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In the coming years, third-generation detectors such as the Einstein Telescope and the Cosmic
Explorer will enter the network of ground-based gravitational-wave detectors. Their current design
predicts a significantly improved sensitivity band with a lower minimum frequency than existing
detectors. This, combined with the increased arm length, leads to two major effects: the detection
of more signals and the detection of longer signals. Both will result in a large number of overlap-
ping signals. It has been shown that such overlapping signals can lead to biases in the recovered
parameters, which would adversely affect the science extracted from the observed binary merger
signals. In this work, we analyze overlapping binary black hole coalescences with two methods to
analyze multi-signal observations: hierarchical subtraction and joint parameter estimation. We find
that these methods enable a reliable parameter extraction in most cases and that joint parameter
estimation is usually more precise but comes with higher computational costs.

I. INTRODUCTION

The observation of gravitational waves (GWs) origi-
nating from compact binary coalescences (CBCs) is now
done routinely with the advanced LIGO [1] and ad-
vanced Virgo [2] detectors, with tens of detections re-
ported in the O3 GW catalog [3]. The observations from
this new information channel has had major impacts in
fundamental physics [4], astrophysics [5], and cosmol-
ogy [6]. Moreover, the possibility to detect electromag-
netic counterparts for binary neutron stars (BNSs), such
as GW170817 [7], has opened the perspective to do new
multi-messenger studies. Further upgrades to the second
generation detectors, as well as the addition of new de-
tectors such as KAGRA [8–11] and LIGO India [12], will
lead to the observation of numerous events in the com-
ing years. Moreover, going from these second-generation
(2G) detectors to third-generation (3G) detectors, such
as Einstein Telescope (ET) [13, 14] and Cosmic Explorer
(CE) [15–17], will lead to a major jump in the detection
rate as well as in the duration of the signal due to the
combined global increase in sensitivity and the major en-
hancements for lower frequencies [18]. In turn, this will
lead to a high probability of CBC signals to overlap in
the 3G detectors [19–23].

Previous works have studied the impact of such over-
lapping signals on data analysis when recovering one
of the two signals and neglecting the presence of the
other [20–24]. These works employed different techniques
but all have the same basic conclusions: bias can occur
in various scenarios, and is most likely when the signals
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merge close to each other. In Ref. [21], using a Fisher
matrix approach, the authors show that BNSs are less
correlated in overlapping signals so that their bias be-
comes important only for close merger times (< 0.1 s),
while the correlation between binary black holes (BBHs)
is more important, meaning that the bias can happen
for larger differences between the merger times. They
then proceed to parameter estimation (PE) for overlap-
ping BBHs in a LIGO-Virgo network varying some of the
parameters, showing the appearance of biases for merger
times close to each other. In [23], the authors use Fisher
matrices to study the bias that can occur in the param-
eters in both overlapping BBHs and BNSs, also finding
that the bias becomes more important for short differ-
ences in the time of arrival. In [22], the authors focus
on a LIGO Voyager scenario, looking at the biases not
only based on their difference in merger times, but also
as a function of other parameters, such as the sky loca-
tion. For overlapping BBHs, they find a more important
bias for closer merger times. However, they show that
the observed bias for a given difference in merger time
can change substantially depending on the sky location
of the two events. Moreover, two overlapping BBHs can
be mistaken for one strongly precessing BBH. Further-
more, the authors suggest that for overlapping BNS and
BBH signals no major bias will occur due to the different
durations of the two signals. This is corroborated by the
analyses done in [20], where three scenarios are analyzed:
two overlapping BBH signals, two overlapping BNS sig-
nals and the overlap of a BBH of varying masses with
a BNS. In the latter case, the authors find that there is
hardly any effect on the BNS parameter estimation, prob-
ably due to the difference in the number of cycles present
in-band for the this signal. However, in this scenario, the
BBH can be affected by significant bias, especially when
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the BBH has high component masses. The bias mostly
disappears when the merger times are separated by more
than two seconds. For two overlapping BBHs, if the total
masses and hence the durations, are different, the PE is
done relatively well. However, others [21–23] have shown
that, if the two BBHs have similar source properties, bi-
ases can be present. Finally, for two overlapping BNSs,
it appears that the signal with the highest SNR is rela-
tively well recovered in all cases, but not necessarily the
quieter signal.

One problem that is not covered by previous studies is
the effect of confusion noise on PE. Indeed, the high rate
of the events and their duration will make for very few
periods without signal in-band for the 3G detectors [20].
As a consequence, it will be very difficult to estimate the
noise present in the detectors, and additional biases can
occur due to a mismodelling of the noise [24]1. A demon-
stration of the effect of this noise on matched filtering and
how the PSD could be computed are presented in [25].

The presence of biases when signals merge close to each
other and the relative occurrence of such scenarios based
on the estimated rates shows that PE methods will have
to be adapted to be suited for the 3G cases. Indeed,
biases in the parameters estimated for the CBCs would
impact any direct science case for the CBCs (such as mea-
suring their mass distribution and rate, or testing general
relativity [26]) and also some indirectly related ones, such
as the search for primordial black holes since this requires
the subtraction of the foreground sources [27–32].

In this work, we look at two possible methods to an-
alyze overlapping signals. Hierarchical subtraction (HS),
where we analyze one signal (typically the loudest), then
subtract the maximum-likelihood template before ana-
lyzing the second one. However, if an important bias
happens when analyzing the first signal, the parameters
of both events might be biased. Optionally, one can also
perform a third run, subtracting the maximum-likelihood
parameters for the second event and re-analyzing the
dominant signal to reduce the bias in its recovery. Still,
this is not guaranteed to lead to unbiased results. There-
fore, we also implement a joint parameter estimation
(JPE) framework, where the two signals are analyzed
at the same time to account for the entire model. In
principle, this should be the most complete model one
can use. Due to the high dimensionality of the param-
eter space, combined with the large duration of the sig-
nals in the 3G detectors, this framework is substantially
slower than HS2. It would be close to impossible to fol-
low the predicted rates for an ET and CE network us-

1 We will not consider this in this work as we will only look at
overlapping binary signals.

2 For our experiments, the two frameworks were run on the same
cluster using 16 Intel(R) Xeon(R) Gold 6152 CPUs. The average
run time for JPE is 23.8 days, while for HS, the first run took an
average of 6.3 days, the second run an average of 4.3 days, and
the last run took an average run-time of 6.1 days. So, on average,
JPE takes 7 more days to complete than HS if we perform the

ing a simple JPE like the one used in this work. Such
constraints could be alleviated by using recently devel-
oped techniques, like relative binning [33–35], adaptive
frequency resolution [36], or machine learning [37, 38].
One could also count on the development of more pow-
erful computational methods, such as quantum comput-
ing [39] but it is difficult to have an idea of the state of
such methods by the time the 3G detectors get online.
Still, it is important to start preparing for the future of
3G detectors now, hence, it is important to start look-
ing at the parameter estimation of overlapping signals to
have the bases to build upon. Due to the limited com-
putational resources, this work focuses on the parameter
estimation of two overlapping BBH signals.

This article is structured as follows. In Sec. II, we ex-
plain the two methods applied to perform the analysis of
the overlapping signals. In the next section, we explain
the setup of the analyses, while in Sec. IV we present the
results of the analyses. Finally, Sec. V provides conclu-
sions and outlook.

II. DESCRIPTION OF THE METHODS

When performing GW data analysis on CBC signals,
our objective is to find the posterior probability den-
sity function (PDF) of the binaries’ parameters (θ):
p(θ|d,Hs), where d represents the data, and Hs is the
hypothesis under which we work (e.g. there is a GW sig-
nal in the data). Using Bayes’ theorem [40]:

p(θ|d,Hs) =
p(d|θ,Hs)p(θ|Hs)

p(d|Hs)
, (1)

where p(θ|Hs) is the prior on the binary parameters, and
p(d|θ,Hs) is the likelihood for the data given a set of
parameters. Finally, p(d|Hs) is called the evidence and
represents a normalization factor for the posterior prob-
ability density:

p(d|Hs) =

∫
dθp(d|θ,Hs)p(θ|Hs) . (2)

For GW inference, d(t) is the output of the interferom-
eters, which can be seen as made of a noise component
n(t) and, under the signal hypothesis, a GW component
h(t):

d(t) = n(t) + h(t) . (3)

In our scenario, the GW component can consist of one
or more signals. In the latter case, h(t) =

∑N
i=1 hi(t),

where hi(t) is the representation of each individual GW,
and N is the total number of GW signals present in the
data stretch under consideration.

3 runs. If one is satisfied with the two first runs, the difference
between the two approaches goes up to about 2 weeks.
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Assuming the noise to be Gaussian, the likelihood of
having the data d(t) given the presence of a GW compo-
nent h(t), is given by the proportionality

p(d|θ,Hs) ∝ exp

[
− 1

2
〈d− h(θ)|d− h(θ)〉

]
, (4)

where

〈a|b〉 = 4<
∫ fmax

fmin

ã∗(f)b(f)

Sn(f)
df . (5)

In this expression, ã(f) refers to the Fourier transform of
the function a(t), ∗ is the complex conjugate, and Sn(f)
is the power spectral density (PSD). fmin and fmax rep-
resent respectively the lower and the upper frequency
chosen for the analysis3.

A. Joint Parameter estimation

When the noise component in Eq. (3) is made of mul-
tiple signals, the likelihood in Eq. (4) becomes

p(d|θ,Hs)

∝ exp

[
− 1

2

〈
d−

N∑
i=1

h(θi)

∣∣∣∣d− N∑
i=1

h(θi)

〉]
, (6)

where we just expanded the expression for h(t) compared
to the previous expression. Here, N is the total number of
signals, and θi represents the set of parameters describing
the ith GW signal so that θ = {θ1, . . . , θi, . . . , θN} in this
case.

Using Eq. (6) gives rise to the method of joint param-
eter estimation, where we jointly look for {θi}i=1,...,N .
Since each θi is a set of 15 parameters for spinning BBHs,
a set of 16 parameters for NSBHs, and a set of 17 param-
eters for BNSs4, it means that, if we have X BBHs, Y
NSBHs, and Z BNSs (so N = X+Y +Z), the parameter
space has 15X+16Y +17Z parameters to explore. In the
end, this means that as soon as we consider 2 signals, the
parameter space grows to at least 30 dimensions, which is
already challenging with our traditional methods, show-
ing the difficulty to analyze several signals jointly.

3 Usually, fmin is chosen above the noise levels, and fmax is the
Nyquist frequency.

4 Typically, a BBH is described by two mass parameters, 6 spin
parameters, a distance parameter, the inclination, 2 parameters
for the sky location, the merger time, the phase of coalescence,
and the polarization angle. Usually, for each neutron star present
in the system, one also add a tidal deformability, however, for
BNSs the dimentionality could increase even further if higher-
order tidal contributions, spin-induced quadrupole effects, or res-
onant effects are also taken into account.

In addition, formally, when parameter estimation is performed,
one can also add the noise-related calibration parameters, which
would further increase the dimensionality of the parameter space.

In addition, we can assume that there is some uncer-
tainty on the total number of signals N in the data. In
this case, it is also possible to sample over N and the sig-
nal types, effectively allowing for any number of signals
to be present in a given data stretch.

The problem of joint analysis of several signals has al-
ready been looked at in other contexts, such as the char-
acterization of the nearly monochromatic signals coming
from white dwarfs in LISA [41], BNSs in the Big Bang
Observer [42], or supermassive black holes in pulsar tim-
ing array searches [43]. However, the different charac-
teristics of the signal looked for in these various context
makes the methods different from one case to the other.

In this work, we will only consider the possibility to
have two signals in the data. So, we write the data as

d(A,B, t) = hA(t) + hB(t) + n(t) , (7)

where we just denote the signals by A and B, without
any importance on which signal is A and which signal is
B.

In this case, the likelihood takes the particular form

p(d(A,B)|θ,Hs)

∝ exp

[
− 1

2

〈
d(A,B)− hA(θA)− hB(θB)

∣∣∣∣
d(A,B)− hA(θA)− hB(θB)

〉]
. (8)

This is just the explicit form of Eq. (6) for two signals.
In principle, if the sources are of the same nature, the

labels A and B are interchangeable during the sampling,
making the likelihood symmetric in two events. In our
algorithm, we do not impose any conditions on the pa-
rameters to break this symmetry. As a consequence, this
is something that needs to be done in a post-processing
step, as we need to assign drawn samples to the correct
event. Sometimes, not accounting for this condition leads
to bimodalities. In this work, we use a time ordering con-
dition, taking the samples for event A to be those that
arrive first in time, and the samples for event B to be
those arriving second in time. In future work, this condi-
tion could directly be imposed in the algorithm by having
a conditional prior such that the time of arrival of one
event is always smaller than the other. We also note that
the condition can be imposed on other parameters.

B. Hierarchical subtraction

In hierarchical subtraction, the idea is not to fit the
two signals at once, but to rather do a combination of
individual signal analyses and subtraction of best-fit pa-
rameters. Therefore, we start by running a single event
parameter estimation analysis on the data d(A,B) to get
the characteristics of the dominant signal. If we label by



4

A the loudest signal, we can denote the best-fit parame-
ters (typically the maximum likelihood parameters) θ̂A,
and the waveform corresponding to this signal

ĥA(t) = h(t, θ̂A). (9)

Using this, we can get the data for the signal B given
signal A by subtracting the best-fit template

d(B|A) = d(A,B)− ĥA(t) , (10)

which is an approximate data strain for the second event
in the data since the maximum likelihood parameters
used to model the first event are prone to errors, with
errors coming from the modeling itself but also from the
presence of the second event when characterizing the first
one.

We can then analyze d(B|A) to get the parameters
for event B, leading to a posterior distribution for the
two events. In principle, if the bias on the first is not
too important, then the posteriors on the second event
should also be fine. However, this approach is less robust
than the joint parameter estimation, where we correctly
account for the presence of several events.

In Ref. [24], the authors also suggest a way to cor-
rect the bias due to the individual characterization of
two signals5. Once the two signals have been analyzed
separately, we can use the two best-fitting posteriors to
evaluate the bias made in the model reconstruction for
each signal. The estimated biases can then be applied
as a correction factor to the best-fitting parameters. We
could then redo the subtraction of each event and ana-
lyze it again, but now with a subtracted signal that is
closer to the real one, reducing the possible bias in the
recovered posterior. Though this method is attractive, it
requires multiple parameter estimation runs, which are
expensive in a 3G detector context, and the computa-
tion of the biases also requires solving a combination of
Fisher matrices and numerical derivatives, making it a
non-trivial operation.

III. SETUP OF THE ANALYSES

Due to the computational resources that would be re-
quired to analyze 3G signals, we focus on overlapping
BBHs with masses in [30, 60]M�

6. We use a network of
detectors made of one triangular Einstein Telescope with
10 km arm-lengths, and a Cosmic explorer detector lo-
cated at the LIGO-Hanford position and with 40km arm-
lengths. We generate stationary Gaussian noise from the

5 In their paper, they also account for the possible confusion back-
ground due to the sum of all the mergers going on in the back-
ground.

6 The higher masses are chosen so as to not have a signal with a
too long duration while still enabling overlap for the difference
in times of arrival used in this work.

detectors’ PSDs, where, for the ET, we use the ET-D
PSD [13, 14], and for the CE, we use the projected PSD
from Refs. [15, 16]. We then inject two simulated BBH
signals into the artificial noise. For this study, we take
a lower cutoff on the signals of 20 Hz. A representation
of the waveforms obtained by the addition of two BBHs
can be found in Fig. 1. One sees that the final signal has
a non-trivial shape, illustrating the risk of biases when
not accounting for the presence of two signals. In addi-
tion, one also sees that depending on the relative SNR of
the signals, the observed bias is different. For the case
where one signal has a significantly higher SNR than the
other (∼ ×2, top panel), the quieter signal will somewhat
bias the signal, but the observed waveform will resemble
mostly the loudest signal. On the other hand, for signals
with close SNRs (bottom panel), we see that the defor-
mation of the signal can be more complicated, without
really having a dominant signal (except for the fraction
of a second where one signal has merged and the other
is still merging). Based on these observations, one can
expect hierarchical subtraction to be more effective when
one signal clearly dominates over the other.

In our study, we simulate 55 such mergers. To pro-
duce these high-mass signals, we sample the component
masses from the Power-law + Peak distribution from [3]
but keep only the systems that fulfill the mass require-
ment. In addition, the events are sampled in redshift
according to the merger rate density reconstructed from
Oguri’s fit [44]. The sky location is drawn to be uniform
on the sky, and the spin parameters are picked from an
isotropic distribution. For overlapping signal events, the
coalescence time of the first event is drawn from a uni-
form distribution spanning over an entire year, while the
second event is placed 0.1 second later. An overview of
the functions used to make the binaries and the priors
used for the analysis is given in Table I.

Since the SNR of the signals can reach hundreds to
thousands in an ET and CE network, and such high val-
ues make the computation time even longer, we decided
to rescale the SNR to take values constrained between
8 and 50. This is done by adjusting the luminosity dis-
tance. However, since we expect the SNR ratio between
the events to play a role, we try to keep this ratio as close
as possible to the original one. So, if the loudest signal
has a value above 50, we rescale it to take a value between
45 and 50 (this value is drawn randomly from a uniform
distribution). Then, we rescale the quieter signal with
the same factor. If this value is below 8, then we choose
a new scaling factor to bring the SNR back between 8
and 13 (once more using a uniform distribution). Each
system is then analyzed once without additional noise,
and once injected in Gaussian noise generated from the
PSDs.

For the different runs, we choose fixed priors for the
various parameters. The right column of Table. I gives
an overview of the priors used for the different param-
eters. In particular, we take a uniform prior on chirp
mass (Mc = (m1m2)

3/5

(m1+m2)1/5
) and mass ratio (q = m2

m1
), with
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Parameter Population generation Prior

Primary component mass PowerLaw + Peak [3] /
Mass ratio PowerLaw + Peak [3] U(0.1, 1)
Chirp mass / U(4, 200)
Redshift Oguri’s fit [44] + rescaling /

Luminosity distance / Uniform comoving volume [1, 100] Gpc
Spin amplitude 1 U(0, 1) U(0, 1)
Spin amplitude 2 U(0, 1) U(0, 1)

Tilt angle 1 Uniform in sine Uniform in sine
Tilt angle 2 Uniform in sine Uniform in sine

Spin vector azimuthal angle U(0, 2π) U(0, 2π)
Precession angle about angular momentum U(0, 2π) U(0, 2π)

Inclination angle Uniform in sine Uniform in sine
Wave polarization U(0, π) U(0, π)

Phase of coalescence U(0, 2π) U(0, 2π)
Right ascension U(0, 2π) U(0, 2π)
Declination Uniform in cosine Uniform in cosine

Time of coalescence Uniform over a year (second precision) U(tinj − 0.1, tinj + 0.1)

TABLE I. Overview of the functions used to generate the different parameters for the BBH population and the priors used for
the parameter estimation recovery.

bounds of [4, 200]M�, and [0.1, 1]. We also take a uniform
in comoving volume prior for the luminosity distances,
with bounds going from 1 to 100 Gpc. These priors are
adapted to cover any possible signal present in our set of
data. The priors for the other parameters correspond to
the usual priors taken for BBHs. When doing the JPE
and HS runs, the priors are the same for the two events,
and we do not add any conditions related to the signals
(for example time ordering of the signals or enforcing one
signal to be heavier than the other).

We note here that an alternative approach is to use
narrower priors informed by the results of low-latency
searches [45, 46], which very likely could only be applied
for a couple of parameters such as the chirp mass and the
coalescence time. In [46], the authors show that matched
filtering pipelines and unmodelled searches can pick up
overlapping signals with reasonable accuracy. They also
suggest some enhancements to make the pipelines even
more suited for the challenge of overlapping signals de-
tection. In addition, they show that for most of the over-
lapping signals, the error on the chirp mass is not very
much biased compared to the non-overlapping case, even
if for the occurrences where the signals are very close in
time, the error increases. Therefore, using such searches
to set narrower priors is a realistic alternative. However,
currently, they also seem to contain risks, as an increased
difference in the value recovered for some parameters can
happen, and taking too narrow a prior could lead to the
exclusion of the actual value from the prior. In the end,
extra developments would be needed to make sure that
using these results to narrow down the initial priors is
viable.

To have a basis of comparison, we also do the param-
eter estimation of the individual signals. This is done
by using the same priors as the one explained above but

injecting only one of the two signals in the noise.
All the parameter estimation runs are performed using

bilby [47] with the dynesty [48] sampler. For the JPE
runs, we added our own adapted joint likelihood in the
package to keep a consistent framework.

IV. RESULTS AND DISCUSSIONS

In this section, we show the results of the different ap-
proaches. We first compare the HS approach with single
parameter estimation (SPE). In the latter, we only inject
one of the two signals and perform PE on it. Then, we
compare JPE with SPE and HS. Here, we focus on the
results for the analyses performed with noise. The con-
clusion in the no-noise case are similar and can be found
in Appendix A. For all the figures presented in this work,
when plotting individual event results, we represent by a
dot and label as “loud” events those that are the loudest
in the pair, while we represent by a triangle and label as
“quiet” the quieter ones.

A. Hierachical subtraction

We start with discussing the result of the analysis for
the HS approach. In almost all of the HS runs, the first
PE stage picked up the signal with higher SNR. Never-
theless there were two cases where it instead picked up
the quieter signal; these were instances where the SNRs
of the injected signals were close to each other. In such a
case, the signal picked first is not the same with and with-
out noise. A representative example of the posteriors can
be found in Fig. 2. While the widths of the distributions
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FIG. 1. Top: Representation of two overlapping BBHs
and the underlying signals for signals with different SNRs
(SNRA = 46.1 and SNRB = 22.2). In this case, the sum of
the two signals is mostly dominated by the loudest signal,
while the effect of the quieter signal takes up only after the
loudest signal has merged. Bottom: Representation of two
overlapping BBHs and the underlying signals for signals with
similar SNRs (SNRA = 34.3 and SNRB = 30.2). In this sce-
nario, there is no signal dominating over the other for the
entire duration of the event and the overlapping signals have
more complicated features.

match closely the ones obtained with the SPE runs, in
most cases they shows bias in the recovered parameters.

When comparing the HS and the SPE recovery of the
parameters, one sees that the HS recovery is nearly al-
ways biased. However, this bias seems to be more pro-
nounced when there is also noise in the injection. For
example, in Fig. 2, one sees that the zero-noise HS re-
covery is close to the one for SPE with noise, while the
recovery with noise is off. This shows that the mismod-
elling of the noise (due to an additional event) is present,
as one could expect from previous works on biases in
overlapping signals [20–22, 24]. However, this does not
necessarily mean that all parameters are off, and the first
signal’s characteristics can be recovered.

In Fig. 3, we can see mismatches between the injected
and recovered waveforms, comparing HS and SPE cases,
with and without noise. The mismatch is defined as
1 − M̄ , where M̄ is the match between the waveforms,
defined as

M̄ =
〈h1|h2〉√

〈h1|h1〉〈h2|h2〉
, (11)

where 〈.|.〉 is the noise weighted product defined in
Eq.(5). The mismatch represents the dissimilarity be-
tween two waveforms. High values mean a major dis-
agreement between the two waveforms, and smaller val-
ues mean that the waveforms agree well. In Fig. 3, we
see that the average mismatch throughout the detections
is always low, below 0.02. As expected, the presence of
another signal leads to worse waveform recovery for HS
compared to SPE (most points are below the diagonal).
The worst recovery of the signals occurs for overlapping
signals with similar SNRs. Note that zero-noise case (see
Appendix A) shows a clearer difference between SPE and
HS recoveries. It is expected to have a larger difference
in this case because the effect of the unmodelled signal is
stronger when there is no noise since it is the only source
of uncertainty in the signal.

By looking at the difference between the median of
the recovered posterior and the injected value normal-
ized by the injected value, we can quantify the bias in
the recovery (∆Mc

=
|Minj

c −M
rec
c |

Minj
c

, where “rec” stands for
recovered and “inj” stands for injected.). This is repre-
sented in Fig. 4 for the chirp mass recovery with noise
and is representative for all the parameters. HS shows
higher bias in 71% of the louder events and 51% of the
quieter ones. As expected, the bias is larger for HS com-
pared to SPE. For the first recovered signal, since we
have an unmodeled signal present in the detectors, the
noise properties are not properly modeled. Therefore,
a larger bias is generally observed for the louder signal
compared to the secondary one. However, when strong
biases are present for the first signal, it can reverberate
on the second, also leading to biases for this event.

Finally, Fig. 5 shows how the widths of the 90% confi-
dence intervals of the posteriors for HS compare to SPE,
normalized by the injected value (δMc

=
σMc

Minj
c
, where

σMc represent the width of the 90% confidence interval).
We observe that the widths of the distribution are consis-
tent between the two, even though the recovery is biased.

It is of interest to compare how doing successive steps
of parameter estimation affects the results. After recon-
structing the quieter of the two signals, we subtract it
from the initial data and do PE again. In principle, it
should result in the better recovery of the louder signal
than the original PE run.

Fig. 6 shows the mismatch for the recovered dominant
waveform after the 1st and 3rd HS run. The match af-
ter the 3rd run is better in 62% of the cases, compared
with 50% expected if the procedure had no effect at all.
This small effect is also observed on the bias plot – see
Fig. 7 – where the 3rd HS step leads to better results in
the same proportions. Even if the results get better for
some events, it also leads to worse recoveries for other
cases, and only few of the other events have comparable
results between the first and third HS steps. Therefore,
it does not seem like simply applying successive HS steps
converges to unbiased posteriors. More sophisticated ap-
proaches appear to be needed, like an estimation of the
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FIG. 2. Comparison of the posteriors for the HS and the SPE methods with and without noise. We represent the chirp mass
(Mc), the mass ratio (q), and the luminosity distance (DL). Left: Case where HS is worse than SPE. HS posteriors are
significantly shifted compared both to the injected value and SPE posteriors. Right: Case where HS is close to SPE, with
equivalent posteriors recovered in the two cases.
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FIG. 3. Mismatch for the SPE analysis versus the HS analysis,
with noise. The red dashed line represents the diagonal where
the mismatch is the same. HS is worse at signal recovery, as
most of the points fall below the diagonal.

bias as suggested in [24] and briefly explained in Sec-
tion II B.

In the end, our runs for hierarchical subtraction con-
firm what has been seen in previous research [20–22]:
doing PE for one signal neglecting the other can lead to
significant biases when the two signals merge very close
to each other. In addition, we have also shown that once
the first signal is subtracted, analyzing the second one
with parameter estimation is less prone to bias, even if
the subtraction of the first event is not perfect.
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FIG. 4. Representation of the bias of the recovered param-
eters, with noise for HS and SPE. Plotted is the difference
between injected value and the median of the recovered value,
normalized by the injected value. HS tends to give higher bias
than SPE.

B. Joint parameter estimation

In what follows, we will discuss the results obtained
from the analysis of the overlapping signals using JPE.
We focus on the results obtained after having done the
time ordering of the samples described in Sec. II, as these
are the samples where effectively one set of posteriors is
matched with one signal, and the other set is matched
with the other signal.
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SPE recovery. We see that width of the recovered distribution
is largely unaffected by the presence of another signal.
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FIG. 6. Comparison of the mismatch for the recovered wave-
form between the 1st (horizontal axis) and 3rd (vertical axis)
steps of HS. The mismatch after the 3rd step is lowered in
62% of the cases.
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FIG. 7. Comparison of the bias in recovered chirp mass be-
tween the 1st (horizontal axis) and the 3rd (vertical axis) HS
steps. The recovered bias after the 3rd step is lowered in 62%
of the cases.

For the JPE recovery, more diverse scenarios are pos-
sible. We show 3 main cases in Fig. 8: one where the re-
covery is equivalent to the one from SPE, one where JPE
has smaller bounds on the posteriors for one or more
parameters and one where JPE has trouble fitting the
signal properly and biases can occur. This seems to in-
dicate that the behavior of the sampler will be different
depending on the specific interaction between the over-
lapping signals. In some cases, the interference pattern
between the two signals brings more information, while
in others, it leads to more confusion. Typically, we get
an increasing error on the recovery as the two overlap-
ping BBH signals get closer in characteristics. In such a
case, the sampling may lead to a systematic offset so that
we get a narrower posterior but with the injected value
out of the 90% confidence interval, or a widening of the
posteriors.

For all the events, we compare the mismatch between
the maximum likelihood waveform for the event in the
JPE scenario with the maximum likelihood for the event
in the SPE and HS cases. This is represented in Fig. 9
for the noise cases. Independent of the presence of noise,
we find that the match is smaller for JPE than for HS
but larger than for SPE. This is what one would expect
since JPE accounts for the presence of the two signals
and so should lead to smaller biases. However, fitting si-
multaneously two signals is more complex than analyzing
a single signal. Therefore, the SPE measures remain a
better representation of the injected signal.

As before, we present the normalized distance between
injection and recovery in Fig. 10 for the noise case. When
comparing the bias for the JPE case against the SPE
case, we find that 45% of the events have a lower bias for
JPE than for SPE. On the other hand, when we compare
with HS, we find 65% of the events with a lower bias.
This confirms that JPE is better than HS to find the
injected signals (when two signals are present at 0.1s of
each other in the data). This is indeed what one would
expect, as JPE takes care of the mismodeling of the noise
but leads to an increased complexity during the analysis.

For the spread in recovered posteriors, contrary to
what one had for the HS approach, the normalized width
of the 90% confidence interval does not align itself on the
diagonal. Indeed, since we have more varying scenarios,
with larger or tighter posteriors in some cases, the spread
can be significantly larger or tighter in the JPE case com-
pared to the SPE scenario. In addition, since there is no
significant difference for this quantity between HS and
SPE, the relation between JPE and HS is the same as
between JPE and SPE. The increased discrepancy be-
tween the two approaches is represented in Fig. 11. Nev-
ertheless, the posteriors are evenly distributed above and
below the diagonal representation, showing that, on aver-
age, the width of the posteriors is not significantly bigger
in one method or the other.

Based on our JPE results we see that, when two sig-
nals are close to each other, using an adapted likelihood
as the one presented in Eq. (8) enables one to extract in-
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FIG. 8. Comparison of the posteriors recovered for JPE and
SPE with and without noise for different types of recovery.
Top: the posteriors recovered with JPE for the noise case is
narrower for the chirp mass and the mass ratio compared to
the single PE case, while the posterior for the luminosity dis-
tance is narrower for JPE in the zero-noise case. Middle: JPE
and SPE are very close to each other, with equivalent recov-
ery in the two cases. Bottom: representation of a case where
the JPE recovery is worse than for SPE. We get narrower
posteriors, but the peak is shifted out of the 90% confidence
region.

formation from the interference between the two signals,
and, in addition, to get better results than by analyzing
both signals sequentially. However, this comes with the
drawback that the computational time and the complex-
ity of the problem are increased, making the approach a
bit less stable as can be seen by the wider variations in
the widths of the posteriors.

V. CONCLUSIONS

In this work, we have presented two ways to perform
parameter estimation for two overlapping signals: hier-
archical subtraction and joint parameter estimation. We
have implemented them and compared them to the usual
single-parameter estimation.

For the method of hierarchical subtraction, we analyze
the first signal, then subtract it (more precisely, the max-
imum likelihood signal) from the data before analyzing
the second signal still left in the data. On the other hand,
joint parameter estimation consists of analyzing the two
signals simultaneously. We note that since the likelihood
is symmetric in the two signals, when they have the same
nature, we need to add a post-processing step to have
samples corresponding to each event. For this purpose,
we order the samples in time.

We have applied both methods to a population of bi-
nary black hole mergers to show the feasibility of the two
approaches and their respective drawbacks. For hierar-
chical subtraction, as already mentioned in the literature,
we showed that analyzing one signal while neglecting the
other can lead to bias in the recovered posteriors be-
cause of the erroneous noise representation. However,
even when some bias occurs in the first signal, it does
not necessarily impact the recovery of the second signal.
We have also shown that there is no significant broaden-
ing of the posteriors compared to usual single-parameter
estimation approaches. Therefore, it shows that hierar-
chical subtraction suffers from biases due to overlapping
signals for signals measured at very close merger times,
which can lead to an incorrect inference of the parame-
ters.

For joint parameter estimation, we have shown that
the bias in recovered posteriors is smaller than for hierar-
chical subtraction while remaining higher than for single
parameter estimation. This is understood as joint pa-
rameter estimation has a correct noise representation for
the two signals, which hierarchical subtraction lacks. On
the other hand, solving the likelihood for joint parame-
ter estimation means we need to explore a 30-dimensional
parameter space, making the analysis more complex and
computationally challenging than single parameter esti-
mation. However, the recovered width of the posteriors
is, on average, the same as for single parameter estima-
tion. But while the average is the same, we are confronted
with posteriors that can be narrower or broader in joint
parameter estimation compared to single parameter es-
timation. This also shows that the method can extract
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FIG. 9. Left: comparison of the mismatch for the JPE and the SPE cases with noise. Right: comparison of the mismatch
for JPE and HS with noise. We see that overall, the mismatch is higher for JPE than for SPE, while it is lower than for the
HS case. This is expected since JPE accounts for the two events in the data, which is better than neglecting one but more
complicated than having only one signal present in the data and fitting that signal.
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FIG. 10. Left: comparison of the bias of the recovered posterior for the chirp mass for JPE and SPE method. Right: comparison
of the bias of the recovered posteriors for the chirp mass for JPE and HS. The two plots indicate that the bias is better in JPE
than in HS, due to the better modeling of the noise, while it is still better in the SPE case, where the noise is well modeled
and the problem at hand has a reduced complexity.

information from the interplay between the two signals
in some cases (when the two signals have different char-
acteristics) or can have more trouble (when the signals
have close characteristics).

Overall, our results indicate that common techniques
for a joint likelihood approach are not yet at their best,
and several options to make the sampling more efficient
could be possible for future work. For example, one could
impose the time ordering (or chirp mass hierarchy) di-
rectly during the sampling, by imposing that the arrival
time of one event is smaller than that of another event.
This would prevent the sampler from confusing the two
events and enable them to converge more easily. Another
possibility could be to use narrower priors motivated by
the output of the search pipelines. This is possible for
the chirp mass and the time of arrival but still contains
risk as the search pipelines themselves can get biased by
overlapping signals [46].

One of the major issues with the methods suggested
here is the computational time required, as the data anal-
ysis takes up to a few months for overlapping binary black
hole mergers. This would make it extremely hard, if not
impossible, to keep up with the detection rate of the 3G-
detector network. However, methods exist to speed up
traditional parameter estimation methods, such as rela-
tive binning [33–35] or adaptive frequency resolution [36].
These methods could be adapted to overlapping signals in
future work to reduce the computational time, enabling
one to analyze other types of systems and to use a lower
minimum frequency to get closer to the real 3G scenario.
A totally different approach that could help in the anal-
ysis of such signals in the future is machine learning,
where major progress has been made in the parameter
inference for single compact binary colescences [37, 49].
In the future, one could think of adapting these methods
to overlapping signals.
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FIG. 11. Comparison between the normalized width of the
90% confidence interval for JPE and SPE for the noise case.
Since the spreads are very close for SPE and HS, the same
relation is established for the JPE and HS comparison. We
see that there are larger differences here between the two ap-
proaches but that globally, one is not better than the other
as we have about 50% of the events above the diagonal and
the same proportion below.

To this end, we believe that this work makes a
first step towards the analysis of overlapping compact
binary coalescences, which will be crucial to analyze
gravitational wave data in the third-generation detector
era, as overlaps will become quite common.
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Appendix A: Zero-noise results

In this section, we show results for the posteriors ob-
tained when the injections are analyzed without noise.
The conclusion drawn from these plots are the same as
in the noise case, which suggests that our findings are
robust, due to sampling effects, and not induced by the
random noise added to the data.

1. Hierarchical Subtraction

In this section, we present the complementary zero-
noise result for the HS method.

Fig. 12 represent the mismatch for HS versus SPE for
the zero-noise case. As for the noise case, HS leads to
higher mismatches, meaning that the recovered (maxi-
mum likelihood) parameters are a worse representation
of the injected signals.
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FIG. 12. Mismatch for the SPE analysis versus HS analysis
without noise. The red dashed line represents the diagonal
where the mismatch is the same. The difference in waveform
recovery between SPE and HS is more pronounced than in the
case with noise, and it is clear that the recovery is worsened
when using the HS approach.

Fig. 13 represent the bias for the chirp mass for HS
versus SPE without noise. Here HS shows higher bias
for 74% of the louder events and for 57% of the quieter
ones. There is no significant difference compared with
the injections into noise, and HS is still prone to more
biases.

Fig. 14 represents the normalized width of the poste-
riors for HS versus SPE. Similarly to the analysis with
noise, the widths of the distributions are very close to
each other.

2. Joint Parameter Estimation

In this section, we present the complementary zero-
noise results for the JPE method.
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FIG. 13. Representation of the bias of the recovered chirp
mass without noise. Plotted is the difference between injected
value and the median of the recovered value, normalized by
the injected value for HS and SPE. One sees that bias is more
important for HS.

10−2 10−1

δHSMc

10−2

10−1

δS
P
E

M
c

loud

quiet

10

20

30

40

ρ

FIG. 14. Comparison of the normalized width of the 90%
confidence interval for the chirp mass for the HS recovery and
the SPE recovery, with zero-noise. We see that width of the
recovered distribution is largely unaffected by the presence of
another signal.

Fig. 15 represent the mismatch between the JPE and
SPE methods (left) and the JPE and the HS methods
(right). This also shows that JPE method leads to a
better representation of the data than the HS method,
but that the increased complexity of the problem leads
to a decrease in the accuracy of the recovery. Still, the
mismatch values are relatively low in the two cases.

Fig. 16 represent the comparison between the biases
between JPE and SPE, and JPE and HS for the zero-
noise case. Here, one also has a larger bias for the JPE
than for SPE (39% of the events have smaller bias for
JPE), and a larger bias for HS as for JPE (57% of the
events have a smaller bias for JPE).

Fig. 17 represents the normalized width of the poste-
riors for JPE versus SPE (which is comparable to JPE
versus HS since HS versus SPE has widths aligning along
the diagonal). There is more variance in this plot than
for SPE vs HS. This is because the JPE method is signif-
icantly different from SPE, and we have a bigger variety
of posteriors. Indeed, for JPE, we sometimes get broader
posteriors but also tighter once, depending on the char-
acteristic of the two signals present in the data. However,
the points are evenly distributed the two sides of the di-
agonal, showing that, on average, none of the methods
has widened posteriors compared to the other.
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FIG. 15. Left: comparison of the mismatch for the recovered events for the two events for JPE and SPE without noise. Right:
comparison of the mismatch for JPE and HS without noise. Overall, the mismatch is higher for JPE than for SPE, while it
is lower than for the HS approach. This is expected since JPE accounts for the two events in the data, which is better than
neglecting one but more complicated than having only signal present in the data and fitting that signal.
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FIG. 16. Left: comparison of the bias of the recovered posterior for the chirp mass for JPE and SPE method in the zero-noise
case. Right: comparison of the bias of the recovered posteriors for the chirp mass for JPE and HS in the zero-noise case. The
two plots indicate that the bias is lower for JPE than for HS, due to the better modeling of the noise, while it is still better in
the SPE case, where the noise is well modeled and the problem at hand has a reduced complexity.
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FIG. 17. Comparison between the normalized width of the
90% confidence interval for JPE and SPE in absence of noise.
Since the spreads are very close for SPE and HS, the same
relation is established for the JPE and HS comparison. We
see that the there are larger difference here between the two
approaches but that globally, one is not better than the other
as we have about 50% of the events above the diagonal and
the same proportion below.
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