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1 Overview

Simplicial complexes associated to curves on a surface play a central role in 2- and 3-manifold

topology, particularly in the study of mapping class groups and Heegaard splittings. Recently,

Kirby and Thompson [9] pushed these techniques into dimension four, assigning a loop in the cut

complex to a trisected 4-manifold. The aim of this paper is to, in some sense, reverse this. In

particular, given a loop in the pants complex, L, we show how to uniquely build a closed smooth

4-manifold X 4
C(L). Our main theorem is that all such manifolds arise in this fashion.

Theorem 2. For every closed, smooth, orientable 4-manifold X4, there exists a closed loop L in

P(Σ) so that X is diffeomorphic to X 4
C(L).

In their proof of the finite presentability of the mapping class group [6], Hatcher and Thurston

sketch a proof that the pants complex is simply connected. This result was later fully fleshed out

in work of Hatcher [7]. As our main theorem associated a loop to any 4-manifold, it is natural to

ask what the disk it bounds represents. Viewing 4-manifolds from this perspective yields a natural

proof of the following theorem, originally due to Pontrjagin and Rohlin [13], which is our main

application.

Theorem 4. Every smooth, oriented, closed manifold is cobordant to
∐
mCP 2

∐
nCP

2
.

Our proof here follows along the lines of recent work of Gay [5], in which the author proves the

same theorem by associating a loop of smooth functions on a surface to a 4-manifold. The similarity

in these arguments suggests that the pants complex of a surface Σ is a good discrete model for space

of smooth functions on Σ. Our proof relies on the simple-connectivity of the pants complex which

originally was proven using properties of generic smooth functions on surfaces. Nevertheless, there

now exist multiple proofs of the simple-connectivity of the pants complex which rely on different

techniques [1] [2] which give rise to alternative paths to the theorem, some of which (after using

[14]) are quite elementary.

We also use our correspondence to gain insight into the structure of the pants complex. In

particular, given a loop L in the pants complex, we define an invariant σ(L), which is the signature

of the 4-manifold associated to L. This may be calculated using information only of the 1-skeleton

of the pants complex, but contains information about possible disks that this loop can bound. In

particular, we obtain the following proposition.

Proposition 2. Let L be a loop in the pants complex with σ(L) = n, then any disk bounded by L

must contain at least n 3S-triangles.
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Figure 1: Top: An S-move in the pants complex. Bottom: and A-move in the pants complex

2 The pants complex

We briefly discuss the pants complex of a surface following [7]. Let Σ be a connected closed

orientable surface of genus greater than or equal to 2. A pants decomposition of Σ is a set of

3g − 3 simple closed curves on Σ such that cutting Σ along these curves results in a disjoint union

of 2g − 2 3-punctured spheres (pairs of pants). Two pants decompositions of Σ are considered

the same if the curves are isotopic. We will be considering the 2-complex P(Σ), called the pants

complex of Σ, whose vertices correspond to isotopy classes of pants decompositions of Σ. If Σ is

instead a torus, a pants decomposition is just an isotopy class of an essential curve.

There are two types of edges in P(Σ): S-edges (“S” for stabilization) and A-edges (“A” for

associative), which can be seen in Figure 1. First note that if one removes neighbourhoods of all

but one of the curves in a pants decomposition, one is left with 2g−3 pants and either a 4-punctured

sphere or a once punctured torus. Two pants decompositions P1 and P2 are connected by an S-

move if all but one of the curves in P1 are the same as in P2 and the curves that differ intersect

each other in exactly one point on a once punctured torus component. Two pants decompositions

P1 and P2 are connected by an A-edge if all but one of the curves in P1 are the same as in P2 and

the curves that differ intersect each other in exactly two points on a 4-punctured sphere.

The 2-cells in P(Σ) which come in 5 different types and are shown in Figures 2-6. With this

choice of 2-cells the following theorem holds.

Theorem 1. (Hatcher [7]) P(Σ) is connected and simply-connected.

If P is a pants decomposition for Σ, we may obtain a 3-dimensional handlebody with boundary

Σ, by taking Σ × I, attaching 2-handles to the curves in P , and then capping off any remaining

spheres components with 3-handles. We denote this handlebody byH(P ), We say two handlebodies

H1 and H2 with ∂H1 = ∂H2 = Σ are equal if the identity map on the boundary extends to

a homeomorphism from H1 to H2. Note that there are inequivalent pants decompositions that

produce equal handlebodies, namely, any two pants decompositions related by A-moves define the

same handlebody.

Given a handlebody H with ∂H = Σ, the handlebody set of H in P(Σ) is the set of pants

decompositions P of Σ such that H(P ) = H. By our previous discussion, two pants decompositions
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3A

Figure 2: A 3A cycle which is filled in by a triangle.

3S

Figure 3: A 3S cycle which is filled in by a triangle.

3



5A

Figure 4: A 5A cycle which is filled in by a pentagon.

6AS

Figure 5: A 6AS cycle which is filled in by a hexagon. A-moves are labeled by black curves while

S-moves are labeled by red curves.

4



4S

Figure 6: A 4S cycle of S-moves which is filled in by a square. There are also corresponding squares

for disjointly supported A-moves and disjointly supported A- and S- moves. We will denote these

by 4S-squares, 4A-squares, and 4AS-squares, respectively.

related by an A-move lie in the same handlebody set. The following result originally proved by

Luo shows that handlebody sets are in fact connected by A-moves.

Lemma 1. (Corollary 1 of [11]) Given a handlebody H with ∂H = Σ and two pants decompositions

P1 and P2 in the handlebody set of H, there exists a path in P(Σ) consisting of exclusively A-edges

between P1 and P2.

A cut system on a genus g closed orientable surface Σ is a set α = {α1, ..., αg} of pairwise

disjoint non-separating essential curves on Σ. At times it will be more natural to consider cut

systems instead of pants decompositions. The following two lemmas will allow us to pass between

these decompositions freely.

Lemma 2. (Lemma 5 of [8]) Any pants decomposition for Σ contains at least g non-separating

curves. Any choice of g non-separating curves in a pants decomposition give a cut system of Σ.

Given a pants decomposition, choosing a cut system via the previous lemma gives sufficient data

to determine a handlebody. This is often enough information for the topological constructions in

this paper. To return to the simplicial constructions of the pants complex we will need to complete

cut systems or, more generally, any set of curves to a pants decomposition. The following lemma,

which may proved by induction on the genus and an Euler characteristic argument, will allow us

to do so.

Lemma 3. Let H be a genus g handlebody with boudnary Σ. Let k < 3g − 3, be a natural

number and {c1, ..., ck} be a set of non-isotopic simple closed curves on Σ such that c1, ..., ck all

bound disjoint properly embedded disks in H. Then there exist some additional simple closed

curves on Σ, {ck+1, ..., c3g−3}, that bound disjoint properly embedded disks in H, so that P =

{c1, ..., ck, ck+1, ..., c3g−3} is a pants decomposition for Σ with H(P ) = H.
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v1 v2

Hv1 Hv2

\S1 ×B3

Figure 7: An edge in P (Σ) corresponds to a connected sum of copies S1 × S2 which may be filled

in uniquely with the appropriate boundary sum of copies of S1 ×D3.

3 The 1-skeleton of the pants complex

Given two vertices P1 and P2 in the pants complex, we obtain a Heegaard splitting of a closed

orientable 3-manifoldM3(P1, P2) = H(P1)∪ΣH(P2). Further, if we consider an ordering, as above

with P1 first then P2, and if Σ is oriented, then we can orient H(P1) to agree with Σ and H(P2) to

disagree with Σ, we then obtain an orientation of M3(P1, P2), and we will henceforth assume that

it carries this orientation. Note that changing the orientation of Σ, or the order of P1 or P2, will

change the orientation of the resulting 3-manifold.

Given an oriented edge e between two vertices P1 and P2 in the pants complex, we may define

a compact orientable 4-manifold X 4(W ) with ∂X 4(e) = M3(P1, P2). We first need to determine

the manifold M3(P1, P2). By inspecting Heegaard diagrams of the manifolds involved we may

determine the 3-manifolds associated to vertices connected by an edge. In particular, we obtain

the following lemma.

Lemma 4. Let P1 and P2 be two pants decompositions of a surface Σ of genus g. If P1 and P2 are

connected by an A-edge, then H(P1) = H(P2) and therefore, M3(P1, P2) = ]g(S1 × S2). If P1 and

P2 are connected by an S-edge, then M3(P1, P2) = ]g−1(S1 × S2).

Having determined the 3-manifold associated to an edge, we next define a unique oriented 4-

manifold filling. If X 4(e) is an A-edge, then we fill the resulting ]g(S1 × S2) with \g(S1 × D3) .

Similarly, if the edge is an S-edge, we fill the resulting ]g−1(S1 × S2) with \g−1(S1 ×D3). By [10],

these fillings are unique.

Given an oriented walk, W , of arbitrary length, we construct X 4(W ) by first constructing all

of the 4-manifolds associated to each of the edges in W , and then gluing together each successive

pair of edges along the common 3-dimensional handlebody via the identity map along their shared

handlebody (see Figure 8). As a convention, if W is just a single vertex P then we just take the

filling of H(P ) ∪Σ H(P ) by \g(S1 ×B3).

We now address orientations. Assume from now on that we have a fixed orientation on Σ and

our walk W has a fixed orientation, we will obtain an orientation on X 4(W ) as follows: for a single

oriented edge from a vertex P1 to a vertex P2, orient H(P1) with the orientation that induces the

orientation on Σ and orient H(P2) with the orientation that induces the opposite orientation on Σ.

Then we can glue H(P1) to −H(P2) via the identity map and obtain an orientation onM3(P1, P2)

that then induces an orientation on X 4(W ). If W consists of multiple edges, then we can orient
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v1 v2 v3

Hv1

Hv2
Hv3

Figure 8: A path in P (Σ) gives rise to the manifold obtained by gluing together the wedges

corresponding to edges along the handlebodies of the shared vertices

X 4(W ) by orienting the wedges as above, and since each non-end vertex of W has an edge coming

in and an edge going out, the resulting identity maps between the handlebodies will be orientation-

reversing and therefore we will obtain an orientation on all of X 4(W ). Note that, either switching

the orientation of Σ or switching the direction of W will change the orientation on X 4(W ).

We next seek to obtain a handle description for 4-manifolds given by a walk in the pants

complex. We first need the following lemma.

Lemma 5. Let H be a handlebody and let γ ⊂ ∂H be a curve such that, for some properly embedded

disk D ⊂ H, |γ ∩ D| = 1. Then the result of pushing γ into H, and doing surgery on γ is again

a handlebody. Moreover, if we do surgery on γ using the surface framing, then γ bounds a disk in

the surgered handlebody.

Proof. One way to prove that a 3-manifold is a handlebody is to find a collection of disjoint properly

embedded disks which cuts the manifold into balls. Let D1, ..., Dg be a collection of such disks for

H with D1 = D. By sliding all of the other disks over D1, we may arrange so that none of these

disks intersect γ. We can then still cut along D2, ..., Dg in the surgered manifold. We then only

need to analyze what is happening in the solid torus H\{D2, ...Dg} containing the curve γ where

the surgery is occurring along with its dual disk D1.

Since |γ∩D1| = 1, and γ is isotopic into the boundary, γ is isotopic to the core curve S1×{0} ⊂
S1 × D2. But any surgery on the core curve in a solid torus results again in a solid torus - one

way to see this is that the part of the solid torus that is not affected by the surgery is just a collar

neighborhood of the boundary. If we give the surgery curve the surface framing, then there is a

disk D′1, disjoint from D2, ..., Dg, with ∂D′1 = γ, formed by taking the surgery disk for the push-in

of γ and extending it to the boundary by adding the annulus coming from the push-in process.

We therefore conclude that D′1, D2, ..., Dg is a collection of properly embedded disks which cut the

surgered manifold into a ball, and hence it is a handlebody.

The following will used repeatedly to identify the 4-manifolds corresponding to paths and loops

in the pants complex.

Lemma 6. Let W be an oriented walk in P(Σ) starting at P1. The following process produces a

handle decomposition of X 4(W ). Start with H(P1) × I; these are the 0- and 1-handles. For every

(directed) S-edge in W , we take the new curve in the latter vertex, push it into H(P1) × {0} ⊂
H(P1) × I, and give this curve the surface framing from Σ = ∂H(P1) × {0}. The curves that are
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seen later in the walk along W are not pushed as far inside of H(P1)×{0} as earlier curves. These

framed curves are the attaching curves for the 2-handles. There are no 3-handles or 4-handles.

Proof. We start in the case where W is just a single edge. In the case where W is an A-edge,

then X 4(W ) = \g(S1 ×D3) and indeed this is the manifold that we obtain from our handlebody

description, since no 2-handles are added.

In the case where W is an S-edge, then X 4(W ) = \g−1(S1 × D3) and so we must verify that

the attaching sphere of the 2-handle that we are adding intersects the belt sphere of one of the

1-handles in exactly one point, and therefore the handles cancel giving the desired result. Using

Lemma 2, we can choose g nonseparating curves in P1 on Σ that form a cut system for H(P1).

The belt spheres of the 1-handles are exactly these g nonseparating curves in Σ together with the

disks on both sides of γ ⊂ ]g(S1 × S2) = ∂(S1 ×D3), and by the definition of an S-move, and the

convention for attaching a 2-handle stated in the lemma, we see that the attaching circle for the

2-handle intersects the belt sphere in exactly one point.

Finally, consider the case of a general walk W = (P1, P2, ...Pn+1). Since A-moves do not affect

the resulting 4-manifold, we proceed by induction on the number of S-moves that W contains and

we assume that (Pn, Pn+1) is an S-edge. The base case was just discussed. Let W ′ = (P1, ..., Pn).

By the inductive hypothesis, the 4-manifold X 4(W ′) has a handlebody diagram as described in the

statement of the lemma. Let H = H(Pn). Attach one end of H × I to this H in the boundary to

obtain a space that (after rounding corners) is still just X 4(W ′). Now attach a 2-handle along the

new curve in Pn+1 framed by Σ to the free end of H × I as in the statement of the lemma.

We now verify that the union of H × I and this new 2-handle is indeed \g−1(S1 ×D3). Using

Lemma 2, we obtain a cut system for H containing the curve that is changed by the S-move, such

that the curves in the cut system bound disjoint disks in H. These disks considered in both ends

of H × I together with the curves cross I form a set of belt spheres for the genus g 4-dimensional

handlebody H × I and the attaching circle for the 2-handle intersects exactly the disk bounding

the curve corresponding to the S-move, and in exactly one point, thus verifying that we have

\g−1(S1×D3) as desired. Furthermore, by Lemma 5, when we look at the two handlebodies in the

boundary of H × I together with this 2-handle, we have exactly H(Pn) and H(Pn+1). Therefore,

what we have attached is a 4-dimensional filling of the desired handlebodies by \g−1(S1 × D3),

which, by [10], can only be done in one way.

Since the mapping class group acts transitively on the set of handlebodies with a given boundary,

we may apply a mapping class, and insert or delete A-moves, to assume that a walk starts in a

pants decomposition which contains the cut system shown in Figure 9. We may then use Lemma

6, to obtain a Kirby diagram for the manifold X4(W ). Namely, the cut system for the handlebody

shown in Figure 9 become dotted circles, representing the 1-handles. S-moves give rise to 2-handles

as in the previous lemma; these are pushed towards the “outside” of the surface pictured.

The following result uses Waldhausen’s theorem [15] on Heegaard splittings of connect sums of

S1 × S2, which is the primary 3-dimensional result that we will make use of.

Lemma 7. Let P1 and P2 be vertices in P(Σg), with M3(P1, P2) ∼= ]k(S1 × S2). Then there exists

a walk W in P(Σ) with X 4(W ) ∼= \k(S1 ×D3).

Proof. Note that P1 and P2 form a genus g Heegaard diagram for ]m(S1 × S2). As an immediate

consequence of Waldhausen’s theorem [15], there exist vertices P ′1 and P ′2 in the same handlebody

sets as P1 and P2, respectively, which are standard, in that there are k parallel sets of non-separating
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Figure 9: A cut system for the standard handlebody. These curves become the 1-handles in the

dotted circle notation for 1-handles in a Kirby diagram.

curves and g − k dual sets of non-separating curves in these pants decompositons. The path of

length g− k between these pants decompositions which turns each curve in P1 to its corresponding

dual in P2 gives rise to a handle decomposition consisting of g 1-handles and g−k 2-handles. These

2-handles are dual to 1-handles, so the resulting manifold has a handle decomposition consisting of

just k 1-handles, and so is diffeomorphic to \k(S1 ×D3).

We can also construct a closed 4-manifold given a loop L in P(Σ) just as in the above construc-

tion, but when the loop returns to the vertex that we start on, we glue the identical handlebodies

together using the identity map. Further, if the loop is oriented, the resulting 4-manifold obtains

an orientation. We denote the resulting closed orientable manifold by X 4
C(L). Note that changing

the orientation of L or Σ changes the orientation of X 4
C(L).

We next seek to prove that every 4-manifold arises in this fashion. To do this, we will convert

a handle decomposition into a loop in the pants complex - this is very similar to the handlebody

proof that every 4-manifold admits a trisection [4]. Throughout the proof, the reader may find

it helpful to consult Figures 14 and 15. These figures, read left to right, show how to obtain a

handlebody diagram from a loop in the pants complex. The following proof illustrates the reverse

of this, so these figures, read right to left, provide examples of the procedure.

Theorem 2. For every closed, smooth, orientable 4-manifold X4, there exists a closed loop L in

P(Σ) so that X is diffeomorphic to X 4
C(L).

Proof. Let X4 be an arbitrary closed 4-manifold. Fix a handlebody decomposition diagram for X.

Let Σ0 be a Heegaard splitting surface of the boundary of the 4-dimensional handlebody that we

see after just attaching the 0- and 1-handles in the construction of X. Let l = l1 ∪ · · · ∪ ln be the

framed link that describes how the 2-handles are attached. Project l onto Σ0 and then stabilize

the Heegaard surface Σ0 to obtain a new Heegaard surface Σ in the following way. First, stabilize

Σ0 in order to make the li embedded as in Figure 11. If needed, stabilize further so that for each

curve, li, there is a curve, αi, embedded in the surface so that αi intersects l in exactly one point.

Call this resulting surface Σ. By twisting the li around the αi as in Figure 12, we can ensure that

9



Figure 10: The handlebody Q used in Thereom 2

the framing on each li is the same as the framing coming from the surface embedding, and we will

assume that l is sitting in Σ in this way.

We now construct our loop L in P(Σ) with X 4
C(L) ∼= X. We will construct L so that the

handlebody decomposition of X 4
C(L) that we see from Lemma 6 is identifiable with the given

handlebody decomposition of X.

Suppose that g is the genus of Σ and k is the genus of Σ0 (i.e. the number of 1-handles in

the given handlebody decomposition of X). Our construction of W will take place in a few stages.

We start by constructing the 1-handles of X4. Take a pants decomposition of Σ that contains

the cut system in Figure 9. By performing g − k S-moves, we arrive at a pants decomposition

that contains the cut system in Figure 10, which we call Q. We call this walk W1. At this point,

via Lemma 6, we see that we have constructed a genus k 4-dimensional 1-handlebody, and all of

the 1-handles that have been cancelled are exactly the handles that do not appear in the given

handlebody decomposition of X.

Let ni denote the boundary of the punctured torus that is a regular neighborhood of αi∪li. Note

that the ni together with all of the αi form a collection of disjoint simple closed curves that bound

disjoint properly embedded disks in H(Q). Let R be a pants decomposition obtained from applying

Lemma 3 to the union of the ni and αj , so thatH(R) = H(Q). By Lemma 1, we can get fromQ to R,

using a walk, which we call W2, with just A-moves. Therefore, X 4(W1W2) ∼= X 4(W1) ∼= \k(S1×D3),

as no new handles have been added.

Now we are in position to attach the desired 2-handles by doing S-moves. Namely, for each αi
curve do the S-move that turns αi into li. Let W3 be the walk starting at the vertex R that consists

of this sequence of S-moves. By Lemma 6, we see that X 4(W1W2W3) is diffeomorphic to the 0-,

1- and 2-handles in the handlebody decomposition of X. Since X is a closed 4-manifold, we must

have that the boundary of X 4(W1W2W3) is \m(S1 ×D3) for some m. Moreover, the first and last

handlebodies of W1W2W3 form a Heegaard splitting for the boundary. By Lemma 7, there exists

a walk W4 from the end of W3 to the beginning of W1 with X 4(W4) = \m(S1×D3), and therefore,

again since 3- and 4-handles glue in uniquely by [10], we see that X 4
C(W1W2W3W4) ∼= X.

4 The 2-skeleton of the pants complex and cobordisms of 4-manifolds

A homotopy in a 2-complex can be seen as replacing parts of the boundary of a 2-cell by the rest

of the boundary, as in Figure 19. We seek to understand how our 4-manifolds change under this

10



Figure 11: Stabilizing the Heegaard surface of the boundary of the 0- and 1-handles allows us to

eliminate any intersections which arise between the 2-handles when they are projected onto the

Heegaard surface.

Figure 12: By twisting an attaching circle of a 2-handles around the corresponding dual α curve,

we can make the handle framing match the surface framing.
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operation. To this end, we must understand the 4-manifolds that arise along all connected subsets

of the boundaries of the 2-cells.

Note that the mapping class group of Σ acts on the set of handlebodies with boundary Σ, and

that this action is transitive. If H is a handlebody with ∂H = Σ and φ is a mapping class of Σ,

we will denote the result of the action of φ on H by φ ·H.

Lemma 8. Let W = P1 · · ·Pn, W2 = Q1 · · ·Qn be two walks in P(Σ), and let φ be a mapping

class of φ such that φ · H(Pi) = H(Qi) for all 1 ≤ i ≤ n. Then X (W1) ∼= X 4(W2). The analogous

statement also holds for closed loops.

Proof. This is an immediate application of [10] applied to each of the wedge pieces.

We now go through an extended example, analyzing the 4-manifolds obtained from the boundary

of one of the two-cells in P(Σ). Many of the arguments will be repeated for the other 2-cells and this

will form the core of the results that follow. Lemma 6 will be applied throughout this example and

the examples that follow in order to obtain handlebody decompositions so that we can recognise

the relevant manifolds.

4.1 3S-Triangles

Let Σ be a torus and recall that the pants decomposition P(Σ) is defined to have vertices as isotopy

classes of essential curves, only S-edges, and 3s-triangles as 2-cells. Consider the oriented boundary

of the 3S-triangle in Figure 13. After a handle slide, it is evident that X 4
C(PQRP ) = CP 2. Note

that if we instead traverse the triangle in the other direction, we obtain CP 2
. By applying an

appropriate mapping class, we can interchange any of the pants decompositions in the triangle. By

Lemma 8, all of the resulting segments are diffeomorphic to the corresponding segments in PQRP .

Thus, we have seen that any edge in the PQRP triangles corresponds to a 4-ball, any pair of

adjacent edges corresponds to CP 2 − B̊4 or CP 2 − B̊4 depending on the orientation of the edges,

and the whole triangle corresponds to CP 2 or CP 2, again depending on the orientation. Note that

for any set of curves on Σ that form a 3S-triangle ∆, there is a mapping class φ of Σ that sends the

vertices of ∆ to P,Q,R in some order, and therefore the above analysis carries over for any such

∆.

An analogous analysis for 3S-triangles on higher genus surfaces is very similar. For example, in

a genus 2 surface Σ in Figure 14 we have X 4
C(PQRP ) = (S1 ×D3)]CP 2. As in the torus example,

we see by Lemma 8 that this analysis holds for any individual edge in the triangle, and any pair

of adjacent edges, and any 3S-triangle in P(Σ). Similarly, this all goes through in the genus g case

where an edge will give \g−1(S1 × D3), a pair of adjacent edges will give \g−1(S1 × D3)]CP 2 or

\g−1(S1×D3)]CP 2
depending on the orientation, and the whole triangle will give ]g(S1×S3)]CP 2

or ]g(S1 × S3)]CP 2
depending on the orientation.

4.2 3A-Triangles, 4A-squares and 5A-Pentagons

The 3A-triangle and the 5A-pentagon both give rise to ]g(S1 × S3) when Σ has genus g, since,

by Lemma 6, the resulting manifold is built with a 0-handle, g− 1-handles, g 3-handles, and a

4-handles. Further, again by Lemma 6 all of the edges and sequences of adjacent edges give rise to

\g(S1 ×D3). The same also holds true for the 4A-square.

12
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1

P

Q

R

Figure 13: A 3S triangle in P (Σ1) gives rise to the Kirby diagram on the right. After sliding the

green curve over the red curve and cancelling the red-blue pair, we see that this manifold is CP 2.

0

0

1

P

Q

R

Figure 14: A 3S triangle in P (Σ2) gives rise to the Kirby diagram on the right. After sliding

the green curve over the red curve and cancelling the red-blue pair, we see that this manifold is

CP 2#(S1 × S3).
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0

0

0
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Figure 15: The 4S-square analyzed in Example 4.3. In P (Σ2), this square gives rise to the Kirby

diagram on the right. After cancelling the 1-2 pairs one recognizes this as a Kirby diagram for S4

consisting of cancelling 2- and 3-handles.

4.3 4S-Squares

In this example, we look at the 4S-squares. We start with the genus 2 case shown in Figure 15.

From the Kirby diagram, we see that X 4
C(PQRSP ) = S4. By the symmetry of the above diagrams,

and Lemma 8, we find that the above analysis holds for all of the edges of of the square, and all

pairs and 3-tuples of adjacent edges. Again by Lemma 8, this holds for all such 4S-squares in P(Σ).

In the case of a genus g surface Σ, as in the previous examples, when g > 2 this simply adds

more 1-handles to the above situation. So in this case the edges will result in \g−1(S1×D3), a pair

of adjacent edges will give \g−2(S1 ×D3), three adjacent edges will give \g−2(S1 ×D3)\(S2 ×D2),

and the whole square as a closed manifold will be ]g−2(S1 × S3)](S2 × S2).

4.4 4AS-Squares and 6AS-Hexagons

Next, we analyze the 4AS-square. This can be done completely without even drawing a handlebody

diagram. Here our situation is pictured Figure 16, where vertices of the same color correspond to

the same handlebody. Suppose that Σ has genus g. Then we have the following:

X 4(PQ) = X 4(RS) = \g(S1 ×D3)

X 4(QR) = X 4(SP ) = \g−1(S1 ×D3)

X 4(PQRS) = X 4(RSPQ) = \g−1(S1 ×D3)

X 4
C(PQRSP ) = ]g(S1 × S3)

X 4(QRSP ) = X 4(SPQR) = \g−1(S1 ×D3)\(S2 ×D2)

The case of the 6AS-hexagon is completely analogous to the 4AS-square where we have the labeling

in Figure 16.

We now are in position to derive the following classical result from Hatcher’s theorem that

P(X) is simply-connected and our above analysis of the 2-cells:

Theorem 3. Every closed 4-manifold is cobordant to the connect sum of some number of CP 2 and

CP 2
.
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P

QR

S

Figure 16: The 4AS-Square and 6AS-hexagon analyzed in Example 4.2

It then follows from the cobordism invariance of the signature that the oriented cobordism

group Ω4 is isomorphic to Z. Note, as an aside, that the fact that P(Σ) is connected together with

our construction of M3(P1, P2) immediately yields that Ω3 = 0.

We will need to understand how X 4
C(L) changes when we alter L by going over some 2-cell in

P(Σ). We begin with the following preliminary observation whose proof follows immediately from

the definition of our construction:

Lemma 9. Let W1,W2 be walks in P(Σ) with endpoints P1 and P2, and let U and V be two walks

in P(Σ) so that the end point of U is P1 and the start point of V . Then

X 4(UW2V ) = (X 4(UW1V )−X 4(W1)) ∪M3(P1,P2) X 4(W2)

This also holds in the case of X 4
C where the beginning of U is the end of V .

We will be applying Lemma 9, in the case where W1 ∪W2 is the boundary of a 2-cell in P(Σ).

This set up is pictured in Figure 19.

Recall that a 1-surgery on a 4-manifold X4 is the result of taking an embedding φ : S1×D3 ↪→ X

and forming the new 4-manifold

X ′ = (X − φ( ˚S1 ×D3)) ∪∂φ (D2 × S2)

where we note that ∂(D2 × S2) = S1 × S2 = ∂(S1 × D3) and ∂φ denotes φ restricted to the

boundary. In this case we say that X ′ is obtained from X by a 1-surgery. A 2-surgery on a 4-

manifold is defined by switching the roles of S1×D3 and D2×S2 above. Note that if X ′ is obtained

from X by a 1-surgery, then X ′ and X are cobordant via the trace of the surgery. Namely, given

φ : S1 ×D3 ↪→ X, we can form

(X × I) ∪S1×D3⊂X×{1} D
2 ×D3

which is a cobordism from X to X ′. This can similarly be done if X ′ is obtained from X by a

2-surgery. In our set up, we will not be seeing precisely the manifolds used in the definition of

surgery, but nonetheless, the effect of cutting and pasting these pieces is simply a surgery. This

is the content of the following lemma, where if we take g = 1 in the following we get the usual

definition of surgery.

Lemma 10. Let X and M be oriented 4-manifolds with X ∼= ]g−1(S1 × S3) given by the Kirby

diagram in Figure 17. Let X = X1∪X2 where X1 is the union of the 0- and 1-handles and X2 is the

union of the 2-, 3-, and 4-handles. Let φ1 : X1 ↪→ M and φ2 : X2 ↪→ M be orientation-preserving

inclusions. Then

(M − φ1(X̊1)) ∪∂φ1 X2

15



{

n
g-1

Figure 17: The handle decomposition of ]g−1(S1×S3) used for the surgery operation in Lemma 10

{

1

g-1

Figure 18: The handle decomposition of ]g−1(S1 × S3)]CP 2 used for the surgery operation in

Lemma 11

and

(M − φ2(X̊2)) ∪∂φ2 X1

are obtained from M by a single 1-surgery, and a single 2-surgery, respectively.

Proof. We treat the case of 1-surgery explicitly, noting that the 2-surgery is just the inverse oper-

ation. Note that X is constructed by first adding a cancelling 2-handle to X1 followed by doubling

what remains. When removing and reinserting the doubled portion, M is unchanged. We are left

with only removing a 1-handle, and replacing it by a 2-handle that cancels it, which is precisely

the definition of surgery.

If X ′]CP 2 or X ′]CP 2
= X, then we call X ′ a (+)- or (-)-blowdown of X, respectively. Likewise,

we call X a (+)- or (-)-blowup of X ′. In the following construction, we will not be performing an

operation corresponding to the definition of a blowups or blowdown. However, as in the previous

lemma the overall effect is to perform blowups or blowdowns. The following lemma has a proof

which is very similar to the previous lemma, so we omit it.

Lemma 11. Let X and X ′ be oriented 4-manifolds with X ∼= ]g(S1 × S3)]CP 2 given by the Kirby

diagram in Figure 18. Let X = X1∪X2 where X1 is the union of the 0- and 1-handles and X2 is the

union of the 2-, 3-, and 4-handles. Let φ1 : X1 ↪→ X ′ and φ2 : X2 ↪→ X ′ be orientation-preserving

inclusions. Then

(X ′ − φ1(X̊1)) ∪∂φ1 X2

and

(X ′ − φ2(X̊2)) ∪∂φ2 X1

are a (-)-blowup, and a (-)-blowdown of X ′, respectively.

Following the previous analysis we now understand how manifolds change as we homotope loops

over 2-cells in the pants complex. This leads us to our main application.
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Figure 19: A homotopy of a path in a 2-complex consists of a sequence of operations of replacing

a connected subset of the boundary of a 2-cell with the rest of the boundary.

Theorem 4. Every smooth, oriented, closed manifold is cobordant to
∐
mCP 2

∐
nCP

2
.

Proof. Let Σ be a genus g surface, and let L be a loop in P(Σ). By Theorem 1, P(Σ) is simply-

connected, so we know that there exists a cellular disk D in P(Σ) with boundary L. First, we

alter L using D to a new loop called L′, so that L′ traverses a tree in P(Σ). We can do this by

changing the sides of the polygons that L goes around, using D, as in Lemma 9. We will consider

the different 2-cells following the order of the analysis in Section 4.

As analyzed in Subsection 4.1, changing L using a 3S-triangle results in the manifold changing

by a (+)- or a (-)-blowup or blowdown, depending on the orientation of the triangle and the

partition of the edges. We may achieve a cobordism from X4
C(M) to the resulting manifold by

introducing a disjoint copy of CP 2 or CP 2
and forming the standard cobordism from a disjoint

union to the connected sum, as illustrated in Figure 20.

As analyzed in Subsection 4.2, changing L using an 3A-triangle, an 5A-pentagon, or an 4A-

square does not change the resulting 4-manifold at all. This modification of the loop therefore

corresponds to the product cobordism on the manifolds.

Suppose we are changing L using a 4S-square. If we are in the situation where the edges are

partitioned into two sets of two adjacent edges, then the effect of the move is to remove some set

4-dimensional 1-handlebody, and then to reinsert the same 4-dimensional 1-handlebody, so by [10],

this does not change the resulting 4-manifold. If we are in the case where the edges are partitioned

into two sets where one set has three adjacent edges, then this affects L by removing \g−2(S1×D3)

and inserting \g−2(S1 ×D3)\(S2 ×D2) or vice versa, depending on which edges belong to L. By

Lemma 10 this affects the resulting 4-manifold by performing either a 1- or a 2-surgery on X 4
C(L).

We may achieve a cobordism between these manifolds using the trace of this surgery. The case of

an 4AS-square is completely analogous.

After collapsing all of the 2-cells, we will have a loop L′ that is traversing a tree in P(Σ) with

X 4
C(L′), X 4

C(L), and some number of CP 2’s and CP 2
’s cobounding a 5-manifold. We next collapse

L′ to just a point. To do this we proceed inductively on the size of the tree. Choose a leaf of the

tree, so that L′ must traverse this leaf in one direction, and then immediately turn back and go in

the other direction. Let L′′ be the loop obtained from L by removing this redundant edge followed

by its reverse. If the edge of the leaf is an A-edge, then X 4
C(L′′) is equal to X 4

C(L′). So we need

only consider the case where this leaf edge is an S-edge.

Let W be a walk in P(Σ) that is an S-edge traversed twice in a row in opposite directions.

The effect of removing the S-leaf from L′ is the same as removing a copy of X 4(W ) from X 4
C(L′)

and replacing the result with \g(S1 ×D3), which is the manifold with boundary associated to the

constant path. But, in the same way that we analysed the boundaries of the 2-cells above, we find

that X 4(W ) is always \g−1(S1×D3)\(D2×S2). But then, by Lemma 10, X 4
C(L′′) is obtained from
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M#

♮S x B1 4 

#S x S1 3

{
{

{
{

The cobordism associated to
replacing one edge in a 3S

triangle by the other two edges

The cobordism associated to
replacing two edges in a

3S triangle by the other edge

The cobordism associated to
replacing portions of non-3S

2-cells by the other edge

We cap off the manifold
associated to the constant

path with \S1 ×B4

Figure 20: An illustration of the cobordism build in the proof of Theorem 4

X 4
C(L′) by performing a 1-surgery. We may again achieve a cobordism between these manifolds

using the trace of the surgery. Then by induction on the number of leaves, we may repeat this

process until we arrive at the constant path. In the end, we find that there is a 5-manifold whose

boundary is a disjoint union of X 4
C(L), some number of CP 2 and CP 2, and ]gS1 × S3. By capping

off the ]gS1 × S3 with \gS1 ×B4, the result follows.

5 An explicit cobordism

In this section, we produce an explicit cobordism between S4 and S2 × S2 corresponding to a

trivial 5-dimensional 2-handle attached to S4 × [0, 1] along S1 × D3 ⊂ S4 × {1}. We start by

describing loops in the pants complex corresponding to S4 and S2 × S2 coming from trisections of

these manifolds. At the tops of Figures 21 and 22 we see trisection diagrams for S4 and S2 × S2,

respectively. These give rise to the loops in the pants complex shown below each of these diagrams.

These loops meet in a 6AS hexagon as shown in Figure 23 and the two loops, together with the

hexagon represent the desired cobordism.

6 Signature

In this section, we explain one way of computing the signature of X 4
C(L). By Novikov additivity,

if X and X ′ are two 4-manifolds with diffeomorphic boundary, and Y is a manifold obtained by

gluing X and X ′ along their boundaries by a orientation-reversing diffeomorphism, then σ(Y ) =

σ(X)+σ(X ′). When the manifolds X1 and X2 are not glued along their whole boundary, but rather

some submanifolds of their boundary, then we no longer have this additivity. However, there is a
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Figure 21: Top: An unbalanced trisection diagram for S4. Bottom: A loop in the pants complex

corresponding to this trisection.
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Figure 22: Top: A trisection diagram for S2 × S2. Bottom: A loop in the pants complex corre-

sponding to this trisection.

20



6AS

Figure 23: The loops for S2 × S2 and S4 meet in a 6AS-hexagon. Taking the short way around

the hexagon yields the loop for S4 whereas the long way gives corresponds to S2 × S2.
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correction term that was identified by Wall [16]. This correction term was further identified with

the Maslov index of a certain triple of Lagrangians in [3] (see also [12]). It is in this form that we

will apply it.

Let (V, ψ) be a finite-dimensional vector space over Q together with a nonsingular symplectic

form, and let L1, L2, L3 ⊂ V be three Lagrangians. The Maslov index M(L1, L2, L3) ∈ Z is the

signature of the singular symmetric form given by

θ : L1 ⊕ L2 ⊕ L3 × L1 ⊕ L2 ⊕ L3 → Q

((x1, x2, x3), (y1, y2, y3)) 7→
∑
i 6=j

(−1)i+jψ(xi, yj)

Suppose that the boundaries of X and X ′ have both been Heegaard split with the same genus

surfaces so that ∂X = H1∪ΣH2 and ∂X ′ = H ′1∪H ′2. Let Y be the oriented 4-manifold that results

from gluing H2 to H ′2 by an orientation-reversing diffeomorphism φ. Let L1, L2, and L3 be the

Lagrangians in H1(Σ;Q) that are the kernels of the inclusions of Σ as the boundary of H1, H2, and

(using φ) H ′2, respectively. Then we have σ(Y ) = σ(X) + σ(X ′)−M(L1, L2, L3).

In our setting, if L is an oriented loop in P(Σ), with vertices P1P2 · · ·Pn, then applying the

aforementioned formula, together with Novikov additivity when the last wedge is added and the

fact that σ(S1 ×D3) = 0, we have the following:

Proposition 1. Let L be a loop in P(Σ), then

σ(X 4
C(L)) = −

n−1∑
i=2

M(L1, Li, Li+1)

If L is a loop in P (Σ) we define σ(L) to be the integer σ(X4
C(L)). We emphasize that the

previous definition can be calculated using only information about the loop, with no reference to

the 2-skeleton of the pants complex.

In this paper, we primarily have used information about the pants complex to derive information

about 4-manifolds, but this process can also be reversed. For example, given a loop L in P(Σ), this

loop bounds a disk D; what can we say about the 2-cells that make up D? By orienting L, the

disk D inherits an orientation, and, in particular all of the 3S-triangles in D inherit an orientation

as well. Each triangle in this disk is either positive and negative, namely those that give rise to

CP 2 are positive, and those that give rise to CP 2
are negative. Following, Theorem 4, we see that

summing the number of positive 3S-triangles in D and subtracting the negative 3S-triangles in D

is gives us σ(L). We encapsulate the previous discussion in the following corollary.

Proposition 2. Let L be a loop in the pants complex with σ(L) = n, then any disk bounded by L

must contain at least n 3S-triangles.
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