SCL(EQ): SCL for First-Order Logic with Equality

Hendrik Leidinger ${ }^{1,2}$ and Christoph Weidenbach ${ }^{1}$
${ }^{1}$ Max-Planck Institute for Informatics, Saarbrücken, Germany
\{hleiding, weidenbach\}@mpi-inf.mpg.de
${ }^{2}$ Graduate School of Computer Science, Saarbrücken, Germany

Abstract

We propose a new calculus SCL(EQ) for first-order logic with equality that only learns non-redundant clauses. Following the idea of CDCL (Conflict Driven Clause Learning) and SCL (Clause Learning from Simple Models) a ground literal model assumption is used to guide inferences that are then guaranteed to be non-redundant. Redundancy is defined with respect to a dynamically changing ordering derived from the ground literal model assumption. We prove SCL(EQ) sound and complete and provide examples where our calculus improves on superposition.

Keywords: First-Order Logic with Equality • Term Rewriting • ModelBased Reasoning.

1 Introduction

There has been extensive research on sound and complete calculi for first-order logic with equality. The current prime calculus is superposition [2], where ordering restrictions guide paramodulation inferences and an abstract redundancy notion enables a number of clause simplification and deletion mechanisms, such as rewriting or subsumption. Still this "syntactic" form of superposition infers many redundant clauses. The completeness proof of superposition provides a "semantic" way of generating only non-redundant clauses, however, the underlying ground model assumption cannot be effectively computed in general 30]. It requires an ordered enumeration of infinitely many ground instances of the given clause set, in general. Our calculus overcomes this issue by providing an effective way of generating ground model assumptions that then guarantee non-redundant inferences on the original clauses with variables.

The underlying ordering is based on the order of ground literals in the model assumption, hence changes during a run of the calculus. It incorporates a standard rewrite ordering. For practical redundancy criteria this means that both rewriting and redundancy notions that are based on literal subset relations are permitted to dynamically simplify or eliminate clauses. Newly generated clauses are non-redundant, so redundancy tests are only needed backwards. Furthermore, the ordering is automatically generated by the structure of the clause set. Instead of a fixed ordering as done in the superposition case, the calculus finds
and changes an ordering according to the currently easiest way to make progress, analogous to CDCL (Conflict Driven Clause Learning) [28|21|24|11|33.

Typical for CDCL and SCL (Clause Learning from Simple Models) [11814 approaches to reasoning, the development of a model assumption is done by decisions and propagations. A decision guesses a ground literal to be true whereas a propagation concludes the truth of a ground literal through an otherwise false clause. While propagations in CDCL and propositional logic are restricted to the finite number of propositional variables, in first-order logic there can already be infinite propagation sequences [18]. In order to overcome this issue, model assumptions in SCL(EQ) are at any point in time restricted to a finite number of ground literals, hence to a finite number of ground instances of the clause set at hand. Therefore, without increasing the number of considered ground literals, the calculus either finds a refutation or runs into a stuck state where the current model assumption satisfies the finite number of ground instances. In this case one can check whether the model assumption can be generalized to a model assumption of the overall clause set or the information of the stuck state can be used to appropriately increase the number of considered ground literals and continue search for a refutation. $\mathrm{SCL}(\mathrm{EQ})$ does not require exhaustive propagation, in general, it just forbids the decision of the complement of a literal that could otherwise be propagated.

For an example of SCL(EQ) inferring clauses, consider the three first-order clauses

$$
\begin{gathered}
C_{1}:=h(x) \approx g(x) \vee c \approx d \quad C_{2}:=f(x) \approx g(x) \vee a \approx b \\
C_{3}:=f(x) \not \approx h(x) \vee f(x) \not \approx g(x)
\end{gathered}
$$

with a Knuth-Bendix Ordering (KBO), unique weight 1, and precedence $d \prec$ $c \prec b \prec a \prec g \prec h \prec f$. A Superposition Left [2] inference between C_{2} and C_{3} results in

$$
C_{4}^{\prime}:=h(x) \not \approx g(x) \vee f(x) \not \approx g(x) \vee a \approx b
$$

For SCL(EQ) we start by building a partial model assumption, called a trail, with two decisions

$$
\Gamma:=\left[h(a) \approx g(a)^{1:(h(x) \approx g(x) \vee h(x) \not \approx g(x)) \cdot \sigma}, f(a) \approx g(a)^{2:(f(x) \approx g(x) \vee f(x) \not \approx g(x)) \cdot \sigma}\right]
$$

where $\sigma:=\{x \mapsto a\}$. Decisions and propagations are always ground instances of literals from the first-order clauses, and are annotated with a level and a justification clause, in case of a decision a tautology. Now with respect to Γ clause C_{3} is false with grounding σ, and rule Conflict is applicable; see Section 3.1 for details on the inference rules. In general, clauses and justifications are considered variable disjoint, but for simplicity of the presentation of this example, we repeat variable names here as long as the same ground substitution is shared. The maximal literal in $C_{3} \sigma$ is $(f(x) \not \approx h(x)) \sigma$ and a rewrite refutation using the ground equations from the trail results in the justification clause

$$
(g(x) \not \approx g(x) \vee f(x) \not \approx g(x) \vee f(x) \not \approx g(x) \vee h(x) \not \approx g(x)) \cdot \sigma
$$

where for the refutation justification clauses and all otherwise inferred clauses we use the grounding σ for guidance, but operate on the clauses with variables. The respective ground clause is smaller than $(f(x) \not \approx h(x)) \sigma$, false with respect to Γ and becomes our new conflict clause by an application of our inference rule Explore-Refutation. It is simplified by our inference rules Equality-Resolution and Factorize, resulting in the finally learned clause

$$
C_{4}:=h(x) \not \approx g(x) \vee f(x) \not \approx g(x)
$$

which is then used to apply rule Backtrack to the trail. Further details on this example are available from the Appendix, Example 46, Observe that C_{4} is strictly stronger than C_{4}^{\prime} the clause inferred by superposition and that C_{4} cannot be inferred by superposition. Thus SCL(EQ) can infer stronger clauses than superposition for this example.

Related Work: SCL(EQ) is based on ideas of SCL 11814 but for the first time includes a native treatment of first-order equality reasoning. Similar to [14] propagations need not to be exhaustively applied, the trail is built out of decisions and propagations of ground literals annotated by first-order clauses, SCL(EQ) only learns non-redundant clauses, but for the first time conflicts resulting out of a decision have to be considered, due to the nature of the equality relation.

There have been suggested several approaches to lift the idea of an inference guiding model assumption from propositional to full first-order logic [1861312]. They do not provide a native treatment of equality, e.g., via paramodulation or rewriting.

Baumgartner et al. describe multiple calculi that handle equality by using unit superposition style inference rules and are based on either hyper tableaux 5] or DPLL [15|16]. Hyper tableaux fix a major problem of the well-known free variable tableaux, namely the fact that free variables within the tableau are rigid, i.e., substitutions have to be applied to all occurrences of a free variable within the entire tableau. Hyper tableaux with equality [7] in turn integrates unit superposition style inference rules into the hyper tableau calculus.

Another approach that is related to ours is the model evolution calculus with equality $\left(\mathcal{M} \mathcal{E}_{\mathcal{E}}\right)$ by Baumgartner et al. 918] which lifts the DPLL calculus to first-order logic with equality. Similar to our approach, $\mathcal{M} \mathcal{E}_{\mathcal{E}}$ creates a candidate model until a clause instance contradicts this model or all instances are satisfied by the model. The candidate model results from a so-called context, which consists of a finite set of non-ground rewrite literals. Roughly speaking, a context literal specifies the truth value of all its ground instances unless a more specific literal specifies the complement. Initially the model satisfies the identity relation over the set of all ground terms. Literals within a context may be universal or parametric, where universal literals guarantee all its ground instances to be true. If a clause contradicts the current model, it is repaired by a non-deterministic split which adds a parametric literal to the current model. If the added literal does not share any variables in the contradictory clause it is added as a universal literal.

Another approach by Baumgartner and Waldmann [10 combined the superposition calculus with the Model Evolution calculus with equality. In this calculus the atoms of the clauses are labeled as "split atoms" or "superposition atoms". The superposition part of the calculus then generates a model for the superposition atoms while the model evolution part generates a model for the split atoms. Conversely, this means that if all atoms are labeled as "split atom", the calculus behaves similar to the model evolution calculus. If all atoms are labeled as "superposition atom", it behaves like the superposition calculus.

Both the hyper tableaux calculus with equality and the model evolution calculus with equality allow only unit superposition applications, while SCL(EQ) inferences are guided paramodulation inferences on clauses of arbitrary length. The model evolution calculus with equality was revised and implemented in 2011 [8] and compares its performance with that of hyper tableaux. Model evolution performed significantly better, with more problems solved in all relevant TPTP [29] categories, than the implementation of the hyper tableaux calculus.

Plaisted et al. [26] present the Ordered Semantic Hyper-Linking (OSHL) calculus. OSHL is an instantiation based approach that repeatedly chooses ground instances of a non-ground input clause set such that the current model does not satisfy the current ground clause set. A further step repairs the current model such that it satisfies the ground clause set again. The algorithm terminates if the set of ground clauses contains the empty clause. OSHL supports rewriting and narrowing, but only with unit clauses. In order to handle non-unit clauses it makes use of other mechanisms such as Brand's Transformation [3].

Inst-Gen [22] is an instantiation based calculus, that creates ground instances of the input first-order formulas which are forwarded to a SAT solver. If a ground instance is unsatisfiable, then the first-order set is as well. If not then the calculus creates more instances. The Inst-Gen-EQ calculus [23] creates instances by extracting instantiations of unit superposition refutations of selected literals of the first-order clause set. The ground abstraction is then extended by the extracted clauses and an SMT solver then checks the satisfiability of the resulting set of equational and non-equational ground literals.

In favor of a better structure we have moved all proofs to an Appendix. The rest of the paper is organized as follows. Section 2 provides basic formalisms underlying SCL(EQ). The rules of the calculus are presented in Section 3 Soundness and completeness results are provided in Section 4. We end with a discussion of obtained results and future work, Section 5. The main contribution of this paper is the $\mathrm{SCL}(\mathrm{EQ})$ calculus that only learns non-redundant clauses, permits subset based redundancy elimination and rewriting, and its soundness and completeness.

2 Preliminaries

We assume a standard first-order language with equality and signature $\Sigma=$ (Ω, \emptyset) where the only predicate symbol is equality $\approx . N$ denotes a set of clauses, C, D denote clauses, L, K, H denote equational literals, A, B denote equational
atoms, t, s terms from $T(\Omega, \mathcal{X})$ for an infinite set of variables \mathcal{X}, f, g, h function symbols from Ω, a, b, c constants from Ω and x, y, z variables from \mathcal{X}. The function comp denotes the complement of a literal. We write $s \not \approx t$ as a shortcut for $\neg(s \approx t)$. The literal $s \# t$ may denote both $s \approx t$ and $s \not \approx t$. The semantics of first-order logic and semantic entailment \vDash is defined as usual.

By σ, τ, δ we denote substitutions, which are total mappings from variables to terms. Let σ be a substitution, then its finite domain is defined as $\operatorname{dom}(\sigma):=\{x \mid$ $x \sigma \neq x\}$ and its codomain is defined as $\operatorname{codom}(\sigma)=\{t \mid x \sigma=t, x \in \operatorname{dom}(\sigma)\}$. We extend their application to literals, clauses and sets of such objects in the usual way. A term, literal, clause or sets of these objects is ground if it does not contain any variable. A substitution σ is ground if $\operatorname{codom}(\sigma)$ is ground. A substitution σ is grounding for a term t, literal L, clause C if $t \sigma, L \sigma, C \sigma$ is ground, respectively. By $C \cdot \sigma, L \cdot \sigma$ we denote a closure consisting of a clause C, literal L and a grounding substitution σ, respectively. The function $g n d$ computes the set of all ground instances of a literal, clause, or clause set. The function mgu denotes the most general unifier of terms, atoms, literals, respectively. We assume that mgus do not introduce fresh variables and that they are idempotent.

The set of positions $\operatorname{pos}(L)$ of a literal (term $\operatorname{pos}(t))$ is inductively defined as usual. The notion $\left.L\right|_{p}$ denotes the subterm of a literal $L\left(\left.t\right|_{p}\right.$ for term $\left.t\right)$ at position $p \in \operatorname{pos}(L)(p \in \operatorname{pos}(t))$. The replacement of a subterm of a literal L (term $t)$ at position $p \in \operatorname{pos}(L)(p \in \operatorname{pos}(t))$ by a term s is denoted by $L[s]_{p}\left(t[s]_{p}\right)$. For example, the term $f(a, g(x))$ has the positions $\{\epsilon, 1,2,21\},\left.f(a, g(x))\right|_{21}=x$ and $f(a, g(x))[b]_{2}$ denotes the term $f(a, b)$.

Let R be a set of rewrite rules $l \rightarrow r$, called a term rewrite system (TRS). The rewrite relation $\rightarrow_{R} \subseteq T(\Omega, \mathcal{X}) \times T(\Omega, \mathcal{X})$ is defined as usual by $s \rightarrow_{R} t$ if there exists $(l \rightarrow r) \in R, p \in \operatorname{pos}(s)$, and a matcher σ, such that $\left.s\right|_{p}=l \sigma$ and $t=s[r \sigma]_{p}$. We write $s=t \downarrow_{R}$ if s is the normal form of t in the rewrite relation \rightarrow_{R}. We write $s \# t=\left(s^{\prime} \# t^{\prime}\right) \downarrow_{R}$ if s is the normal form of s^{\prime} and t is the normal form of t^{\prime}. A rewrite relation is terminating if there is no infinite descending chain $t_{0} \rightarrow t_{1} \rightarrow \ldots$ and confluent if $t \stackrel{*}{\leftarrow} \rightarrow^{*} t^{\prime}$ implies $t \leftrightarrow^{*} t^{\prime}$. A rewrite relation is convergent if it is terminating and confluent. A rewrite order is a irreflexive and transitive rewrite relation. A TRS R is terminating, confluent, convergent, if the rewrite relation \rightarrow_{R} is terminating, confluent, convergent, respectively. A term t is called irreducible by a TRS R if no rule from R rewrites t. Otherwise it is called reducible. A literal, clause is irreducible if all of its terms are irreducible, and reducible otherwise. A substitution σ is called irreducible if any $t \in \operatorname{codom}(\sigma)$ is irreducible, and reducible otherwise.

Let \prec_{T} denote a well-founded rewrite ordering on terms which is total on ground terms and for all ground terms t there exist only finitely many ground terms $s \prec_{T} t$. We call \prec_{T} a desired term ordering. We extend \prec_{T} to equations by assigning the multiset $\{s, t\}$ to positive equations $s \approx t$ and $\{s, s, t, t\}$ to inequations $s \not \approx t$. Furthermore, we identify \prec_{T} with its multiset extension comparing multisets of literals. For a (multi)set of terms $\left\{t_{1}, \ldots, t_{n}\right\}$ and a term t, we define $\left\{t_{1}, \ldots, t_{n}\right\} \prec_{T} t$ if $\left\{t_{1}, \ldots, t_{n}\right\} \prec_{T}\{t\}$. For a (multi)set of Literals $\left\{L_{1}, \ldots, L_{n}\right\}$ and a term t, we define $\left\{L_{1}, \ldots, L_{n}\right\} \prec_{T} t$ if $\left\{L_{1}, \ldots, L_{n}\right\} \prec_{T}\{\{t\}\}$. Given a
ground term β then gnd $_{\prec_{T} \beta}$ computes the set of all ground instances of a literal, clause, or clause set where the groundings are smaller than β according to the ordering \prec_{T}. Given a set (sequence) of ground literals Γ let $\operatorname{conv}(\Gamma)$ be a convergent rewrite system out of the positive equations in Γ using \prec_{T}.

Let \prec be a well-founded, total, strict ordering on ground literals, which is lifted to clauses and clause sets by its respective multiset extension. We overload \prec for literals, clauses, clause sets if the meaning is clear from the context. The ordering is lifted to the non-ground case via instantiation: we define $C \prec D$ if for all grounding substitutions σ it holds $C \sigma \prec D \sigma$. Then we define \preceq as the reflexive closure of \prec and $N \preceq C:=\{D \mid D \in N$ and $D \preceq C\}$ and use the standard superposition style notion of redundancy [2].

Definition 1 (Clause Redundancy). A ground clause C is redundant with respect to a set N of ground clauses and an ordering \prec if $N \preceq C \models C$. A clause C is redundant with respect to a clause set N and an ordering \prec if for all $C^{\prime} \in \operatorname{gnd}(C), C^{\prime}$ is redundant with respect to $\operatorname{gnd}(N)$.

3 The SCL(EQ) Calculus

We start the introduction of the calculus by defining the ingredients of an SCL(EQ) state.

Definition 2 (Trail). A trail $\Gamma:=\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]$ is a consistent sequence of ground equations and inequations where L_{j} is annotated by a level i_{j} with $i_{j-1} \leq i_{j}$, and a closure $C_{j} \cdot \sigma_{j}$. We omit the annotations if they are not needed in a certain context. A ground literal L is true in Γ if $\Gamma \models L$. A ground literal L is false in Γ if $\Gamma \models \operatorname{comp}(L)$. A ground literal L is undefined in Γ if $\Gamma \not \vDash L$ and $\Gamma \not \vDash \operatorname{comp}(L)$. Otherwise it is defined. For each literal L_{j} in Γ it holds that L_{j} is undefined in $\left[L_{1}, \ldots, L_{j-1}\right]$ and irreducible by $\operatorname{conv}\left(\left\{L_{1}, \ldots, L_{j-1}\right\}\right)$.

The above definition of truth and undefinedness is extended to clauses in the obvious way. The notions of true, false, undefined can be parameterized by a ground term β by saying that L is β-undefined in a trail Γ if $\beta \prec_{T} L$ or L is undefined. The notions of a β-true, β-false term are restrictions of the above notions to literals smaller β, respectively. All $\mathrm{SCL}(\mathrm{EQ})$ reasoning is layered with respect to a ground term β.

Definition 3. Let Γ be a trail and L a ground literal such that L is defined in Γ. By core $(\Gamma ; L)$ we denote a minimal subsequence $\Gamma^{\prime} \subseteq \Gamma$ such that L is defined in Γ^{\prime}. By $\operatorname{cores}(\Gamma ; L)$ we denote the set of all cores.

Note that $\operatorname{core}(\Gamma ; L)$ is not necessarily unique. There can be multiple cores for a given trail Γ and ground literal L.

Definition 4 (Trail Ordering). Let $\Gamma:=\left[L_{1}, \ldots, L_{n}\right]$ be a trail. The (partial) trail ordering \prec_{Γ} is the sequence ordering given by Γ, i.e., $L_{i} \prec_{\Gamma} L_{j}$ if $i<j$ for all $1 \leq i, j \leq n$.

Definition 5 (Defining Core and Defining Literal). For a trail Γ and a sequence of literals $\Delta \subseteq \Gamma$ we write $\max _{\prec_{\Gamma}(\Delta) \text { for the largest literal in } \Delta \text { ac- }}$ cording to the trail ordering \prec_{Γ}. Let Γ be a trail and L a ground literal such that L is defined in Γ. Let $\Delta \in \operatorname{cores}(\Gamma ; L)$ be a sequence of literals where $\max _{\prec_{\Gamma}}(\Delta) \preceq_{\Gamma} \max _{\prec_{\Gamma}}(\Lambda)$ for all $\Lambda \in \operatorname{cores}(\Gamma ; L)$, then $\max _{\Gamma}(L):=\max _{\prec_{\Gamma}}(\Delta)$ is called the defining literal and Δ is called a defining core for L in Γ. If $\operatorname{cores}(\Gamma ; L)$ contains only the empty core, then L has no defining literal and no defining core.

Note that there can be multiple defining cores but only one defining literal for any defined literal L. For example, consider a trail $\Gamma:=\left[f(a) \approx f(b)^{1: C_{1} \cdot \sigma_{1}}, a \approx\right.$ $\left.b^{2: C_{2} \cdot \sigma_{2}}, b \approx c^{3: C_{3} \cdot \sigma_{3}}\right]$ with an ordering \prec_{T} that orders the terms of the equations from left to right, and a literal $g(f(a)) \approx g(f(c))$. Then the defining cores are $\Delta_{1}:=[a \approx b, b \approx c]$ and $\Delta_{2}:=[f(a) \approx f(b), b \approx c]$. The defining literal, however, is in both cases $b \approx c$. Defined literals that have no defining core and therefore no defining literal are literals that are trivially false or true. Consider, for example, $g(f(a)) \approx g(f(a))$. This literal is trivially true in Γ. Thus an empty subset of Γ is sufficient to show that $g(f(a)) \approx g(f(a))$ is defined in Γ.

Definition 6 (Literal Level). Let Γ be a trail. A ground literal $L \in \Gamma$ is of level i if L is annotated with i in Γ. A defined ground literal $L \notin \Gamma$ is of level i if the defining literal of L is of level i. If L has no defining literal, then L is of level 0. A ground clause D is of level i if i is the maximum level of a literal in D.

The restriction to minimal subsequences for the defining literal and definition of a level eventually guarantee that learned clauses are smaller in the trail ordering. This enables completeness in combination with learning non-redundant clauses as shown later.

Lemma 7. Let Γ_{1} be a trail and K a defined literal that is of level i in Γ_{1}. Then K is of level i in a trail $\Gamma:=\Gamma_{1}, \Gamma_{2}$.

Definition 8. Let Γ be a trail and $L \in \Gamma$ a literal. L is called a decision literal if $\Gamma=\Gamma_{0}, K^{i: C \cdot \tau}, L^{i+1: C^{\prime} \cdot \tau^{\prime}}, \Gamma_{1}$. Otherwise L is called a propagated literal.

In our above example $g(f(a)) \approx g(f(c))$ is of level 3 since the defining literal $b \approx c$ is annotated with $3 . a \not \approx b$ on the other hand is of level 2.

We define a well-founded total strict ordering which is induced by the trail and with which non-redundancy is proven in Section 4. Unlike SCL [1814] we use this ordering for the inference rules as well. In previous SCL calculi, conflict resolution automatically chooses the greatest literal and resolves with this literal. In $\mathrm{SCL}(\mathrm{EQ})$ this is generalized. Coming back to our running example above, suppose we have a conflict clause $f(b) \not \approx f(c) \vee b \not \approx c$. The defining literal for both inequations is $b \approx c$. So we could do paramodulation inferences with both literals. The following ordering makes this non-deterministic choice deterministic.

Definition 9 (Trail Induced Ordering). Let $\Gamma:=\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]$ be a trail, β a ground term such that $\left\{L_{1}, \ldots, L_{n}\right\} \prec_{T} \beta$ and $M_{i, j}$ all β-defined ground literals not contained in $\Gamma \cup \operatorname{comp}(\Gamma)$: for a defining literal $\max _{\Gamma}\left(M_{i, j}\right)=$ L_{i} and for two literals $M_{i, j}, M_{i, k}$ we have $j<k$ if $M_{i, j} \prec_{T} M_{i, k}$. The trail induces a total well-founded strict order $\prec_{\Gamma^{*}}$ on β-defined ground literals $M_{k, l}, M_{m, n}$, L_{i}, L_{j} of level greater than zero, where

1. $M_{i, j} \prec_{\Gamma^{*}} M_{k, l}$ if $i<k$ or $(i=k$ and $j<l)$
2. $L_{i} \prec_{\Gamma^{*}} L_{j}$ if $L_{i} \prec_{\Gamma} L_{j}$
3. $\operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} L_{j}$ if $L_{i} \prec_{\Gamma} L_{j}$
4. $L_{i} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{j}\right)$ if $L_{i} \prec_{\Gamma} L_{j}$ or $i=j$
5. $\operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{j}\right)$ if $L_{i} \prec_{\Gamma} L_{j}$
6. $L_{i} \prec_{\Gamma^{*}} M_{k, l}, \operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} M_{k, l}$ if $i \leq k$
7. $M_{k, l} \prec_{\Gamma^{*}} L_{i}, M_{k, l} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{i}\right)$ if $k<i$
and for all β-defined literals L of level zero:
8. $\prec_{\Gamma^{*}}:=\prec_{T}$
9. $L \prec_{\Gamma^{*}} K$ if K is of level greater than zero and K is β-defined
and can eventually be extended to β-undefined ground literals K, H by
10. $K \prec_{\Gamma^{*}} H$ if $K \prec_{T} H$
11. $L \prec_{\Gamma^{*}} H$ if L is β-defined

The literal ordering $\prec_{\Gamma^{*}}$ is extended to ground clauses by multiset extension and identified with $\prec_{\Gamma^{*}}$ as well.

Lemma 10 (Properties of $\prec_{\Gamma^{*}}$).

1. $\prec_{\Gamma^{*}}$ is well-defined.
2. $\prec_{\Gamma *}$ is a total strict order, i.e. $\prec_{\Gamma *}$ is irreflexive, transitive and total.
3. $\prec_{\Gamma^{*}}$ is a well-founded ordering.

Example 11. Assume a trail $\Gamma:=\left[a \approx b^{1: C_{0} \cdot \sigma_{0}}, c \approx d^{1: C_{1} \cdot \sigma_{1}}, f\left(a^{\prime}\right) \not \approx f\left(b^{\prime}\right)^{1: C_{2} \cdot \sigma_{2}}\right]$, select KBO as the term ordering \prec_{T} where all symbols have weight one and $a \prec a^{\prime} \prec b \prec b^{\prime} \prec c \prec d \prec f$ and a ground term $\beta:=f(f(a))$. According to the trail induced ordering we have that $a \approx b \prec_{\Gamma^{*}} c \approx d \prec_{\Gamma^{*}} f\left(a^{\prime}\right) \not \approx f\left(b^{\prime}\right)$ by 9, 2. Furthermore we have that

$$
a \approx b \prec_{\Gamma^{*}} a \not \approx b \prec_{\Gamma^{*}} c \approx d \prec_{\Gamma^{*}} c \not \approx d \prec_{\Gamma^{*}} f\left(a^{\prime}\right) \not \approx f\left(b^{\prime}\right) \prec_{\Gamma^{*}} f\left(a^{\prime}\right) \approx f\left(b^{\prime}\right)
$$

by 9,3 and 94 . Now for any literal L that is β-defined in Γ and the defining literal is $a \approx b$ it holds that $a \not \approx b \prec_{\Gamma^{*}} L \prec_{\Gamma^{*}} c \approx d$ by 96 and 9.7. This holds analogously for all literals that are β-defined in Γ and the defining literal is $c \approx d$ or $f\left(a^{\prime}\right) \not \approx f\left(b^{\prime}\right)$. Thus we get:

$$
\begin{gathered}
L_{1} \prec_{\Gamma^{*}} \ldots \prec_{\Gamma^{*}} a \approx b \prec_{\Gamma^{*}} a \not \approx b \prec_{\Gamma^{*}} f(a) \approx f(b) \prec_{\Gamma^{*}} f(a) \not \approx f(b) \prec_{\Gamma^{*}} \\
c \approx d \prec_{\Gamma^{*}} c \not \approx d \prec_{\Gamma^{*}} f(c) \approx f(d) \prec_{\Gamma^{*}} f(c) \not \approx f(d) \prec_{\Gamma^{*}} \\
f\left(a^{\prime}\right) \not \approx f\left(b^{\prime}\right) \prec_{\Gamma^{*}} f\left(a^{\prime}\right) \approx f\left(b^{\prime}\right) \prec_{\Gamma^{*}} a^{\prime} \approx b^{\prime} \prec_{\Gamma^{*}} a^{\prime} \not \approx b^{\prime} \prec_{\Gamma^{*}} K_{1} \prec_{\Gamma^{*}} \ldots
\end{gathered}
$$

where K_{i} are the β-undefined literals and L_{j} are the trivially defined literals.
Definition 12 (Rewrite Step). A rewrite step is a five-tuple ($s \# t \cdot \sigma, s \# t \vee$ $C \cdot \sigma, R, S, p)$ and inductively defined as follows. The tuple $(s \# t \cdot \sigma, s \# t \vee C \cdot \sigma, \epsilon, \epsilon, \epsilon)$ is a rewrite step. Given rewrite steps R, S and a position p then $(s \# t \cdot \sigma, s \# t \vee$ $C \cdot \sigma, R, S, p)$ is a rewrite step. The literal $s \# t$ is called the rewrite literal. In case R, S are not ϵ, the rewrite literal of R is an equation.

Rewriting is one of the core features of our calculus. The following definition describes a rewrite inference between two clauses. Note that unlike the superposition calculus we allow rewriting below variable level.

Definition 13 (Rewrite Inference). Let $I_{1}:=\left(l_{1} \approx r_{1} \cdot \sigma_{1}, l_{1} \approx r_{1} \vee C_{1} \cdot \sigma_{1}, R_{1}\right.$, $\left.L_{1}, p_{1}\right)$ and $I_{2}:=\left(l_{2} \# r_{2} \cdot \sigma_{2}, l_{2} \# r_{2} \vee C_{2} \cdot \sigma_{2}, R_{2}, L_{2}, p_{2}\right)$ be two variable disjoint rewrite steps where $r_{1} \sigma_{1} \prec_{T} l_{1} \sigma_{1},\left.\left(l_{2} \# r_{2}\right) \sigma_{2}\right|_{p}=l_{1} \sigma_{1}$ for some position p. We distinguish two cases:

1. if $p \in \operatorname{pos}\left(l_{2} \# r_{2}\right)$ and $\mu:=\operatorname{mgu}\left(\left.\left(l_{2} \# r_{2}\right)\right|_{p}, l_{1}\right)$ then $\left(\left(\left(l_{2} \# r_{2}\right)\left[r_{1}\right]_{p}\right) \mu \cdot \sigma_{1} \sigma_{2}\right.$, $\left.\left(\left(l_{2} \# r_{2}\right)\left[r_{1}\right]_{p}\right) \mu \vee C_{1} \mu \vee C_{2} \mu \cdot \sigma_{1} \sigma_{2}, I_{1}, I_{2}, p\right)$ is the result of a rewrite inference.
2. if $p \notin \operatorname{pos}\left(l_{2} \# r_{2}\right)$ then let $\left(l_{2} \# r_{2}\right) \delta$ be the most general instance of $l_{2} \# r_{2}$ such that $p \in \operatorname{pos}\left(\left(l_{2} \# r_{2}\right) \delta\right), \delta$ introduces only fresh variables and $\left(l_{2} \# r_{2}\right) \delta \sigma_{2} \rho=$ $\left(l_{2} \# r_{2}\right) \sigma_{2}$ for some minimal ρ. Let $\mu:=\operatorname{mgu}\left(\left.\left(l_{2} \# r_{2}\right) \delta\right|_{p}, l_{1}\right)$. Then $\left(\left(l_{2} \# r_{2}\right) \delta\left[r_{1}\right]_{p} \mu \cdot \sigma_{1} \sigma_{2} \rho,\left(l_{2} \# r_{2}\right) \delta\left[r_{1}\right]_{p} \mu \vee C_{1} \mu \vee C_{2} \delta \mu \cdot \sigma_{1} \sigma_{2} \rho, I_{1}, I_{2}, p\right)$ is the result of a rewrite inference.

Lemma 14. Let $I_{1}:=\left(l_{1} \approx r_{1} \cdot \sigma_{1}, l_{1} \approx r_{1} \vee C_{1} \cdot \sigma_{1}, R_{1}, L_{1}, p_{1}\right)$ and $I_{2}:=$ $\left(l_{2} \# r_{2} \cdot \sigma_{2}, l_{2} \# r_{2} \vee C_{2} \cdot \sigma_{2}, R_{2}, L_{2}, p_{2}\right)$ be two variable disjoint rewrite steps where $r_{1} \sigma_{1} \prec_{T} l_{1} \sigma_{1},\left.\left(l_{2} \# r_{2}\right) \sigma_{2}\right|_{p}=l_{1} \sigma_{1}$ for some position p. Let $I_{3}:=\left(l_{3} \# r_{3} \cdot \sigma_{3}, l_{3} \# r_{3} \vee\right.$ $\left.C_{3} \cdot \sigma_{3}, I_{1}, I_{2}, p\right)$ be the result of a rewrite inference. Then:

1. $C_{3} \sigma_{3}=\left(C_{1} \vee C_{2}\right) \sigma_{1} \sigma_{2}$ and $l_{3} \# r_{3} \sigma_{3}=\left(l_{2} \# r_{2}\right) \sigma_{2}\left[r_{1} \sigma_{1}\right]_{p}$.
2. $\left(l_{3} \# r_{3}\right) \sigma_{3} \prec_{T}\left(l_{2} \# r_{2}\right) \sigma_{2}$
3. If $N \models\left(l_{1} \approx r_{1} \vee C_{1}\right) \wedge\left(l_{2} \# r_{2} \vee C_{2}\right)$ for some set of clauses N, then $N \models l_{3} \# r_{3} \vee C_{3}$

Now that we have defined rewrite inferences we can use them to define a reduction chain application and a refutation, which are sequences of rewrite steps. Intuitively speaking, a reduction chain application reduces a literal in a clause with literals in $\operatorname{conv}(\Gamma)$ until it is irreducible. A refutation for a literal L that is β-false in Γ for a given β, is a sequence of rewrite steps with literals in Γ, L such that \perp is inferred. Refutations for the literals of the conflict clause will be examined during conflict resolution by the rule Explore-Refutation.

Definition 15 (Reduction Chain). Let Γ be a trail. A reduction chain \mathcal{P} from Γ is a sequence of rewrite steps $\left[I_{1}, \ldots, I_{m}\right]$ such that for each $I_{i}=\left(s_{i} \# t_{i} \cdot \sigma_{i}, s_{i} \# t_{i} \vee\right.$ $\left.C_{i} \cdot \sigma_{i}, I_{j}, I_{k}, p_{i}\right)$ either

1. $s_{i} \# t_{i}^{n_{i}: s_{i} \# t_{i} \vee C_{i} \cdot \sigma}$ is contained in Γ and $I_{j}=I_{k}=p_{i}=\epsilon$ or
2. I_{i} is the result of a rewriting inference from rewrite steps I_{j}, I_{k} out of $\left[I_{1}, \ldots, I_{m}\right]$ where $j, k<i$.

Let $(l \# r) \delta^{o: l \# r \vee C \cdot \delta}$ be an annotated ground literal. A reduction chain application from Γ to $l \# r$ is a reduction chain $\left[I_{1}, \ldots, I_{m}\right]$ from $\Gamma,(l \# r) \delta^{o: l \# r \vee C \cdot \delta}$ such that $l \delta \downarrow_{\operatorname{conv}(\Gamma)}=s_{m} \sigma_{m}$ and $r \delta \downarrow_{\operatorname{conv}(\Gamma)}=t_{m} \sigma_{m}$. We assume reduction chain applications to be minimal, i.e., if any rewrite step is removed from the sequence it is no longer a reduction chain application.
Definition 16 (Refutation). Let Γ be a trail and $(l \# r) \delta^{o: l \# r \vee C \cdot \delta}$ an annotated ground literal that is β-false in Γ for a given β. A refutation \mathcal{P} from Γ and $l \# r$ is a reduction chain $\left[I_{1}, \ldots, I_{m}\right]$ from $\Gamma,(l \# r) \delta^{o: l \# r \vee C \cdot \delta}$ such that $\left(s_{m} \# t_{m}\right) \sigma_{m}=s \not \approx s$ for some s. We assume refutations to be minimal, i.e., if any rewrite step $I_{k}, k<m$ is removed from the refutation, it is no longer a refutation.

3.1 The SCL(EQ) Inference Rules

We can now define the rules of our calculus based on the previous definitions. A state is a six-tuple $(\Gamma ; N ; U ; \beta ; k ; D)$ similar to the SCL calculus, where Γ a sequence of annotated ground literals, N and U the sets of initial and learned clauses, β is a ground term such that for all $L \in \Gamma$ it holds $L \prec_{T} \beta, k$ is the decision level, and D a status that is \top, \perp or a closure $C \cdot \sigma$. Before we propagate or decide any literal, we make sure that it is irreducible in the current trail. Together with the design of $\prec_{\Gamma^{*}}$ this eventually enables rewriting as a simplification rule.

Propagate

$$
(\Gamma ; N ; U ; \beta ; k ; \top) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}\left(\Gamma, s_{m} \# t_{m} \sigma_{m}^{k:\left(s_{m} \# t_{m} \vee C_{m}\right) \cdot \sigma_{m}} ; N ; U ; \beta ; k ; \top\right)
$$

provided there is a $C \in(N \cup U), \sigma$ grounding for $C, C=C_{0} \vee C_{1} \vee L, \Gamma \models \neg C_{0} \sigma$, $C_{1} \sigma=L \sigma \vee \ldots \vee L \sigma, C_{1}=L_{1} \vee \ldots \vee L_{n}, \mu=m g u\left(L_{1}, \ldots, L_{n}, L\right) L \sigma$ is β-undefined in $\Gamma,\left(C_{0} \vee L\right) \mu \sigma \prec_{T} \beta, \sigma$ is irreducible by $\operatorname{conv}(\Gamma),\left[I_{1}, \ldots, I_{m}\right]$ is a reduction chain application from Γ to $L \sigma^{k:\left(L \vee C_{0}\right) \mu \cdot \sigma}$ where $I_{m}=\left(s_{m} \# t_{m} \cdot \sigma_{m}, s_{m} \# t_{m} \vee\right.$ $\left.C_{m} \cdot \sigma_{m}, I_{j}, I_{k}, p_{m}\right)$.

Note that the definition of Propagate also includes the case where $L \sigma$ is irreducible by Γ. In this case $L=s_{m} \# t_{m}$ and $m=1$. The rule Decide below, is similar to Propagate, except for the subclause C_{0} which must be β-undefined or β-true in Γ, i.e., Propagate cannot be applied and the decision literal is annotated by a tautology.

Decide

$(\Gamma ; N ; U ; \beta ; k ; \top) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}\left(\Gamma, s_{m} \# t_{m} \sigma_{m}^{k+1:\left(s_{m} \# t_{m} \vee \operatorname{comp}\left(s_{m} \# t_{m}\right)\right) \cdot \sigma_{m}} ; N ; U ;\right.$ $\beta ; k+1 ; \top)$
provided there is a $C \in(N \cup U), \sigma$ grounding for $C, C=C_{0} \vee L, C_{0} \sigma$ is β-undefined or β-true in $\Gamma, L \sigma$ is β-undefined in $\Gamma,\left(C_{0} \vee L\right) \sigma \prec_{T} \beta, \sigma$ is
irreducible by $\operatorname{conv}(\Gamma),\left[I_{1}, \ldots, I_{m}\right]$ is a reduction chain application from Γ to $L \sigma^{k+1: L \vee C_{0} \cdot \sigma}$ where $I_{m}=\left(s_{m} \# t_{m} \cdot \sigma_{m}, s_{m} \# t_{m} \vee C_{m} \cdot \sigma_{m}, I_{j}, I_{k}, p_{m}\right)$.

Conflict $\quad(\Gamma ; N ; U ; \beta ; k ; \top) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}(\Gamma ; N ; U ; \beta ; k ; D)$
provided there is a $D^{\prime} \in(N \cup U), \sigma$ grounding for $D^{\prime}, D^{\prime} \sigma$ is β-false in Γ, σ is irreducible by $\operatorname{conv}(\Gamma), D=\perp$ if $D^{\prime} \sigma$ is of level 0 and $D=D^{\prime} \cdot \sigma$ otherwise.

For the non-equational case, when a conflict clause is found by an SCL calculus 1814, the complements of its first-order ground literals are contained in the trail. For equational literals this is not the case, in general. The proof showing D to be β-false with respect to Γ is a rewrite proof with respect to $\operatorname{conv}(\Gamma)$. This proof needs to be analyzed to eventually perform paramodulation steps on D or to replace D by a $\prec_{\Gamma^{*}}$ smaller β-false clause showing up in the proof.
$\operatorname{Skip}\left(\Gamma, K^{l: C \cdot \tau}, L^{k: C^{\prime} \cdot \tau^{\prime}} ; N ; U ; \beta ; k ; D \cdot \sigma\right) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}\left(\Gamma, K^{l: C \cdot \tau} ; N ; U ; \beta ; l ; D \cdot \sigma\right)$ if $D \sigma$ is β-false in $\Gamma, K^{l: C \cdot \tau}$.

The Explore-Refutation rule is the FOL with Equality counterpart to the resolve rule in CDCL or SCL. While in CDCL or SCL complementary literals of the conflict clause are present on the trail and can directly be used for resolution steps, this needs a generalization for FOL with Equality. Here, in general, we need to look at (rewriting) refutations of the conflict clause and pick an appropriate clause from the refutation as the next conflict clause.

Explore-Refutation

$(\Gamma, L ; N ; U ; \beta ; k ;(D \vee s \# t) \cdot \sigma)) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}\left(\Gamma, L ; N ; U ; \beta ; k ;\left(s_{j} \# t_{j} \vee C_{j}\right) \cdot \sigma_{j}\right)$ if $(s \# t) \sigma$ is strictly $\prec_{\Gamma^{*}}$ maximal in $(D \vee s \# t) \sigma, L$ is the defining literal of $(s \# t) \sigma,\left[I_{1}, \ldots, I_{m}\right]$ is a refutation from Γ and $(s \# t) \sigma, I_{j}=\left(s_{j} \# t_{j} \cdot \sigma_{j},\left(s_{j} \# t_{j} \vee\right.\right.$ $\left.\left.C_{j}\right) \cdot \sigma_{j}, I_{l}, I_{k}, p_{j}\right), 1 \leq j \leq m,\left(s_{j} \# t_{j} \vee C_{j}\right) \sigma_{j} \prec_{\Gamma^{*}}(D \vee s \# t) \sigma,\left(s_{j} \# t_{j} \vee C_{j}\right) \sigma_{j}$ is β-false in Γ.

Factorize

$\left(\Gamma ; N ; U ; \beta ; k ;\left(D \vee L \vee L^{\prime}\right) \cdot \sigma\right) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}(\Gamma ; N ; U ; \beta ; k ;(D \vee L) \mu \cdot \sigma)$
provided $L \sigma=L^{\prime} \sigma$, and $\mu=\operatorname{mgu}\left(L, L^{\prime}\right)$.

Equality-Resolution

$\left(\Gamma ; N ; U ; \beta ; k ;\left(D \vee s \not \approx s^{\prime}\right) \cdot \sigma\right) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}(\Gamma ; N ; U ; \beta ; k ; D \mu \cdot \sigma)$
provided $s \sigma=s^{\prime} \sigma, \mu=m g u\left(s, s^{\prime}\right)$.
Backtrack $\left(\Gamma, K, \Gamma^{\prime} ; N ; U ; \beta ; k ;(D \vee L) \cdot \sigma\right) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}(\Gamma ; N ; U \cup\{D \vee$ $L\} ; \beta ; j-i ; \top)$
provided $D \sigma$ is of level i^{\prime} where $i^{\prime}<k, K$ is of level j and Γ, K the minimal trail subsequence such that there is a grounding substitution τ with $(D \vee L) \tau \beta$-false in Γ, K but not in $\Gamma ; i=1$ if K is a decision literal and $i=0$ otherwise.

Grow $(\Gamma ; N ; U ; \beta ; k ; \top) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}\left(\epsilon ; N ; U ; \beta^{\prime} ; 0 ; \top\right)$
provided $\beta \prec_{T} \beta^{\prime}$.
In addition to soundness and completeness of the SCL(EQ) rules their tractability in practice is an important property for a successful implementation. In particular, finding propagating literals or detecting a false clause under some grounding. It turns out that these operations are NP-complete, similar to firstorder subsumption which has been shown to be tractable in practice.

Lemma 17. Assume that all ground terms t with $t \prec_{T} \beta$ for any β are polynomial in the size of β. Then testing Propagate (Conflict) is NP-Complete, i.e., the problem of checking for a given clause C whether there exists a grounding substitution σ such that $C \sigma$ propagates (is false) is NP-Complete.

Example 18 (SCL(EQ) vs. Superposition: Saturation). Consider the following clauses:

$$
N:=\left\{C_{1}:=c \approx d \vee D, C_{2}:=a \approx b \vee c \not \approx d, C_{3}:=f(a) \not \approx f(b) \vee g(c) \not \approx g(d)\right\}
$$

where again we assume a KBO with all symbols having weight one, precedence $d \prec c \prec b \prec a \prec g \prec f$ and $\beta:=f(f(g(a)))$. Suppose that we first decide $c \approx d$ and then propagate $a \approx b: \Gamma=\left[c \approx d^{1: c \approx d \vee c \not \approx d}, a \approx b^{1: C_{2}}\right]$. Now we have a conflict with C_{3}. Explore-Refutation applied to the conflict clause C_{3} results in a paramodulation inference between C_{3} and C_{2}. Another application of EqualityResolution gives us the new conflict clause $C_{4}:=c \not \approx d \vee g(c) \not \approx g(d)$. Now we can Skip the last literal on the trail, which gives us $\Gamma=\left[c \approx d^{1: c \approx d \vee c \nsim d}\right]$. Another application of the Explore-Refutation rule to C_{4} using the decision justification clause followed by Equality-Resolution and Factorize gives us $C_{5}:=c \not \approx d$. Thus with $\mathrm{SCL}(\mathrm{EQ})$ the following clauses remain:

$$
\begin{gathered}
C_{1}^{\prime}=D \quad C_{5}=c \not \approx d \\
C_{3}=f(a) \not \approx f(b) \vee g(c) \not \approx g(d)
\end{gathered}
$$

where we derived C_{1}^{\prime} out of C_{1} by subsumption resolution [32] using C_{5}. Actually, subsumption resolution is compatible with the general redundancy notion of SCL(EQ), see Lemma 25, Now we consider the same example with superposition and the very same ordering (N_{i} is the clause set of the previous step and N_{0} the initial clause set N).

$$
\begin{aligned}
& N_{0} \Rightarrow_{\operatorname{Sup}\left(C_{2}, C_{3}\right)} N_{1} \cup\left\{C_{4}:=c \not \approx d \vee g(c) \not \approx g(d)\right\} \\
& \Rightarrow \operatorname{Sup}\left(C_{1}, C_{4}\right) \\
& N_{2} \cup\left\{C_{5}:=c \not \approx d \vee D\right\} \nRightarrow_{\operatorname{Sup}\left(C_{1}, C_{5}\right)} N_{3} \cup\left\{C_{6}:=D\right\}
\end{aligned}
$$

Thus superposition ends up with the following clauses:

$$
\begin{array}{ll}
C_{2}=a \approx b \vee c \not \approx d & C_{3}=f(a) \not \approx f(b) \vee g(c) \not \approx g(d) \\
C_{4}=c \not \approx d \vee g(c) \not \approx g(d) & C_{6}=D
\end{array}
$$

The superposition calculus generates more and larger clauses.

Example 19 (SCL(EQ) vs. Superposition: Refutation). Suppose the following set of clauses: $N:=\left\{C_{1}:=f(x) \not \approx a \vee f(x) \approx b, C_{2}:=f(f(y)) \approx y, C_{3}:=a \not \approx b\right\}$ where again we assume a KBO with all symbols having weight one, precedence $b \prec a \prec f$ and $\beta:=f(f(f(a)))$. A long refutation by the superposition calculus results in the following (N_{i} is the clause set of the previous step and N_{0} the initial clause set N):

$$
\begin{aligned}
& N_{0} \Rightarrow \operatorname{Sup}\left(C_{1}, C_{2}\right) \\
& N_{1} \cup\left\{C_{4}:=y \not \approx a \vee f(f(y)) \approx b\right\} \\
& \Rightarrow \operatorname{Sup}\left(C_{1}, C_{4}\right) \\
& N_{2} \cup\left\{C_{5}:=a \not \approx b \vee f(f(y)) \approx b \vee y \not \approx a\right\} \\
& \Rightarrow \operatorname{Sup}^{\left(C_{2}, C_{5}\right)} N_{3} \cup\left\{C_{6}:=a \not \approx b \vee b \approx y \vee y \not \approx a\right\} \\
& \Rightarrow \operatorname{Sup}\left(C_{2}, C_{4}\right) \\
& N_{4} \cup\left\{C_{7}:=y \approx b \vee y \not \approx a\right\} \\
&{\operatorname{EqRes}\left(C_{7}\right)} N_{5} \cup\left\{C_{8}:=a \approx b\right\} \Rightarrow_{\operatorname{Sup}\left(C_{3}, C_{8}\right)} N_{6} \cup\{\perp\}
\end{aligned}
$$

The shortest refutation by the superposition calculus is as follows:

$$
\begin{aligned}
N_{0} & \Rightarrow_{\operatorname{Sup}\left(C_{1}, C_{2}\right)} N_{1} \cup\left\{C_{4}:=y \not \approx a \vee f(f(y)) \approx b\right\} \\
& \Rightarrow_{\operatorname{Sup}\left(C_{2}, C_{4}\right)} N_{2} \cup\left\{C_{5}:=y \approx b \vee y \not \approx a\right\} \\
& \Rightarrow_{\operatorname{EqRes}\left(C_{5}\right)} N_{3} \cup\left\{C_{6}:=a \approx b\right\} \Rightarrow_{\operatorname{Sup}\left(C_{3}, C_{6}\right)} N_{4} \cup\{\perp\}
\end{aligned}
$$

In $\operatorname{SCL}(\mathrm{EQ})$ on the other hand we would always first propagate $a \not \approx b, f(f(a)) \approx$ a and $f(f(b)) \approx b$. As soon as $a \not \approx b$ and $f(f(a)) \approx a$ are propagated we have a conflict with $C_{1}\{x \rightarrow f(a)\}$. So suppose in the worst case we propagate:

$$
\Gamma:=\left[a \not \approx b^{0: a \not \approx b}, f(f(b)) \approx b^{0:(f(f(y)) \approx y)\{y \rightarrow b\}}, f(f(a)) \approx a^{0:(f(f(y)) \approx y)\{y \rightarrow a\}}\right]
$$

Now we have a conflict with $C_{1}\{x \rightarrow f(a)\}$. Since there is no decision literal on the trail, Conflict rule immediately returns \perp and we are done.

4 Soundness and Completeness

In this section we show soundness and refutational completeness of SCL(EQ) under the assumption of a regular run. We provide the definition of a regular run and show that for a regular run all learned clauses are non-redundant according to our trail induced ordering. We start with the definition of a sound state.

Definition 20. A state $(\Gamma ; N ; U ; \beta ; k ; D)$ is sound if the following conditions hold:

1. Γ is a consistent sequence of annotated literals,
2. for each decomposition $\Gamma=\Gamma_{1}, L \sigma^{i:(C \vee L) \cdot \sigma}, \Gamma_{2}$ where $L \sigma$ is a propagated literal, we have that $C \sigma$ is β-false in $\Gamma_{1}, L \sigma$ is β-undefined in Γ_{1} and irreducible by conv $\left(\Gamma_{1}\right), N \cup U \models(C \vee L)$ and $(C \vee L) \sigma \prec_{T} \beta$,
3. for each decomposition $\Gamma=\Gamma_{1}, L \sigma^{i:(L \vee \operatorname{comp}(L)) \cdot \sigma}, \Gamma_{2}$ where $L \sigma$ is a decision literal, we have that $L \sigma$ is β-undefined in Γ_{1} and irreducible by $\operatorname{conv}\left(\Gamma_{1}\right)$, $N \cup U \models(L \vee \operatorname{comp}(L))$ and $(L \vee \operatorname{comp}(L)) \sigma \prec_{T} \beta$,
4. $N \models U$,
5. if $D=C \cdot \sigma$, then $C \sigma$ is β-false in $\Gamma, N \cup U \models C$,

Lemma 21. The initial state $(\epsilon ; N ; \emptyset ; \beta ; 0 ; \top)$ is sound.

Definition 22. A run is a sequence of applications of $S C L(E Q)$ rules starting from the initial state.

Theorem 23. Assume a state $(\Gamma ; N ; U ; \beta ; k ; D)$ resulting from a run. Then $(\Gamma ; N ; U ; \beta ; k ; D)$ is sound.

Next, we give the definition of a regular run. Intuitively speaking, in a regular run we are always allowed to do decisions except if

1. a literal can be propagated before the first decision and
2. the negation of a literal can be propagated.

To ensure non-redundant learning we enforce at least one application of Skip during conflict resolution except for the special case of a conflict after a decision.

Definition 24 (Regular Run). A run is called regular if

1. the rules Conflict and Factorize have precedence over all other rules,
2. If $k=0$ in a state $(\Gamma ; N ; U ; \beta ; k ; D)$, then Propagate has precedence over Decide,
3. If an annotated literal $L^{k: C \cdot \sigma}$ could be added by an application of Propagate on Γ in a state $(\Gamma ; N ; U ; \beta ; k ; D)$ and $C \in N \cup U$, then the annotated literal $\operatorname{comp}(L)^{k+1: C^{\prime} \cdot \sigma^{\prime}}$ is not added by Decide on Γ,
4. during conflict resolution Skip is applied at least once, except if Conflict is applied immediately after an application of Decide.
5. if Conflict is applied immediately after an application of Decide, then Backtrack is only applied in a state $\left(\Gamma, L^{\prime} ; N ; U ; \beta ; k ; D \cdot \sigma\right)$ if $L \sigma=\operatorname{comp}\left(L^{\prime}\right)$ for some $L \in D$.

Now we show that any learned clause in a regular run is non-redundant according to our trail induced ordering.

Lemma 25 (Non-Redundant Clause Learning). Let N be a clause set. The clauses learned during a regular run in $S C L(E Q)$ are not redundant with respect to $\prec_{\Gamma^{*}}$ and $N \cup U$. For the trail only non-redundant clauses need to be considered.

The proof of Lemma 25 is based on the fact that conflict resolution eventually produces a clause smaller then the original conflict clause with respect to $\prec_{\Gamma^{*}}$. All simplifications, e.g., contextual rewriting, as defined in [2|32|34|35|36|20], are therefore compatible with Lemma 25 and may be applied to the newly learned clause as long as they respect the induced trail ordering. In detail, let Γ be the trail before the application of rule Backtrack. The newly learned clause can be simplified according to the induced trail ordering $\prec_{\Gamma^{*}}$ as long as the simplified clause is smaller with respect to $\prec_{\Gamma^{*}}$.

Another important consequence of Lemma 25 is that newly learned clauses need not to be considered for redundancy. Furthermore, the SCL(EQ) calculus always terminates, Lemma 33, because there only finitely many non-redundant clauses with respect to a fixed β.

For dynamic redundancy, we have to consider the fact that the induced trail ordering changes. At this level, only redundancy criteria and simplifications that are compatible with all induced trail orderings may be applied. Due to the construction of the induced trail ordering, it is compatible with \prec_{T} for unit clauses.

Lemma 26 (Unit Rewriting). Assume a state ($\Gamma ; N ; U ; \beta ; k ; D$) resulting from a regular run where the current level $k>0$ and a unit clause $l \approx r \in N$. Now assume a clause $C \vee L\left[l^{\prime}\right]_{p} \in N$ such that $l^{\prime}=l \mu$ for some matcher μ. Now assume some arbitrary grounding substitutions σ^{\prime} for $C \vee L\left[l^{\prime}\right]_{p}, \sigma$ for $l \approx r$ such that $l \sigma=l^{\prime} \sigma^{\prime}$ and $r \sigma \prec_{T} l \sigma$. Then $\left(C \vee L\left[r \mu \sigma \sigma^{\prime}\right]_{p}\right) \sigma^{\prime} \prec_{\Gamma^{*}}\left(C \vee L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$.

In addition, any notion that is based on a literal subset relationship is also compatible with ordering changes. The standard example is subsumption.

Lemma 27. Let C, D be two clauses. If there exists a substitution σ such that $C \sigma \subset D$, then D is redundant with respect to C and any $\prec_{\Gamma^{*}}$.

The notion of redundancy, Definition 1, only supports a strict subset relation for Lemma 27, similar to the superposition calculus. However, the newly generated clauses of SCL(EQ) are the result of paramodulation inferences [27]. In a recent contribution to dynamic, abstract redundancy 31] it is shown that also the non-strict subset relation in Lemma[27, i.e., $C \sigma \subseteq D$, preserves completeness.

If all stuck states, see below Definition 28, with respect to a fixed β are visited before increasing β then this provides a simple dynamic fairness strategy.

When unit reduction or any other form of supported rewriting is applied to clauses smaller than the current β, it can be applied independently from the current trail. If, however, unit reduction is applied to clauses larger than the current β then the calculus must do a restart to its initial state, in particular the trail must be emptied, as for otherwise rewriting may result generating a conflict that did not exist with respect to the current trail before the rewriting. This is analogous to a restart in CDCL once a propositional unit clause is derived and used for simplification. More formally, we add the following new Restart rule to the calculus to reset the trail to its initial state after a unit reduction.

Restart $(\Gamma ; N ; U ; \beta ; k ; \top) \Rightarrow_{\mathrm{SCL}(\mathrm{EQ})}(\epsilon ; N ; U ; \beta ; 0 ; \top)$

Next we show refutation completeness of SCL(EQ). To achieve this we first give a definition of a stuck state. Then we show that stuck states only occur if all ground literals $L \prec_{T} \beta$ are β-defined in Γ and not during conflict resolution. Finally we show that conflict resolution will always result in an application of Backtrack. This allows us to show termination (without application of Grow) and refutational completeness.

Definition 28 (Stuck State). A state $(\Gamma ; N ; U ; \beta ; k ; D)$ is called stuck if $D \neq$ \perp and none of the rules of the calculus, except for Grow, is applicable.

Lemma 29 (Form of Stuck States). If a regular run (without rule Grow) ends in a stuck state $(\Gamma ; N ; U ; \beta ; k ; D)$, then $D=\top$ and all ground literals $L \sigma \prec_{T} \beta$, where $L \vee C \in(N \cup U)$ are β-defined in Γ.

Lemma 30. Suppose a sound state ($\Gamma ; N ; U ; \beta ; k ; D)$ resulting from a regular run where $D \notin\{\top, \perp\}$. If Backtrack is not applicable then any set of applications of Explore-Refutation, Skip, Factorize, Equality-Resolution will finally result in a sound state $\left(\Gamma^{\prime} ; N ; U ; \beta ; k ; D^{\prime}\right)$, where $D^{\prime} \prec_{\Gamma^{*}} D$. Then Backtrack will be finally applicable.

Corollary 31 (Satisfiable Clause Sets). Let N be a satisfiable clause set. Then any regular run without rule Grow will end in a stuck state, for any β.

Thus a stuck state can be seen as an indication for a satisfiable clause set. Of course, it remains to be investigated whether the clause set is actually satisfiable. Superposition is one of the strongest approaches to detect satisfiability and constitutes a decision procedure for many decidable first-order fragments 419]. Now given a stuck state and some specific ordering such as KBO, LPO, or some polynomial ordering [17], it is decidable whether the ordering can be instantiated from a stuck state such that Γ coincides with the superposition model operator on the ground terms smaller than β. In this case it can be effectively checked whether the clauses derived so far are actually saturated by the superposition calculus with respect to this specific ordering. In this sense, SCL(EQ) has the same power to decide satisfiability of first-order clause sets than superposition.

Definition 32. A regular run terminates in a state $(\Gamma ; N ; U ; \beta ; k ; D)$ if $D=\top$ and no rule is applicable, or $D=\perp$.

Lemma 33. Let N be a set of clauses and β be a ground term. Then any regular run that never uses Grow terminates.

Lemma 34. If a regular run reaches the state ($\Gamma ; N ; U ; \beta ; k ; \perp$) then N is unsatisfiable.

Theorem 35 (Refutational Completeness). Let N be an unsatisfiable clause set, and \prec_{T} a desired term ordering. For any ground term β where $\operatorname{gnd}_{\prec_{T} \beta}(N)$ is unsatisfiable, any regular $S C L(E Q)$ run without rule Grow will terminate by deriving \perp.

5 Discussion

We presented $\operatorname{SCL}(E Q)$, a new sound and complete calculus for reasoning in firstorder logic with equality. We will now discuss some of its aspects and present ideas for future work beyond the scope of this paper.

The trail induced ordering, Definition 9 is the result of letting the calculus follow the logical structure of the clause set on the literal level and at the same time supporting rewriting at the term level. It can already be seen by examples
on ground clauses over (in)equations over constants that this combination requires a layered approach as suggested by Definition 9, see Example 50 from the Appendix.

In case the calculus runs into a stuck state, i.e., the current trail is a model for the set of considered ground instances, then the trail information can be effectively used for a guided continuation. For example, in order to use the trail to certify a model, the trail literals can be used to guide the design of a lifted ordering for the clauses with variables such that propagated trail literals are maximal in respective clauses. Then it could be checked by superposition, if the current clause is saturated by such an ordering. If this is not the case, then there must be a superposition inference larger than the current β, thus giving a hint on how to extend β. Another possibility is to try to extend the finite set of ground terms considered in a stuck state to the infinite set of all ground terms by building extended equivalence classes following patterns that ensure decidability of clause testing, similar to the ideas in [14]. If this fails, then again this information can be used to find an appropriate extension term β for rule Grow.

In contrast to superposition, $\mathrm{SCL}(\mathrm{EQ})$ does also inferences below variable level. Inferences in SCL(EQ) are guided by a false clause with respect to a partial model assumption represented by the trail. Due to this guidance and the different style of reasoning this does not result in an explosion in the number of possibly inferred clauses but also rather in the derivation of more general clauses, see Example 49 from the Appendix.

Currently, the reasoning with solely positive equations is done on and with respect to the trail. It is well-known that also inferences from this type of reasoning can be used to speed up the overall reasoning process. The SCL(EQ) calculus already provides all information for such a type of reasoning, because it computes the justification clauses for trail reasoning via rewriting inferences. By an assessment of the quality of these clauses, e.g., their reduction potential with respect to trail literals, they could also be added, independently from resolving a conflict.

The trail reasoning is currently defined with respect to rewriting. It could also be performed by congruence closure [25].

Towards an implementation, the aspect of how to find interesting ground decision or propagation literals for the trail can be treated similar to CDCL [28|21|24|11]. A simple heuristic may be used from the start, like counting the number of instance relationships of some ground literal with respect to the clause set, but later on a bonus system can focus the search towards the structure of the clause sets. Ground literals involved in a conflict or the process of learning a new clause get a bonus or preference. The regular strategy requires the propagation of all ground unit clauses smaller than β. For an implementation a propagation of the (explicit and implicit) unit clauses with variables to the trail will be a better choice. This complicates the implementation of refutation proofs and rewriting (congruence closure), but because every reasoning is layered by a ground term β this can still be efficiently done.

Acknowledgments: This work was partly funded by DFG grant 389792660 as part of TRR 248, see https://perspicuous-computing.science. We thank the anonymous reviewers and Martin Desharnais for their thorough reading, detailed comments, and corrections.

References

1. Alagi, G., Weidenbach, C.: NRCL - A model building approach to the BernaysSchönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) Frontiers of Combining Systems - 10th International Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9322, pp. 69-84. Springer (2015)
2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation 4(3), 217-247 (1994)
3. Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of equality via transformation with ordering constraints. In: Kirchner, C., Kirchner, H. (eds.) International Conference on Automated Deduction. Lecture Notes in Computer Science, vol. 1421, pp. 175-190. Springer (1998)
4. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch, A., Mundici, D. (eds.) Computational Logic and Proof Theory, Third Kurt Gödel Colloquium. LNCS, vol. 713, pp. 83-96. Springer (August 1993)
5. Baumgartner, P.: Hyper tableau - the next generation. In: de Swart, H.C.M. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, International Conference, TABLEAUX '98, Oisterwijk, The Netherlands, May 5-8, 1998, Proceedings. Lecture Notes in Computer Science, vol. 1397, pp. 60-76. Springer (1998)
6. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) 13th International Conference, LPAR 2006. LNAI, vol. 4246, pp. 572-586. Springer (2006)
7. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfenning, F. (ed.) International Conference on Automated Deduction. LNAI, vol. 4603, pp. 492-507. Springer (2007)
8. Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution with equality—revised and implemented. Journal of Symbolic Computation 47(9), 1011-1045 (2012)
9. Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In: Nieuwenhuis, R. (ed.) 20th International Conference on Automated Deduction. LNAI, vol. 3632, pp. 392-408. Springer (2005)
10. Baumgartner, P., Waldmann, U.: Superposition and model evolution combined. In: Schmidt, R.A. (ed.) Automated Deduction - CADE-22. LNAI, vol. 5663, pp. 17-34. Springer (2009)
11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
12. Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: On First-Order ModelBased Reasoning, LNAI, vol. 9200, pp. 181-204. Springer International Publishing (2015)
13. Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz, S., Moura, L.D., Konev, B. (eds.) PAAR-2014. 4th Workshop on Practical Aspects of Automated Reasoning. EPiC Series in Computing, vol. 31, pp. 25-38. EasyChair (2015)
14. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel fragment over bounded difference constraints by simple clause learning over theories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) Verification, Model Checking, and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings. Lecture Notes in Computer Science, vol. 12597, pp. 511-533. Springer (2021)
15. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7), 394-397 (1962)
16. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM (JACM) 7(3), 201-215 (1960)
17. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 9, pp. 535-610. Elsevier (2001)
18. Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: Fontaine, P. (ed.) 27th International Conference on Automated Deduction, CADE-27. LNAI, vol. 11716. Springer (2019)
19. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: LICS. pp. 295-304 (1999)
20. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theorem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12166, pp. 297-315. Springer (2020)
21. Jr., R.J.B., Schrag, R.: Using CSP look-back techniques to solve exceptionally hard SAT instances. In: Freuder, E.C. (ed.) Proceedings of the Second International Conference on Principles and Practice of Constraint Programming, Cambridge, Massachusetts, USA, August 19-22, 1996. LNCS, vol. 1118, pp. 46-60. Springer (1996)
22. Korovin, K.: Inst-Gen - A Modular Approach to Instantiation-Based Automated Reasoning, pp. 239-270. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)
23. Korovin, K., Sticksel, C.: iProver-Eq: An instantiation-based theorem prover with equality. In: Giesl, J., Hähnle, R. (eds.) 5th International Joint Conference, IJCAR 2010. LNAI, vol. 6173, pp. 196-202. Springer (2010)
24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Design Automation Conference, 2001. Proceedings. pp. 530-535. ACM (2001)
25. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. Journal of the ACM 27(2), 356-364 (1980)
26. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper-linking. Journal of Automated Reasoning 25(3), 167-217 (2000)
27. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories with equality. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4. pp. 135-150 (1969)
28. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: International Conference on Computer Aided Design, ICCAD. pp. 220-227. IEEE Computer Society Press (1996)
29. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to th0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), 483-502 (2017)
30. Teucke, A.: An Approximation and Refinement Approach to First-Order Automated Reasoning. Doctoral thesis, Saarland University (2018)
31. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework for saturation theorem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning - 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12166, pp. 316-334. Springer (2020)
32. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, chap. 27, pp. 19652012. Elsevier (2001)
33. Weidenbach, C.: Automated reasoning building blocks. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design - Symposium in Honor of ErnstRüdiger Olderog on the Occasion of His 60th Birthday, Oldenburg, Germany, September 8-9, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9360, pp. 172-188. Springer (2015)
34. Weidenbach, C., Wischnewski, P.: Contextual rewriting in SPASS. In: PAAR/ESHOL. CEUR Workshop Proceedings, vol. 373, pp. 115-124. Sydney,Australien (2008)
35. Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Communications 23(2-3), 97-109 (2010)
36. Wischnewski, P.: Effcient Reasoning Procedures for Complex First-Order Theories. Ph.D. thesis, Saarland University (November 2012)

Appendix

5.1 Proofs and Auxiliary Lemmas

Proof of Lemma 7 Let Γ_{1} be a trail and K a defined literal that is of level i in Γ_{1}. Then K is of level i in a trail $\Gamma:=\Gamma_{1}, \Gamma_{2}$.

Proof. Assume a trail Γ_{1} and a literal K that is of level i in Γ_{1}. Let $\Gamma:=\Gamma_{1}, \Gamma_{2}$ be a trail. Then we have two cases:

1. K has no defining literal in Γ_{1}. Then $\operatorname{cores}\left(\Gamma_{1} ; K\right)=\{[]\}$ contains only the empty core and K is of level 0 in Γ_{1}. Then $\operatorname{cores}(\Gamma ; K)=\{[]\}$ as well and thus K is of level 0 in Γ.
2. K has a defining literal $L:=\max _{\Gamma_{1}}(K)$ and L is of level i. Then there exists a core $\Delta \in \operatorname{cores}\left(\Gamma_{1} ; K\right)$ such that L is the maximum literal in Δ according to \prec_{Γ} and for all $\Lambda \in \operatorname{cores}\left(\Gamma_{1} ; K\right)$ it holds $\max _{\prec_{\Gamma}}(\Delta) \preceq_{\Gamma} \max _{{\prec_{\Gamma}}(\Lambda) \text {. Thus }}$ Δ is a defining core. Now any $\Lambda \in\left(\operatorname{cores}(\Gamma ; K) \backslash \operatorname{cores}\left(\Gamma_{1} ; K\right)\right)$ has a higher maximum literal according to \prec_{Γ}. Thus Δ is also a defining core in Γ and L is the defining literal of K in Γ and thus K is of level i in Γ.

Auxiliary Lemmas for the Proofs of Lemma 10

Lemma 36. Let Γ be a trail. Then any literal in Γ occurs exactly once.
Proof. Let $\Gamma:=\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]$. Now suppose there exist L_{i}, L_{j} with $i<j$ and $1 \leq i, j \leq n$ such that $L_{i}=L_{j}$. By definition of Γ, L_{j} is undefined in [$\left.L_{1}, \ldots, L_{i}, \ldots, L_{j-1}\right]$. But obviously L_{j} is defined in Γ. Contradiction.

Lemma 37. Let Γ be a trail. If a literal L is of level i, then it is not of level $j \neq i$.

Proof. Let Γ be a trail. By lemma 36 any literal in Γ is unique. Suppose there exists a literal L such that L is of level i and of level j. If the core is empty for L then L is of level 0 by definition. Otherwise there must exist cores $\Delta, \Lambda \in \operatorname{cores}(\Gamma ; L)$
 $\Lambda^{\prime} \in \operatorname{cores}(\Gamma ; L)$. But then $\max _{\prec_{\Gamma}}(\Lambda)=\max _{\prec_{\Gamma}}(\Delta)$. Contradiction.

Lemma 38. Let L be a ground literal and Γ a trail. If L is defined in Γ then L has a level.

Proof. Let Γ be a trail. Suppose that L is defined in Γ. Then it either has a defining literal or it has no defining literal. If it has a defining literal K, then the level of K is the level of L. Since $K \in \Gamma$ it is annotated by a level. Thus L has a level. If L does not have a defining literal, then L is of level 0 by definition of a literal level.

Proof of Lemma $10-1 \prec_{\Gamma^{*}}$ is well-defined.
Proof. Suppose a trail $\Gamma:=\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]$ and a term β such that $\left\{L_{1}, \ldots, L_{n}\right\} \prec_{T} \beta$. We have to show that the rules $9,1-9,11$ are pairwise disjunct. Consider the rules $9,1-97$. These rules are pairwise disjunct, if the sets $\left\{L_{1}, \ldots, L_{n}\right\},\left\{\operatorname{comp}\left(L_{1}\right), \ldots, \operatorname{comp}\left(L_{n}\right)\right\}$ and $\left\{M_{i, j} \mid i \leq n\right\}$ are pairwise disjunct. Obviously, $\left\{L_{1}, \ldots, L_{n}\right\} \cap\left\{\operatorname{comp}\left(L_{1}\right), \ldots, \operatorname{comp}\left(L_{n}\right)\right\}=\emptyset$. Furthermore $\left(\left\{L_{1}, \ldots, L_{n}\right\} \cup\right.$ $\left.\left\{\operatorname{comp}\left(L_{1}\right), \ldots, \operatorname{comp}\left(L_{n}\right)\right\}\right) \cap\left\{M_{i, j} \mid i \leq n\right\}=\emptyset$ follows directly from the definition of a trail induced ordering. 98 and 9 are disjunct since $\{L \mid L$ is of level 0$\}$ and $\{L \mid L$ is of level greater 0$\}$ are disjunct by lemma37 It follows that 9, 1-9, 9 are pairwise disjunct, since all relations in 9, 1-9, 7 contain only β-defined literals of level 1 or higher and all relations in $9,8,9,9$ contain at least one β-defined literal of level 0.910 and 911 are disjunct since a literal cannot be both β-defined and β-undefined. It follows that $9,1-9,11$ are pairwise disjunct, since all relations in 91-9 9 contain only β-defined literals and all relations in 9, 10, 911 contain at least one β-undefined literal.

Proof of Lemma $10+2 \prec_{\Gamma^{*}}$ is a total strict order, i.e. $\prec_{\Gamma^{*}}$ is irreflexive, transitive and total.

Proof. Suppose a trail $\Gamma:=\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]$ and a term β such that $\left\{L_{1}, \ldots, L_{n}\right\} \prec_{T} \beta$.
Irreflexivity. We have to show that there is no ground literal L such that $L \prec_{\Gamma^{*}} L$. Suppose two literals L and K such that $L \prec_{\Gamma^{*}} K$ and $L=K$. Now we have several cases:

1. Suppose that L, K are β-defined and of level 1 or higher. Then we have several cases:
(a) $L=M_{i, j}$ and $K=M_{k, l}$. Then by 9, $1 M_{i, j} \prec_{\Gamma^{*}} M_{k, l}$ if $i<k$ or $(i=k$ and $j<l)$. Thus $i \neq k$ or $j \neq l$. We show that for $M_{i, j}, M_{k, l}$ with $i \neq k$ or $j \neq l$ it holds $M_{i, j} \neq M_{k, l}$. Assume that $M_{i, j}=M_{k, l}$ and $k \neq i$ or $j \neq l$. Assume that $k=i$. Then, by definition $9 M_{i, j} \prec_{T} M_{k, l}$ or $M_{k, l} \prec_{T} M_{i, j}$. Thus $M_{i, j} \neq M_{k, l}$ since \prec_{T} is a rewrite ordering. Now assume that $k \neq i$. Since $M_{i, j}=M_{k, l}$ it holds $\max _{\Gamma}\left(M_{i, j}\right)=\max _{\Gamma}\left(M_{k, l}\right)$, since both have the same level by lemma 37, But then $k=i$. Thus $M_{i, j} \neq M_{k, l}$ for $k \neq i$ or $j \neq l$. Thus if by $91 M_{i, j} \prec_{\Gamma^{*}} M_{k, l}$ if $i<k$ or $(i=k$ and $j<l)$, then $M_{i, j} \neq M_{k, l}$.
(b) $L=L_{i}$ and $K=L_{j}$. Then by 912 $L_{i} \prec_{\Gamma^{*}} L_{j}$ if $L_{i} \prec_{\Gamma} L_{j}$. Then by lemma $36 L_{i} \neq L_{j}$.
(c) $L=\operatorname{comp}\left(L_{i}\right)$ and $K=L_{j}$. Then by $9.3 \operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} L_{j}$ if $L_{i} \prec_{\Gamma} L_{j}$. $L_{i} \neq L_{j}$ by lemma 36 $L \neq K$ has to hold since Γ is consistent.
(d) $L=L_{i}$ and $K=\operatorname{comp}\left(L_{j}\right)$. Then by $9,4 L_{i} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{j}\right)$ if $L_{i} \prec_{\Gamma} L_{j}$ or $i=j$. If $i \neq j$ then we can proceed analogous to the previous step. If $i=j$ then obviously $L_{i} \neq \operatorname{comp}\left(L_{i}\right)$.
(e) $L=\operatorname{comp}\left(L_{i}\right)$ and $K=\operatorname{comp}\left(L_{j}\right)$. Then by $9,5 \operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{j}\right)$ if $L_{i} \prec_{\Gamma} L_{j}$. By lemma $36 L_{i} \neq L_{j}$. Thus $\operatorname{comp}\left(L_{i}\right) \neq \operatorname{comp}\left(L_{j}\right)$.
(f) $L=L_{i}$ and $K=M_{k, l}$. Then by $96 L_{i} \prec_{\Gamma^{*}} M_{k, l}, \operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} M_{k, l}$ if $i \leq k . M_{k, l} \neq L_{i}$ and $M_{k, l} \neq \operatorname{comp}\left(L_{i}\right)$ follows directly from the definition 9. Thus if $L_{i} \prec_{\Gamma^{*}} M_{k, l}$ or $\operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} M_{k, l}$ if $i \leq k$ by 96, then $L_{i} \neq M_{k, l}$ and $\operatorname{comp}\left(L_{i}\right) \neq M_{k, l}$.
(g) $L=M_{k, l}$ and $K=L_{i}$. Then we can proceed analogous to the previous step for 9.7 .
2. Suppose that L and K are β-defined and of level zero. Since \prec_{T} is irreflexive, $L \nprec_{T} K$ has to hold. Since $\prec_{\Gamma^{*}}=\prec_{T}$ for literals of level zero $L \nprec_{\Gamma^{*}} K$ has to hold too.
3. Suppose that L, K are β-defined and L is of level zero and K is of level greater than zero. But then $L \neq K$ has to hold by lemma 37, Thus $L \nprec_{\Gamma^{*}} K$ for 9 . 9 .
4. Suppose that L and K are β-undefined. Then by $910 K \prec_{\Gamma^{*}} H$ if $K \prec_{T} H$. Since \prec_{T} is a rewrite ordering $K \prec_{T} H$ iff $K \neq H$.
5. Suppose that L is β-defined and K is β-undefined. Then by $9,11 L \prec_{\Gamma^{*}} K$. Then $L \neq K$ has to hold since otherwise L, K would be both β-defined and β-undefined, contradicting consistency of Γ.
Transitivity. Suppose there exist literals L, K, H such that $H \prec_{\Gamma^{*}} K$ and $K \prec_{\Gamma^{*}}$ L but not $H \prec_{\Gamma^{*}} L$. We have several cases:
6. Suppose all literals are β-undefined. Then $K \prec_{T} L$ and $H \prec_{T} K$. Otherwise $K \prec_{\Gamma^{*}} L$ and $H \prec_{\Gamma^{*}} K$ would not hold. Thus also $H \prec_{T} L$ by transitivity of \prec_{T}. Thus $H \prec_{\Gamma^{*}} L$ by 910 .
7. Suppose two literals are β-undefined. If K would be β-defined, then $K \prec_{\Gamma^{*}}$ H by 9,11 contradicting assumption. If L would be β-defined, then $L \prec_{\Gamma^{*}} K$ by 911 again contradicting assumption. Thus H has to be β-defined. Then $H \prec_{\Gamma^{*}} L$ by definition 911 .
8. Suppose one literal is β-undefined. If K would be β-undefined, then $L \prec_{\Gamma^{*}} K$ by definition 9,11 contradicting assumption. If H would be β-undefined, then $K \prec_{\Gamma^{*}} H$ by definition 911 again contradicting assumption. Thus L has to be β-undefined. Then $H \prec_{\Gamma^{*}} L$ by definition 911 .
9. Suppose all literals are β-defined. Then we have multiple subcases:
(a) Suppose all literals have the same defining literal L_{i} and L_{i} is of level 1 or higher. By $96 L_{i} \prec_{\Gamma^{*}} M_{i, j}$ and $\operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} M_{i, j}$ for all j. By 914 $L_{i} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{i}\right)$. Thus $L_{i} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} M_{i, j}$ for all j. Since $K \prec_{\Gamma^{*}} L$ either $K=L_{i}$ and $L \neq L_{i}$ or $L=M_{i, j}$ and $K=\operatorname{comp}\left(L_{i}\right)$ or $L=M_{i, j}$ and $K=M_{i, k}$ with $k<j$.
i. Assume $K=L_{i}$ and $L \neq L_{i}$. Since K is the smallest literal with defining literal $L_{i}, K=H$ has to hold. But then $K \prec_{\Gamma^{*}} K$ contradicting irreflexivity.
ii. Assume $L=M_{i, j}$ and $K=\operatorname{comp}\left(L_{i}\right)$. Since $H \prec_{\Gamma^{*}} K$ and all literals have the same defining literal, $H=L_{i}$ has to hold by 96 and 9,4 . Then, again by 96, $H \prec_{\Gamma^{*}} L$.
iii. $L=M_{i, j}$ and $K=M_{i, k}$ with $k<j$. Since $H \prec_{\Gamma^{*}} K$ and all have the same defining literal either $H=M_{i, l}$ with $l<k$ by 91 , or $H=L_{i}$ or $H=\operatorname{comp}\left(L_{i}\right)$ by 96 . In both cases $H \prec_{\Gamma^{*}} L$ holds by 91 and 96.
(b) Suppose H, K, L have at least one different defining literal and $\max _{\Gamma}(L)=$ L_{i} with L_{i} of level 1 or higher. First, we have to show that if $L_{j}=$ $\max _{\Gamma}\left(K^{\prime}\right) \prec_{\Gamma} \max _{\Gamma}\left(L^{\prime}\right)=L_{i}$ and L_{i} is of level 1 or higher, then $K^{\prime} \prec_{\Gamma^{*}} L^{\prime}$. Suppose that L_{j} is of level 0 . Then $K^{\prime} \prec_{\Gamma^{*}} L^{\prime}$ by 9,9 . Suppose that $L^{\prime}=M_{i, k}$ and $K^{\prime}=M_{j, l}$. Then $K^{\prime} \prec_{\Gamma^{*}} L^{\prime}$ by 9 1. Suppose that $L^{\prime}=M_{i, k}$ and $K^{\prime}=L_{j}$ or $K^{\prime}=\operatorname{comp}\left(L_{j}\right)$. Then $K^{\prime} \prec_{\Gamma^{*}} L^{\prime}$ by 9,6 . Suppose that $L^{\prime}=L_{i}$ or $L^{\prime}=\operatorname{comp}\left(L_{i}\right)$ and $K^{\prime}=L_{j}$ or $K^{\prime}=\operatorname{comp}\left(L_{j}\right)$. Then $K^{\prime} \prec_{\Gamma^{*}} L^{\prime}$ by $9,2-9,5$. Suppose that $L^{\prime}=L_{i}$ or $L^{\prime}=\operatorname{comp}\left(L_{i}\right)$ and $K^{\prime}=M_{j, l}$. Then $K^{\prime} \prec_{\Gamma^{*}} L^{\prime}$ by 9.7 .
Now by assumption $H \prec_{\Gamma^{*}} K$ and $K \prec_{\Gamma^{*}} L$. If $\max _{\Gamma}(K) \prec_{\Gamma} \max _{\Gamma}(H)$ then $K \prec_{\Gamma^{*}} H$ contradicting assumption. The same holds for L and K. Thus either $\max _{\Gamma}(H) \prec_{\Gamma} \max _{\Gamma}(L)$ or $\max _{\Gamma}(K) \prec_{\Gamma} \max _{\Gamma}(L)$. In the first case $H \prec_{\Gamma^{*}} L$ follows from above. In the second case $\max _{\Gamma}(H) \preceq_{\Gamma}$ $\max _{\Gamma}(K)$ has to hold. Thus $H \prec_{\Gamma^{*}} L$ follows again.
(c) Suppose that $\max _{\Gamma}(L)=L_{i}$ where L_{i} is of level 0 . Since $K \prec_{\Gamma^{*}} L$, $\max _{\Gamma}(K)=L_{j}$ with L_{j} of level 0 has to hold by 9,9 and 911 . Now assume that $L \prec_{T} K$. Then $L \prec_{\Gamma^{*}} K$ by 98 contradicting assumption. Thus $K \prec_{T} L$ has to hold since $K \neq L$. Since $H \prec_{\Gamma^{*}} K$, $\max _{\Gamma}(H)=L_{k}$ with L_{k} of level 0 has to hold by 9,9 and 911 . Now assume that $K \prec_{T} H$. Then $K \prec_{\Gamma^{*}} H$ by 9,8 contradicting assumption. Thus $H \prec_{T} K$ has to hold since $H \neq K$. By transitivity of $\prec_{T}, H \prec_{T} L$ and thus $H \prec_{\Gamma^{*}} L$ has to hold.

Totality. First we show that any ground literal is either β-defined and has a level or β-undefined. Since Γ is consistent, a literal is either β-defined or β-undefined. We just need to show that if a literal is β-defined, it has a level. By lemma 38 all defined literals have a level. β-definedness implies definedness. Thus all β-defined literals have a level. Now assume some arbitrary ground literals $L \neq K$. We have several cases:

1. L, K are β-undefined. Since $L \neq K$ we have $L \prec_{T} K$ or $K \prec_{T} L$ by totality of \prec_{T} on ground literals. Thus by $910 L \prec_{\Gamma^{*}} K$ or $K \prec_{\Gamma^{*}} L$.
2. One is β-defined. Then either $L \prec_{\Gamma^{*}} K$ or $K \prec_{\Gamma^{*}} L$ by 9,11 .

3 . Both are β-defined. Then we have several subcases:
(a) L is of level zero and K is of level greater than zero or vice versa. Then by $9,9 L \prec_{\Gamma^{*}} K$ or $K \prec_{\Gamma^{*}} L$ has to hold.
(b) $\max _{\Gamma}(L)=L_{i}$ and $\max _{\Gamma}(K)=L_{j}$ and both are of level 1 or higher.
i. $L=M_{i, k}$ and $K=M_{j, l}$. Then either $M_{i, k} \prec_{\Gamma^{*}} M_{j, l}$ or $M_{j, l} \prec_{\Gamma^{*}}$ $M_{i, k}$ by 91 .
ii. $L=M_{i, k}$ and $K=L_{j}$ or $K=\operatorname{comp}\left(L_{j}\right)$. If $i \geq j$ then by 96 $L_{j} \prec_{\Gamma^{*}} M_{i, k}$ or $\operatorname{comp}\left(L_{j}\right) \prec_{\Gamma^{*}} M_{i, k}$. If $i<j$ then by $9,7 M_{i, k} \prec_{\Gamma^{*}} L_{j}$ or $M_{i, k} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{j}\right)$.
iii. $K=M_{i, k}$ and $L=L_{j}$ or $L=\operatorname{comp}\left(L_{j}\right)$. Analogous to previous step.
iv. $L=L_{i}$ and $K=L_{j}$. Then if $i<j$ by 9, $2 L_{i} \prec_{\Gamma^{*}} L_{j}$ and $L_{j} \prec_{\Gamma^{*}} L_{i}$ otherwise.
v. $L=\operatorname{comp}\left(L_{i}\right)$ and $K=\operatorname{comp}\left(L_{j}\right)$ analogous to previous step for 9. 5.
vi. $L=L_{i}$ and $K=\operatorname{comp}\left(L_{j}\right)$. Then if $i \leq j$ by $94 L_{i} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{j}\right)$. If $j<i$ by $9,3 \operatorname{comp}\left(L_{j}\right) \prec_{\Gamma^{*}} L_{i}$.
vii. $L=\operatorname{comp}\left(L_{i}\right)$ and $K=L_{j}$. Then if $i<j$ by $93 \operatorname{comp}\left(L_{i}\right) \prec_{\Gamma^{*}} L_{j}$. If $j \leq i$ by $9,4 L_{j} \prec_{\Gamma^{*}} \operatorname{comp}\left(L_{i}\right)$.
(c) $\max _{\Gamma}(L)=L_{i}$ and $\max _{\Gamma}(K)=L_{j}$ and both are of level 0 . Now either $L \prec_{T} K$ or $K \prec_{T} L$. Thus by $9,8 L \prec_{\Gamma^{*}} K$ or $K \prec_{\Gamma^{*}} L$.

Proof of Lemma $10+3 \prec_{\Gamma^{*}}$ is a well-founded ordering.
Proof. Suppose some arbitrary subset M of all ground literals, a trail $\Gamma:=$ $\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]$ and a term β such that $\left\{L_{1}, \ldots, L_{n}\right\} \prec_{T} \beta$. We have to show that M has a minimal element. We have several cases:

1. L is β-undefined in Γ for all literals $L \in M$. Then $\prec_{\Gamma^{*}}=\prec_{T}$. Since \prec_{T} is wellfounded there exists a minimal element in M. Thus there exists a minimal element in M with regard to $\prec_{\Gamma^{*}}$.
2. there exists at least one literal in M that is β-defined. Then we have two cases:
(a) there exists a literal in M that is of level zero. Then let $L \in M$ be the literal of level zero, where $L \prec_{T} K$ for all $K \in M$ with K of level zero. We show that L is the minimal element. Suppose there exists a literal $L^{\prime} \in M$ that is smaller than L. Since L is of level zero, $L \prec_{\Gamma^{*}} K$ for all literals K of level greater than zero by 99 and $L \prec_{\Gamma^{*}} H$ for all β-undefined literals H by 9 . 11. Thus L^{\prime} must be of level zero. But then $L^{\prime} \prec_{T} L$ has to hold, contradicting assumption.
(b) There exists no literal in M that is of level zero. Let $L \in M$ be the literal where $\max _{\Gamma}(L) \preceq_{\Gamma} \max _{\Gamma}(K)$ for all $K \in M$ and
i. $L=\max _{\Gamma}(L)$ or
ii. $L=\operatorname{comp}\left(\max _{\Gamma}(L)\right)$ and $\max _{\Gamma}(L) \notin M$ or
iii. $L \prec_{T} H$ for all $H \in M$ such that $\max _{\Gamma}(L)=\max _{\Gamma}(H)$ and $\max _{\Gamma}(L) \notin M$ and $\operatorname{comp}\left(\max _{\Gamma}(L)\right) \notin M$.
We show that L is the minimal element. Suppose there exists a literal $L^{\prime} \in M$ that is smaller than L. We have three cases:
i. $\max _{\Gamma}(L)=L=L_{i}$. Since $L_{i} \prec_{T} \beta$ we have either $L^{\prime}=L_{j}$ with $j<i$ by 9,2 or $L^{\prime}=\operatorname{comp}\left(L_{j}\right)$ with $j<i$ by 93 or $L^{\prime}=M_{k, l}$ with $k<i$ by 97. In all three cases we have $\max _{\Gamma}\left(L^{\prime}\right) \prec_{\Gamma} \max _{\Gamma}(L)$ contradicting assumption that the defining literal of L is minimal in M.
ii. $L=\operatorname{comp}\left(L_{i}\right)=\operatorname{comp}\left(\max _{\Gamma}(L)\right)$ and $\max _{\Gamma}(L) \notin M$. Since $L_{i} \prec_{T}$ β either $L^{\prime}=L_{j}$ with $j<i$ by 94 or $L^{\prime}=\operatorname{comp}\left(L_{j}\right)$ with $j<i$ by 95 or $L^{\prime}=M_{k, l}$ with $k<i$ by 9 . In all three cases we have $\max _{\Gamma}\left(L^{\prime}\right) \prec_{\Gamma} \max _{\Gamma}(L)$ contradicting assumption that the defining literal of L is minimal in M.
iii. $L=M_{k, l}$ and $\max _{\Gamma}(L) \notin M$ and $\operatorname{comp}\left(\max _{\Gamma}(L)\right) \notin M$. Then either $L^{\prime}=M_{i, j}$ with $i<k$ or $(i=k$ and $j<l)$ by 91 or $L^{\prime}=L_{i}$ or $L^{\prime}=\operatorname{comp}\left(L_{i}\right)$ with $i \leq k$. Suppose that $L^{\prime}=M_{i, j}$ and $i<k$. Then $\max _{\Gamma}\left(L^{\prime}\right) \prec_{\Gamma} \max _{\Gamma}(L)$ contradicting assumption. Suppose that $L^{\prime}=M_{i, j}$ and $i=k$ and $j<l$. Then $L^{\prime} \prec_{T} L$ and $\max _{\Gamma}(L)=\max _{\Gamma}\left(L^{\prime}\right)$. For L it holds $L \prec_{T} H$ for all $H \in M$ such that $\max _{\Gamma}(L)=\max _{\Gamma}(H)$. Contradiction. Suppose that $L^{\prime}=L_{i}$ or $L^{\prime}=\operatorname{comp}\left(L_{i}\right)$ with $i=k$. Then $\max _{\Gamma}(L)=L_{i}$. By assumption $\max _{\Gamma}(L) \notin M$ and $\operatorname{comp}\left(\max _{\Gamma}(L)\right) \notin M$. Contradiction. Suppose that $L^{\prime}=L_{i}$ or $L^{\prime}=\operatorname{comp}\left(L_{i}\right)$ with $i<k$. Then we have $\max _{\Gamma}\left(L^{\prime}\right) \prec_{\Gamma} \max _{\Gamma}(L)$ contradicting assumption that the defining literal of L is minimal in M.

Proof of Lemma 17 Assume that all ground terms t with $t \prec_{T} \beta$ for any β are polynomial in the size of β. Then testing Propagate (Conflict) is NP-Complete, i.e., the problem of checking for a given clause C whether there exists a grounding substitution σ such that $C \sigma$ propagates (is false) is NP-Complete.

Proof. Let $C \sigma$ be propagable (false). The problem is in NP because β is constant and for all $t \in \operatorname{codom}(\sigma)$ it holds that t is polynomial in the size of β. Checking if $C \sigma$ is propagable (false) can be done in polynomial time with Congruence Closure [25] since σ has polynomial size.

We reduce 3 -SAT to testing rule Conflict. Consider a 3-place predicate R, a unary function g, and a mapping from propositional variables P to first-order variables x_{P}. Assume a 3 -SAT clause set $N=\left\{\left\{L_{0}, L_{1}, L_{2}\right\}, \ldots,\left\{L_{n-2}, L_{n-1}, L_{n}\right\}\right\}$, where L_{i} may denote both P_{i} and $\neg P_{i}$. Now we create the clause

$$
\left\{R\left(t_{0}, t_{1}, t_{2}\right) \not \approx \text { true }, \ldots, R\left(t_{n-2}, t_{n-1}, t_{n} \not \approx \text { true }\right)\right\}
$$

where $t_{i}:=x_{P_{i}}$ if $L_{i}=P_{i}$ and $t_{i}:=g\left(x_{P_{i}}\right)$ otherwise. Now let $\Gamma:=\left\{R\left(x_{0}, x_{1}, x_{2}\right) \mid\right.$ $x_{i} \in\{0,1, g(0), g(1)\}$ such that $\left(x_{0} \vee x_{1} \vee x_{2}\right) \downarrow_{\{g(x) \mapsto(\neg x)\}}$ is true $\}$ be the set of all R-atoms that evaluate to true if considered as a three literal propositional clause. Now N is satisfiable if and only if Conflict is applicable to the new clause. The reduction is analogous for Propagate.

Proof of Theorem 23 Assume a state $(\Gamma ; N ; U ; \beta ; k ; D)$ resulting from a run. Then $(\Gamma ; N ; U ; \beta ; k ; D)$ is sound.

Proof. Proof by structural induction on $(\Gamma ; N ; U ; \beta ; k ; D)$. Let $(\Gamma ; N ; U ; \beta ; k ; D)=$ $(\epsilon, N, \emptyset, \beta, 0, \top)$, the initial state. Then it is sound according to lemma 21. Now assume that $(\Gamma ; N ; U ; \beta ; k ; D)$ is sound. We need to show that any application of a rule results in a sound state.

Propagate: Assume Propagate is applicable. Then there exists $C \in N \cup U$ such that $C=C_{0} \vee C_{1} \vee L, L \sigma$ is β-undefined in $\Gamma, C_{1} \sigma=L \sigma \vee \ldots \vee L \sigma$, $C_{1}=L_{1} \vee \ldots \vee L_{n}, \mu=\operatorname{mgu}\left(L_{1}, \ldots, L_{n}, L\right)$ and $C_{0} \sigma$ is β-false in Γ. Then a reduction chain application $\left[I_{1}, \ldots, I_{m}\right]$ from Γ to $L \sigma^{k:\left(C_{0} \vee L\right) \mu \cdot \sigma}$ is created with $I_{m}:=$ $\left(s_{m} \# t_{m} \cdot \sigma_{m}, s_{m} \# t_{m} \vee C_{m} \cdot \sigma_{m}, I_{j}, I_{k}, p_{m}\right)$. Finally $s_{m} \# t_{m} \sigma_{m}^{k:\left(s_{m} \# t_{m} \vee C_{m}\right) \cdot \sigma_{m}}$ is added to Γ.
By definition of a reduction chain application $\left(s_{m} \# t_{m}\right) \sigma_{m}=L \sigma \downarrow_{\operatorname{conv}(\Gamma)}$. Thus, $\left(s_{m} \# t_{m}\right) \sigma_{m}$ must be β-undefined in Γ and irreducible by $\operatorname{conv}(\Gamma)$, since $\left(C_{0} \vee\right.$ L) $\mu \sigma \prec_{T} \beta$ by definition of Propagate.

- 2011 Since $\left(s_{m} \# t_{m}\right) \sigma_{m}$ is β-undefined in Γ, adding $\left(s_{m} \# t_{m}\right) \sigma_{m}$ does not make Γ inconsistent. Thus $\Gamma,\left(s_{m} \# t_{m}\right) \sigma_{m}$ remains consistent.
- 2012 $\left(s_{m} \# t_{m}\right) \sigma_{m}$ is β-undefined in Γ and irreducible by $\operatorname{conv}(\Gamma)$. It remains to show that $C_{m} \sigma_{m}$ is β-false in $\Gamma, N \cup U \models s_{m} \# t_{m} \vee C_{m}$ and $\left(s_{m} \# t_{m} \vee\right.$ $\left.C_{m}\right) \sigma_{m} \prec_{T} \beta$. By i.h. for all $L^{\prime} \sigma^{\prime l:\left(L^{\prime} \vee C^{\prime}\right) \cdot \sigma^{\prime}} \in \Gamma$ it holds that $C^{\prime} \sigma^{\prime}$ is β-false in $\Gamma,\left(L^{\prime} \vee C^{\prime}\right) \sigma^{\prime} \prec_{T} \beta$ and $N \cup U \models\left(L^{\prime} \vee C^{\prime}\right)$. By definition of Propagate $C_{0} \sigma$ is β-false in Γ and $C \sigma \prec_{T} \beta$ and $N \cup U \models C$. $\left(C_{0} \vee C_{1} \vee L\right) \mu$ is an instance of C. Thus $C \models\left(C_{0} \vee C_{1} \vee L\right) \mu$. $C_{0} \mu=L \mu \vee \ldots \vee L \mu$ by definition of Propagate. Thus $C \models\left(C_{1} \vee L\right) \mu$ and by this $N \cup U \models\left(C_{1} \vee L\right) \mu$. By definition of a reduction chain application I_{j} either contains a clause annotation from $\Gamma, L \sigma^{k:\left(C_{0} \vee L\right) \cdot \sigma}$ or it is a rewriting inference from smaller rewrite steps for all $1 \leq j \leq m$. Thus, by lemma 14 it follows by induction that for any rewriting inference $I_{j}:=\left(s_{j} \# t_{j} \cdot \sigma_{j}, s_{j} \# t_{j} \vee C_{j} \cdot \sigma_{j}, I_{i}, I_{k}, p_{j}\right)$ it holds $C_{j} \sigma_{j}$ is β-false in $\Gamma, N \cup U \models s_{j} \# t_{j} \vee C_{j}$ and $\left(s_{j} \# t_{j} \vee C_{j}\right) \sigma_{j} \prec_{T} \beta$.
-203 and 204 trivially hold by induction hypothesis.
-205 trivially holds since $D=\top$.

Decide: Assume Decide is applicable. Then there exists $C \in N \cup U$ such that $C=C_{0} \vee L, L \sigma$ is ground and β-undefined in Γ and $C_{0} \sigma$ is ground and β-undefined or β-true in Γ. Then a reduction chain application $\left[I_{1}, \ldots, I_{m}\right]$ from Γ to $L \sigma^{k+1:\left(C_{0} \vee L\right) \cdot \sigma}$ is created with $I_{m}:=\left(s_{m} \# t_{m} \cdot \sigma_{m}, s_{m} \# t_{m} \vee C_{m} \cdot \sigma_{m}, I_{j}, I_{k}, p_{m}\right)$. Finally $s_{m} \# t_{m} \sigma_{m}^{k+1:\left(s_{m} \# t_{m} \vee \operatorname{comp}\left(s_{m} \# t_{m}\right)\right) \cdot \sigma_{m}}$ is added to Γ.
By definition of a reduction chain application $\left(s_{m} \# t_{m}\right) \sigma_{m}=L \sigma \downarrow_{\operatorname{conv}(\Gamma)}$. Thus, $\left(s_{m} \# t_{m}\right) \sigma_{m}$ must be β-undefined in Γ and irreducible by $\operatorname{conv}(\Gamma)$, since $\left(C_{0} \vee\right.$ L) $\sigma \prec_{T} \beta$ by definition of Decide.

- 201] Since $\left(s_{m} \# t_{m}\right) \sigma_{m}$ is β-undefined in Γ adding $\left(s_{m} \# t_{m}\right) \sigma_{m}$ does not make Γ inconsistent. Thus $\Gamma,\left(s_{m} \# t_{m}\right) \sigma_{m}$ remains consistent.
- 20.3. $\left(s_{m} \# t_{m}\right) \sigma_{m}$ is β-undefined in Γ and irreducible by $\operatorname{conv}(\Gamma) . N \cup U \models$ $\left(s_{m} \# t_{m}\right) \vee \operatorname{comp}\left(s_{m} \# t_{m}\right)$ obviously holds. $\left(s_{m} \# t_{m}\right) \sigma_{m} \prec_{T} \beta$ holds inductively by lemma 14 and since $L \sigma \prec_{T} \beta$.
-202 and 204 trivially hold by induction hypothesis.
- 2015 trivially holds since $D=T$.

Conflict: Assume Conflict is applicable. Then there exists a $D^{\prime} \sigma$ such that $D^{\prime} \sigma$ is β-false in Γ. Then:

- 2011-2044 trivially hold by induction hypothesis
- 2015 $D^{\prime} \sigma$ is β-false in Γ by definition of Conflict. Now we have two cases:

1. $D^{\prime} \sigma$ is of level greater than zero. Then $N \cup U \models D^{\prime}$ since $D^{\prime} \in N \cup U$ by definition of Conflict.
2. $D^{\prime} \sigma$ is of level zero. Then we have to show that $N \cup U \models \perp$. For any literal $L_{0}^{0:\left(L_{0} \vee D_{0}\right) \cdot \sigma} \in \Gamma$ it holds $N \models L_{0}$, since any literal of level 0 is a propagated literal. By definition of a level, for any $K \in D^{\prime} \sigma$ there exists a core $\operatorname{core}(\Gamma ; K)$ that contains only literals of level 0 . Thus $N \cup U \models$ $\operatorname{core}(\Gamma ; K)$ and $\operatorname{core}(\Gamma ; K) \models \neg K$ for any such K. Then $N \cup U \models \neg D^{\prime} \sigma$ and $N \cup U \models D^{\prime} \sigma$ and therefore $N \cup U \models \perp$.

Skip: Assume Skip is applicable. Then $\Gamma=\Gamma^{\prime}, L$ and $D=D^{\prime} \cdot \sigma$ and $D^{\prime} \sigma$ is β-false in Γ^{\prime}.

- 2011 By i.h. Γ is consistent. Thus Γ^{\prime} is consistent as well.
-2022 204 trivially hold by induction hypothesis and since Γ^{\prime} is a prefix of Γ.
- 2015. By i.h. $D^{\prime} \sigma$ is β-false in Γ and $N \cup U \models D^{\prime}$. By definition of Skip $D^{\prime} \sigma$ is β-false in Γ^{\prime}.

Explore-Refutation: Assume Explore-Refutation is applicable. Then $D=\left(D^{\prime} \vee\right.$ $s \# t) \cdot \sigma,(s \# t) \sigma$ is strictly $\prec_{\Gamma^{*}}$ maximal in $\left(D^{\prime} \vee s \# t\right) \sigma,\left[I_{1}, \ldots, I_{m}\right]$ is a refutation from Γ and $(s \# t) \sigma, I_{j}=\left(s_{j} \# t_{j} \cdot \sigma_{j},\left(s_{j} \# t_{j} \vee C_{j}\right) \cdot \sigma_{j}, I_{l}, I_{k}, p_{j}\right), 1 \leq j \leq m$, $\left(s_{j} \# t_{j} \vee C_{j}\right) \sigma_{j} \prec_{\Gamma^{*}}\left(D^{\prime} \vee s \# t\right) \sigma,\left(s_{j} \# t_{j} \vee C_{j}\right) \sigma_{j}$ is β-false in Γ.

- 20,1,204 trivially hold by i.h.
-205 By definition $\left(C_{j} \vee s_{j} \# t_{j}\right) \sigma_{j}$ is β-false in Γ. By i.h. for all $L^{\prime} \sigma^{\prime l:\left(L^{\prime} \vee C^{\prime}\right) \cdot \sigma^{\prime}}$ $\in \Gamma$ it holds that $N \cup U \models\left(L^{\prime} \vee C^{\prime}\right)$. By i.h. $N \cup U \models D^{\prime} \vee s \# t$. By definition of a refutation $I_{j}:=\left(s_{j} \# t_{j} \cdot \sigma_{j}, s_{j} \# t_{j} \vee C_{j} \cdot \sigma_{j}, I_{i}, I_{k}, p_{j}\right)$ either contains a clause annotation from $\Gamma,(s \# t) \sigma^{k:\left(D^{\prime} \vee s \# t\right) \cdot \sigma}$ or it is a rewriting inference from smaller rewrite steps for all $1 \leq j \leq m$. Thus it follows inductively by lemma 14 that $N \cup U \models\left(s_{j} \# t_{j} \vee C_{j}\right)$.

Factorize: Assume Factorize is applicable. Then $D=D^{\prime} \cdot \sigma$.

- 2011-2014 trivially hold by induction hypothesis.
-205. By i.h. $D^{\prime} \sigma$ is β-false in Γ and $N \cup U \models D^{\prime}$. By the definition of Factorize $D^{\prime}=D_{0} \vee L \vee L^{\prime}$ such that $L \sigma=L^{\prime} \sigma$ and $\mu=m g u\left(L, L^{\prime}\right)$. $\left(D_{0} \vee L \vee L^{\prime}\right) \mu$ is an instance of D^{\prime}. Thus $N \cup U \models\left(D_{0} \vee L \vee L^{\prime}\right) \mu$. Since $L \mu=L^{\prime} \mu,\left(D_{0} \vee L \vee L^{\prime}\right) \mu \models\left(D_{0} \vee L\right) \mu$. Thus $N \cup U \models\left(D_{0} \vee L\right) \mu$ and $\left(D_{0} \vee L\right) \mu \sigma$ is β-false since $\left(D_{0} \vee L\right) \mu \sigma=\left(D_{0} \vee L\right) \sigma$ by definition of an mgu.

Equality-Resolution: Assume Equality-Resolution is applicable. Then $D=\left(D^{\prime} \vee\right.$ $\left.s \not \approx s^{\prime}\right) \sigma$ and $s \sigma=s^{\prime} \sigma, \mu=m g u\left(s, s^{\prime}\right)$. Then

- 2011-204 trivially hold by induction hypothesis.
- 2015. By i.h. $\left(D^{\prime} \vee s \not \approx s^{\prime}\right) \sigma$ is β-false in Γ and $N \cup U \models\left(D^{\prime} \vee s \not \approx s^{\prime}\right)$. $D^{\prime} \mu$ is an instance of $\left(D^{\prime} \vee s \not \approx s^{\prime}\right)$. Thus $\left(D^{\prime} \vee s \not \approx s^{\prime}\right) \models D^{\prime} \mu$. Thus $N \cup U \models D^{\prime} \mu$. $D^{\prime} \mu \sigma$ is β-false since $\left(D^{\prime} \vee s \not \approx s^{\prime}\right) \sigma$ is β-false and $D^{\prime} \mu \sigma=D^{\prime} \sigma$ by definition of a mgu.

Backtrack: Assume Backtrack is applicable. Then $\Gamma=\Gamma^{\prime}, K, \Gamma^{\prime \prime}$ and $D=$ $\left(D^{\prime} \vee L\right) \sigma$, where $L \sigma$ is of level k, and $D^{\prime} \sigma$ is of level i.

- 2011 By i.h. Γ is consistent. Thus $\Gamma^{\prime} \subseteq \Gamma$ is consistent.
- 20|2-2013: Since Γ^{\prime} is a prefix of Γ by i.h. this holds.
- 2014 By i.h. $N \cup U \models D^{\prime} \vee L$ and $N \models U$. Thus $N \models U \cup\left\{D^{\prime} \vee L\right\}$
-2015 trivially holds since $D=\top$ after backtracking.

Proof of Lemma 26 Assume a state $(\Gamma ; N ; U ; \beta ; k ; D)$ resulting from a regular run where the current level $k>0$ and a unit clause $l \approx r \in N$. Now assume a clause $C \vee L\left[l^{\prime}\right]_{p} \in N$ such that $l^{\prime}=l \mu$ for some matcher μ. Now assume some arbitrary grounding substitutions σ^{\prime} for $C \vee L\left[l^{\prime}\right]_{p}, \sigma$ for $l \approx r$ such that $l \sigma=l^{\prime} \sigma^{\prime}$ and $r \sigma \prec_{T} l \sigma$. Then $\left(C \vee L\left[r \mu \sigma \sigma^{\prime}\right]_{p}\right) \sigma^{\prime} \prec_{\Gamma^{*}}\left(C \vee L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$.

Proof. Let $(\Gamma ; N ; U ; \beta ; k ; D)$ be a state resulting from a regular run where $k>0$ and $\Gamma=\left[L_{1}, \ldots, L_{n}\right]$. Now we have two cases:

1. $\beta \prec_{T}(l \approx r) \sigma$. Since $(l \approx r) \sigma$ rewrites $L\left[l^{\prime}\right]_{p} \sigma^{\prime}, \beta \prec_{T} L\left[l^{\prime}\right]_{p} \sigma^{\prime}$ has to hold as well. Thus $(l \approx r) \sigma$ is β-undefined in Γ and $L\left[l^{\prime}\right]_{p} \sigma^{\prime}$ is β-undefined in Γ. By definition of a trail induced ordering $\prec_{\Gamma^{*}}:=\prec_{T}$ for β-undefined literals. Thus, in case that $\left.L[r \mu]_{p}\right) \sigma \sigma^{\prime}$ is still undefined, $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ has to hold since $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{T}\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$. Thus, according to the definition of multiset orderings, $\left(C \vee L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}\left(C \vee L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$. In the case that $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}$ is defined, $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ has to hold as well by definition 9.11. Thus, according to the definition of multiset orderings, $(C \vee$ $\left.L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}\left(C \vee L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$.
2. $(l \approx r) \sigma \prec_{T} \beta$. Since propagation is exhaustive for literals of level 0 (cf. 24]2) $(l \approx r) \sigma$ is on the trail or defined and of level 0 . Now we have two cases:
(a) $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ is of level 1 or higher. Since $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ is reducible by $(l \approx r) \sigma$, $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime} \neq L_{i}$ and $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime} \neq \operatorname{comp}\left(L_{i}\right)$ for all $L_{i} \in \Gamma$. Since $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ is of level 1 or higher, rewriting with $(l \approx r) \sigma$ does not change the defining literal of $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$. Thus $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ has to hold since $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{T}\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$. Thus, according to the definition of multiset orderings, $\left(C \vee L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}\left(C \vee L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$
(b) $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ is of level 0 . First we show that $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}$ is still of level 0 . Suppose that $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}=s \# s$. Then rewriting either the left or right side of the equation results in $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}$. Then $\operatorname{core}(\Gamma ;(l \approx$ $r) \sigma$) is also a core for $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}$ and thus $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}$ must be of level 0 . Now suppose that $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}=s \# s$. Then it is of level 0 by definition of a level. Finally suppose that $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \neq s \# s$ and $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime} \neq s \# s$. Then $\operatorname{core}\left(\Gamma ;\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}\right) \cup \operatorname{core}(\Gamma ;(l \approx r) \sigma)$ is a core for $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}$. Thus $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime}$ is of level 0 . Since $\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{T}$ $\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime},\left(L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}\left(L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$ according to the definition of $\prec_{\Gamma^{*}}$. Thus, according to the definition of multiset orderings, $\left(C \vee L[r \mu]_{p}\right) \sigma \sigma^{\prime} \prec_{\Gamma^{*}}$ $\left(C \vee L\left[l^{\prime}\right]_{p}\right) \sigma^{\prime}$.

Proof of Lemma 27 Let C, D be two clauses. If there exists a substitution σ such that $C \sigma \subset D$, then D is redundant with respect to C and any $\prec_{\Gamma^{*}}$.

Proof. Let τ be a grounding substitution for D. Since $C \sigma \subset D, C \sigma \tau \subset D \tau$. Thus, for any $L \in C \sigma \tau$ it holds $L \in D \tau$ and $C \sigma \tau \neq D \tau$. Thus, $C \sigma \tau \prec_{\Gamma^{*}} D \tau$ by definition of a multiset extension and $C \sigma \tau$ makes $D \tau$ redundant by definition 1 ,

Auxiliary Lemmas for the Proof of Lemma 25

Lemma 39. During a regular run, if ($\Gamma ; N ; U ; \beta ; k ; \top$) is the immediate result of an application of Backtrack, then there exists no clause $C \in N \cup U$ and a substitution σ such that $C \sigma$ is β-false in Γ.

Proof. We prove this by induction. For the induction start assume the state ($\Gamma^{\prime} ; N ; U \cup\{D\} ; \beta ; i ; \top$) after the first application of Backtrack in a regular run, where D is the learned clause. Since Backtrack was not applied before, the previous (first) application of Conflict in a state ($\Gamma, K ; N ; U ; \beta ; k ; \top$) was immediately preceded by an application of Propagate or Decide. By the definition of a regular run there is no clause $C \in N$ with substitution σ such that $C \sigma$ is β-false in Γ. Otherwise Conflict would have been applied earlier. By the definition of Backtrack, there exists no substition τ such that $D \tau$ is β-false in Γ^{\prime}. Since there existed such a substitution before the application of Backtrack, Γ^{\prime} has to be a prefix of Γ and $\Gamma \neq \Gamma^{\prime}$. Thus there exists no clause $C \in N \cup U \cup\{D\}$ and a grounding substitution δ such that $C \delta$ is β-false in Γ^{\prime}.

For the induction step assume the state $\left(\Gamma^{\prime} ; N ; U \cup\{D\} ; \beta ; i ; \top\right)$ after nth application of Backtrack. By i.h. the previous application of Backtrack did not produce any β-false clause. It follows that the the previous application of Conflict in a state $(\Gamma, K ; N ; U ; \beta ; k ; \top)$ was immediately preceded by an application of Propagate or Decide. By the definition of a regular run there is no clause $C \in N \cup U$ with substitution σ such that $C \sigma$ is β-false in Γ. Otherwise Conflict would have been applied earlier. By the definition of Backtrack, there exists no substition τ such that $D \tau$ is β-false in Γ^{\prime}. Since there existed such a substitution before the application of Backtrack, Γ^{\prime} has to be a prefix of Γ and $\Gamma \neq \Gamma^{\prime}$. Thus there exists no clause $C \in N \cup U \cup\{D\}$ and a grounding substitution δ such that $C \delta$ is β-false in Γ^{\prime}.

Corollary 40. If Conflict is applied in a regular run, then it is immediately preceded by an application of Propagate or Decide, except if it is applied to the initial state.

Lemma 41. Assume a state $(\Gamma ; N ; U ; \beta ; k ; D)$ resulting from a regular run. Then there exists no clause $(C \vee L) \in N \cup U$ and a grounding substitution σ such that $(C \vee L) \sigma$ is β-false in Γ, $\operatorname{comp}(L \sigma)$ is a decision literal of level i in Γ and $C \sigma$ is of level $j<i$.

Proof. Proof is by induction. Assume the initial state $(\epsilon ; N ; \emptyset ; \beta ; 0 ; \top)$. Then any clause $C \in N$ is undefined in Γ. Then this trivially holds.

Now for the induction step assume a state ($\Gamma ; N ; U ; \beta ; k ; D$). Only Propagate, Decide, Backtrack and Skip change the trail and only Backtrack adds a new literal to U. By i.h. there exists no clause with the above properties in $N \cup U$.

Now assume that Propagate is applied. Then a literal L is added to the trail. Let $C_{1} \vee L_{1}, \ldots, C_{n} \vee L_{n}$ be the ground clause instances that get β-false in Γ by the application such that L is the defining literal of L_{1}, \ldots, L_{n}. Then L_{i} is of level k for $1 \leq i \leq n$. Thus $L_{i} \neq \operatorname{comp}(K)$ for the decision literal $K \in \Gamma$ of level k. Thus $C_{1} \vee L_{1}, \ldots, C_{n} \vee L_{n}$ do not have the above properties.

Now assume that Decide is applied. Then a literal L of level $k+1$ is added to the trail. Let $C_{1} \vee L_{1}, \ldots, C_{n} \vee L_{n}$ be the (ground) clause instances that get β-false in Γ by the application such that L is the defining literal of L_{1}, \ldots, L_{n}. By the definition of a regular run for all L_{i} with $1 \leq i \leq n$ it holds that $L_{i} \neq \operatorname{comp}(L)$ or there exists another literal $K_{i} \in C_{i}$ such that K_{i} is of level $k+1$ and $L_{i} \neq K_{i}$, since otherwise Propagate must be applied. Thus $C_{1} \vee L_{1}, \ldots, C_{n} \vee L_{n}$ do not have the above properties.

Now assume that Skip is applied. Then there are no new clauses that get β-false in Γ. Thus this trivially holds.

Now assume that Backtrack is applied. Then a new clause $D \vee L$ is added to U and $\Gamma=\Gamma^{\prime}, K, \Gamma^{\prime \prime}$ such that there is a grounding substitution τ with $(D \vee L) \tau$ β-false in Γ^{\prime}, K, there is no grounding substitution δ with $(D \vee L) \delta \beta$-false in Γ^{\prime}. Γ^{\prime} is the trail resulting from the application of Backtrack. By lemma 39, after application of Backtrack there exists no clause $C \in N \cup U$ and a substitution σ such that $C \sigma$ is β-false in Γ^{\prime}. Thus there exists no clause with the above properties.

Proof of Lemma 25 Let N be a clause set. The clauses learned during a regular run in $\mathrm{SCL}(\mathrm{EQ})$ are not redundant with respect to $\prec_{\Gamma^{*}}$ and $N \cup U$. For the trail only non-redundant clauses need to be considered.

We first prove that learned clauses are non-redundant and then that only non-redundant clauses need to be considered, Lemma 45, below.

Proof. Consider the following fragment of a derivation learning a clause:

$$
\begin{array}{lr}
\Rightarrow \begin{array}{l}
\text { Conflict } \\
\text { SCL(EQ) }
\end{array} & (\Gamma ; N ; U ; \beta ; k ; D \cdot \sigma) \\
\Rightarrow_{\text {SCL(EQ) }}^{\{\text {Explore-Refutation,Skip,Eq-Res,Factorize }\}^{*}} & \left(\Gamma^{\prime} ; N ; U ; \beta ; l ; C \cdot \sigma\right) \\
\Rightarrow_{\text {SCL(EQ) }}^{\text {Backtrack }} & \left(\Gamma^{\prime \prime} ; N ; U \cup\{C\} ; \beta ; k^{\prime} ; \top\right)
\end{array}
$$

Assume there are clauses in $N^{\prime} \subseteq\left(g n d(N \cup U) \preceq_{\Gamma^{*}} C \sigma\right)$ such that $N^{\prime} \models C \sigma$. Since $N^{\prime} \preceq_{\Gamma^{*}} C \sigma$ and $C \sigma$ is β-defined in Γ, there is no β-undefined literal in N^{\prime}, as all β-undefined literals are greater than all β-defined literals. If $\Gamma \models N^{\prime}$ then $\Gamma \models C \sigma$, a contradiction. Thus there is a $C^{\prime} \in N^{\prime}$ with $C^{\prime} \preceq_{\Gamma^{*}} C \sigma$ such that C^{\prime} is β-false in Γ. Now we have two cases:

1. $\Gamma^{\prime} \neq \Gamma$. Then $\Gamma=\Gamma^{\prime}, \Delta$. Thus at least one Skip was applied, so $C \sigma$ does not contain a literal that is β-undefined without the rightmost literal of Γ, therefore $C \sigma \neq D \sigma$. Suppose that this is not the case, so $C \sigma=D \sigma$. Then $D \sigma$ is β-false in Γ^{\prime}. But since Backtrack does not produce any β-false clauses by lemma 39, Conflict could have been applied earlier on $D \sigma$ contradicting a regular run. Since $C^{\prime} \preceq_{\Gamma^{*}} C \sigma$ we have that $C^{\prime} \neq D \sigma$ as well. Thus, again since Backtrack does not produce any β-false clauses by lemma 39, at a previous point in the derivation there must have been a state such that C^{\prime} was β-false under the current trail and Conflict was applicable but not applied, a contradiction to the definition of a regular run.
2. $\Gamma^{\prime}=\Gamma$, then conflict was applied immediately after an application of Decide by corollary 40 and the definition of a regular run. Thus $\Gamma=\Delta, K^{(k-1): D^{\prime} \cdot \delta}$, $L^{k: D^{\prime \prime} \cdot \tau} . C^{\prime}$ does not have any β-undefined literals. Suppose that C^{\prime} has no literals of level k. Then all literals in C^{\prime} are of level $i<k$. Since C^{\prime} is β-false in Γ, C^{\prime} is β-false in Δ, K as well, since it does not have any literals of level k. Thus, again since Backtrack does not produce any β-false clauses by lemma [39, at a previous point in the derivation there must have been a state such that C^{\prime} was β-false under the current trail and Conflict was applicable but not applied, a contradiction to the definition of a regular run. Since $C^{\prime} \preceq_{\Gamma^{*}} C \sigma$, it may have at most one literal of level k, namely $\operatorname{comp}(L)$, since $\operatorname{comp}(L) \in C \sigma$ by definition of a regular run, since Skip was not applied, and there exists only L such that $L \prec_{\Gamma^{*}} \operatorname{comp}(L)$ and L is of level k. But L is β-true in Γ. Thus $L \notin C^{\prime}$ has to hold.
Now suppose that C^{\prime} has one literal of level k. Thus $C^{\prime}=C^{\prime \prime} \vee \operatorname{comp}(L)$, where $C^{\prime \prime}$ is β-false in Δ, K. But by lemma 41 there does not exist such a clause. Contradiction.

Auxiliary Lemma for the Proof of Lemma 43

Lemma 42. Assume a clause $L_{1} \vee \ldots \vee L_{m}$, a trail Γ resulting from a regular run starting from the initial state, and a reducible (by conv (Γ)) grounding substitution σ, such that $L_{i} \sigma$ is β-false (β-true or β-undefined) in Γ and $L_{i} \sigma \prec_{T} \beta$ for $1 \leq i \leq m$. Then there exists a substitution σ^{\prime} that is irreducible by conv (Γ) such that $L_{i} \sigma^{\prime}$ is β-false (β-true or β-undefined) in $\Gamma, L_{i} \sigma^{\prime} \prec_{T} \beta$ and $L_{i} \sigma \downarrow_{\operatorname{conv}(\Gamma)}=L_{i} \sigma^{\prime} \downarrow_{\operatorname{conv}(\Gamma)}$.

Proof. Let $L_{1} \vee \ldots \vee L_{m}$ be a clause, Γ a trail resulting from a regular run. Let $\sigma:=$ $\left\{x_{1} \rightarrow t_{1}, \ldots, x_{n} \rightarrow t_{n}\right\}$. Now set $\sigma^{\prime}:=\left\{x_{1} \rightarrow\left(t_{1} \downarrow_{\operatorname{conv}(\Gamma)}\right), \ldots, x_{n} \rightarrow\left(t_{n} \downarrow_{\operatorname{conv}(\Gamma)}\right)\right\}$. Obviously σ^{\prime} is irreducible by $\operatorname{conv}(\Gamma)$ and $L_{i} \sigma^{\prime} \prec_{T} \beta$ for all $1 \leq i \leq m$. By definition, $\operatorname{conv}(\Gamma)$ is a confluent and terminating rewrite system. Since Γ is consistent, $t_{j} \downarrow_{\operatorname{conv}(\Gamma)} \approx t_{j}$ is β-true in Γ for $1 \leq j \leq n$. Thus there exists a chain such that $L_{i} \sigma \rightarrow_{\operatorname{conv}(\Gamma)} \cdots \rightarrow_{\operatorname{conv}(\Gamma)} L_{i} \sigma^{\prime}$ and $L_{i} \sigma^{\prime}$ is β-false $(\beta$-true or β-undefined) in Γ. Now there also exists a chain $L_{i} \sigma \rightarrow_{\operatorname{conv}(\Gamma)} \ldots \rightarrow_{\operatorname{conv}(\Gamma)}$
$L_{i} \sigma \downarrow_{\operatorname{conv}(\Gamma)}$. By definition of convergence there must exist a chain $L_{i} \sigma^{\prime} \rightarrow_{\operatorname{conv(\Gamma)}}$ $\ldots \rightarrow_{\operatorname{conv}(\Gamma)} L_{i} \sigma \downarrow_{\operatorname{conv}(\Gamma)}$. Thus $L_{i} \sigma \downarrow_{\operatorname{conv}(\Gamma)}=L_{i} \sigma^{\prime} \downarrow_{\operatorname{conv}(\Gamma)}$.

Auxiliary Lemma for the Proof of Lemmas 29 and 35

Lemma 43. Suppose a sound state ($\Gamma ; N ; U ; \beta ; k ; \top$) resulting from a regular run. If there exists a $C \in N \cup U$ and a grounding substitution σ such that $C \sigma$ is β-false in Γ, then Conflict is applicable. Otherwise, If there exists a $C \in N \cup U$ and a grounding substitution σ such that $C \sigma \prec_{T} \beta$ and there exists at least one $L \in C$ such that $L \sigma$ is β-undefined, then one of the rules Propagate or Decide is applicable and a β-undefined literal $K \in D$, where $D \in \operatorname{gnd}_{\prec_{T}} \beta(N \cup U)$ is β-defined after application.

Proof. Let $(\Gamma ; N ; U ; \beta ; k ; \top)$ be a state resulting from a regular run. Suppose there exists a $C \in N \cup U$ and a grounding σ such that $C \sigma$ is β-false in Γ, then by lemma 42 there exists an irreducible substitution σ^{\prime} such that $C \sigma^{\prime}$ is β-false. Thus Conflict is applicable. Now suppose there exists a $C \in N \cup U$ and a grounding substitution σ such that $C \sigma \prec_{T} \beta$ and there exists at least one $L \in C$ such that $L \sigma$ is β-undefined. By lemma 42 there exists a irreducible substitution σ^{\prime} such that $L \sigma^{\prime}$ is β-undefined. Now assume that $C=$ $C_{0} \vee C_{1} \vee L$ such that $C_{1} \sigma^{\prime}=L \sigma^{\prime} \vee \ldots \vee L \sigma^{\prime}$ and $C_{0} \sigma^{\prime}$ is β-false in Γ. Then Propagate is applicable. Let $C_{1}=L_{1}, \ldots, L_{n}$ and $\mu=m g u\left(L_{1}, \ldots, L_{n}, L\right)$. Now let $\left[I_{1}, \ldots, I_{m}\right]$ be the reduction chain application from Γ to $L \sigma^{\prime k:\left(L \vee C_{0}\right) \mu \cdot \sigma^{\prime}}$. Let $I_{m}=$ $\left(s_{m} \# t_{m} \cdot \sigma_{m},\left(s_{m} \# t_{m} \vee C_{m}\right) \cdot \sigma_{m}, I_{j}, I_{k}, p_{m}\right)$. Then $L \sigma^{\prime} \downarrow_{\operatorname{conv}(\Gamma)}=s_{m} \# t_{m} \sigma_{m}$ by definition of a reduction chain application. Thus $L \sigma^{\prime}$ is β-true in $\Gamma, s_{m} \# t_{m} \sigma_{m}$. Since $L \sigma \downarrow_{\operatorname{conv}(\Gamma)}=L \sigma^{\prime} \downarrow_{\operatorname{conv}(\Gamma)}$ by lemma 42, $L \sigma$ is β-true in $\Gamma, s_{m} \# t_{m} \sigma_{m}$ as well. If $C_{0} \sigma$ is β-undefined or β-true in Γ then Propagate is not applicable to $C \sigma^{\prime}$. If Decide is not applicable by definition of a regular run, then there exists a clause $C^{\prime} \in(N \cup U)$ and a substitution δ such that Propagate is applicable. Then we can apply Propagate by definition of a regular run and a previously undefined literal gets defined after application as seen above and we are done. Now suppose that there exists no such clause. Then let $\left[I_{1}^{\prime}, \ldots, I_{l}^{\prime}\right]$ be the reduction chain application from Γ to $L \sigma^{\prime k+1: C \cdot \sigma^{\prime}}$ and $I_{l}^{\prime}=\left(s_{l} \# t_{l} \cdot \sigma_{l},\left(s_{l} \# t_{l} \vee C_{l}\right) \cdot \sigma_{l}, I_{j}^{\prime}, I_{k}^{\prime}, p_{l}\right)$. Then $L \sigma^{\prime} \downarrow_{\operatorname{conv}(\Gamma)}=\left(s_{l} \# t_{l}\right) \sigma_{l}$ by definition of a reduction chain application. Thus $L \sigma^{\prime}$ is β-true in $\Gamma,\left(s_{l} \# t_{l}\right) \sigma_{l}$. Since $L \sigma \downarrow_{\operatorname{conv}(\Gamma)}=L \sigma^{\prime} \downarrow_{\operatorname{conv}(\Gamma)}$ by lemma 42, $L \sigma$ is β-true in $\Gamma,\left(s_{l} \# t_{l}\right) \sigma_{l}$ as well. $\left(s_{l} \# t_{l}\right) \sigma_{l}^{k+1:\left(s_{l} \# t_{l} \vee \operatorname{comp}\left(s_{l} \# t_{l}\right)\right) \cdot \sigma_{l}}$ can be added to Γ by definition of a regular run and also by definition of Decide since $C \in N \cup U$, σ^{\prime} is grounding for C and irreducible in $\operatorname{conv}(\Gamma), L \sigma^{\prime}$ is β-undefined in Γ and $C \sigma^{\prime} \prec_{T} \beta$.

Auxiliary Lemma for the Proof of Lemmas 29

Lemma 44. Suppose a sound state ($\Gamma ; N ; U ; \beta ; k ; D \cdot \sigma$) resulting from a regular run. Then $D \sigma$ is of level 1 or higher.

Proof. Let $(\Gamma ; N ; U ; \beta ; k ; D \cdot \sigma)$ be a state resulting from a regular run. Suppose that $D \sigma$ is not of level 1 or higher, thus $D \sigma$ is of level 0 . Then Conflict was applied earlier to a clause that was of level 1 or higher. Thus there must have been an application of Explore-Refutation on a state ($\Gamma, \Gamma^{\prime}, L ; N ; U ; \beta ; l ; D^{\prime} \cdot \sigma^{\prime}$) between the state after the application of Conflict and the current state resulting in a state $\left(\Gamma, \Gamma^{\prime}, L^{l:(L \vee C) \cdot \delta} ; N ; U ; \beta ; l ; D^{\prime \prime} \cdot \sigma^{\prime \prime}\right)$ such that $D^{\prime} \sigma^{\prime}$ is of level l and $D^{\prime \prime} \sigma^{\prime \prime}$ is of level 0 , since no other rule can reduce the level of $D^{\prime} \sigma^{\prime}$. Then there exists a $K \in D^{\prime} \sigma^{\prime}$ such that L is the defining literal of K. Let $\left[I_{1}, \ldots, I_{m}\right]$ be the refutation of K and $I_{j}=\left(s_{j} \# t_{j} \cdot \sigma_{j},\left(s_{j} \# t_{j} \vee C_{j}\right) \cdot \sigma_{j}, I_{i}, I_{k}, p_{j}\right)$ be the step that was chosen by Explore-Refutation. Then $D^{\prime \prime} \sigma^{\prime \prime}=\left(s_{j} \# t_{j} \vee C_{j}\right) \sigma_{j} . C \delta \subset C_{j} \sigma_{j}$ has to hold since L is the defining literal of K. Then $C \delta$ must be of level 0 or empty. Note that $C \delta$ is of level l if L is a decision literal. But then, by the definition of a regular run, $L^{l:(L \vee C) \cdot \delta}$ must have been propagated before the first decision, since propagation is exhaustive at level 0 . Contradiction.

Proof of Lemma 29 If a regular run (without rule Grow) ends in a stuck state $(\Gamma ; N ; U ; \beta ; k ; D)$, then $D=\top$ and all ground literals $L \sigma \prec_{T} \beta$, where $L \vee C \in N \cup U$ are β-defined in Γ.

Proof. First we prove that stuck states never appear during conflict resolution. Assume a sound state $(\Gamma ; N ; U ; \beta ; k ; D \cdot \sigma)$ resulting from a regular run. Now we show that we can always apply a rule. Suppose that $D \sigma=\left(D^{\prime} \vee L \vee L^{\prime}\right) \sigma$ such that $L \sigma=L^{\prime} \sigma$. Then we must apply Factorize by the definition of a regular run. Now suppose that Factorize is not applicable and $\Gamma:=\Gamma^{\prime}, L$ and $D \sigma$ is false in Γ^{\prime}. If $D \sigma=\left(D^{\prime} \vee s \not \approx s^{\prime}\right) \sigma$ such that $s \sigma=s^{\prime} \sigma$, we can apply Equality-Resolution. So suppose that Equality-Resolution is not applicable. Then we can apply Skip. Now suppose that $\Gamma:=\Gamma^{\prime}, L^{k:(L \vee C) \delta}$ and L is the defining literal of at least one literal in $D \sigma$, so Skip is not applicable. If $D \sigma=\left(D^{\prime} \vee L^{\prime}\right) \sigma$ where $D^{\prime} \sigma$ is of level $i<k$ and $L^{\prime} \sigma$ is of level k and Skip was applied at least once during this conflict resolution, then Backtrack is applicable. If Skip was not applied and $L=\operatorname{comp}\left(L^{\prime} \sigma\right)$ and L is a decision literal, then Backtrack is also applicable. Otherwise, let $(s \# t) \sigma \in D \sigma$ such that $K \prec_{\Gamma^{*}}(s \# t) \sigma$ for all $K \in D \sigma$. $(s \# t) \sigma$ exists since Factorize is not applicable. By lemma 44, $(s \# t) \sigma$ must be of level 1 or higher. By the definition of $\prec_{\Gamma^{*}}, L$ must be the defining literal of $(s \# t) \sigma$ since L is of level 1 or higher and any literal in $D \sigma$ that has another defining literal is smaller than $(s \# t) \sigma$. Now suppose that L is a decision literal and $(s \# t) \sigma=\operatorname{comp}(L)$. Then $(s \# t) \sigma$ is of level k and all other literals $K \in D \sigma$ are of level $i<k$, since $(s \# t) \sigma$ is the smallest β-false literal of level k and Factorize is not applicable. In this case Explore-Refutation is not applicable since a paramodulation step with the decision literal does not make the conflict clause smaller. But Backtrack is applicable in this case even if Skip was not applied earlier by the definition of a regular run. Thus $(s \# t) \sigma \neq \operatorname{comp}(L)$ or L is a propagated literal has to hold. We show that in this case Explore-Refutation is applicable. Let $\left[I_{1}, \ldots, I_{m}\right]$ be a refutation of $(s \# t) \sigma$ from $\Gamma, I_{m}=\left(s_{m} \# t_{m} \cdot \sigma_{m},\left(s_{m} \# t_{m} \vee C_{m}\right) \cdot \sigma_{m}, I_{j}, I_{k}, p_{m}\right)$.

Since $\left[I_{1}, \ldots, I_{m}\right]$ is a refutation $s_{m} \# t_{m} \sigma_{m}=s^{\prime} \not \approx s^{\prime}$. Furthermore any I_{i} either contains a clause annotation from $\Gamma,(s \# t) \sigma^{k: D \cdot \sigma}$ or it is a rewrite inference from $I_{j^{\prime}}, I_{k^{\prime}}$ with $j^{\prime}, k^{\prime}<i$. Thus by lemma 14 it inductively follows that $C_{m} \sigma_{m}=D^{\prime} \sigma_{m} \vee \ldots \vee D^{\prime} \sigma_{m} \vee C_{1}^{\prime} \sigma_{m} \vee \ldots \vee C_{n}^{\prime} \sigma_{m}$, where $C_{1}^{\prime} \sigma_{m}, \ldots, C_{n}^{\prime} \sigma_{m}$ are clauses from Γ without the leading trail literal and $D \sigma=D^{\prime} \sigma_{m} \vee(s \# t) \sigma$. Since L is the defining literal of $(s \# t) \sigma$ there must exist at least one C_{i}^{\prime} such that $C_{i}^{\prime} \sigma_{m}=C \delta$. If L is a propagated literal, then any literal in $C_{i}^{\prime} \sigma_{m}$ is smaller than $(s \# t) \sigma$, since they are already false in Γ^{\prime}. If L is a decision literal, then $C_{i}^{\prime} \sigma_{m}=\operatorname{comp}(L)$. Then $\operatorname{comp}(L)$ is smaller, since $(s \# t) \sigma \neq \operatorname{comp}(L)$ and $(s \# t) \sigma \neq L$. Thus $\operatorname{comp}(L) \prec_{\Gamma^{*}}(s \# t) \sigma$. Any other literal in $C_{1} \sigma_{m}, \ldots, C_{n}^{\prime} \sigma_{m}$ is smaller in $\prec_{\Gamma^{*}}$, since they are already defined in Γ^{\prime}. Since Factorize is not applicable $(s \# t) \sigma$ is also strictly maximal in $D^{\prime} \sigma_{m}$. Thus $\left(s_{m} \# t_{m} \vee C_{m}\right) \sigma_{m} \prec_{\Gamma^{*}} D \sigma$ which makes Explore-Refutation applicable.
Now by lemma 43 it holds that if there exists an β-undefined literal in $g n d_{\prec_{T} \beta}(N \cup$ U), we can always apply at least one of the rules Propagate or Decide which makes a previously β-undefined literal in $g n d_{\prec_{T} \beta}(N \cup U) \beta$-defined.

Proof of Lemma 30 Suppose a sound state $(\Gamma ; N ; U ; \beta ; k ; D)$ resulting from a regular run where $D \notin\{\top, \perp\}$. If Backtrack is not applicable then any set of applications of Explore-Refutation, Skip, Factorize, Equality-Resolution will finally result in a sound state ($\Gamma^{\prime} ; N ; U ; \beta ; k ; D^{\prime}$), where $D^{\prime} \prec_{\Gamma^{*}} D$. Then Backtrack will be finally applicable.

Proof. Assume a sound state $(\Gamma ; N ; U ; \beta ; k ; D \cdot \sigma)$ resulting from a regular run. Let $(s \# t) \sigma \in D \sigma$ such that $L \preceq_{\Gamma^{*}}(s \# t) \sigma$ for all $L \in D \sigma$. If $(s \# t) \sigma$ occurs twice in $D \sigma$, then Factorize is applicable. Suppose that it is applied. Then $D \sigma=\left(D^{\prime} \vee(s \# t) \vee L\right) \sigma$, where $L \sigma=(s \# t) \sigma$. Then $\mu=m g u(s \# t, L)$ and the new conflict clause is $\left(D^{\prime} \vee s \# t\right) \mu \sigma \prec_{\Gamma^{*}} D \sigma$. Thus in this case we are done. If Factorize is not applicable, then the only remaining applicable rules are Skip, Explore-Refutation and Equality-Resolution. If $\Gamma=\Gamma^{\prime}, L, \Gamma^{\prime \prime}$ where L is the defining literal of $(s \# t) \sigma$, then Skip is applicable $\left|\Gamma^{\prime \prime}\right|$ times, since otherwise $(s \# t) \sigma$ would not be maximal in $D \sigma$. So at some point it is no longer applicable. Since $D \sigma$ is finite, Equality-Resolution can be applied only finitely often. Thus we finally have to apply Explore-Refutation. Then $\left[I_{1}, \ldots, I_{m}\right]$ is a refutation of $(s \# t) \sigma$ from Γ, and there exists an $1 \leq j \leq m$, such that $I_{j}=\left(s_{j} \# t_{j} \cdot \sigma_{j},\left(s_{j} \# t_{j} \vee C_{j}\right) \cdot \sigma_{j}, I_{l}, I_{k}, p_{j}\right),\left(C_{j} \vee s_{j} \# t_{j}\right) \sigma_{j} \prec_{\Gamma^{*}}\left(D^{\prime} \vee s \# t\right) \sigma$. Otherwise Explore-Refutation would not be applicable, contradicting lemma 29 , Thus in this case we are done.
Now we show that Backtrack is finally applicable. Since $\prec_{\Gamma^{*}}$ is well-founded and Γ is finite there must be a state where Explore-Refutation, Skip, Factorize, Equality-Resolution are no longer applicable. By lemma 44 the conflict clause in this state must be of level 1 or higher, thus \perp cannot be inferred. Suppose that it is always of level $i \geq l$ for some l. The smallest literal of level l that is false in Γ is $\operatorname{comp}(L)$, where L is the decision literal of level l. Since we can always reduce if Backtrack is not applicable and since we can always apply a rule by
lemma 29, we must finally reach a conflict clause $\operatorname{comp}(L) \vee C$, where C is of level $j<l$. Thus Backtrack is applicable.

Proof of Lemma 33 Let N be a set of clauses and β be a ground term. Then any regular run that never uses Grow terminates.

Proof. Assume a new ground clause $D \sigma$ is learned. By lemma 25 all learned clauses are non-redundant. Thus $D \sigma$ is non-redundant. By the definition of a regular run Factorize has precedence over all other rules. Thus $D \sigma$ does not contain any duplicate literals. By theorem 23, $D \sigma \prec_{T} \beta$ has to hold. There are only finitely many clauses $C \sigma \prec_{T} \beta$, where $C \sigma$ is neither a tautology nor does it contain any duplicate literals. Thus there are only finitely many clauses $D \sigma$ that can be learned. Thus there are only finitely many literals that can be decided or propagated.

Proof of Lemma 34 If a regular run reaches the state $(\Gamma ; N ; U ; \beta ; k ; \perp)$ then N is unsatisfiable.

Proof. By definition of soundness, all learned clauses are consequences of $N \cup U$, definition 2015, and Γ is satisfiable, definition 201,

Proof of Theorem 35 Let N be an unsatisfiable clause set, and \prec_{T} a desired term ordering. For any ground term β where $g n d_{\prec_{T} \beta}(N)$ is unsatisfiable, any regular $\mathrm{SCL}(\mathrm{EQ})$ run without rule Grow will terminate by deriving \perp.

Proof. Since regular runs of SCL(EQ) terminate we just need to prove that it terminates in a failure state. Assume by contradiction that we terminate in a state $(\Gamma ; N ; U ; \beta ; k ; \top)$. If no rule can be applied in Γ then for all $s \# t \in$ C for some arbitrary $C \in g n d_{\prec_{T} \beta}(N)$ it holds that $s \# t$ is β-defined in Γ (otherwise Propagate or Decide woud be applicable, see Lemma 43) and there aren't any clauses in $g n d_{\swarrow_{T} \beta}(N) \beta$-false under Γ (otherwise Conflict would be applicable, see again lemma 431). Thus, for each $C \in \operatorname{gnd}_{\prec_{T} \beta}(N)$ it holds that C is β-true in Γ. So we have $\Gamma \models g n d_{\prec_{T} \beta}(N)$, but by hypothesis there is a superposition refutation of N that only uses ground literals from $\operatorname{gnd}_{\prec_{T} \beta}(N)$, so also $g n d_{\prec_{T} \beta}(N)$ is unsatisfiable, a contradiction.

Lemma 45 (Only Non-Redundant Clauses Building the Trail). Let $\Gamma=$ [$\left.L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]$ be a trail. If $L_{j}^{i_{j}: C_{j} \cdot \sigma_{j}}$ is a propagated literal and there exist clauses $\left\{D_{1} \vee K_{1}, \ldots, D_{m} \vee K_{m}\right\}$ with grounding substitutions $\delta_{1}, \ldots, \delta_{m}$ such that $N:=\left\{\left(D_{1} \vee K_{1}\right) \delta_{1}, \ldots,\left(D_{m} \vee K_{m}\right) \delta_{m}\right\} \prec_{\Gamma^{*}} C_{j} \sigma_{j}$ and $\left\{\left(D_{1} \vee K_{1}\right) \delta_{1}, \ldots,\left(D_{m} \vee\right.\right.$ $\left.\left.K_{m}\right) \delta_{m}\right\} \models C_{j} \sigma_{j}$, then there exists a $\left(D_{k} \vee K_{k}\right) \delta_{k} \in N$ such that

$$
\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{j-1}^{i_{j-1}: C_{j-1} \cdot \sigma_{j-1}}, K_{k}^{i_{j}:\left(D_{k} \vee K_{k}\right) \cdot \delta_{k}}, \ldots, L_{n}^{i_{n}: C_{n} \cdot \sigma_{n}}\right]
$$

is a trail.

Proof. Let $N=\left\{\left(D_{1} \vee K_{1}\right) \delta_{1}, \ldots,\left(D_{m} \vee K_{m}\right) \delta_{m}\right\}$ and $L_{j}^{i_{j}: C_{j} \cdot \sigma_{j}}$ be as above. Let $\Gamma^{\prime}=\left[L_{1}^{i_{1}: C_{1} \cdot \sigma_{1}}, \ldots, L_{j-1}^{i_{j-1}}: C_{j-1} \cdot \sigma_{j-1}\right]$. Now suppose that for every literal $L \in N$ it holds $L \prec_{\Gamma^{*}} L_{j}$. Then every literal in N is defined in Γ^{\prime} and $\Gamma^{\prime} \models N$, otherwise Conflict would have been applied to a clause in N. Thus $\Gamma^{\prime} \models C_{j} \sigma_{j}$ would have to hold as well. But by definition of a trail L_{j} is undefined in Γ^{\prime}. Thus there must be at least one clause $\left(D_{k} \vee K_{k}\right) \delta_{k} \in N$ with $K_{k}=L_{j}$ and $D_{k} \delta_{k} \prec_{\Gamma^{*}} L_{j}$ (otherwise $\left.\left(D_{k} \vee K_{k}\right) \delta_{k} \not \Gamma^{*} C_{j} \sigma_{j}\right)$, such that $\Gamma^{\prime} \not \vDash D_{k}$. Suppose that $\Gamma^{\prime} \models D_{k}$. Then $N \not \vDash C_{j} \sigma_{j}$, since there exists an allocation, namely $\Gamma^{\prime}, \neg L_{k}$ such that $\Gamma^{\prime}, \neg L_{k} \models N$ but $\Gamma^{\prime}, \neg L_{k} \not \vDash C_{j} \sigma_{j}$. Thus we can replace $L_{j}^{i_{j}: C_{j} \cdot \sigma_{j}}$ by $K_{k}^{i_{j}:\left(D_{k} \vee K_{k}\right) \cdot \delta_{k}}$ in Γ.

5.2 Further Examples

For the following examples we assume a term ordering $\prec_{k b o}$, unique weight 1 and with precedence $d \prec c \prec b \prec a \prec a_{1} \prec \ldots \prec a_{n} \prec g \prec h \prec f$. Further assume β to be large enough.

Example 46 (Implicit Conflict after Decision). Consider the following clause set N

$$
\begin{gathered}
C_{1}:=h(x) \approx g(x) \vee c \approx d \quad C_{2}:=f(x) \approx g(x) \vee a \approx b \\
C_{3}:=f(x) \not \approx h(x) \vee f(x) \not \approx g(x)
\end{gathered}
$$

Suppose we apply the rule Decide first to C_{1} and then to C_{2} with substitution $\sigma=\{x \rightarrow a\}$. Then we yield a conflict with $C_{3} \sigma$, resulting in the following state:

$$
\begin{gathered}
\left(\left[h(a) \approx g(a)^{1:(h(x) \approx g(x) \vee h(x) \not \approx g(x)) \cdot \sigma}, f(a) \approx g(a)^{2:(f(x) \approx g(x) \vee f(x) \nsim g(x)) \cdot \sigma}\right] ;\right. \\
\left.N ;\{ \} ; 2 ; C_{3} \cdot \sigma\right)
\end{gathered}
$$

According to $\prec_{\Gamma^{*}}, f(a) \not \approx h(a)$ is the greatest literal in $C_{3} \sigma$. Since $f(a) \approx g(a)$ is the defining literal of $f(a) \not \approx h(a)$ we can not apply Skip. Factorize is also not applicable, since $f(a) \not \approx h(a)$ and $f(a) \not \approx g(a)$ are not equal. Thus we must apply Explore-Refutation to the greatest literal $f(a) \not \approx h(a)$. The rule first creates a refutation $\left[I_{1}, \ldots, I_{5}\right]$, where:

$$
\begin{aligned}
& I_{1}:=\left((f(x) \not \approx h(x)) \cdot \sigma, C_{3} \cdot \sigma, \epsilon, \epsilon, \epsilon\right) \\
& I_{2}:=((f(x) \approx g(x)) \cdot \sigma,(f(x) \approx g(x) \vee f(x) \not \approx g(x)) \cdot \sigma, \epsilon, \epsilon, \epsilon) \\
& I_{3}:=((h(x) \approx g(x)) \cdot \sigma,(h(x) \approx g(x) \vee h(x) \not \approx g(x)) \cdot \sigma, \epsilon, \epsilon, \epsilon) \\
& I_{4}:=\left((h(x) \not \approx g(x)) \cdot \sigma,(h(x) \not \approx g(x) \vee f(x) \not \approx g(x) \vee f(x) \not \approx g(x)) \cdot \sigma, I_{2}, I_{1}, 1\right) \\
& I_{5}:=((g(x) \not \approx g(x)) \cdot \sigma,(g(x) \not \approx g(x) \vee f(x) \not \approx g(x) \vee f(x) \not \approx g(x) \\
&\left.\vee h(x) \not \approx g(x)) \cdot \sigma, I_{4}, I_{3}, 1\right)
\end{aligned}
$$

Explore-Refutation can now choose either I_{4} or I_{5}. Both, $(h(x) \not \approx g(x)) \sigma$ and $(g(x) \not \approx g(x)) \sigma$ are smaller than $(f(x) \not \approx h(x)) \sigma$ according to $\prec_{\Gamma^{*}}$ and false in Γ. Suppose we choose I_{5}. Now our new conflict state is:

$$
\left(\left[h(a) \approx g(a)^{1:(h(x) \approx g(x) \vee h(x) \not \approx g(x)) \cdot \sigma}, f(a) \approx g(a)^{2:(f(x) \approx g(x) \vee f(x) \nsim g(x)) \cdot \sigma}\right]\right.
$$

$$
N ;\{ \} ; 2 ;(g(x) \not \approx g(x) \vee f(x) \not \approx g(x) \vee f(x) \not \approx g(x) \vee h(x) \not \approx g(x)) \cdot \sigma)
$$

Now we apply Equality-Resolution and Factorize to get the new state

$$
\begin{gathered}
\left(\left[g(a) \approx h(a)^{1:(g(x) \approx h(x) \vee g(x) \not \approx h(x)) \cdot \sigma}, f(a) \approx g(a)^{2:(f(x) \approx g(x) \vee f(x) \not \approx g(x)) \cdot \sigma}\right] ;\right. \\
N ;\{ \} ; 2 ;(f(x) \not \approx g(x) \vee h(x) \not \approx g(x)) \cdot \sigma)
\end{gathered}
$$

Now we can backtrack. Note, that this clause is non-redundant according to our ordering, although conflict was applied immediately after decision.

Example 47. Consider the following ground clause set N :

$$
C_{1}:=f(a, a) \not \approx f(b, b) \vee c \approx d \quad C_{2}:=a \approx b \vee f(a, a) \approx f(b, b)
$$

Suppose that we decide $f(a, a) \not \approx f(b, b)$. Then C_{2} is false in Γ. Conflict state is as follows: $\left(\left[f(a, a) \not \approx f(b, b)^{1: f(a, a) \not \approx f(b, b) \vee f(a, a) \approx f(b, b)}\right] ; N ;\{ \} ; 2 ; C_{2}\right)$. ExploreRefutation creates the following ground refutation for $a \approx b$, since it is greatest literal in the conflict clause:

$$
\begin{aligned}
I_{1}:= & (f(a, a) \not \approx f(b, b), f(a, a) \not \approx f(b, b) \vee f(a, a) \approx f(b, b), \epsilon, \epsilon, \epsilon) \\
I_{2}:= & \left(a \approx b, C_{2}, \epsilon, \epsilon, \epsilon\right) \\
I_{3}:= & (f(b, a) \not \approx f(b, b), f(b, a) \not \approx f(b, b) \vee f(a, a) \approx f(b, b) \vee f(a, a) \approx f(b, b), \\
& \left.I_{2}, I_{1}, 11\right) \\
I_{4}:= & (f(b, b) \not \approx f(b, b), f(b, b) \not \approx f(b, b) \vee f(a, a) \approx f(b, b) \vee f(a, a) \approx f(b, b) \\
& \left.\vee f(a, a) \approx f(b, b), I_{3}, I_{1}, 12\right)
\end{aligned}
$$

As one can see, the intermediate result $f(b, a) \not \approx f(b, b)$ is not false in Γ. Thus it is no candidate for the new conflict clause. We have to choose I_{4}. The new state is thus:

$$
\begin{gathered}
\left(\left[f(a, a) \not \approx f(b, b)^{1: f(a, a) \not \approx f(b, b) \vee f(a, a) \approx f(b, b)}\right] ; N ;\{ \} ; 2\right. \\
f(b, b) \not \approx f(b, b) \vee f(a, a) \approx f(b, b) \vee f(a, a) \approx f(b, b) \vee f(a, a) \approx f(b, b))
\end{gathered}
$$

Now we can apply Equality-Resolution and two times Factorize to get the final clause $f(a, a) \approx f(b, b)$ with which we can backtrack.

Example 48. Assume clauses:

$$
\begin{aligned}
& C_{1}:=b \approx c \vee c \approx d \\
& C_{2}:=a_{1} \approx b \vee a_{1} \approx c \\
& \quad \ldots \\
& C_{n+1}:=a_{n} \approx b \vee a_{n} \approx c
\end{aligned}
$$

The completeness proof of superposition requires that adding a new literal to an interpretation does not make any smaller literal true. In this example, however, after adding $b \approx c$ to the interpretation, we cannot any further literal, since it breaks this invariant. So in superposition we would have to add the following clauses with the help of the EqualityFactoring rule:

$$
\begin{aligned}
C_{n+2} & :=b \not \approx c \vee a_{1} \approx c \\
& \ldots \\
C_{2 n+1} & :=b \not \approx c \vee a_{n} \approx c
\end{aligned}
$$

In $\operatorname{SCL}(\mathrm{EQ})$ on the other hand we can just decide a literal in each clause to get a model for this clause set. As we support undefined literals we do not have to bother with this problem at all. For example if we add $b \approx c$ to our model, both literals $a_{1} \approx b$ and $a_{1} \approx c$ are undefined in our model. Thus we need to decide one of these literals to add it to our model.

Example 49 (Rewriting below variable level). Assume the clause set N :

$$
\begin{gathered}
C_{1}:=f(x) \approx h(b) \vee x \not \approx g(a) \quad C_{2}:=c \approx d \vee f(g(b)) \not \approx h(b) \\
C_{3}:=a \approx b \vee f(g(b)) \approx h(b)
\end{gathered}
$$

Let $\sigma=\{x \rightarrow g(a)\}$. $C_{1} \sigma$ must be propagated: $\Gamma=\left[f(g(a)) \approx h(b)^{0: C_{1} \sigma}\right]$. Now suppose that we decide $f(g(b)) \not \approx h(b)$. Then $\Gamma=\left[f(g(a)) \approx h(b)^{0: C_{1} \sigma}, f(g(b)) \not \approx\right.$ $h(b)^{1: f(g(b)) \not \overbrace{}^{\prime}(b) \vee f(g(b)) \approx h(b)}]$ and C_{3} is a conflict clause. Explore-Refutation now creates the following refutation for $a \approx b$:

$$
\begin{aligned}
& I_{1}:\left(f(x) \approx h(b) \cdot \sigma, C_{1} \cdot \sigma, \epsilon, \epsilon, \epsilon\right) \\
& I_{2}:=\left(f(g(b)) \not \approx h(b), C_{2}, \epsilon, \epsilon, \epsilon\right) \\
& I_{3}:=\left(a \approx b, C_{3}, \epsilon, \epsilon, \epsilon\right) \\
& I_{4}:=\left(f(g(b)) \approx h(b), f(g(b)) \approx h(b) \vee g(a) \not \approx g(a) \vee f(g(b)) \approx h(b), I_{3}, I_{1}, \epsilon\right) \\
& I_{5}:=(h(b) \not \approx h(b), h(b) \not \approx h(b) \vee g(a) \not \approx g(a) \vee f(g(b)) \approx h(b) \\
&\left.\vee f(g(b)) \approx h(b), I_{4}, I_{2}, \epsilon\right)
\end{aligned}
$$

Multiple applications of Equality-Resolution and Factorize result in the final conflict clause $C_{4}:=f(g(b)) \approx h(b)$ with which we can backtrack. The clause set resulting from this new clause is:

$$
\begin{gathered}
C_{1}=f(x) \approx h(b) \vee x \not \approx g(a) \quad C_{2}^{\prime}=c \approx d \\
C_{4}=f(g(b)) \approx h(b)
\end{gathered}
$$

where C_{2}^{\prime} is the result of a unit reduction between C_{4} and C_{2}. Note that the refutation required rewriting below variable level in step I_{4}. Superposition would create the following clauses (Equality-Resolution and Factorization steps are implicitly done):

$$
\begin{aligned}
N & \Rightarrow_{\operatorname{Sup}\left(C_{2}, C_{3}\right)} N_{1} \cup\left\{C_{4}:=c \approx d \vee a \approx b\right\} \\
& \Rightarrow_{\operatorname{Sup}\left(C_{1}, C_{2}\right)} N_{2} \cup\left\{C_{5}:=c \approx d \vee g(a) \not \approx g(b)\right\} \\
& \Rightarrow_{\operatorname{Sup}\left(C_{4}, C_{5}\right)} N_{3} \cup\left\{C_{6}:=c \approx d\right\}
\end{aligned}
$$

For superposition the resulting clause set is thus:

$$
\begin{gathered}
C_{1}=f(x) \approx h(b) \vee x \not \approx g(a) \quad C_{2}=a \approx b \vee f(g(b)) \approx h(b) \\
C_{6}=c \approx d
\end{gathered}
$$

Example 50 (Propagate Smaller Equation). Assume the ground clause set N solely built out of constants

$$
\begin{gathered}
C_{1}:=c \approx d \quad C_{2}:=c \not \approx d \vee a \approx b \\
C_{3}:=a \not \approx b \vee a \approx c
\end{gathered}
$$

and the trail $\Gamma:=\left[c \approx d^{0: C_{1}}, a \approx b^{0: C_{2}}, b \approx d^{0: C_{3}}\right]$. Now, although the first two steps propagated equations that are strictly maximal in the ordering in their respective clauses, the finally propagated equation $b \approx d$ is smaller in the term ordering $\prec_{k b o}$ than $a \approx b$. Thus the structure of the clause set forces propagation of a smaller equation in the term ordering. So the more complicated trail ordering is a result of following the structure of the clause set rather than employing an a priori fixed ordering.

