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Gravitational waves provide us with an extraordinary tool to study the matter inside neutron
stars. In particular, the postmerger signal probes an extreme temperature and density regime and
will help reveal information about the equation of state of supranuclear-dense matter. Although
current detectors are most sensitive to the signal emitted by binary neutron stars before the merger,
the upgrades of existing detectors and the construction of the next generation of detectors will make
postmerger detections feasible. For this purpose, we present a new analytical, frequency-domain
model for the inspiral-merger-postmerger signal emitted by binary neutron stars systems. The
inspiral and merger part of the signals are modeled with IMRPhenomD NRTidalv2, and we describe the
main emission peak of postmerger with a three-parameter Lorentzian, using two different approaches:
one in which the Lorentzian parameters are kept free, and one in which we model them via quasi-
universal relations. We test the performance of our new complete waveform model in parameter
estimation analyses, both with simulated signals and numerical relativity waveforms. We investigate
the performance of different detector networks to determine the improvement that future detectors
will bring to our analysis. We consider Advanced LIGO+ and Advanced Virgo+, KAGRA, and
LIGO-India. We also study the possible impact of a detector with high sensitivity in the kilohertz
band like NEMO, and finally we compare these results to the ones we obtain with third-generation
detectors, the Einstein Telescope and the Cosmic Explorer.

I. INTRODUCTION

Neutron stars (NSs) can reach extremely high densi-
ties, creating conditions that cannot be reproduced by
laboratory experiments. Hence, they provide a perfect
environment to study supranuclear-dense matter and its
Equation of State (EoS). Until a few years ago, the study
of NSs was limited to electromagnetic (EM) observations,
but since the first detection of a gravitational wave (GW)
signal from a binary neutron star (BNS), GW170817 [1],
GWs provide new ways to study NSs and their mergers.
Since the EoS determines the NS’s macroscopic proper-
ties, such as its mass, radius, and tidal deformability, it
can be constrained by measuring the imprint it leaves in
the GW signal emitted during the coalescence [2, 3].

Up to now, Advanced LIGO [4] and Advanced Virgo [5]
detected two BNS systems, GW170817 [1, 6] and
GW190425 [7]. These detections already allowed to put
constraints on the supranuclear-dense matter EoS, which
was possible since the GW signal emitted during the in-
spiral phase provides information about the EoS through
tidal deformability measurements [2, 8–16]. While the
uncertainty on current measurements is still large, the
higher sensitivies of future generation detectors such as

the Einstein Telescope (ET) [17–23] or the Cosmic Ex-
plorer (CE) [24, 25] will significantly improve them.

In addition to a more detailed analysis of the inspiral,
3rd generation (3G) GW detectors are also expected to
detect GWs from the postmerger phase of the BNS co-
alescence [26–30]. This is of special interest, since the
postmerger probes a different density and temperature
regime than the inspiral, with densities higher than the
ones of the binary component stars, and temperatures
large enough so that also the effect of different transport
coefficients will start to impact the data [31–33].

Unfortunately, postmerger studies pose numerous chal-
lenges. Firstly, the postmerger part of the observed GW
signal is expected to be noticeably weaker than the in-
spiral one, since detectors are limited by quantum noise
at the high frequencies, where the postmerger emission is
strongest [34–38]. The dedicated searches for GWs emit-
ted by a possible remnant of GW170817 [39, 40] found no
evidence of such a signal, and showed that with the sensi-
tivity of Advanced LIGO and Advanced Virgo the source
distance should have been at least one order of magnitude
less for the postmerger signal to be detectable. Secondly,
postmerger physics includes thermal effects, magnetohy-
drodynamical instabilities, neutrino emission, dissipative
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processes, and possible phase transitions [41–47], which
make the postmerger particularly difficult to model, but,
on the other hand, allow us to investigate a variety of
interesting physical processes. Because of the complex-
ity of the evolution, the study of the postmerger relies
heavily on numerical-relativity (NR) simulations, which,
however, are also limited due to their high computational
cost and the fact that it is currently not possible to take
into account all the physical processes that influence the
postmerger.

Nonetheless, previous studies based on NR simula-
tions showed some common key features of the post-
merger GW spectrum, finding in some cases universal
relations with the NS properties [35–38, 48–56], and some
efforts have been made also to construct full inspiral,
merger and postmerger models for BNS coalescences.
Also morphology-independent analyses of the postmerger
GW signal have been proposed in [50, 55, 57], while in [58]
a hierarchical model to generate postmerger spectra was
developed. With a different approach, [59–61] construct
analytical models for the postmerger signal, based on fea-
tures found in NR simulated waveforms. Breschi et al.
in [62] proposed a frequency-domain model for the post-
merger, built with a combination of complex Gaussian
wavelets, and showed in [63] how this model performs
using a 3G detector network. Wijngaarden et al. [64]
build a hybrid model, using analytical templates for the
premerger phase and a morphology-independent analy-
sis, based on sine-Gaussian wavelets, for the postmerger
one. This approach allows to study the BNS signal with
all the data available, and also to perform consistency
tests between the pre- and postmerger results.

Following similar ideas, in this paper we construct a
phenomenological frequency domain model for the entire
BNS coalescence consisting of the inspiral, merger, and
postmerger phase. Our final aim is it to employ the devel-
oped model for parameter estimation analyses. To model
the coalescence during the inspiral up to the merger,
we rely on IMRPhenomD NRTidalv2 [65]. The postmerger
phase is modelled with a three-parameter Lorentzian de-
scribing the main emission peak of its spectrum, following
Tsang et al. [66]. For the Lorentzian, we use two differ-
ent approaches: in one case, we compute the parameters
from quasi-universal relations, describing them as a func-
tion of the BNS’s properties, in the other one, we treat
them as free parameters. The advantage of having a full
analytical model is that it can be directly employed by
existing parameter estimation pipelines; see e.g. [67, 68].

This paper is structured as follows. In Sec.II we de-
scribe how our model is built, the methods used for pa-
rameter estimation, and the detectors we consider. Re-
sults are shown in Sec. III, and conclusions are presented
in Sec. IV. Appendix A is devoted to mismatch calcula-
tions between our models and the NR waveforms, while
in Appendix B we show the results obtained specifically
with our postmerger model with free Lorentzian param-
eters.

II. METHODS AND SETUP

We construct a frequency-domain waveform model to
describe the full inspiral, merger, and postmerger of a
BNS coalescence. In this section, we describe how we
model the postmerger part of the signal, and how we
connect it to the inspiral-merger model to obtain the full
waveform. We then describe the framework used for data
analysis, explaining how we speed up parameter estima-
tion using relative binning, the analysis setup, the BNS
sources that we study, and the employed detector net-
works to determine to what extent future detector net-
works will enable postmerger studies.

A. Inspiral-merger-postmerger model construction

Multiple studies have shown that the postmerger GW
spectrum includes various strong peaks [35–38, 48, 51–
54, 69]. For simplicity, we limit ourselves to the main
emission peak at a frequency f2, which corresponds to
the dominant GW frequency; see e.g. [48]. Following
this approach, the postmerger can be described in time
domain by a simple damped sinusoidal waveform [66],
whose Fourier transform is a Lorentzian. Therefore, in
frequency domain, we model the postmerger with a three-
parameter Lorentzian

h22(f) =
c0c2√

(f − c1)2 + c22
e
−i arctan

(
f−c1
c2

)
, (1)

where c0 corresponds to the maximum value, c1 to the
dominant emission frequency f2, and c2 to the inverse of
the damping time, which sets the Lorentzian’s width.

We determine the coefficients ci with two different ap-
proaches: (I) we treat them as free parameters, and try
to measure c0, c1, and c2 together with the other BNS’s
properties; and (II) we compute the ci coefficients from
quasi-universal relations that describe them as functions
of the system’s parameters. Depending on its properties
and EoS, a given BNS could undergo a prompt collapse
to a black hole (BH), hence without a postmerger emis-
sion. In this scenario, while in case (I) we expect that
the values recovered for the free parameters reflect the ab-
sence of a postmerger signal, in (II) the quasi-universal
relations employed might lead to a bias in the estima-
tion of the binary’s intrinsic parameters. For this rea-
son, we ideally want to use the Lorentzian model with
quasi-universal relations only when we know that a post-
merger emission is present. Since the threshold mass for
a prompt collapse is EoS dependent and still unknown,
following [59] we assume that a BNS system undergoes
prompt collapse if the tidal polarizability parameter κT2
is lower than a threshold value κthr = 40. The quantity
κT2 is defined as

κT2 = 3
[
ΛA2 (XA)4XB + ΛB2 (XB)4XA

]
, (2)

where Λj2 = 2
3k2 (Rj/Mj)

5
with j ∈ {A,B} are the di-

mensionless tidal deformabilities, and Xj = Mj/M . Here
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k2 is the dimensionless ` = 2 Love number, Rj and Mj

are respectively the radius and gravitational mass of the
individual stars, and M = MA + MB is the BNS’s total
mass1.

1. Quasi-universal relations for the Lorentzian parameters

For the approach introduced as method (II), we use
quasi-universal relations, i.e. phenomenological relations
that are independent of the EoS, to constrain the coef-
ficients ci in Eq. (1). This provides a direct connection
between the Lorentzian coefficients and the BNS’s prop-
erties.

Since the postmerger Lorentzian model extends the
waveform used for inspiral and merger beyond its
merger frequency fmerg, a straightforward way to
find the value of c0 is by rescaling the amplitude
of the IMRPhenomD NRTidalv2 waveform at merger
ANRTidalv2(fmerg) . Specifically, we use

c0 = σ ×A0 ×ANRTidalv2(fmerg), (3)

where A0 is the mass and distance scaling factor em-
ployed in IMRPhenomD [71]. The prefactor σ is added to
obtain a better calibration to the NR waveforms, and we
set σ = 10.0, which gives the lowest mismatch values (the
definition of mismatch and details about its computation
are provided in Appendix A).

Since c1 represents the dominant postmerger oscilla-
tion frequency f2, we resort to the fit in Eq. (8) of [66]

Mc1(ζ) = β
1 +Aζ

1 +Bζ
, (4)

with β = 3.4285 × 10−2, A = 2.0796 × 10−3, and B =
3.9588× 10−3. The parameter ζ is

ζ = κTeff − 131.7010
M

MTOV
. (5)

In the last equation, κTeff = 3/18Λ̃, with Λ̃ being the
binary’s mass-weighted tidal deformability

Λ̃ =
16

3

(MA + 12MB)M4
AΛA + (MB + 12MA)M4

BΛB
(MA +MB)5

.

(6)
Although ζ, and therefore c1, in Eq. (5) is a function
of the maximum mass allowed for a non-rotating stable
NS MTOV, which depends on the specific EoS, we fix
MTOV = 2M� for this work.

With this choice for c0 and c1, a model for c2 is built
from a set of 48 non-spinning NR waveforms, from the
CoRe database [72, 73]. For this, we first find the values

1 See also [70] for more updated relations which were not yet avail-
able when we started our work.

of c2 that minimize the mismatch of the Lorentzian wave-
form and the NR waveform between 0.75 c1 and 8192 Hz
using a flat noise power spectral density (PSD); see Ap-
pendix A for details. The flat PSD ensures that no high-
frequency information is suppressed in the match compu-
tation. For each waveform, c2 minimization is performed
using the ‘L-BFGS-B’, ‘SLSQP’, ‘TNC’ and ‘Powell’
methods available in SciPy [74] and the value of c2 with
the least mismatch value is used. It was seen that c2
showed a similar trend against κTeffq

2, with q = MA/MB

the mass ratio, as c1 does against ζ. Hence, a analo-
gous ansatz was used to perform a fit. However, using
the parameters obtained from doing a simple curve fit
showed unphysical amplitude behaviour for a few of the
NR waveforms. For further tuning, the mismatch was
minimized for all the NR waveforms by varying the fit
parameters and the parameters that gave the least mis-
match were then recorded and added to the model. The
functional form of c2 and the values obtained for the fit
parameters in this manner are

c2 = 2 + γ
1 + CκTeffq

2

1 +DκTeffq
2
, (7)

with γ = 19.4579017, C = −9.63390738 × 10−4, and
D = 6.45926154× 10−5.

2. The full waveform

To obtain a model describing the full coalescence, the
previously derived postmerger model is connected to the
waveform describing the inspiral and merger part of the
signal, for which we use the phenomenological waveform
IMRPhenomD NRTidalv2 [65].

Amplitude: To ensure a smooth transition between
the two models, we apply a Planck-taper window α:

α =


0 for f < ftr,

exp
[
fend−ftr
f−ftr + fend−ftr

f−fend + 1
]−1

for ftr < f < fend,

1 for f > fend.

(8)
The window is applied just before the frequency of the
main postmerger peak f2, which corresponds to our
model’s parameter c1. The value of the window’s start-
ing frequency ftr is chosen to ensure a good match with
NR waveforms. In particular, in Ref. [66] one of the
time-domain features identified in the postmerger signal
morphology is the first postmerger minimum, which cor-
responds to a clear amplitude minimum present shortly
after the merger, before the amplitude starts increasing
again. By comparison with NR waveforms in the CoRe
database [72, 73], we found that this feature is best repro-
duced by our model when the Planck window is applied
between ftr = 0.75 c1 and fend = 0.9 c1. Following [71],
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we add an exponential correction factor exp
[
−p(f−c1)

c2

]
to the Lorentzian amplitude, in order to smoothen pos-
sible kinks arising when going to the time domain. We
set p = 0.01, which is enough to reduce the kink, but
not so large that it significantly influences the merger
amplitude.

Phase: To ensure that the waveform phase is C1 con-
tinuous, we introduce two coefficients a and b, writing
the phase as

φIM(f) = φLor(f) + a+ bf, (9)

with φIM the phase of IMRPhenomD NRTidalv2 waveform
and φLor = arg(h22(f)) the Lorentzian one.

The values of a and b are computed at the same transi-
tion frequency ftr = 0.75 c1 at which we start the Planck-
taper window for the amplitude, such that

dφIM

df

∣∣∣∣
ftr

=
dφLor

df

∣∣∣∣
ftr

+ b, (10)

φIM(ftr) = φLor(ftr) + bftr + a. (11)

Finally, to reduce the Lorentzian contribution to the
pre-merger and merger amplitude, we multiply the wave-
form by a factor exp[−i2π∆tf ], which will induce a time
shift of ∆t in the time-domain waveform; ∆t is com-
puted as the time interval between the merger and the
first postmerger minimum described by Eq. (2) in [66].

The frequency-domain gravitational waveform can be
written as

h̃(f) = A(f)eiφ(f), (12)

with A(f) the amplitude and φ(f) the phase. Therefore,
in our model the full waveform is given by:

h̃(f) =

AIM(f)eiφIM for f < ftr,(
AIM(f) + αALor(f)e−

p(f−c1)
c2

)
ei(φLor+bf+a)−i2π∆tf for f > ftr,

(13)

where AIM(f) and φIM(f) are respectively the amplitude
and phase of the IMRPhenomD NRTidalv2 waveform, and
ALor = |h22(f)| the amplitude of the Lorentzian one.

B. Parameter estimation

In the following, we focus on how to recover the
source’s parameters given the detector data d and un-
der the hypothesis of a specific model H used to describe
the waveform. In a Bayesian framework, this corresponds

to evaluating the posterior p(~θ|H, d), which, according to
Bayes’ theorem, is

p(~θ|H, d) =
p(d|H, ~θ)p(~θ|H)

p(d|H)
. (14)

In Eq. (14), the prior probability density p(~θ|H) en-
codes our prior knowledge about the source or the model;
the evidence p(d|H) describes the probability of observ-
ing the data d given the model H, independently of

the specific choice of parameters ~θ; and the likelihood

p(d|H, ~θ) represents the probability of observing d with

the specific set of parameters ~θ.
The priors chosen for this work are described later in

this section, while the evidence p(d|H) serves as normal-
ization constant of the posterior distribution, and is given

by

p(d|H) =

∫
d~θp(d|H, ~θ)p(~θ|H). (15)

Assuming the data d consist of Gaussian noise and a

GW signal h(~θ), the likelihood can be expressed as [75]

p(d|H, ~θ) ∝ exp
[
−1

2

〈
d− h(~θ)|d− h(~θ)

〉]
(16)

with the noise-weighted inner product defined as

〈a|b〉 ≡ 4Re

∫ fhigh

flow

ã∗(f)b̃(f)

Sn(f)
df, (17)

where Sn(f) is the noise spectral density, ã(f) the Fourier
transform of a(t), and ∗ denotes the complex conjugate.

To sample the likelihood function, we use the nested
sampling [75, 76] package dynesty [77, 78], which is in-
cluded in the bilby library [67, 68] .

1. Relative binning

The likelihood evaluations required at each sampling
step are very expensive, since, in order to compute the
inner product, we need to evaluate the waveform on a
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dense and uniform frequency grid. The size of the grid
increases both with the duration of the signal and the
maximum frequency used in the analysis. In our case,
we set fmax = 4096 Hz, since the postmerger GW signal
is expected to lie within the few kHz regime. Moreover,
we study BNS systems, whose low masses imply a long
signal duration. Although we set the starting frequency
to flow = 30 Hz, the typical duration of the signal in
band is still roughly 200 s. To overcome the issue of
the computational cost of the analysis needed for this
work, we employ the technique of relative binning [79,
80], which reduces the number of waveform evaluations
from all the points on the grid to a limited number of
frequency bins.

The underlying assumption in relative binning is that
the set of parameters yielding a non-negligible con-
tribution to the posterior probability produce similar
waveforms, such that their ratio varies smoothly in
the frequency domain. In each frequency bin b =
[fmin(b), fmax(b)], if we choose a reference waveform
h0(f) that describes sufficiently well the data, the ratio
with the sampled waveforms can be approximated with
a linear interpolation

r =
h(f)

h0(f)
= r0(h, b)+r1(h, b)(f−fm(b))+O[(f−fm(b))2],

(18)
with fm(b) the central frequency of the bin b.

This allows to approximate the likelihood inner prod-
uct as

〈d(f)|h(f)〉 ≈
∑
b

(A0(b)r∗0(h, b) +A1(b)r∗1(h, b)) , (19)

where the summary data

A0(b) = 4
∑
f∈b

d(f)h∗0(f)

Sn(f)/T
, (20)

A1(b) = 4
∑
f∈b

d(f)h∗0(f)

Sn(f)/T
(f − fm(b)) (21)

are computed on the whole frequency grid, but only for
the reference waveform. Also 〈h(f)|h(f)〉 is calculated
with a similar approach. In this method, the evaluation
of sampled waveforms is required only to compute the bin
coefficients r0(h, b) and r1(h, b) in Eq. (18). In this paper,
we follow the description and implementation of [79, 81].
To use relative binning with bilby inference, we employ
the code in [82].

2. Simulations

We test the performance of our model in parame-
ter estimation analysis with simulated signals. We con-
sider three different sources, and analyze them through
bilby injections, i.e., using our own GW models, and
through injecting NR hybrids with the same parameters;

Name Mc q Λ̃ Injection

Source1[NR−inj] 1.17524 0.8 604 NR: H 121 151 00155 [87]

Source1[qu−pm] 1.17524 0.8 604 Bilby: quasi-universal

Source1[free−pm] 1.17524 0.8 604 Bilby: free parameters

Source2[NR−inj] 1.08819 1.0 966 NR: H 125 125 0015 [88]

Source2[qu−pm] 1.08819 1.0 966 Bilby: quasi-universal

Source2[free−pm] 1.08819 1.0 966 Bilby: free parameters

Source3[NR−inj] 1.17524 1.0 607 NR: H 135 135 00155 [87]

Source3[qu−pm] 1.17524 1.0 607 Bilby: quasi-universal

Source3[free−pm] 1.17524 1.0 607 Bilby: free parameters

TABLE I. Properties of the sources used for injec-
tions. The NR hybrids are taken from the SACRA
database [89]. For bilby injections, we used our
IMRPhenomD NRTidalv2 Lorentzian model, both with quasi-
universal relations and with free Lorentzian parameters. In
case of injections with the free parameters model, the injected
c0, c1, c2 values are obtained from the best fit of the correspon-
dent NR hybrid.

cf. Tab. I. The employed hybrids have a postmerger sig-
nal duration of roughly 10 ms.

All simulated signals are injected with zero inclina-
tion ι and polarization angle ψ, and with sky location
(α, δ) = (0.76,−1.23). The sky location has been chosen
such that none of the employed detector networks is par-
ticularly preferred. Depending on the analysis, we per-
formed injections at three different distances: 225 Mpc,
135 Mpc, and 68 Mpc, which, in a network with Ad-
vanced LIGO+ and Advanced Virgo+, correspond ap-
proximately to a signal-to-noise ratio (SNR) of 30, 50,
and 100 respectively. We take priors uniform in [0.5, 1.0]
for mass ratio q, and uniform in [Mc,s−0.05,Mc,s+0.05]
for chirp mass, where Mc,s is the chirp mass of the
source, and the prior width is given by the precision on
chirp-mass measurements that we anticipate for future
detectors. Regarding tidal deformability parameters, we
sample over Λ̃ and ∆Λ̃, with a prior uniform in [0, 5000]

and [−5000, 5000] respectively, where ∆Λ̃ is defined in
[90] as

∆Λ̃ =
1

2

[√
1− 4η(1− 13272

1319
η +

8944

1319
η2)(Λ1 + Λ2)

+ (1− 15910

1319
η +

32850

1319
η2 +

3380

1319
η3)(Λ1 − Λ2)

]
,

(22)

Luminosity distance priors are uniform in comov-
ing volume, with DL ∈ [1, 450]Mpc. Although all
the sources considered are non-spinning, our baseline
model IMRPhenomD NRTidalv2 allows for aligned spins;
we choose a uniform prior on the spin component aligned
with orbital angular momentum |a1|, |a2| ∈ [0.0, 0.20].
Finally, when using the postmerger model with free pa-
rameters for recovery, we choose uniform priors c1 ∈



6

FIG. 1. Left: location of the detectors used in this study, top panel for second generation (2G) detectors and bottom panel for
third generation (3G) ones. Right: PSDs for the different detectors. The Advanced LIGO+ PSD [83] is used for H, L and I
detectors. Since the official sensitivity curve for Advanced Virgo+ is not available yet, we used the same one as for the LIGO
detectors, scaled by a factor 4/3 to account for the different arm-length. ET sensitivity is the one referred to as ’ET-D’ and
given in [84], while CE sensitivity is given in [85]; for KAGRA we use the PSD labeled as ‘Combined’ in [86].

[2000, 4096] Hz and c2 ∈ [10, 200] Hz, while for c0 we
employ a logarithmic uniform prior in [5 × 10−24, 1 ×
10−22] s−1.

C. Detector Networks

Earth-based GW detectors have the best sensitivity
around a few tens to hundreds of Hz, which makes the in-
spiral and merger signal of coalescing compact objects the
perfect candidate for detections. In this work, however,
we are interested in the postmerger part of the signal,
which is usually weaker and involves higher frequencies.
Current detectors are strongly limited at these high fre-
quencies, but the improvements planned for the future
detectors’ upgrades and the next generation detectors
are expected to make postmerger measurements feasi-
ble. Therefore, one of the goals of this work is to assess
how future detectors can improve the studies we present.
We include in our analysis the upgraded versions of ex-
isting detectors, Advanced LIGO+, Advanced Virgo+,
and KAGRA, as well as new detectors whose construc-

tion has been planned for the next few years, LIGO-India
and NEMO, and the next detector generation, Einstein
Telescope and Cosmic Explorer. Advanced LIGO+ de-
sign [91] will improve the current 4 km arm-length detec-
tors in Hanford (H) and Livingston (L) sites, including a
frequency dependent light squeezing and new test masses
with improved coating. Advanced Virgo+ (V), similarly,
is the planned upgrade for the current Advanced Virgo
detector in Cascina [5]. This transition will happen in
two separate phases and include upgrades like the intro-
duction of signal recycling and a higher laser power. Ad-
vanced LIGO+ and Advanced VIRGO+ are the planned
designs for the O5 observing run, which is scheduled to
start roughly in 2025, and during which their BNS de-
tection range will reach approximately 330 Mpc and 150-
260 Mpc, respectively [92]. KAGRA (K)[93–95] is a 3
km arm-length interferometer built underground in the
Kamioka mine in Japan, which already employs inno-
vative technologies like cryogenic mirrors. For O5, its
sensitivity at the end of the observing run is predicted to
allow a BNS range of at least 130 Mpc [92]. The LIGO
network involves a third detector in India (I) [96], which
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is currently under construction and is expected to be-
come operative approximately in 2025. Finally, the Neu-
tron Star Extreme Matter Observatory, or NEMO (N),
is an Australian proposal for a gravitational-wave detec-
tor with 4 km arm-length, specifically designed to have a
high sensitivity in the kilohertz band [97]. The possible
location of NEMO has not been decided yet, therefore for
this work we arbitrary place it at the location shown in
Fig. 1. Although not officially approved yet, we include
it in our analysis, since its high-frequency sensitivity is
particularly interesting for postmerger studies.

3G detectors are expected to increase the sensitivity
by a factor between 10 and 30 [92] with respect to cur-
rent LIGO detectors, but they require the construction
of new facilities and are expected to start observing in
the mid 2030s. At the moment, the planned 3G detector
network includes plans for Cosmic Explorer (CE) in the
US and Einstein Telescope (ET) in Europe. CE [24, 25] is
planned as an L-shaped interferometer with 40 km arm-
length2. For the purpose of this paper, we assume it
placed at the current Hanford site. ET design [17, 18] in-
cludes a so-called ‘xylophone’ configuration, which guar-
antees an improved sensitivity at high and low frequen-
cies at the same time [84]. The two candidates for the
ET site are Sardinia, in Italy, and Limburg, at the border
between the Netherlands, Germany, and Belgium3. For
this work, we assume ET is placed at the current Virgo
site. Although the final design of ET is still under de-
velopment, here we consider it as a triangular detector,
i.e., composed of three V-shaped interferometers with a
60 degree opening angle and 10 km arms.

In this work, we study four different detector networks:
HLV, HLVKI, HLVKIN, and ETCE. The detectors’ loca-
tions and sensitivities are shown in Fig. 1.

III. RESULTS

In the following, we present the results of our simu-
lations, for what concerns both the performance of our
model and the improvement we obtain with future de-
tectors. When using the postmerger model with quasi-
universal relations, we are mainly interested in studying
how well we can recover the tidal deformability parameter
Λ̃. Since the quasi-universal relations that we derived de-
pend on Λ̃, we expect that the postmerger part of the sig-
nal, when detected, brings additional information about
this parameter. This will likely lead to a narrower pos-
terior with respect to what we can obtain using a model

2 Recently, also a configuration consisting of a 40 km and an addi-
tional 20 km detector has received attention and was considered
as the reference concept for the recent Horizon study of [25].
In [98], also a tunable design for the CE detector was proposed,
which would enhance sensitivity in the kilohertz band.

3 In addition, recent interest arose for a third possible site located
in the eastern part of Germany.

without postmerger. In the case of the postmerger model
with free Lorentzian parameters, we study how well the
Lorentzian parameters c0, c1, c2 can be recovered, and es-
pecially c1, since it represents the frequency of the main
postmerger emission peak. In the following, we refer
to the IMRPhenomD NRTidalv2 Lorentzian postmerger
model with quasi-universal relations as qu-pm, to the
one with free Lorentzian parameters as free-pm, and to
the model without postmerger, IMRPhenomD NRTidalv2,
as no-pm.

A. Best-case scenario

We start by testing both versions of our model, free-
pm and qu-pm, in the best-case scenario, i.e., for bilby
injections in zero noise, for sources as described in Ta-
ble I, at a distance of 68 Mpc and with ETCE network.
Figure 2 shows the posterior probability density of Λ̃ for
signals obtained with qu-pm injections, and recovered
with both our postmerger models, qu-pm and free-pm,
and with the model without postmerger no-pm. As ex-
pected, the Λ̃ posterior becomes tighter when going from
the no-pm to qu-pm model, with the width of the 90%
confidence interval reducing by about 30%, from 23.11
to 15.84 in the case of Source2[qu−pm], and from 15.42
to 11.07 for Source3[qu−pm]. In the free-pm recovery
case, the posteriors becomes wider, with the width of
the 90% confidence interval reaching 22.23 and 32.12 for
Source2[qu−pm] and Source3[qu−pm] respectively. We also
note that when recovering with this model, the median
of Λ̃ is slightly underestimated with the respect to the
injected values. Both these features are predictable due
to the higher number of parameters we have to sample
over. For Source1[qu−pm], the injected value lies outside

the no-pm Λ̃ posterior distribution, but is well recovered
with both the qu-pm and free-pm models. This is prob-
ably due to the fact that injections are performed with
a signal with postmerger, and when we recover with a
model without the postmerger description, the waveform
tries to latch on to the signal after the merger, causing a
bias in the parameters estimation.

Figure 3 shows the posteriors for the c1 Lorentzian pa-
rameter in the case of injection and recovery with the
free-pm model, for the three different sources. The in-
jected values of c0, c1, c2 are the ones that give the best fit
on the NR hybrid with the same binary parameters of the
source considered. The c1 parameter, which corresponds
to the frequency of the main postmerger emission peak,
is well recovered in all cases. Although we are mainly
interested in the recovery of c1, the free-pm model pro-
vides posteriors also for the c0 and c2 parameters, which
are related to the maximum amplitude and width of the
Lorentzian respectively. Note that the c0 and c2 parame-
ters, which are not shown in the figure, are not recovered
as well as the c1 parameter, but they are close to the
injected values, as reported in Table II. While our model
works for our main purpose of measuring the frequency
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FIG. 2. Posterior probability density for Λ̃ in the case of bilby injections with the qu-pm model, for sources at 68 Mpc and
with the ETCE network, and recovery with the three different models no-pm, qu-pm and free-pm, in blue, orange and green
respectively. The black dashed lines correspond to the injected values.

FIG. 3. Posteriors of c1 parameters for the three different sources, obtained when using the free-pm model both for injection
and recovery. The black dashed lines show the injected values.

of the dominant postmerger peak, the shifts that we see
in the other parameters suggest that we can further im-
prove the free-pm model; see e.g. [62, 64] for recent
developments including postmerger features beyond the
main emission frequency.

B. Detector network performances in zero-noise

We want to investigate how future detector networks
will improve our postmerger analysis. For this purpose,
we inject signals obtained from the qu-pm model in zero
noise, and recover both with the qu-pm and the no-pm
model. We analyze signals injected at three different dis-
tances (68 Mpc, 135 Mpc, and 225 Mpc), and we com-
pare results for the four detector networks LHV, LHVKI,
LHVKIN, and ETCE (as described in Sec. II C). Due to

log c0 log c0,inj c2 c2,inj

Source1[free−pm] −51.40+0.04
−0.03 -51.43 77.0+0.18

−0.19 74.0

Source2[free−pm] −51.03+0.04
−0.03 -51.06 48.0+0.1

−0.1 48.0

Source3[free−pm] −50.66+0.00003
−0.0001 -50.70 39.48+0.07

−0.06 39.0

TABLE II. Median with 5% and 95% quantile values of the
posterior probability density for the c0 and c2 parameters, to-
gether with their injected values, for each of the three sources
analyzed, in the case of injection and recovery with the free-
pm model.

limited computational resources, we look only at two dif-
ferent sources, Source2[qu−pm] and Source3[qu−pm].

Figure 4 shows the uncertainty Λ̃90conf , computed as the
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FIG. 4. Width of the 90% confidence interval of Λ̃ posterior
for Source2[qu−pm] (top panel) and Source3[qu−pm] (bottom
panel), as function of the different detector networks. Orange
shades represent recovery with the qu-pm model, green shades
with the no-pm one.

width of the 90% confidence interval of the Λ̃ posterior
probability density, as a function of the detector network
employed for the analysis, comparing the different dis-
tances and recovery models. As expected, Fig. 4 shows
that for all the detector networks considered, and for
both models, the width of the 90% confidence interval
decreases with decreasing distance. In particular, for an
LHV network, we find an improvement of ∼ 50% when
going from 225 Mpc to 135 Mpc, and of ∼ 25% (for
Source2[qu−pm] even 56%) when going from 135Mpc to
68 Mpc, for both models; for the ETCE network we find
an improvement ∼ 45% when going from 225Mpc to 135
Mpc, and ∼ 55% when going from 135 Mpc to 68Mpc.
Using the qu-pm model yields to systematically tighter
constraints on Λ̃, thanks to the additional information
arising from the quasi-universal relations that describe
the postmerger part of the signal. For both the sources,
in the case of injections at 225 Mpc and with the LHV
or LHVKI network, we see no significant differences in
Λ̃90conf in the case of recovery with the qu-pm or no-
pm model. Considering that such injections generate an
SNR ' 30 in the case of LHV network, this is consistent
with the fact that in these situations we do not detect
the postmerger signal.

Interestingly, the best improvement when using the

qu-pm model comes in the case of LHVKIN network.
Going from the LHVKIN to the ETCE network, the con-
strain on Λ̃ improves of about ∼ 70% for both models,
while adding NEMO to the LHVKI network leads to an
improvement in Λ̃90conf of ∼ 60% for the qu-pm model,
against the just ∼ 40% for the no-pm one. For both
sources, we also see that for the LHVKIN network the
constraint on Λ̃ obtained with the qu-pm model for in-
jections at 135 Mpc is better than the one we retrieve
with the no-pm model for injections at 68 Mpc. 3G de-
tectors are expected to have the best sensitivity over the
whole frequency band, and indeed we see that for the
ETCE network we get the smallest Λ̃90conf for both mod-
els. However, the high sensitivity at lower frequencies
allows to obtain a very narrow posterior density distri-
bution for Λ̃ from the inspiral part of the signal alone,
therefore reducing the impact of the possible informa-
tion gained from postmerger. In the case of LHVKIN
network, instead, the constraint on Λ̃ from the inspiral is
the one of second-generation detectors, but the high sen-
sitivity of NEMO in the kilohertz band leads to a better
detection of the postmerger, and therefore to significantly
tighter constraints when using the qu-pm model. If its
realization is approved, adding NEMO to the network
of second-generation detectors will significantly help the
detection of postmerger signals and related studies. We
note that for this work we analyze signals with a lower fre-
quency cutoff flow = 30 Hz, missing many inspiral cycles;
in reality, an additional improvement on Λ̃ measurements
will be provided by the use of a lower flow.

Model Λ̃m noiseA Λ̃m noiseB Λ̃inj

Source2[qu−pm] qu-pm 956.68+7.08
−8.37 959.93+6.87

−8.71 966

no-pm 966.35+9.35
−11.82 953.10+13.11

−19.11 966

Source3[qu−pm] qu-pm 608.04+11.65
−6.27 602.36+7.86

−12.49 607

no-pm 611.76+6.68
−7.51 604.35+6.84

−7.70 607

TABLE III. Median values with 90% confidence interval for
the posterior probability density of Λ̃ in case of two different
noise realizations, labeled as noiseA and noiseB, for injections
at 68 Mpc in the ETCE network and for recovery with the two
different models qu-pm and no-pm; the last column reports
the injected value of Λ̃.

C. Detector Network Performances in non-zero
noise

In the previous sections we focused on model and net-
work performances, using injections in zero noise. Now
we want to look at the influence of noise on our study. For
this reason, we repeat the analysis using Gaussian noise.
Due to limited computational resources, we restrict to
only two sources, Source2[qu−pm] and Source3[qu−pm],
and to one distance, 68 Mpc. We inject signals using
the qu-pm model, and recover both with the qu-pm and
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FIG. 5. Width of the 90% confidence interval of Λ̃ posterior for Source2[qu−pm] (top row) and Source3[qu−pm] (bottom row),
as a function of the different detector networks, obtained with two different noise realizations, noiseA for the left panels, and
noiseB for the right ones.

no-pm models, comparing results for the different detec-
tor networks LHV, LHVKI, LHVKIN, and ETCE. Fig-
ure 5 shows Λ̃90conf for the different detector networks.
In order to assess the impact of noise fluctuations, we
show results for two different noise realizations, which
we call noiseA and noiseB. Due to the noise impact on
the analysis, we do not see the clear trends that we found
in the zero noise runs, as described in the previous sec-
tion Sec. III B. In the case of Source3[qu−pm] (bottom
panels in Fig. 5), with the noiseA realization the con-
straints obtained with the qu-pm model are even wider
than the ones recovered with the no-pm model. The
most extreme fluctuation is found for Source3[qu−pm], in
the case of LHVKI network and qu-pm model, for which
Λ̃90conf = 88.26 in case of noiseA and Λ̃90conf = 4.84 for
noiseB. However, we see that in general Λ̃90conf decreases
with more advanced detectors, with an improvement be-
tween 80% and 90% when going from the LHV to the
ETCE network. In most cases the qu-pm model allows
us to better determine Λ̃, although the quantitative im-
provement strongly depends on the source and especially
on the noise realization. Moreover, noise fluctuations im-
pact also the median of the Λ̃ posterior probability den-
sity, causing different shifts with respect to the injected
values (see Table III). Although such shifts appear to be

small, they can cause the posterior’s median to lie out-
side the 90% confidence interval, especially in the case of
ETCE network, where the Λ̃90conf is indeed very small.

D. Numerical-relativity injections

Finally, we analyze simulated signals obtained by in-
jecting NR waveforms on top of Gaussian noise. Fig-
ure 6 shows the posterior probability density of Λ̃, for
injections at 68 Mpc in the ETCE network. Although
for Source2[NR−inj] Λ̃ is recovered very well, in the other
cases we see a shift of the posterior with respect to
the injected value of Λ̃. For Source1[qu−pm], the Λ̃ in-
jected value lies in the tail of the posteriors recovered
with the qu-pm and free-pm model, and completely
outside the posterior obtained with the no-pm model;
for Source3[qu−pm], the posteriors recovered with all the
models peak at values between 575 and 578, with the
injected value Λ̃ = 607 lying completely outside their
distributions. These shifts are due to noise fluctuations,
as we showed in Sec. III C, and possible limitations of
our waveform models. The case analyzed here, using the
ETCE network, generates a signal with a high SNR, and
therefore a narrow posterior density for Λ̃, with the in-
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FIG. 6. Posterior probability density for Λ̃ as recovered with the different models (no-pm, qu-pm and free-pm) in the case of
signals simulated by injecting NR waveforms in Gaussian noise at a distance of 68 Mpc, for the ETCE detector networks. The
black dashed lines show the injected values.

jected value resulting outside the 90% confidence interval.
Using one of the postmerger models to analyze signals
obtained with NR waveforms does not lead to a signifi-
cant improvement in the Λ̃ constraints as the ones shown
in Fig.III A. However, for Source1[NR−inj] we see a clear

improvement in the recovery of Λ̃ with the postmerger
model with respect to the one without postmerger, and
a modest improvement is also seen for Source2[NR−inj].
In Sec. III C, we saw that noise fluctuations alone can
impact the performance of our model, but in this case
an additional issue is that the NR simulations contain
a more complex GW structure in the postmerger, which
is not fully recovered with our simple Lorentzian model.
For this purpose, both of our qu-pm and free-pm mod-
els need to be improved towards more structured signals.
Moreover, hybridization of NR waveforms starts from the
few last cycles of the inspiral, so that also the late-inspiral
and merger waveform is based on NR simulations, and
thus different from the model we employ. This can lead
to biases, affecting the results obtained not only with
our free-pm or qu-pm models, but also with the model
without postmerger.

IV. CONCLUSIONS

We have developed an analytical, frequency-domain
model to describe the GW emission during the inspi-
ral, merger, and postmerger phases of a BNS coales-
cence. For the inspiral and merger, we employed the
IMRPhenomD NRTidalv2 waveform. We incorporate the
postmerger part through modeling the main emission
peak with a Lorentzian, whose parameters, in the two
versions of our model, are either free or determined by
quasi-universal relations. We have shown that both ver-
sions work very well in the best-case scenario of high-SNR

and zero noise simulations, leading to better constraints
on the Λ̃ posteriors and, in the case of the free-pm
model, to an accurate measurement of the frequency of
the main postmerger emission peak. Within our study,
we find that noise fluctuations can significantly impact
the results. It is important to note that the shifts in
Λ̃ recovery caused by noise fluctuations, which are evi-
dent especially in high-SNR injections, given the narrow-
ing of the posterior, also affect the results obtained with
the model without postmerger. Therefore, they must be
taken into account in parameter estimation analyses with
3G detectors, even when not related to postmerger stud-
ies. In general, including the postmerger during the anal-
ysis provides tighter constraints on the Λ̃ posterior than
the original inspiral-only IMRPhenomD NRTidalv2 model.
Finally, we used our model to recover signals obtained by
injecting NR waveforms. Although we still see improve-
ments in some cases when using the postmerger models,
they are not as significant as we found for the simulated
signals. This is due to noise effects and the fact that
NR waveforms include postmerger signals with a complex
structure, which a simple Lorentzian model struggles to
recover. Despite the promising results, we conclude that
our model, in both its versions, still needs improvements
in order to be employed in the analysis of real signals.

Another central point of our study was to assess the
performance of different detector networks, and to under-
stand how future detectors will improve the postmerger
analysis. In particular, we considered four different net-
works: (i) Advanced LIGO+ in Hanford and Livingston
together with Advanced Virgo+; (ii) the same network
as (i) extended by KAGRA and LIGO-India; (iii) the
same network as (ii) extended with NEMO; (iv) a net-
work consisting of a 40 km Cosmic Explorer and a 10km,
triangular Einstein Telescope. Although 3G detectors,
as expected, will give the best constrains on Λ̃, we found
that NEMO, thanks to its very high sensitivity in the
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kiloHertz band, yields the biggest improvement when us-
ing the qu-pm model.
Our study showed how, with future detector networks,
GW observations from the postmerger phase of a BNS
coalescence will allow us to unravel information about
the fundamental physics describing supranuclear-dense
matter.
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Appendix A: Mismatch

The mismatch between two waveforms h1 and h2 is
defined as

MM = 1−maxφc,tc

〈h1(φc, tc)|h2〉√
〈h1|h1〉 〈h2|h2〉

, (A1)

where tc and φc are an arbitrary time and
phase shift, and the noise-weighted inner prod-
uct is as given as in Eq. (17). To validate the
IMRPhenomD NRTidalv2 Lorentzian model, we com-
pute mismatches with the hybrid waveforms in the CoRe
[72, 73] and SACRA [89] database. The mismatch is
computed with PyCBC [99] functions and zero noise,
i.e., with a flat PSD. To get the Lorentzian parameters
that better describe each hybrid’s postmerger, we
optimize the mismatch over c1, c2; we do not include
the Lorentzian maximum value c0 in the minimization,
because, giving just an amplitude scaling factor, the
mismatch is insensitive to it. The initial values for
the optimization are found with a least-squares fit
on the postmerger part of the hybrid waveform, for

FIG. 7. Mismatches between hybrid waveforms
from the CoRe (in the gray-background band)
and SACRA database, and our postmerger model
IMRPhenomD NRTidalv2 Lorentzian. The top panel shows
mismatches in the postmerger frequency band, i.e., between
[1.1 fmerg, 4096] Hz, the bottom panel for the whole waveform,
between [30, 4096] Hz. In the latter case, for comparison we
show also mismatches computed between the hybrids and
the IMRPhenomD NRTidalv2 model.

f ≥ 1.3 fmerg. Fixing c1 and c2 to the optimal values,
we then compute the optimal value for c0 with a
least-square fit on the hybrid’s postmerger signal. We
use the optimal values for the ci coefficients to generate
the IMRPhenomD NRTidalv2 Lorentzian waveform, for
which we compute the mismatch with the hybrid in
different frequency ranges. The top panel of Fig. 7
shows the mismatches in the frequency band between
[1.1 fmerg, 4096] Hz: despite our simple model, for almost
all hybrids mismatches lie below 0.3. When considering
the whole waveform, in the frequency range [30, 4096] Hz,
the mismatch is always below 0.005, as shown in the bot-
tom panel of the same figure. For comparison, we show
also the mismatches computed in the same frequency
range with the IMRPhenomD NRTidalv2 waveform. The
plot does not highlight a systematic improvement in
the mismatches when using one of the two models; the
difference between the two models’ mismatch varies from
0.0019 to 8 × 10−6, with an average variation of 0.0005.
In more than 60% of cases the mismatch is reduced
when using the IMRPhenomD NRTidalv2 Lorentzian
model, showing that our postmerger description actually
improves the signal characterization.
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FIG. 8. Posterior probability density for the c1 Lorentzian
parameter for the different detector networks, in the case of
Gaussian noise injections at 68 Mpc. The dashed vertical line
indicates the injected value.

Appendix B: Results for the free-parameter model

In the following, we show some results obtained with
the postmerger model using free Lorentzian parameters.
Performing parameter estimation analysis with the free-
pm waveform requires sampling over three additional pa-

rameters, which implies even higher computational costs.
For this reason, we could not run the same analyses with
the free-pm model as we did for the qu-pm one. As
shown in Sec. III A, with high-SNR and zero-noise injec-
tions, we can recover c1 accurately. In Fig. 8, we show
how different detector networks can recover the c1 param-
eter in the case of Gaussian noise injections, for simulated
signals corresponding to Source3[free−pm] at 68 Mpc. In
the case of second-generation detectors, we see a shift in
the peak of the posteriors for the injected value, but we
find a clear improvement when adding NEMO. The dis-
tribution for the ETCE network is wider but more shifted
towards the correct value. We see a plateau in the pos-
terior, extending towards higher frequencies for all the
networks. This feature is also present for the ETCE net-
work, for which we recover very precise posteriors in the
case of zero noise runs, as shown in Fig. 3. Therefore, we
conclude that this is caused by noise fluctuations, which,
as reported in Sec. III C, for this source affect quite heav-
ily also the Λ̃ measurements. Preliminary studies showed
that changing the analysis settings, e.g., fixing c0 and c2
to arbitrary values, helps improve the c1 recovery. Fi-
nally, analyses of signals obtained by NR waveforms in-
jections do not recover either of the Lorentzian parame-
ters, because of the complex structure of the postmerger
in the NR waveforms, and the noise effects that we see
already with simulated signals.
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