-box attacks. Similarly, when taking
the left two plots from Figure 3 into account, one might get the impression that non-robust models
perform similar or even better on detecting erroneous samples compared to robust ones. Thus, we
hypothesize that robust models indeed overfit the adversaries seen during training, as those are mostly
gradient-based adversaries. Therefore we assume that adversarially trained models are not better
calibrated in general, however, when strictly looking at overconfidence robust models are consistently
less overconfident and therefore better applicable for safety critical applications.
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Downsampling techniques. Most common CNNs apply downsampling to compress featuremaps
with the intent to increase spatial invariance and overall higher sparsity. However, Grabinski et al.
[29] showed that aliasing during the downsampling operation highly correlates with the lack of
adversarial robustness, and provided a new downsampling operation, called frequency low cut pooling
[28], which enables improved downsampling of the featuremaps. Figure 6 compares the confidence
distribution of three different networks. The top row shows a PRN-18 baseline without adversarial
training, the second row the approach by Grabinski et al. [28] applied to the same architecture
(additional models are evaluated in the appendix D ), and the third row shows a robust model trained
by Rebuffi et al. [62]. The baseline model is highly susceptible to adversarial attacks, especially
under white-box attacks, while the two robust counter-parts remain low-confident in false predictions,
and show higher confidence in correct predictions. However, while the model of Rebuffi et al. [62]
shows a high variance amongst the predicted confidences, the approach by Grabinski et al. [28]
significantly improves this by disentangling the confidences. Their model provides low-variance
and high-confidence on correct predictions and reduced confidence on false predictions across all
evaluated samples.
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Figure 5: ROC curves and AUC values for different pooling variation in combination with adversarial
training. FLC Pooling [28] outperforms all other pooling methods as well as the baseline.

In Figure 5, we compare different pooling methods combined with AT to standard pooling with AT
as well as standard pooling without AT. The results show that the pooling method by Grabinski et
al. [28] outperforms all other pooling methods. They consistently achieve the highest AUC under
adversarial samples (white- and black-box attack) and are similar to the baseline on clean samples.

Activation functions. Next, we analyze the influence of activation functions. Only one Robust-
Bench model utilizes an activation other than ReLU. Dai et al. [17] introduce learnable activation
functions with the intent to improve robustness. Figure 7 shows at the top row a WRN-28-10 baseline
model without AT, the model by Dai et al. [17] in the middle and a model with the same architecture
adversarially trained by Carmon et al. [6].
Although this is an arguably sparse basis for a thorough investigation, we observe that the model
by [17] can retain high confidence in correct predictions for both clean and perturbed samples.
Furthermore, the model is much less confident in its wrong predictions for the clean as well as the
adversarial samples. Similar to the used pooling variation, also the activation function seems to
influence the model’s calibration.

Summary of low resolution datasets. On CIFAR10 and CIFAR100 non-robust models can
achieve higher standard accuracy and at least match or even exceed the performance of robust models
under black-box attacks like Squares. Only under the white-box attack PGD, the robust models show
higher accuracy. However non-robust models are highly over-confident in all their predictions and are
hence limited in their applicability for real-world tasks. In contrast, the correctness of a robust models’
prediction can be estimated by the prediction confidence. and is additionally serving as a defence
against adversarial attacks. Further, we observe that the confidence of non-robust models decreases
with increasing task complexity. In contrast, robust models are less affected by the increased task
complexity and exhibit similar confidence characteristics on both datasets.
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Figure 6: Confidence distribution on three differ-
ent PRN-18. The first row shows a model without
adversarial training and standard pooling, the sec-
ond row the model by Grabinski et al. [28] which
uses flc pooling instead of standard pooling and
the third row shows the model by Rebuffi et al.
[62] adversarially trained and with standard pool-
ing.
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Figure 7: Confidence distribution on three differ-
ent WRN-28-10. The first row shows a model
without adversarial training and standard activa-
tion (ReLU), the second row the model by Dai
et al. [17] which uses learnable activation func-
tions instead of fixed ones and the third row shows
the model by Carmon et al. [6] adversarially
trained and with the standard activation (ReLU).

3.3 ImageNet

We rely on the models provided by RobustBench [15] for our ImageNet evaluation. We report the
clean and robust accuracy against PGD and Squares in Table 4 in the appendix. The non-robust model,
trained without AT, achieves the highest performance on clean samples but collapses under white-
and black-box attacks. Further, the models trained with multistep adversaries by Engstrom et al. [22]
and Salman et al. [66] achieve higher robust and clean accuracy than the model trained by Wong et al.
[83] which is trained with single-step adversaries. Moreover, the largest model, a WRN-50-2, yields
the best robust performance. Still, the amount of robust networks on ImageNet is quite small, thus
we can not make any generalized assumptions. Figure 9 shows the precision-recall curve for our
evaluated models. Under evaluation with clean samples, the non-robust model without AT performs
best. Under both attacks the largest model ( a WRN-50-2 by Salman et al. [66]) performs best and the
worst performer is the smallest model (RN-18). This may be suggesting that bigger models can not
only achieve the better trade-off in clean and robust accuracy but also more successfully disentangle
confidences between correct and incorrect predictions. Figure 8 confirms that the over-confidence is
decreased in robust models and the ECE is lower than in the non-robust models.
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Figure 8: Overconfidence (left) and ECE (right) (lower is better) bar plots of the models trained on
ImageNet provided by RobustBench [15] and their non-robust counterparts. The non-robust baselines
exhibits the highest overconfidence and ECE. In contrast, the robust models are better calibrated.
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Figure 9: Precision Recall curves for the classification of correct versus erroneous predictions based
on the confidence on ImageNet, evaluated over 10,000 samples. Robust and non-robust models are
taken from RobustBench [15]. For clean samples (left) the non robust baseline performs best, while
its confidences are less reliable under attack (middle and right). The robust WRN-50-2 by Salman
et al. [66] performs best on the PGD and Squares samples.

3.4 Discussion

Our experiments confirm that the prediction confidences of non-robust models are highly over-
confident, especially under gradient based, white-box attacks. However, when confronted with clean
samples, common corruptions or unseen black-box attacks like Squares [4] non-robust and robust
models are equally able to detect wrongly classified samples based on their prediction confidence.
Indicating that adversarially trained networks overfit the kind of adversaries seen during training.

Further, our results indicate that the selection of the activation functions as well as the downsampling
are important factors for the models’ performance and confidence. The method by Grabinski et al.
[28], which improves the downsampling, as well as the method by Dai et al. [17], which improves
the activation function, exhibit the best calibration for the networks prediction; High confidence on
correct predictions and low confidence on the incorrect ones. While further optimizing deep neural
networks’ architectures and training schemes, we should consider the synopsis of model robustness
and calibration instead of optimizing each of these aspects separately.

Limitations. Our evaluation is based on the models provided on RobustBench [15]. Thus the amount
of networks on more complex datasets, like ImageNet, is rather small and therefore the evaluation not
universally applicable. While the number of models for CIFAR is large, the proposed database can
only be understood as a starting point for future research. This is particularly true for the analysis of
neural network building blocks - models that are adversarially trained and employ smooth activation
functions might be very promising concerning their calibration but a more in-depth analysis of this
setting with new, dedicated datasets is desirable. Additionally, we rely simply on the confidence
obtained after the Softmax layer, while there are many other metrics for uncertainty measurement.

4 Conclusion

We provide an extensive study on the confidences of robust models and observe an overall trend:
robust models tent to be less over-confident than non-robust models. Thus, while achieving a higher
robust accuracy, adversarial training generates models that are less overconfident. Further, the
prediction confidence of robust models can actually be used to reject wrongly classified samples on
clean data and even adversarial examples.
Moreover, we see indications that exchanging simple building blocks like the activation function [17]
or the downsampling method [28] alters the properties of robust models with respect to confidence
calibration. On the examples we investigate, the models’ prediction confidence on their correct
predictions can be increased while the confidence on the erroneous predictions remains low. Our
findings should nurture future research on jointly considering model calibration and robustness.
However, robust models’ overall performance on robustness tasks are highly questionable as they
seem to overfit the adversaries seen during training.
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A Non-robust Model Training

For training, CIFAR-10/100 data was zero-padded by 4 px along each dimension, and then transformed
using 32 × 32 px random crops, and random horizontal flips. Channel-wise normalization was
replicated as reported by the original dataset authors. Training hyper parameters have been set to an
initial learning rate of 1e-2, a weight decay of 1e-2, a batch-size of 256 and a nesterov momentum of
0.9. We scheduled the SGD optimizer to decrease the learning rate every 30 epochs by a factor of
γ = 0.1 and trained for a total of 125 epochs. The loss is determined using Categorical Cross Entropy
and we used the model obtained at the epoch with the highest validation accuracy. Training was
executed on a A+ Server SYS-2123GQ-NART-2U machine with four NVIDIA A100-SXM4-40GB
GPUs for approximately 17 GPU hours. Training ImageNet1k architectures with our hyperparameters
resulted in a rather poor performance and we therefore rely on the baseline model without AT provided
by timm [82].

B Additional Evaluation CIFAR10/100

In this section we provide an overview over ECE on CIFAR10 and CIFAR100 of all robust models
and their non-robust conunterparts.

B.1 Confidence Distribution

The model confidence distributions are shown in Figure 10 and Figure 11. Each row contains the
robust and non-robust counterpart and their confidence distributions on the clean samples and the
perturbated samples by PGD and Squares.

Non-robust models Robust models
Clean

De
ns

ity

0.00 0.25 0.50 0.75 1.00
Confidences

PGD

0.00 0.25 0.50 0.75 1.00
Confidences

Squares

0.00 0.25 0.50 0.75 1.00
Confidences

correct prediction incorrect prediction

Clean

De
ns

ity

0.00 0.25 0.50 0.75 1.00
Confidences

PGD

0.00 0.25 0.50 0.75 1.00
Confidences

Squares

0.00 0.25 0.50 0.75 1.00
Confidences

correct prediction incorrect prediction

Figure 10: Density plots for robust and non-robust models on CIFAR10 over the models confidence
on its correct and incorrect predictions. Each row contains the same model adversarially and standard
trained. The non-robust models show high confidence in all of their predictions, however, those might
be wrong. Especially in the case of PGD samples, the models are highly confident in their false
predictions. In contrast, the robust models are better calibrated. The robust models are confident in
their correct predictions and less confident in their false predictions.
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Figure 11: Density plots for robust and non-robust models on CIFAR100 over the models confidence
on its correct and incorrect predictions. Each row contains the same model adversarially and standard
trained. The non-robust models show high confidence in all of their predictions, however, those might
be wrong. Especially in the case of PGD samples, the models are highly confident in their false
predictions. In contrast, the robust models are better calibrated. The robust models are confident in
their correct predictions and less confident in their false predictions.

B.2 Overconfidence and ECE
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Figure 12: Overconfidence (lower is better) bar plots of robust models and their non-robust counter-
parts trained on CIFAR100.

Similar, the confidence distributions for the robust and non-robust counterparts on CIFAR100 are
depicted in Figure 11.

Samples
Robustness Clean PGD Squares

non-robust models 0.3077 ± 0.1257 0.2159 ± 0.0738 0.2780 ± 0.1348
robust models 0.2962 ±0.1722 0.2307 ± 0.1494 0.2076 ± 0.1247

Table 2: Mean ECE (lower is better) and standard deviation over all non-robust model versus all their
robust counterparts trained on CIFAR100. Robust model exhibit a significantly lower ECE on all
samples.
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Figure 13: ECE (lower is better) bar plots of robust models and their non-robust counterparts trained
on CIFAR10.
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Figure 14: ECE (lower is better) bar plots of robust models and their non-robust counterparts trained
on CIFAR100. The models accuracy are marked for the different samples for each bar.

B.3 Precision Recall

For completeness, we included the Precision Recall curves on CIFAR10 and CIFAR100 as mean over
all robust and non-robust models with marked standard deviation.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Clean Samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

PGD Samples

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

f1=0.2

f1=0.4

f1=0.6

f1=0.8

f1=0.9

Squares Samples

robust models non-robst models iso-f1 curves

Figure 15: Average precision recall curve for all robust and all non-robust models trained on CIFAR10.
Standard deviation is marked by the error bars. For the clean samples, the non-robust models can
distinguish slightly better in correct and incorrect predictions based on the confidence of the prediction.
The superior of the robust models are visible on the samples created by PGD, the non-robust models
are not able to distinguish. However, for the samples created by Squares the classification into correct
and incorrect predictions based on the confidence is almost equally possible for robust and non-robust
models.
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Figure 16: Average precision recall curve for all robust and all non-robust models trained on
CIFAR100 for 1000 samples. Standard deviation is marked by the error bars. For the clean samples,
the non-robust models can distinguish slightly better in correct and incorrect predictions based on the
confidence of the prediction. The superior of the robust models are clearly visible on the samples
created by PGD, the non-robust models are not able to distinguish. However, for the samples created
by Squares the classification into correct and incorrect predictions based on the confidence is almost
equally possible for robust and non-robust models.
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Figure 17: Precision Recall curve between confidence of clean correct samples and perturbated wrong
samples on CIFAR10 and CIFAR100. The robust model confidences can be used as threshold for
detection of adversarial attacks.

C CIFAR10-C Evaluation

Additionally to the previously studied attacks, we evaluate the confidence of robust versus non-robust
CIFAR-10 models on the out-of-distribution dataset CIFAR10-C with severity level 4 (although the
results for other severity levels follow the same trajectory and are omitted). There we benchmark
models robust to adversarial attacks and their non-robust counterparts and evaluate the prediction
confidence.

C.1 Overconfidence

First, we compare the models overconfidence with respect to each corruption type. In accordance
with our findings on adversarial perturbations, robust models are much less overconfident than their
non-robust counterparts. Figure 18 shows the overconfidence of each model pair for each corruption
type. We can clearly see that robust models are generally much less overconfident.

C.2 ROC-curve

Regarding the mean ROC-curves (Figure 19) our results show that robust models tend to be better cal-
ibrated than non-robust models. However, robust models are inferior with respect to their calibration
on corruptions changing the color palette of the image, like fog, brightness, contrast, and saturation.
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Figure 18: Overconfidence for each robust CIFAR-10 model and the respective normal counterpart
evaluated on CIFAR10-C.
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Figure 19: Mean ROC curves for each robust and non-robust CIFAR-10 model pair evaluated on
CIFAR10-C.
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D FLC Pooling

We evaluate different robust PRN-18 networks trained with flc pooling [28] and FGSM AT in terms
of their confidence distribution. For training, we used the training script provided by [83]. We trained
with ten different seeds and run for 300 epochs, choosing the batchsize to be 128, a momentum of 0.9,
weight decay of 0.0005, a cycling learning rate with minimum value of 0 and maximum value of 0.2,
for the adversarial samples we used FGSM with an ε of 8/255 and α of 10/255. Figure 20 shows the
confidence distribution over all ten models and the standard deviation between those models. We
can observe that the models with flc pooling are able to disentangle the correct from the incorrect
prediction by the prediction confidence. The models provide low-variance and high-confidence in
correct predictions and reduced confidence in false predictions across all evaluated samples.

E Downsampling and Activation

E.1 AUC

To show the impact of improved downsampling and activation functions we provide the ROC curves
and AUC values of the models with and without those improved building blocks (similar to Figure
20 and Figure 7). Figure 21 shows the ROC curves on the improved building blocks as well as on
comparable robust models with the same architecture. One can see that the improved building blocks
results in slightly better calibration. The corresponding AUC values are reported in Table 3.

E.2 CIFAR10-C

Next, we compare the confidence impact of improved downsampling operations and activations on
out-of-distribution data. Here we summarize our findings by the mean over all corruptions. Figure
22 shows that robust models are on average better calibrated than normal models. The impact of
improved downsampling or activation functions is marginal.
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Figure 20: Additional confidence distribution evaluation over ten models (PRN-18) trained on
CIFAR10 with flc pooling [28] and AT FGSM [83]. We used 100 bins and present the mean and
standard deviation of the ten different models for each bin.
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PRN-18 (Downsampling)
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Figure 21: ROC curves for robust models with and without special building block, like downsampling
(top) and activation (bottom).

Robust Model Clean PGD Squares

Baseline PRN-18 0.8958 0.0942 0.8347
Grabinski et al. [28] 0.8901 0.9832 0.9923
Rebuffi et al. [62] 0.8523 0.9592 0.9731

Baseline WRN-28-10 0.9326 0.2781 0.9076
Dai et al. [17] 0.8969 0.9755 0.9877

Carmon et al. [6] 0.8847 0.9639 0.9823

Table 3: AUC value for the ROC curves of different robust models provided by [6, 17, 28, 62].
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Figure 22: ROC curve for improved downsampling (left) and activation function (right) on CIFAR10-
C corruptions. Robust models are superior to the normal models, and, the impact of activation and
pooling is marginal.
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F Additional Evaluation on ImageNet

Table 4 reports the accuracy evaluation of the robust models as well as the baseline on ImageNet.
The accuracy is reported on the clean as well as on the perturbated samples by PGD and Squares
with an ε of 4/255.

Method Architecture Clean Acc ↑ PGD Acc ↑ Squares Acc ↑
Baseline RN50 76.13 0.00 11.48

Engstrom et al. [22] RN50 62.41 35.47 54.93
Wong et al. [83] RN50 53.83 29.43 42.26

Salman et al. [66] RN50 63.87 42.23 56.58
Salman et al. [66] WRN50-2 68.41 44.75 61.29
Salman et al. [66] RN18 52.50 31.92 43.81

Table 4: Clean and robust accuracy against PGD and Squares (higher is better) over 10000 samples.

For completeness, we included the ROC curve on the clean as well as the perturbated samples for the
robust models and the baseline on ImagNet in figure 23.
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Figure 23: ROC curves for the robust models and the non-robust baseline trained on ImageNet
provided on RobustBench [15].
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G Model Overview

The robust checkpoints provided by RobustBench [15] are licensed under the MIT Licence. The clean
models for ImageNet are provided by timm [82] under the Apache 2.0 licence.

Paper Dataset Architecture Adv.
Trained
Clean
Acc.

Adv.
Trained
Robust
Acc.

Norm.
Trained
Clean
Acc.

Norm.
Trained
Robust
Acc.

[3] cifar10 PreActResNet-18 79.84 43.93 94.51 0.0
[6] cifar10 WideResNet-28-10 89.69 59.53 95.10 0.0
[67] cifar10 WideResNet-28-10 88.98 57.14 95.10 0.0
[80] cifar10 WideResNet-28-10 87.50 56.29 95.10 0.0
[38] cifar10 WideResNet-28-10 87.11 54.92 95.35 0.0
[64] cifar10 WideResNet-34-20 85.34 53.42 95.46 0.0
[87] cifar10 WideResNet-34-10 84.92 53.08 95.26 0.0
[22] cifar10 ResNet-50 87.03 49.25 94.90 0.0
[11] cifar10 ResNet-50 86.04 51.56 86.50 0.0
[41] cifar10 WideResNet-34-10 83.48 53.34 95.26 0.0
[59] cifar10 WideResNet-34-20 85.14 53.74 76.30 0.0
[83] cifar10 PreActResNet-18 83.34 43.21 94.25 0.0
[21] cifar10 WideResNet-28-4 84.36 41.44 94.33 0.0
[86] cifar10 WideResNet-34-10 87.20 44.83 95.26 0.0
[89] cifar10 WideResNet-34-10 84.52 53.51 95.26 0.0
[84] cifar10 WideResNet-28-10 88.25 60.04 95.10 0.0
[84] cifar10 WideResNet-34-10 85.36 56.17 95.64 0.0
[26] cifar10 WideResNet-70-16 85.29 57.20 87.91 0.0
[26] cifar10 WideResNet-70-16 91.10 65.88 87.91 0.0
[26] cifar10 WideResNet-34-20 85.64 56.86 88.33 0.0
[26] cifar10 WideResNet-28-10 89.48 62.80 88.20 0.0
[68] cifar10 WideResNet-34-10 85.85 59.09 95.64 0.0
[68] cifar10 ResNet-18 84.38 54.43 94.87 0.0
[70] cifar10 WideResNet-34-10 86.84 50.72 95.26 0.0
[9] cifar10 WideResNet-34-10 85.32 51.12 95.35 0.0
[16] cifar10 WideResNet-34-20 88.70 53.57 95.44 0.0
[16] cifar10 WideResNet-34-10 88.22 52.86 95.26 0.0
[90] cifar10 WideResNet-28-10 89.36 59.64 95.10 0.0
[62] cifar10 WideResNet-28-10 87.33 60.75 88.20 0.0
[62] cifar10 WideResNet-106-16 88.50 64.64 86.92 0.0
[62] cifar10 WideResNet-70-16 88.54 64.25 87.91 0.0
[62] cifar10 WideResNet-70-16 92.23 66.58 87.91 0.0
[71] cifar10 WideResNet-28-10 89.46 59.66 95.10 0.0
[71] cifar10 WideResNet-34-15 86.53 60.41 95.50 0.0
[62] cifar10 PreActResNet-18 83.53 56.66 89.01 0.0
[61] cifar10 PreActResNet-18 89.02 57.67 89.01 0.0
[61] cifar10 PreActResNet-18 86.86 57.09 89.01 0.0
[61] cifar10 WideResNet-34-10 91.47 62.83 88.67 0.0
[61] cifar10 WideResNet-28-10 88.16 60.97 88.20 0.0
[40] cifar10 WideResNet-34-R 90.56 61.56 95.60 0.0
[40] cifar10 WideResNet-34-R 91.23 62.54 95.60 0.0
[1] cifar10 ResNet-18 80.24 51.06 94.87 0.0
[1] cifar10 WideResNet-34-10 85.32 58.04 95.26 0.0
[27] cifar10 WideResNet-70-16 88.74 66.11 87.91 0.0
[17] cifar10 WideResNet-28-10-

PSSiLU
87.02 61.55 85.53 0.0

[27] cifar10 WideResNet-28-10 87.50 63.44 88.20 0.0
[27] cifar10 PreActResNet-18 87.35 58.63 89.01 0.0

Continued on next page
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Paper Dataset Architecture Adv.
Trained
Clean
Acc.

Adv.
Trained
Robust
Acc.

Norm.
Trained
Clean
Acc.

Norm.
Trained
Robust
Acc.

[8] cifar10 WideResNet-34-10 85.21 56.94 95.64 0.0
[8] cifar10 WideResNet-34-20 86.03 57.71 95.29 0.0
[26] cifar100 WideResNet-70-16 60.86 30.03 60.56 0.0
[26] cifar100 WideResNet-70-16 69.15 36.88 60.56 0.0
[16] cifar100 WideResNet-34-20 62.55 30.20 80.46 0.0
[16] cifar100 WideResNet-34-10 70.25 27.16 79.11 0.0
[16] cifar100 WideResNet-34-10 60.64 29.33 79.11 0.0
[9] cifar100 WideResNet-34-10 62.15 26.94 78.75 0.0
[84] cifar100 WideResNet-34-10 60.38 28.86 78.79 0.0
[70] cifar100 WideResNet-34-10 62.82 24.57 79.11 0.0
[38] cifar100 WideResNet-28-10 59.23 28.42 79.16 0.0
[64] cifar100 PreActResNet-18 53.83 18.95 76.18 0.0
[62] cifar100 WideResNet-70-16 63.56 34.64 60.56 0.0
[62] cifar100 WideResNet-28-10 62.41 32.06 61.46 0.0
[61] cifar100 PreActResNet-18 56.87 28.50 63.45 0.0
[61] cifar100 PreActResNet-18 61.50 28.88 63.45 0.0
[1] cifar100 PreActResNet-18 62.02 27.14 76.66 0.0
[1] cifar100 WideResNet-34-10 65.73 30.35 79.11 0.0
[8] cifar100 WideResNet-34-10 64.07 30.59 79.11 0.0
[83] imagenet ResNet-50 55.62 26.24 80.37 0.0
[22] imagenet ResNet-50 62.56 29.22 80.37 0.0
[66] imagenet ResNet-50 64.02 34.96 80.37 0.0
[66] imagenet ResNet-18 52.92 25.32 69.74 0.0
[66] imagenet WideResNet-50-2 68.46 38.14 81.45 0.0
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