
ar
X

iv
:2

20
5.

08
29

7v
1

 [
cs

.L
O

]
 1

7
M

ay
 2

02
2

SCL(EQ): SCL for First-Order Logic with
Equality

Hendrik Leidinger1,2 and Christoph Weidenbach1

1 Max-Planck Institute for Informatics, Saarbrücken, Germany
{hleiding, weidenbach}@mpi-inf.mpg.de

2 Graduate School of Computer Science, Saarbrücken, Germany

Abstract. We propose a new calculus SCL(EQ) for first-order logic
with equality that only learns non-redundant clauses. Following the idea
of CDCL (Conflict Driven Clause Learning) and SCL (Clause Learning
from Simple Models) a ground literal model assumption is used to guide
inferences that are then guaranteed to be non-redundant. Redundancy
is defined with respect to a dynamically changing ordering derived from
the ground literal model assumption. We prove SCL(EQ) sound and
complete and provide examples where our calculus improves on super-
position.

Keywords: First-Order Logic with Equality · Term Rewriting · Model-
Based Reasoning.

1 Introduction

There has been extensive research on sound and complete calculi for first-order
logic with equality. The current prime calculus is superposition [2], where or-
dering restrictions guide paramodulation inferences and an abstract redundancy
notion enables a number of clause simplification and deletion mechanisms, such
as rewriting or subsumption. Still this “syntactic” form of superposition infers
many redundant clauses. The completeness proof of superposition provides a
“semantic” way of generating only non-redundant clauses, however, the under-
lying ground model assumption cannot be effectively computed in general [30]. It
requires an ordered enumeration of infinitely many ground instances of the given
clause set, in general. Our calculus overcomes this issue by providing an effective
way of generating ground model assumptions that then guarantee non-redundant
inferences on the original clauses with variables.

The underlying ordering is based on the order of ground literals in the model
assumption, hence changes during a run of the calculus. It incorporates a stan-
dard rewrite ordering. For practical redundancy criteria this means that both
rewriting and redundancy notions that are based on literal subset relations are
permitted to dynamically simplify or eliminate clauses. Newly generated clauses
are non-redundant, so redundancy tests are only needed backwards. Further-
more, the ordering is automatically generated by the structure of the clause set.
Instead of a fixed ordering as done in the superposition case, the calculus finds

http://arxiv.org/abs/2205.08297v1

2 Leidinger et al.

and changes an ordering according to the currently easiest way to make progress,
analogous to CDCL (Conflict Driven Clause Learning) [28,21,24,11,33].

Typical for CDCL and SCL (Clause Learning from Simple Models) [1,18,14]
approaches to reasoning, the development of a model assumption is done by de-
cisions and propagations. A decision guesses a ground literal to be true whereas
a propagation concludes the truth of a ground literal through an otherwise false
clause. While propagations in CDCL and propositional logic are restricted to
the finite number of propositional variables, in first-order logic there can already
be infinite propagation sequences [18]. In order to overcome this issue, model
assumptions in SCL(EQ) are at any point in time restricted to a finite number
of ground literals, hence to a finite number of ground instances of the clause set
at hand. Therefore, without increasing the number of considered ground literals,
the calculus either finds a refutation or runs into a stuck state where the current
model assumption satisfies the finite number of ground instances. In this case
one can check whether the model assumption can be generalized to a model
assumption of the overall clause set or the information of the stuck state can
be used to appropriately increase the number of considered ground literals and
continue search for a refutation. SCL(EQ) does not require exhaustive propaga-
tion, in general, it just forbids the decision of the complement of a literal that
could otherwise be propagated.

For an example of SCL(EQ) inferring clauses, consider the three first-order
clauses

C1 := h(x) ≈ g(x) ∨ c ≈ d C2 := f(x) ≈ g(x) ∨ a ≈ b

C3 := f(x) 6≈ h(x) ∨ f(x) 6≈ g(x)

with a Knuth-Bendix Ordering (KBO), unique weight 1, and precedence d ≺
c ≺ b ≺ a ≺ g ≺ h ≺ f . A Superposition Left [2] inference between C2 and C3

results in

C′
4 := h(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ a ≈ b.

For SCL(EQ) we start by building a partial model assumption, called a trail,
with two decisions

Γ := [h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x) 6≈g(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x) 6≈g(x))·σ]

where σ := {x 7→ a}. Decisions and propagations are always ground instances
of literals from the first-order clauses, and are annotated with a level and a
justification clause, in case of a decision a tautology. Now with respect to Γ clause
C3 is false with grounding σ, and rule Conflict is applicable; see Section 3.1 for
details on the inference rules. In general, clauses and justifications are considered
variable disjoint, but for simplicity of the presentation of this example, we repeat
variable names here as long as the same ground substitution is shared. The
maximal literal in C3σ is (f(x) 6≈ h(x))σ and a rewrite refutation using the
ground equations from the trail results in the justification clause

(g(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ h(x) 6≈ g(x))·σ

SCL(EQ): SCL for First-Order Logic with Equality 3

where for the refutation justification clauses and all otherwise inferred clauses
we use the grounding σ for guidance, but operate on the clauses with variables.
The respective ground clause is smaller than (f(x) 6≈ h(x))σ, false with respect
to Γ and becomes our new conflict clause by an application of our inference rule
Explore-Refutation. It is simplified by our inference rules Equality-Resolution
and Factorize, resulting in the finally learned clause

C4 := h(x) 6≈ g(x) ∨ f(x) 6≈ g(x)

which is then used to apply rule Backtrack to the trail. Further details on this ex-
ample are available from the Appendix, Example 46. Observe that C4 is strictly
stronger than C′

4 the clause inferred by superposition and that C4 cannot be
inferred by superposition. Thus SCL(EQ) can infer stronger clauses than super-
position for this example.

Related Work: SCL(EQ) is based on ideas of SCL [1,18,14] but for the first time
includes a native treatment of first-order equality reasoning. Similar to [14] prop-
agations need not to be exhaustively applied, the trail is built out of decisions
and propagations of ground literals annotated by first-order clauses, SCL(EQ)
only learns non-redundant clauses, but for the first time conflicts resulting out
of a decision have to be considered, due to the nature of the equality relation.

There have been suggested several approaches to lift the idea of an inference
guiding model assumption from propositional to full first-order logic [18,6,13,12].
They do not provide a native treatment of equality, e.g., via paramodulation or
rewriting.

Baumgartner et al. describe multiple calculi that handle equality by using
unit superposition style inference rules and are based on either hyper tableaux [5]
or DPLL [15,16]. Hyper tableaux fix a major problem of the well-known free
variable tableaux, namely the fact that free variables within the tableau are
rigid, i.e., substitutions have to be applied to all occurrences of a free variable
within the entire tableau. Hyper tableaux with equality [7] in turn integrates
unit superposition style inference rules into the hyper tableau calculus.

Another approach that is related to ours is the model evolution calculus
with equality (MEE) by Baumgartner et al. [9,8] which lifts the DPLL calculus
to first-order logic with equality. Similar to our approach, MEE creates a can-
didate model until a clause instance contradicts this model or all instances are
satisfied by the model. The candidate model results from a so-called context,
which consists of a finite set of non-ground rewrite literals. Roughly speaking,
a context literal specifies the truth value of all its ground instances unless a
more specific literal specifies the complement. Initially the model satisfies the
identity relation over the set of all ground terms. Literals within a context may
be universal or parametric, where universal literals guarantee all its ground in-
stances to be true. If a clause contradicts the current model, it is repaired by a
non-deterministic split which adds a parametric literal to the current model. If
the added literal does not share any variables in the contradictory clause it is
added as a universal literal.

4 Leidinger et al.

Another approach by Baumgartner and Waldmann [10] combined the su-
perposition calculus with the Model Evolution calculus with equality. In this
calculus the atoms of the clauses are labeled as ”split atoms” or ”superposition
atoms”. The superposition part of the calculus then generates a model for the
superposition atoms while the model evolution part generates a model for the
split atoms. Conversely, this means that if all atoms are labeled as ”split atom”,
the calculus behaves similar to the model evolution calculus. If all atoms are
labeled as ”superposition atom”, it behaves like the superposition calculus.

Both the hyper tableaux calculus with equality and the model evolution cal-
culus with equality allow only unit superposition applications, while SCL(EQ)
inferences are guided paramodulation inferences on clauses of arbitrary length.
The model evolution calculus with equality was revised and implemented in
2011 [8] and compares its performance with that of hyper tableaux. Model evo-
lution performed significantly better, with more problems solved in all relevant
TPTP [29] categories, than the implementation of the hyper tableaux calculus.

Plaisted et al. [26] present the Ordered Semantic Hyper-Linking (OSHL) cal-
culus. OSHL is an instantiation based approach that repeatedly chooses ground
instances of a non-ground input clause set such that the current model does not
satisfy the current ground clause set. A further step repairs the current model
such that it satisfies the ground clause set again. The algorithm terminates if
the set of ground clauses contains the empty clause. OSHL supports rewriting
and narrowing, but only with unit clauses. In order to handle non-unit clauses
it makes use of other mechanisms such as Brand’s Transformation [3].

Inst-Gen [22] is an instantiation based calculus, that creates ground instances
of the input first-order formulas which are forwarded to a SAT solver. If a ground
instance is unsatisfiable, then the first-order set is as well. If not then the calcu-
lus creates more instances. The Inst-Gen-EQ calculus [23] creates instances by
extracting instantiations of unit superposition refutations of selected literals of
the first-order clause set. The ground abstraction is then extended by the ex-
tracted clauses and an SMT solver then checks the satisfiability of the resulting
set of equational and non-equational ground literals.

In favor of a better structure we have moved all proofs to an Appendix. The
rest of the paper is organized as follows. Section 2 provides basic formalisms un-
derlying SCL(EQ). The rules of the calculus are presented in Section 3. Sound-
ness and completeness results are provided in Section 4. We end with a dis-
cussion of obtained results and future work, Section 5. The main contribution
of this paper is the SCL(EQ) calculus that only learns non-redundant clauses,
permits subset based redundancy elimination and rewriting, and its soundness
and completeness.

2 Preliminaries

We assume a standard first-order language with equality and signature Σ =
(Ω, ∅) where the only predicate symbol is equality ≈. N denotes a set of clauses,
C,D denote clauses, L,K,H denote equational literals, A,B denote equational

SCL(EQ): SCL for First-Order Logic with Equality 5

atoms, t, s terms from T (Ω,X) for an infinite set of variables X , f, g, h function
symbols from Ω, a, b, c constants from Ω and x, y, z variables from X . The func-
tion comp denotes the complement of a literal. We write s 6≈ t as a shortcut for
¬(s ≈ t). The literal s# t may denote both s ≈ t and s 6≈ t. The semantics of
first-order logic and semantic entailment |= is defined as usual.

By σ, τ, δ we denote substitutions, which are total mappings from variables to
terms. Let σ be a substitution, then its finite domain is defined as dom(σ) := {x |
xσ 6= x} and its codomain is defined as codom(σ) = {t | xσ = t, x ∈ dom(σ)}.
We extend their application to literals, clauses and sets of such objects in the
usual way. A term, literal, clause or sets of these objects is ground if it does
not contain any variable. A substitution σ is ground if codom(σ) is ground. A
substitution σ is grounding for a term t, literal L, clause C if tσ, Lσ, Cσ is
ground, respectively. By C·σ, L·σ we denote a closure consisting of a clause C,
literal L and a grounding substitution σ, respectively. The function gnd computes
the set of all ground instances of a literal, clause, or clause set. The function mgu
denotes the most general unifier of terms, atoms, literals, respectively. We assume
that mgus do not introduce fresh variables and that they are idempotent.

The set of positions pos(L) of a literal (term pos(t)) is inductively defined as
usual. The notion L|p denotes the subterm of a literal L (t|p for term t) at position
p ∈ pos(L) (p ∈ pos(t)). The replacement of a subterm of a literal L (term t)
at position p ∈ pos(L) (p ∈ pos(t)) by a term s is denoted by L[s]p (t[s]p). For
example, the term f(a, g(x)) has the positions {ǫ, 1, 2, 21}, f(a, g(x))|21 = x and
f(a, g(x))[b]2 denotes the term f(a, b).

Let R be a set of rewrite rules l → r, called a term rewrite system (TRS).
The rewrite relation →R⊆ T (Ω,X) × T (Ω,X) is defined as usual by s →R t if
there exists (l → r) ∈ R, p ∈ pos(s), and a matcher σ, such that s|p = lσ and
t = s[rσ]p. We write s = t↓R if s is the normal form of t in the rewrite relation
→R. We write s# t = (s′ # t′)↓R if s is the normal form of s′ and t is the normal
form of t′. A rewrite relation is terminating if there is no infinite descending chain
t0 → t1 → ... and confluent if t ∗← s →∗ t′ implies t↔∗ t′. A rewrite relation is
convergent if it is terminating and confluent. A rewrite order is a irreflexive and
transitive rewrite relation. A TRS R is terminating, confluent, convergent, if the
rewrite relation→R is terminating, confluent, convergent, respectively. A term t

is called irreducible by a TRS R if no rule from R rewrites t. Otherwise it is called
reducible. A literal, clause is irreducible if all of its terms are irreducible, and
reducible otherwise. A substitution σ is called irreducible if any t ∈ codom(σ) is
irreducible, and reducible otherwise.

Let ≺T denote a well-founded rewrite ordering on terms which is total on
ground terms and for all ground terms t there exist only finitely many ground
terms s ≺T t. We call ≺T a desired term ordering. We extend ≺T to equations by
assigning the multiset {s, t} to positive equations s ≈ t and {s, s, t, t} to inequa-
tions s 6≈ t. Furthermore, we identify ≺T with its multiset extension comparing
multisets of literals. For a (multi)set of terms {t1, . . . , tn} and a term t, we define
{t1, . . . , tn} ≺T t if {t1, . . . , tn} ≺T {t}. For a (multi)set of Literals {L1, . . . , Ln}
and a term t, we define {L1, . . . , Ln} ≺T t if {L1, . . . , Ln} ≺T {{t}}. Given a

6 Leidinger et al.

ground term β then gnd≺T β computes the set of all ground instances of a lit-
eral, clause, or clause set where the groundings are smaller than β according to
the ordering ≺T . Given a set (sequence) of ground literals Γ let conv(Γ) be a
convergent rewrite system out of the positive equations in Γ using ≺T .

Let ≺ be a well-founded, total, strict ordering on ground literals, which is
lifted to clauses and clause sets by its respective multiset extension. We overload
≺ for literals, clauses, clause sets if the meaning is clear from the context. The
ordering is lifted to the non-ground case via instantiation: we define C ≺ D

if for all grounding substitutions σ it holds Cσ ≺ Dσ. Then we define � as
the reflexive closure of ≺ and N�C := {D | D ∈ N and D � C} and use the
standard superposition style notion of redundancy [2].

Definition 1 (Clause Redundancy). A ground clause C is redundant with
respect to a set N of ground clauses and an ordering ≺ if N�C |= C. A clause
C is redundant with respect to a clause set N and an ordering ≺ if for all
C′ ∈ gnd(C), C′ is redundant with respect to gnd(N).

3 The SCL(EQ) Calculus

We start the introduction of the calculus by defining the ingredients of an
SCL(EQ) state.

Definition 2 (Trail). A trail Γ := [Li1:C1·σ1

1 , ..., Lin:Cn·σn
n] is a consistent se-

quence of ground equations and inequations where Lj is annotated by a level
ij with ij−1 ≤ ij, and a closure Cj ·σj. We omit the annotations if they are
not needed in a certain context. A ground literal L is true in Γ if Γ |= L.
A ground literal L is false in Γ if Γ |= comp(L). A ground literal L is un-
defined in Γ if Γ 6|= L and Γ 6|= comp(L). Otherwise it is defined. For each
literal Lj in Γ it holds that Lj is undefined in [L1, ..., Lj−1] and irreducible by
conv({L1, ..., Lj−1}).

The above definition of truth and undefinedness is extended to clauses in
the obvious way. The notions of true, false, undefined can be parameterized by
a ground term β by saying that L is β-undefined in a trail Γ if β ≺T L or L

is undefined. The notions of a β-true, β-false term are restrictions of the above
notions to literals smaller β, respectively. All SCL(EQ) reasoning is layered with
respect to a ground term β.

Definition 3. Let Γ be a trail and L a ground literal such that L is defined in
Γ . By core(Γ ;L) we denote a minimal subsequence Γ ′ ⊆ Γ such that L is defined
in Γ ′. By cores(Γ ;L) we denote the set of all cores.

Note that core(Γ ;L) is not necessarily unique. There can be multiple cores
for a given trail Γ and ground literal L.

Definition 4 (Trail Ordering). Let Γ := [L1, ..., Ln] be a trail. The (partial)
trail ordering ≺Γ is the sequence ordering given by Γ , i.e., Li ≺Γ Lj if i < j for
all 1 ≤ i, j ≤ n.

SCL(EQ): SCL for First-Order Logic with Equality 7

Definition 5 (Defining Core and Defining Literal). For a trail Γ and a
sequence of literals ∆ ⊆ Γ we write max≺Γ

(∆) for the largest literal in ∆ ac-
cording to the trail ordering ≺Γ . Let Γ be a trail and L a ground literal such
that L is defined in Γ . Let ∆ ∈ cores(Γ ;L) be a sequence of literals where
max≺Γ

(∆) �Γ max≺Γ
(Λ) for all Λ ∈ cores(Γ ;L), then maxΓ (L) := max≺Γ

(∆)
is called the defining literal and ∆ is called a defining core for L in Γ . If
cores(Γ ;L) contains only the empty core, then L has no defining literal and
no defining core.

Note that there can be multiple defining cores but only one defining literal for
any defined literal L. For example, consider a trail Γ := [f(a) ≈ f(b)1:C1·σ1 , a ≈
b2:C2·σ2 , b ≈ c3:C3·σ3] with an ordering ≺T that orders the terms of the equations
from left to right, and a literal g(f(a)) ≈ g(f(c)). Then the defining cores are
∆1 := [a ≈ b, b ≈ c] and ∆2 := [f(a) ≈ f(b), b ≈ c]. The defining literal, however,
is in both cases b ≈ c. Defined literals that have no defining core and therefore no
defining literal are literals that are trivially false or true. Consider, for example,
g(f(a)) ≈ g(f(a)). This literal is trivially true in Γ . Thus an empty subset of Γ
is sufficient to show that g(f(a)) ≈ g(f(a)) is defined in Γ .

Definition 6 (Literal Level). Let Γ be a trail. A ground literal L ∈ Γ is of
level i if L is annotated with i in Γ . A defined ground literal L 6∈ Γ is of level i
if the defining literal of L is of level i. If L has no defining literal, then L is of
level 0. A ground clause D is of level i if i is the maximum level of a literal in
D.

The restriction to minimal subsequences for the defining literal and definition
of a level eventually guarantee that learned clauses are smaller in the trail or-
dering. This enables completeness in combination with learning non-redundant
clauses as shown later.

Lemma 7. Let Γ1 be a trail and K a defined literal that is of level i in Γ1. Then
K is of level i in a trail Γ := Γ1, Γ2.

Definition 8. Let Γ be a trail and L ∈ Γ a literal. L is called a decision literal
if Γ = Γ0,K

i:C·τ , Li+1:C′·τ ′

, Γ1. Otherwise L is called a propagated literal.

In our above example g(f(a)) ≈ g(f(c)) is of level 3 since the defining literal
b ≈ c is annotated with 3. a 6≈ b on the other hand is of level 2.

We define a well-founded total strict ordering which is induced by the trail
and with which non-redundancy is proven in Section 4. Unlike SCL [18,14] we
use this ordering for the inference rules as well. In previous SCL calculi, conflict
resolution automatically chooses the greatest literal and resolves with this literal.
In SCL(EQ) this is generalized. Coming back to our running example above,
suppose we have a conflict clause f(b) 6≈ f(c)∨b 6≈ c. The defining literal for both
inequations is b ≈ c. So we could do paramodulation inferences with both literals.
The following ordering makes this non-deterministic choice deterministic.

8 Leidinger et al.

Definition 9 (Trail Induced Ordering). Let Γ := [Li1:C1·σ1

1 , ..., Lin:Cn·σn
n]

be a trail, β a ground term such that {L1, ..., Ln} ≺T β and Mi,j all β-defined
ground literals not contained in Γ ∪ comp(Γ): for a defining literal maxΓ (Mi,j) =
Li and for two literals Mi,j, Mi,k we have j < k if Mi,j ≺T Mi,k. The trail in-
duces a total well-founded strict order ≺Γ∗ on β-defined ground literals Mk,l,Mm,n,
Li, Lj of level greater than zero, where

1. Mi,j ≺Γ∗ Mk,l if i < k or (i = k and j < l)
2. Li ≺Γ∗ Lj if Li ≺Γ Lj

3. comp(Li) ≺Γ∗ Lj if Li ≺Γ Lj

4. Li ≺Γ∗ comp(Lj) if Li ≺Γ Lj or i = j

5. comp(Li) ≺Γ∗ comp(Lj) if Li ≺Γ Lj

6. Li ≺Γ∗ Mk,l, comp(Li) ≺Γ∗ Mk,l if i ≤ k

7. Mk,l ≺Γ∗ Li, Mk,l ≺Γ∗ comp(Li) if k < i

and for all β-defined literals L of level zero:

8. ≺Γ∗ :=≺T

9. L ≺Γ∗ K if K is of level greater than zero and K is β-defined

and can eventually be extended to β-undefined ground literals K,H by

10. K ≺Γ∗ H if K ≺T H

11. L ≺Γ∗ H if L is β-defined

The literal ordering ≺Γ∗ is extended to ground clauses by multiset extension and
identified with ≺Γ∗ as well.

Lemma 10 (Properties of ≺Γ∗).

1. ≺Γ∗ is well-defined.
2. ≺Γ∗ is a total strict order, i.e. ≺Γ∗ is irreflexive, transitive and total.
3. ≺Γ∗ is a well-founded ordering.

Example 11. Assume a trail Γ := [a ≈ b1:C0·σ0 , c ≈ d1:C1·σ1 , f(a′) 6≈ f(b′)1:C2·σ2],
select KBO as the term ordering ≺T where all symbols have weight one and
a ≺ a′ ≺ b ≺ b′ ≺ c ≺ d ≺ f and a ground term β := f(f(a)). According to the
trail induced ordering we have that a ≈ b ≺Γ∗ c ≈ d ≺Γ∗ f(a′) 6≈ f(b′) by 9.2.
Furthermore we have that

a ≈ b ≺Γ∗ a 6≈ b ≺Γ∗ c ≈ d ≺Γ∗ c 6≈ d ≺Γ∗ f(a′) 6≈ f(b′) ≺Γ∗ f(a′) ≈ f(b′)

by 9.3 and 9.4. Now for any literal L that is β-defined in Γ and the defining
literal is a ≈ b it holds that a 6≈ b ≺Γ∗ L ≺Γ∗ c ≈ d by 9.6 and 9.7. This holds
analogously for all literals that are β-defined in Γ and the defining literal is c ≈ d

or f(a′) 6≈ f(b′). Thus we get:

L1 ≺Γ∗ ... ≺Γ∗ a ≈ b ≺Γ∗ a 6≈ b ≺Γ∗ f(a) ≈ f(b) ≺Γ∗ f(a) 6≈ f(b) ≺Γ∗

c ≈ d ≺Γ∗ c 6≈ d ≺Γ∗ f(c) ≈ f(d) ≺Γ∗ f(c) 6≈ f(d) ≺Γ∗

f(a′) 6≈ f(b′) ≺Γ∗ f(a′) ≈ f(b′) ≺Γ∗ a′ ≈ b′ ≺Γ∗ a′ 6≈ b′ ≺Γ∗ K1 ≺Γ∗ . . .

SCL(EQ): SCL for First-Order Logic with Equality 9

where Ki are the β-undefined literals and Lj are the trivially defined literals.

Definition 12 (Rewrite Step). A rewrite step is a five-tuple (s#t·σ, s#t ∨
C·σ,R, S, p) and inductively defined as follows. The tuple (s#t·σ, s#t∨C·σ, ǫ, ǫ, ǫ)
is a rewrite step. Given rewrite steps R,S and a position p then (s#t·σ, s#t ∨
C·σ,R, S, p) is a rewrite step. The literal s#t is called the rewrite literal. In
case R,S are not ǫ, the rewrite literal of R is an equation.

Rewriting is one of the core features of our calculus. The following definition
describes a rewrite inference between two clauses. Note that unlike the superpo-
sition calculus we allow rewriting below variable level.

Definition 13 (Rewrite Inference). Let I1 := (l1 ≈ r1·σ1, l1 ≈ r1∨C1·σ1, R1,

L1, p1) and I2 := (l2#r2·σ2, l2#r2 ∨ C2·σ2, R2, L2, p2) be two variable disjoint
rewrite steps where r1σ1 ≺T l1σ1, (l2#r2)σ2|p = l1σ1 for some position p. We
distinguish two cases:

1. if p ∈ pos(l2#r2) and µ := mgu((l2#r2)|p, l1) then (((l2#r2)[r1]p)µ·σ1σ2,

((l2#r2)[r1]p)µ∨C1µ∨C2µ·σ1σ2, I1, I2, p) is the result of a rewrite inference.
2. if p 6∈ pos(l2#r2) then let (l2#r2)δ be the most general instance of l2#r2 such

that p ∈ pos((l2#r2)δ), δ introduces only fresh variables and (l2#r2)δσ2ρ =
(l2#r2)σ2 for some minimal ρ. Let µ := mgu((l2#r2)δ|p, l1). Then
((l2#r2)δ[r1]pµ·σ1σ2ρ, (l2#r2)δ[r1]pµ ∨ C1µ ∨ C2δµ·σ1σ2ρ, I1, I2, p) is the
result of a rewrite inference.

Lemma 14. Let I1 := (l1 ≈ r1·σ1, l1 ≈ r1 ∨ C1·σ1, R1, L1, p1) and I2 :=
(l2#r2·σ2, l2#r2 ∨C2·σ2, R2, L2, p2) be two variable disjoint rewrite steps where
r1σ1 ≺T l1σ1, (l2#r2)σ2|p = l1σ1 for some position p. Let I3 := (l3#r3·σ3, l3#r3∨
C3·σ3, I1, I2, p) be the result of a rewrite inference. Then:

1. C3σ3 = (C1 ∨ C2)σ1σ2 and l3#r3σ3 = (l2#r2)σ2[r1σ1]p.
2. (l3#r3)σ3 ≺T (l2#r2)σ2

3. If N |= (l1 ≈ r1 ∨ C1) ∧ (l2#r2 ∨ C2) for some set of clauses N , then
N |= l3#r3 ∨ C3

Now that we have defined rewrite inferences we can use them to define a
reduction chain application and a refutation, which are sequences of rewrite
steps. Intuitively speaking, a reduction chain application reduces a literal in a
clause with literals in conv(Γ) until it is irreducible. A refutation for a literal
L that is β-false in Γ for a given β, is a sequence of rewrite steps with literals
in Γ,L such that ⊥ is inferred. Refutations for the literals of the conflict clause
will be examined during conflict resolution by the rule Explore-Refutation.

Definition 15 (Reduction Chain). Let Γ be a trail. A reduction chain P from
Γ is a sequence of rewrite steps [I1, ..., Im] such that for each Ii = (si#ti·σi, si#ti∨
Ci·σi, Ij , Ik, pi) either

1. si#t
ni:si#ti∨Ci·σ
i is contained in Γ and Ij = Ik = pi = ǫ or

10 Leidinger et al.

2. Ii is the result of a rewriting inference from rewrite steps Ij , Ik out of [I1, ..., Im]
where j, k < i.

Let (l# r)δo:l# r∨C·δ be an annotated ground literal. A reduction chain appli-
cation from Γ to l# r is a reduction chain [I1, ..., Im] from Γ, (l# r)δo:l# r∨C·δ

such that lδ↓conv(Γ) = smσm and rδ↓conv(Γ) = tmσm. We assume reduction
chain applications to be minimal, i.e., if any rewrite step is removed from the
sequence it is no longer a reduction chain application.

Definition 16 (Refutation). Let Γ be a trail and (l# r)δo:l# r∨C·δ an an-
notated ground literal that is β-false in Γ for a given β. A refutation P from
Γ and l# r is a reduction chain [I1, ..., Im] from Γ, (l# r)δo:l# r∨C·δ such that
(sm#tm)σm = s 6≈ s for some s. We assume refutations to be minimal, i.e.,
if any rewrite step Ik, k < m is removed from the refutation, it is no longer a
refutation.

3.1 The SCL(EQ) Inference Rules

We can now define the rules of our calculus based on the previous definitions.
A state is a six-tuple (Γ ;N ;U ;β; k;D) similar to the SCL calculus, where Γ a
sequence of annotated ground literals, N and U the sets of initial and learned
clauses, β is a ground term such that for all L ∈ Γ it holds L ≺T β, k is
the decision level, and D a status that is ⊤, ⊥ or a closure C ·σ. Before we
propagate or decide any literal, we make sure that it is irreducible in the current
trail. Together with the design of ≺Γ∗ this eventually enables rewriting as a
simplification rule.

Propagate

(Γ ;N ;U ;β; k;⊤) ⇒SCL(EQ) (Γ, sm#tmσ
k:(sm#tm∨Cm)·σm
m ;N ;U ;β; k;⊤)

provided there is a C ∈ (N∪U), σ grounding for C, C = C0∨C1∨L, Γ |= ¬C0σ,
C1σ = Lσ∨ ...∨Lσ, C1 = L1∨ ...∨Ln, µ = mgu(L1, ..., Ln, L) Lσ is β-undefined
in Γ , (C0 ∨ L)µσ ≺T β, σ is irreducible by conv(Γ), [I1, . . . , Im] is a reduction
chain application from Γ to Lσk:(L∨C0)µ·σ where Im = (sm#tm·σm, sm#tm ∨
Cm·σm, Ij , Ik, pm).

Note that the definition of Propagate also includes the case where Lσ is
irreducible by Γ . In this case L = sm#tm and m = 1. The rule Decide below,
is similar to Propagate, except for the subclause C0 which must be β-undefined
or β-true in Γ , i.e., Propagate cannot be applied and the decision literal is
annotated by a tautology.

Decide
(Γ ;N ;U ;β; k;⊤) ⇒SCL(EQ) (Γ, sm#tmσ

k+1:(sm#tm∨comp(sm#tm))·σm
m ;N ;U ;

β; k + 1;⊤)

provided there is a C ∈ (N ∪ U), σ grounding for C, C = C0 ∨ L, C0σ is
β-undefined or β-true in Γ , Lσ is β-undefined in Γ , (C0 ∨ L)σ ≺T β, σ is

SCL(EQ): SCL for First-Order Logic with Equality 11

irreducible by conv(Γ), [I1, . . . , Im] is a reduction chain application from Γ to
Lσk+1:L∨C0·σ where Im = (sm#tm·σm, sm#tm ∨ Cm·σm, Ij , Ik, pm).

Conflict (Γ ;N ;U ;β; k;⊤) ⇒SCL(EQ) (Γ ;N ;U ;β; k;D)

provided there is a D′ ∈ (N ∪ U), σ grounding for D′, D′σ is β-false in Γ , σ is
irreducible by conv(Γ), D = ⊥ if D′σ is of level 0 and D = D′·σ otherwise.

For the non-equational case, when a conflict clause is found by an SCL calcu-
lus [18,14], the complements of its first-order ground literals are contained in the
trail. For equational literals this is not the case, in general. The proof showing
D to be β-false with respect to Γ is a rewrite proof with respect to conv(Γ).
This proof needs to be analyzed to eventually perform paramodulation steps on
D or to replace D by a ≺Γ∗ smaller β-false clause showing up in the proof.

Skip (Γ,K l:C·τ , Lk:C′·τ ′

;N ;U ;β; k;D ·σ) ⇒SCL(EQ) (Γ,K l:C·τ ;N ;U ;β; l;D ·σ)

if Dσ is β-false in Γ,K l:C·τ .

The Explore-Refutation rule is the FOL with Equality counterpart to the
resolve rule in CDCL or SCL. While in CDCL or SCL complementary literals of
the conflict clause are present on the trail and can directly be used for resolution
steps, this needs a generalization for FOL with Equality. Here, in general, we need
to look at (rewriting) refutations of the conflict clause and pick an appropriate
clause from the refutation as the next conflict clause.

Explore-Refutation
(Γ,L;N ;U ;β; k; (D∨s# t)·σ)) ⇒SCL(EQ) (Γ,L;N ;U ;β; k; (sj#tj∨Cj)·σj)

if (s# t)σ is strictly ≺Γ∗ maximal in (D ∨ s# t)σ, L is the defining literal of
(s# t)σ, [I1, ..., Im] is a refutation from Γ and (s# t)σ, Ij = (sj#tj ·σj , (sj#tj ∨
Cj)·σj , Il, Ik, pj), 1 ≤ j ≤ m, (sj # tj ∨Cj)σj ≺Γ∗ (D ∨ s# t)σ, (sj#tj ∨Cj)σj

is β-false in Γ .

Factorize
(Γ ;N ;U ;β; k; (D ∨ L ∨ L′) · σ) ⇒SCL(EQ) (Γ ;N ;U ;β; k; (D ∨ L)µ · σ)

provided Lσ = L′σ, and µ = mgu(L,L′).

Equality-Resolution
(Γ ;N ;U ;β; k; (D ∨ s 6≈ s′)·σ) ⇒SCL(EQ) (Γ ;N ;U ;β; k;Dµ ·σ)

provided sσ = s′σ, µ = mgu(s, s′).

Backtrack (Γ,K, Γ ′;N ;U ;β; k; (D ∨ L) · σ) ⇒SCL(EQ) (Γ ;N ;U ∪ {D ∨
L};β; j − i;⊤)

provided Dσ is of level i′ where i′ < k, K is of level j and Γ,K the minimal trail
subsequence such that there is a grounding substitution τ with (D ∨L)τ β-false
in Γ,K but not in Γ ; i = 1 if K is a decision literal and i = 0 otherwise.

12 Leidinger et al.

Grow (Γ ;N ;U ;β; k;⊤) ⇒SCL(EQ) (ǫ;N ;U ;β′; 0;⊤)

provided β ≺T β′.

In addition to soundness and completeness of the SCL(EQ) rules their tractabil-
ity in practice is an important property for a successful implementation. In
particular, finding propagating literals or detecting a false clause under some
grounding. It turns out that these operations are NP-complete, similar to first-
order subsumption which has been shown to be tractable in practice.

Lemma 17. Assume that all ground terms t with t ≺T β for any β are poly-
nomial in the size of β. Then testing Propagate (Conflict) is NP-Complete, i.e.,
the problem of checking for a given clause C whether there exists a grounding
substitution σ such that Cσ propagates (is false) is NP-Complete.

Example 18 (SCL(EQ) vs. Superposition: Saturation). Consider the following
clauses:

N := {C1 := c ≈ d ∨D,C2 := a ≈ b ∨ c 6≈ d, C3 := f(a) 6≈ f(b) ∨ g(c) 6≈ g(d)}

where again we assume a KBO with all symbols having weight one, precedence
d ≺ c ≺ b ≺ a ≺ g ≺ f and β := f(f(g(a))). Suppose that we first decide
c ≈ d and then propagate a ≈ b: Γ = [c ≈ d1:c≈d∨c 6≈d, a ≈ b1:C2]. Now we have a
conflict with C3. Explore-Refutation applied to the conflict clause C3 results in a
paramodulation inference between C3 and C2. Another application of Equality-
Resolution gives us the new conflict clause C4 := c 6≈ d∨g(c) 6≈ g(d). Now we can
Skip the last literal on the trail, which gives us Γ = [c ≈ d1:c≈d∨c 6≈d]. Another
application of the Explore-Refutation rule to C4 using the decision justification
clause followed by Equality-Resolution and Factorize gives us C5 := c 6≈ d. Thus
with SCL(EQ) the following clauses remain:

C′
1 = D C5 = c 6≈ d

C3 = f(a) 6≈ f(b) ∨ g(c) 6≈ g(d)

where we derived C′
1 out of C1 by subsumption resolution [32] using C5. Actually,

subsumption resolution is compatible with the general redundancy notion of
SCL(EQ), see Lemma 25. Now we consider the same example with superposition
and the very same ordering (Ni is the clause set of the previous step and N0 the
initial clause set N).

N0 ⇒Sup(C2,C3) N1 ∪ {C4 := c 6≈ d ∨ g(c) 6≈ g(d)}
⇒Sup(C1,C4) N2 ∪ {C5 := c 6≈ d ∨D} ⇒Sup(C1,C5) N3 ∪ {C6 := D}

Thus superposition ends up with the following clauses:

C2 = a ≈ b ∨ c 6≈ d C3 = f(a) 6≈ f(b) ∨ g(c) 6≈ g(d)
C4 = c 6≈ d ∨ g(c) 6≈ g(d) C6 = D

The superposition calculus generates more and larger clauses.

SCL(EQ): SCL for First-Order Logic with Equality 13

Example 19 (SCL(EQ) vs. Superposition: Refutation). Suppose the following set
of clauses: N := {C1 := f(x) 6≈ a ∨ f(x) ≈ b, C2 := f(f(y)) ≈ y, C3 := a 6≈ b}
where again we assume a KBO with all symbols having weight one, precedence
b ≺ a ≺ f and β := f(f(f(a))). A long refutation by the superposition calculus
results in the following (Ni is the clause set of the previous step and N0 the
initial clause set N):

N0 ⇒Sup(C1,C2) N1 ∪ {C4 := y 6≈ a ∨ f(f(y)) ≈ b}
⇒Sup(C1,C4) N2 ∪ {C5 := a 6≈ b ∨ f(f(y)) ≈ b ∨ y 6≈ a}
⇒Sup(C2,C5) N3 ∪ {C6 := a 6≈ b ∨ b ≈ y ∨ y 6≈ a}
⇒Sup(C2,C4) N4 ∪ {C7 := y ≈ b ∨ y 6≈ a}
⇒EqRes(C7) N5 ∪ {C8 := a ≈ b} ⇒Sup(C3,C8) N6 ∪ {⊥}

The shortest refutation by the superposition calculus is as follows:

N0 ⇒Sup(C1,C2) N1 ∪ {C4 := y 6≈ a ∨ f(f(y)) ≈ b}
⇒Sup(C2,C4) N2 ∪ {C5 := y ≈ b ∨ y 6≈ a}
⇒EqRes(C5) N3 ∪ {C6 := a ≈ b} ⇒Sup(C3,C6) N4 ∪ {⊥}

In SCL(EQ) on the other hand we would always first propagate a 6≈ b, f(f(a)) ≈
a and f(f(b)) ≈ b. As soon as a 6≈ b and f(f(a)) ≈ a are propagated we have a
conflict with C1{x→ f(a)}. So suppose in the worst case we propagate:

Γ := [a 6≈ b0:a 6≈b, f(f(b)) ≈ b0:(f(f(y))≈y){y→b}, f(f(a)) ≈ a0:(f(f(y))≈y){y→a}]

Now we have a conflict with C1{x→ f(a)}. Since there is no decision literal on
the trail, Conflict rule immediately returns ⊥ and we are done.

4 Soundness and Completeness

In this section we show soundness and refutational completeness of SCL(EQ)
under the assumption of a regular run. We provide the definition of a regular run
and show that for a regular run all learned clauses are non-redundant according
to our trail induced ordering. We start with the definition of a sound state.

Definition 20. A state (Γ ;N ;U ;β; k;D) is sound if the following conditions
hold:

1. Γ is a consistent sequence of annotated literals,
2. for each decomposition Γ = Γ1, Lσ

i:(C∨L)·σ, Γ2 where Lσ is a propagated
literal, we have that Cσ is β-false in Γ1, Lσ is β-undefined in Γ1 and irre-
ducible by conv(Γ1), N ∪ U |= (C ∨ L) and (C ∨ L)σ ≺T β,

3. for each decomposition Γ = Γ1, Lσ
i:(L∨comp(L))·σ, Γ2 where Lσ is a decision

literal, we have that Lσ is β-undefined in Γ1 and irreducible by conv(Γ1),
N ∪ U |= (L ∨ comp(L)) and (L ∨ comp(L))σ ≺T β,

4. N |= U ,
5. if D = C ·σ, then Cσ is β-false in Γ , N ∪ U |= C,

Lemma 21. The initial state (ǫ;N ; ∅;β; 0;⊤) is sound.

14 Leidinger et al.

Definition 22. A run is a sequence of applications of SCL(EQ) rules starting
from the initial state.

Theorem 23. Assume a state (Γ ;N ;U ;β; k;D) resulting from a run. Then
(Γ ;N ;U ;β; k;D) is sound.

Next, we give the definition of a regular run. Intuitively speaking, in a regular
run we are always allowed to do decisions except if

1. a literal can be propagated before the first decision and
2. the negation of a literal can be propagated.

To ensure non-redundant learning we enforce at least one application of Skip
during conflict resolution except for the special case of a conflict after a decision.

Definition 24 (Regular Run). A run is called regular if

1. the rules Conflict and Factorize have precedence over all other rules,
2. If k = 0 in a state (Γ ;N ;U ;β; k;D), then Propagate has precedence over

Decide,
3. If an annotated literal Lk:C·σ could be added by an application of Propagate

on Γ in a state (Γ ;N ;U ;β; k;D) and C ∈ N ∪U , then the annotated literal
comp(L)k+1:C′·σ′

is not added by Decide on Γ ,
4. during conflict resolution Skip is applied at least once, except if Conflict is

applied immediately after an application of Decide.
5. if Conflict is applied immediately after an application of Decide, then Back-

track is only applied in a state (Γ,L′;N ;U ;β; k;D·σ) if Lσ = comp(L′) for
some L ∈ D.

Now we show that any learned clause in a regular run is non-redundant
according to our trail induced ordering.

Lemma 25 (Non-Redundant Clause Learning). Let N be a clause set.
The clauses learned during a regular run in SCL(EQ) are not redundant with
respect to ≺Γ∗ and N ∪ U . For the trail only non-redundant clauses need to be
considered.

The proof of Lemma 25 is based on the fact that conflict resolution eventually
produces a clause smaller then the original conflict clause with respect to ≺Γ∗ .
All simplifications, e.g., contextual rewriting, as defined in [2,32,34,35,36,20], are
therefore compatible with Lemma 25 and may be applied to the newly learned
clause as long as they respect the induced trail ordering. In detail, let Γ be the
trail before the application of rule Backtrack. The newly learned clause can be
simplified according to the induced trail ordering ≺Γ∗ as long as the simplified
clause is smaller with respect to ≺Γ∗ .

Another important consequence of Lemma 25 is that newly learned clauses
need not to be considered for redundancy. Furthermore, the SCL(EQ) calculus
always terminates, Lemma 33, because there only finitely many non-redundant
clauses with respect to a fixed β.

SCL(EQ): SCL for First-Order Logic with Equality 15

For dynamic redundancy, we have to consider the fact that the induced trail
ordering changes. At this level, only redundancy criteria and simplifications that
are compatible with all induced trail orderings may be applied. Due to the
construction of the induced trail ordering, it is compatible with ≺T for unit
clauses.

Lemma 26 (Unit Rewriting). Assume a state (Γ ;N ;U ;β; k;D) resulting
from a regular run where the current level k > 0 and a unit clause l ≈ r ∈ N .
Now assume a clause C ∨L[l′]p ∈ N such that l′ = lµ for some matcher µ. Now
assume some arbitrary grounding substitutions σ′ for C ∨L[l′]p, σ for l ≈ r such
that lσ = l′σ′ and rσ ≺T lσ. Then (C ∨ L[rµσσ′]p)σ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′.

In addition, any notion that is based on a literal subset relationship is also
compatible with ordering changes. The standard example is subsumption.

Lemma 27. Let C,D be two clauses. If there exists a substitution σ such that
Cσ ⊂ D, then D is redundant with respect to C and any ≺Γ∗ .

The notion of redundancy, Definition 1, only supports a strict subset relation
for Lemma 27, similar to the superposition calculus. However, the newly gener-
ated clauses of SCL(EQ) are the result of paramodulation inferences [27]. In a
recent contribution to dynamic, abstract redundancy [31] it is shown that also
the non-strict subset relation in Lemma 27, i.e., Cσ ⊆ D, preserves completeness.

If all stuck states, see below Definition 28, with respect to a fixed β are visited
before increasing β then this provides a simple dynamic fairness strategy.

When unit reduction or any other form of supported rewriting is applied to
clauses smaller than the current β, it can be applied independently from the
current trail. If, however, unit reduction is applied to clauses larger than the
current β then the calculus must do a restart to its initial state, in particular
the trail must be emptied, as for otherwise rewriting may result generating a
conflict that did not exist with respect to the current trail before the rewriting.
This is analogous to a restart in CDCL once a propositional unit clause is derived
and used for simplification. More formally, we add the following new Restart rule
to the calculus to reset the trail to its initial state after a unit reduction.

Restart (Γ ;N ;U ;β; k;⊤) ⇒SCL(EQ) (ǫ;N ;U ;β; 0;⊤)

Next we show refutation completeness of SCL(EQ). To achieve this we first
give a definition of a stuck state. Then we show that stuck states only occur if
all ground literals L ≺T β are β-defined in Γ and not during conflict resolution.
Finally we show that conflict resolution will always result in an application of
Backtrack. This allows us to show termination (without application of Grow)
and refutational completeness.

Definition 28 (Stuck State). A state (Γ ;N ;U ;β; k;D) is called stuck if D 6=
⊥ and none of the rules of the calculus, except for Grow, is applicable.

16 Leidinger et al.

Lemma 29 (Form of Stuck States). If a regular run (without rule Grow)
ends in a stuck state (Γ ;N ;U ;β; k;D), then D = ⊤ and all ground literals
Lσ ≺T β, where L ∨ C ∈ (N ∪ U) are β-defined in Γ .

Lemma 30. Suppose a sound state (Γ ;N ;U ;β; k;D) resulting from a regular
run where D 6∈ {⊤,⊥}. If Backtrack is not applicable then any set of applications
of Explore-Refutation, Skip, Factorize, Equality-Resolution will finally result
in a sound state (Γ ′;N ;U ;β; k;D′), where D′ ≺Γ∗ D. Then Backtrack will be
finally applicable.

Corollary 31 (Satisfiable Clause Sets). Let N be a satisfiable clause set.
Then any regular run without rule Grow will end in a stuck state, for any β.

Thus a stuck state can be seen as an indication for a satisfiable clause set.
Of course, it remains to be investigated whether the clause set is actually satisfi-
able. Superposition is one of the strongest approaches to detect satisfiability and
constitutes a decision procedure for many decidable first-order fragments [4,19].
Now given a stuck state and some specific ordering such as KBO, LPO, or some
polynomial ordering [17], it is decidable whether the ordering can be instantiated
from a stuck state such that Γ coincides with the superposition model operator
on the ground terms smaller than β. In this case it can be effectively checked
whether the clauses derived so far are actually saturated by the superposition
calculus with respect to this specific ordering. In this sense, SCL(EQ) has the
same power to decide satisfiability of first-order clause sets than superposition.

Definition 32. A regular run terminates in a state (Γ ;N ;U ;β; k;D) if D = ⊤
and no rule is applicable, or D = ⊥.

Lemma 33. Let N be a set of clauses and β be a ground term. Then any regular
run that never uses Grow terminates.

Lemma 34. If a regular run reaches the state (Γ ;N ;U ;β; k;⊥) then N is un-
satisfiable.

Theorem 35 (Refutational Completeness). Let N be an unsatisfiable clause
set, and ≺T a desired term ordering. For any ground term β where gnd≺T β(N)
is unsatisfiable, any regular SCL(EQ) run without rule Grow will terminate by
deriving ⊥.

5 Discussion

We presented SCL(EQ), a new sound and complete calculus for reasoning in first-
order logic with equality. We will now discuss some of its aspects and present
ideas for future work beyond the scope of this paper.

The trail induced ordering, Definition 9, is the result of letting the calculus
follow the logical structure of the clause set on the literal level and at the same
time supporting rewriting at the term level. It can already be seen by examples

SCL(EQ): SCL for First-Order Logic with Equality 17

on ground clauses over (in)equations over constants that this combination re-
quires a layered approach as suggested by Definition 9, see Example 50 from the
Appendix.

In case the calculus runs into a stuck state, i.e., the current trail is a model
for the set of considered ground instances, then the trail information can be
effectively used for a guided continuation. For example, in order to use the trail
to certify a model, the trail literals can be used to guide the design of a lifted
ordering for the clauses with variables such that propagated trail literals are
maximal in respective clauses. Then it could be checked by superposition, if the
current clause is saturated by such an ordering. If this is not the case, then
there must be a superposition inference larger than the current β, thus giving
a hint on how to extend β. Another possibility is to try to extend the finite
set of ground terms considered in a stuck state to the infinite set of all ground
terms by building extended equivalence classes following patterns that ensure
decidability of clause testing, similar to the ideas in [14]. If this fails, then again
this information can be used to find an appropriate extension term β for rule
Grow.

In contrast to superposition, SCL(EQ) does also inferences below variable
level. Inferences in SCL(EQ) are guided by a false clause with respect to a
partial model assumption represented by the trail. Due to this guidance and the
different style of reasoning this does not result in an explosion in the number of
possibly inferred clauses but also rather in the derivation of more general clauses,
see Example 49 from the Appendix.

Currently, the reasoning with solely positive equations is done on and with
respect to the trail. It is well-known that also inferences from this type of rea-
soning can be used to speed up the overall reasoning process. The SCL(EQ)
calculus already provides all information for such a type of reasoning, because it
computes the justification clauses for trail reasoning via rewriting inferences. By
an assessment of the quality of these clauses, e.g., their reduction potential with
respect to trail literals, they could also be added, independently from resolving
a conflict.

The trail reasoning is currently defined with respect to rewriting. It could
also be performed by congruence closure [25].

Towards an implementation, the aspect of how to find interesting ground deci-
sion or propagation literals for the trail can be treated similar to CDCL [28,21,24,11].
A simple heuristic may be used from the start, like counting the number of in-
stance relationships of some ground literal with respect to the clause set, but
later on a bonus system can focus the search towards the structure of the clause
sets. Ground literals involved in a conflict or the process of learning a new clause
get a bonus or preference. The regular strategy requires the propagation of all
ground unit clauses smaller than β. For an implementation a propagation of the
(explicit and implicit) unit clauses with variables to the trail will be a better
choice. This complicates the implementation of refutation proofs and rewriting
(congruence closure), but because every reasoning is layered by a ground term
β this can still be efficiently done.

18 Leidinger et al.

Acknowledgments: This work was partly funded by DFG grant 389792660 as
part of TRR 248, see https://perspicuous-computing.science. We thank
the anonymous reviewers and Martin Desharnais for their thorough reading,
detailed comments, and corrections.

References

1. Alagi, G., Weidenbach, C.: NRCL - A model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) Frontiers of Combining Sys-
tems - 10th International Symposium, FroCoS 2015, Wroclaw, Poland, September
21-24, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9322, pp. 69–84.
Springer (2015)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with se-
lection and simplification. Journal of Logic and Computation 4(3), 217–247 (1994)

3. Bachmair, L., Ganzinger, H., Voronkov, A.: Elimination of equality via transfor-
mation with ordering constraints. In: Kirchner, C., Kirchner, H. (eds.) Interna-
tional Conference on Automated Deduction. Lecture Notes in Computer Science,
vol. 1421, pp. 175–190. Springer (1998)

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as
a decision procedure for the monadic class with equality. In: Gottlob, G., Leitsch,
A., Mundici, D. (eds.) Computational Logic and Proof Theory, Third Kurt Gödel
Colloquium. LNCS, vol. 713, pp. 83–96. Springer (August 1993)

5. Baumgartner, P.: Hyper tableau – the next generation. In: de Swart, H.C.M. (ed.)
Automated Reasoning with Analytic Tableaux and Related Methods, International
Conference, TABLEAUX ’98, Oisterwijk, The Netherlands, May 5-8, 1998, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1397, pp. 60–76. Springer (1998)

6. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution
calculus. In: Hermann, M., Voronkov, A. (eds.) 13th International Conference,
LPAR 2006. LNAI, vol. 4246, pp. 572–586. Springer (2006)

7. Baumgartner, P., Furbach, U., Pelzer, B.: Hyper tableaux with equality. In: Pfen-
ning, F. (ed.) International Conference on Automated Deduction. LNAI, vol. 4603,
pp. 492–507. Springer (2007)

8. Baumgartner, P., Pelzer, B., Tinelli, C.: Model evolution with equality—revised
and implemented. Journal of Symbolic Computation 47(9), 1011–1045 (2012)

9. Baumgartner, P., Tinelli, C.: The model evolution calculus with equality. In:
Nieuwenhuis, R. (ed.) 20th International Conference on Automated Deduction.
LNAI, vol. 3632, pp. 392–408. Springer (2005)

10. Baumgartner, P., Waldmann, U.: Superposition and model evolution combined.
In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22. LNAI, vol. 5663, pp.
17–34. Springer (2009)

11. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

12. Bonacina, M.P., Furbach, U., Sofronie-Stokkermans, V.: On First-Order Model-
Based Reasoning, LNAI, vol. 9200, pp. 181–204. Springer International Publishing
(2015)

13. Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz,
S., Moura, L.D., Konev, B. (eds.) PAAR-2014. 4th Workshop on Practical Aspects
of Automated Reasoning. EPiC Series in Computing, vol. 31, pp. 25–38. EasyChair
(2015)

https://perspicuous-computing.science

SCL(EQ): SCL for First-Order Logic with Equality 19

14. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel
fragment over bounded difference constraints by simple clause learning over the-
ories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) Verification, Model Checking,
and Abstract Interpretation - 22nd International Conference, VMCAI 2021, Copen-
hagen, Denmark, January 17-19, 2021, Proceedings. Lecture Notes in Computer
Science, vol. 12597, pp. 511–533. Springer (2021)

15. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5(7), 394–397 (1962)

16. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM (JACM) 7(3), 201–215 (1960)

17. Dershowitz, N., Plaisted, D.A.: Rewriting. In: Robinson, A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. I, chap. 9, pp. 535–610. Elsevier (2001)

18. Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: Fontaine,
P. (ed.) 27th International Conference on Automated Deduction, CADE-27. LNAI,
vol. 11716. Springer (2019)

19. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded
fragment with equality. In: LICS. pp. 295–304 (1999)

20. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theorem
proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning -
10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4, 2020,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 12166, pp. 297–315.
Springer (2020)

21. Jr., R.J.B., Schrag, R.: Using CSP look-back techniques to solve exceptionally hard
SAT instances. In: Freuder, E.C. (ed.) Proceedings of the Second International
Conference on Principles and Practice of Constraint Programming, Cambridge,
Massachusetts, USA, August 19-22, 1996. LNCS, vol. 1118, pp. 46–60. Springer
(1996)

22. Korovin, K.: Inst-Gen – A Modular Approach to Instantiation-Based Automated
Reasoning, pp. 239–270. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

23. Korovin, K., Sticksel, C.: iProver-Eq: An instantiation-based theorem prover with
equality. In: Giesl, J., Hähnle, R. (eds.) 5th International Joint Conference, IJCAR
2010. LNAI, vol. 6173, pp. 196–202. Springer (2010)

24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineer-
ing an efficient SAT solver. In: Design Automation Conference, 2001. Proceedings.
pp. 530–535. ACM (2001)

25. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure.
Journal of the ACM 27(2), 356–364 (1980)

26. Plaisted, D.A., Zhu, Y.: Ordered semantic hyper-linking. Journal of Automated
Reasoning 25(3), 167–217 (2000)

27. Robinson, G., Wos, L.: Paramodulation and theorem-proving in first-order theories
with equality. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence 4. pp. 135–150
(1969)

28. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: International Conference on Computer Aided Design, ICCAD. pp. 220–227.
IEEE Computer Society Press (1996)

29. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF
to th0, TPTP v6.4.0. Journal of Automated Reasoning 59(4), 483–502 (2017)

30. Teucke, A.: An Approximation and Refinement Approach to First-Order Auto-
mated Reasoning. Doctoral thesis, Saarland University (2018)

20 Leidinger et al.

31. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive frame-
work for saturation theorem proving. In: Peltier, N., Sofronie-Stokkermans, V.
(eds.) Automated Reasoning - 10th International Joint Conference, IJCAR 2020,
Paris, France, July 1-4, 2020, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 12166, pp. 316–334. Springer (2020)

32. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 2, chap. 27, pp. 1965–
2012. Elsevier (2001)

33. Weidenbach, C.: Automated reasoning building blocks. In: Meyer, R., Platzer,
A., Wehrheim, H. (eds.) Correct System Design - Symposium in Honor of Ernst-
Rüdiger Olderog on the Occasion of His 60th Birthday, Oldenburg, Germany,
September 8-9, 2015. Proceedings. Lecture Notes in Computer Science, vol. 9360,
pp. 172–188. Springer (2015)

34. Weidenbach, C., Wischnewski, P.: Contextual rewriting in SPASS. In:
PAAR/ESHOL. CEUR Workshop Proceedings, vol. 373, pp. 115–124. Syd-
ney,Australien (2008)

35. Weidenbach, C., Wischnewski, P.: Subterm contextual rewriting. AI Communica-
tions 23(2-3), 97–109 (2010)

36. Wischnewski, P.: Effcient Reasoning Procedures for Complex First-Order Theories.
Ph.D. thesis, Saarland University (November 2012)

SCL(EQ): SCL for First-Order Logic with Equality 21

Appendix

5.1 Proofs and Auxiliary Lemmas

Proof of Lemma 7 Let Γ1 be a trail and K a defined literal that is of level i
in Γ1. Then K is of level i in a trail Γ := Γ1, Γ2.

Proof. Assume a trail Γ1 and a literal K that is of level i in Γ1. Let Γ := Γ1, Γ2

be a trail. Then we have two cases:

1. K has no defining literal in Γ1. Then cores(Γ1;K) = {[]} contains only the
empty core and K is of level 0 in Γ1. Then cores(Γ ;K) = {[]} as well and
thus K is of level 0 in Γ .

2. K has a defining literal L := maxΓ1
(K) and L is of level i. Then there exists

a core ∆ ∈ cores(Γ1;K) such that L is the maximum literal in ∆ according
to ≺Γ and for all Λ ∈ cores(Γ1;K) it holds max≺Γ

(∆) �Γ max≺Γ
(Λ). Thus

∆ is a defining core. Now any Λ ∈ (cores(Γ ;K) \ cores(Γ1;K)) has a higher
maximum literal according to ≺Γ . Thus ∆ is also a defining core in Γ and
L is the defining literal of K in Γ and thus K is of level i in Γ .

Auxiliary Lemmas for the Proofs of Lemma 10

Lemma 36. Let Γ be a trail. Then any literal in Γ occurs exactly once.

Proof. Let Γ := [Li1:C1·σ1

1 , ..., Lin:Cn·σn
n]. Now suppose there exist Li, Lj with

i < j and 1 ≤ i, j ≤ n such that Li = Lj. By definition of Γ , Lj is undefined in
[L1, ..., Li, ..., Lj−1]. But obviously Lj is defined in Γ . Contradiction.

Lemma 37. Let Γ be a trail. If a literal L is of level i, then it is not of level
j 6= i.

Proof. Let Γ be a trail. By lemma 36 any literal in Γ is unique. Suppose there ex-
ists a literal L such that L is of level i and of level j. If the core is empty for L then
L is of level 0 by definition. Otherwise there must exist cores ∆,Λ ∈ cores(Γ ;L)
such that max≺Γ

(∆) �Γ max≺Γ
(Λ′) and max≺Γ

(Λ) �Γ max≺Γ
(Λ′) for all

Λ′ ∈ cores(Γ ;L). But then max≺Γ
(Λ) = max≺Γ

(∆). Contradiction.

Lemma 38. Let L be a ground literal and Γ a trail. If L is defined in Γ then
L has a level.

Proof. Let Γ be a trail. Suppose that L is defined in Γ . Then it either has a
defining literal or it has no defining literal. If it has a defining literal K, then
the level of K is the level of L. Since K ∈ Γ it is annotated by a level. Thus L
has a level. If L does not have a defining literal, then L is of level 0 by definition
of a literal level.

22 Leidinger et al.

Proof of Lemma 10-1 ≺Γ∗ is well-defined.

Proof. Suppose a trail Γ := [Li1:C1·σ1

1 , ..., Lin:Cn·σn
n] and a term β such that

{L1, ..., Ln} ≺T β. We have to show that the rules 9.1-9.11 are pairwise dis-
junct. Consider the rules 9.1-9.7. These rules are pairwise disjunct, if the sets
{L1, ..., Ln}, {comp(L1), ..., comp(Ln)} and {Mi,j | i ≤ n} are pairwise disjunct.
Obviously, {L1, ..., Ln}∩{comp(L1), ..., comp(Ln)} = ∅. Furthermore ({L1, ..., Ln}∪
{comp(L1), ..., comp(Ln)}) ∩ {Mi,j | i ≤ n} = ∅ follows directly from the defini-
tion of a trail induced ordering. 9.8 and 9.9 are disjunct since {L | L is of level 0}
and {L | L is of level greater 0} are disjunct by lemma 37. It follows that 9.1-9.9
are pairwise disjunct, since all relations in 9.1-9.7 contain only β-defined literals
of level 1 or higher and all relations in 9.8, 9.9 contain at least one β-defined lit-
eral of level 0. 9.10 and 9.11 are disjunct since a literal cannot be both β-defined
and β-undefined . It follows that 9.1-9.11 are pairwise disjunct, since all relations
in 9.1-9.9 contain only β-defined literals and all relations in 9.10, 9.11 contain
at least one β-undefined literal.

Proof of Lemma 10-2 ≺Γ∗ is a total strict order, i.e. ≺Γ∗ is irreflexive, tran-
sitive and total.

Proof. Suppose a trail Γ := [Li1:C1·σ1

1 , ..., Lin:Cn·σn
n] and a term β such that

{L1, ..., Ln} ≺T β.
Irreflexivity. We have to show that there is no ground literal L such that L ≺Γ∗ L.
Suppose two literals L and K such that L ≺Γ∗ K and L = K. Now we have
several cases:

1. Suppose that L,K are β-defined and of level 1 or higher. Then we have
several cases:

(a) L = Mi,j and K = Mk,l. Then by 9.1 Mi,j ≺Γ∗ Mk,l if i < k or (i = k

and j < l). Thus i 6= k or j 6= l. We show that forMi,j ,Mk,l with i 6= k or
j 6= l it holds Mi,j 6= Mk,l. Assume that Mi,j = Mk,l and k 6= i or j 6= l.
Assume that k = i. Then, by definition 9 Mi,j ≺T Mk,l or Mk,l ≺T Mi,j .
Thus Mi,j 6= Mk,l since ≺T is a rewrite ordering. Now assume that k 6= i.
Since Mi,j = Mk,l it holds maxΓ (Mi,j) = maxΓ (Mk,l), since both have
the same level by lemma 37. But then k = i. Thus Mi,j 6= Mk,l for k 6= i

or j 6= l. Thus if by 9.1 Mi,j ≺Γ∗ Mk,l if i < k or (i = k and j < l), then
Mi,j 6= Mk,l.

(b) L = Li and K = Lj. Then by 9.2 Li ≺Γ∗ Lj if Li ≺Γ Lj. Then by
lemma 36 Li 6= Lj .

(c) L = comp(Li) and K = Lj . Then by 9.3 comp(Li) ≺Γ∗ Lj if Li ≺Γ Lj .
Li 6= Lj by lemma 36. L 6= K has to hold since Γ is consistent.

(d) L = Li and K = comp(Lj). Then by 9.4 Li ≺Γ∗ comp(Lj) if Li ≺Γ Lj

or i = j. If i 6= j then we can proceed analogous to the previous step. If
i = j then obviously Li 6= comp(Li).

(e) L = comp(Li) and K = comp(Lj). Then by 9.5 comp(Li) ≺Γ∗ comp(Lj)
if Li ≺Γ Lj. By lemma 36 Li 6= Lj . Thus comp(Li) 6= comp(Lj).

SCL(EQ): SCL for First-Order Logic with Equality 23

(f) L = Li and K = Mk,l. Then by 9.6 Li ≺Γ∗ Mk,l, comp(Li) ≺Γ∗ Mk,l

if i ≤ k. Mk,l 6= Li and Mk,l 6= comp(Li) follows directly from the
definition 9. Thus if Li ≺Γ∗ Mk,l or comp(Li) ≺Γ∗ Mk,l if i ≤ k by 9.6,
then Li 6= Mk,l and comp(Li) 6= Mk,l.

(g) L = Mk,l and K = Li. Then we can proceed analogous to the previous
step for 9.7.

2. Suppose that L and K are β-defined and of level zero. Since ≺T is irreflexive,
L 6≺T K has to hold. Since ≺Γ∗=≺T for literals of level zero L 6≺Γ∗ K has
to hold too.

3. Suppose that L,K are β-defined and L is of level zero and K is of level
greater than zero. But then L 6= K has to hold by lemma 37. Thus L 6≺Γ∗ K

for 9.9.
4. Suppose that L and K are β-undefined . Then by 9.10 K ≺Γ∗ H if K ≺T H .

Since ≺T is a rewrite ordering K ≺T H iff K 6= H .
5. Suppose that L is β-defined and K is β-undefined . Then by 9.11 L ≺Γ∗ K.

Then L 6= K has to hold since otherwise L,K would be both β-defined and
β-undefined , contradicting consistency of Γ .

Transitivity. Suppose there exist literals L,K,H such that H ≺Γ∗ K and K ≺Γ∗

L but not H ≺Γ∗ L. We have several cases:

1. Suppose all literals are β-undefined . Then K ≺T L and H ≺T K. Otherwise
K ≺Γ∗ L and H ≺Γ∗ K would not hold. Thus also H ≺T L by transitivity
of ≺T . Thus H ≺Γ∗ L by 9.10.

2. Suppose two literals are β-undefined . If K would be β-defined , then K ≺Γ∗

H by 9.11 contradicting assumption. If L would be β-defined , then L ≺Γ∗ K

by 9.11 again contradicting assumption. Thus H has to be β-defined . Then
H ≺Γ∗ L by definition 9.11.

3. Suppose one literal is β-undefined . IfK would be β-undefined , then L ≺Γ∗ K

by definition 9.11 contradicting assumption. If H would be β-undefined , then
K ≺Γ∗ H by definition 9.11 again contradicting assumption. Thus L has to
be β-undefined . Then H ≺Γ∗ L by definition 9.11.

4. Suppose all literals are β-defined . Then we have multiple subcases:
(a) Suppose all literals have the same defining literal Li and Li is of level

1 or higher. By 9.6 Li ≺Γ∗ Mi,j and comp(Li) ≺Γ∗ Mi,j for all j. By
9.4 Li ≺Γ∗ comp(Li). Thus Li ≺Γ∗ comp(Li) ≺Γ∗ Mi,j for all j. Since
K ≺Γ∗ L either K = Li and L 6= Li or L = Mi,j and K = comp(Li) or
L = Mi,j and K = Mi,k with k < j.
i. Assume K = Li and L 6= Li. Since K is the smallest literal with

defining literal Li, K = H has to hold. But then K ≺Γ∗ K contra-
dicting irreflexivity.

ii. Assume L = Mi,j andK = comp(Li). SinceH ≺Γ∗ K and all literals
have the same defining literal, H = Li has to hold by 9.6 and 9.4.
Then, again by 9.6, H ≺Γ∗ L.

iii. L = Mi,j and K = Mi,k with k < j. Since H ≺Γ∗ K and all have the
same defining literal either H = Mi,l with l < k by 9.1, or H = Li

or H = comp(Li) by 9.6. In both cases H ≺Γ∗ L holds by 9.1 and
9.6.

24 Leidinger et al.

(b) SupposeH,K,L have at least one different defining literal andmaxΓ (L) =
Li with Li of level 1 or higher. First, we have to show that if Lj =
maxΓ (K

′) ≺Γ maxΓ (L
′) = Li and Li is of level 1 or higher, then

K ′ ≺Γ∗ L′. Suppose that Lj is of level 0. Then K ′ ≺Γ∗ L′ by 9.9. Sup-
pose that L′ = Mi,k and K ′ = Mj,l. Then K ′ ≺Γ∗ L′ by 9.1. Suppose
that L′ = Mi,k and K ′ = Lj or K

′ = comp(Lj). Then K ′ ≺Γ∗ L′ by 9.6.
Suppose that L′ = Li or L

′ = comp(Li) and K ′ = Lj or K
′ = comp(Lj).

Then K ′ ≺Γ∗ L′ by 9.2-9.5. Suppose that L′ = Li or L
′ = comp(Li) and

K ′ = Mj,l. Then K ′ ≺Γ∗ L′ by 9.7.
Now by assumption H ≺Γ∗ K and K ≺Γ∗ L. If maxΓ (K) ≺Γ maxΓ (H)
then K ≺Γ∗ H contradicting assumption. The same holds for L and K.
Thus either maxΓ (H) ≺Γ maxΓ (L) or maxΓ (K) ≺Γ maxΓ (L). In the
first case H ≺Γ∗ L follows from above. In the second case maxΓ (H) �Γ

maxΓ (K) has to hold. Thus H ≺Γ∗ L follows again.
(c) Suppose that maxΓ (L) = Li where Li is of level 0. Since K ≺Γ∗ L,

maxΓ (K) = Lj with Lj of level 0 has to hold by 9.9 and 9.11. Now
assume that L ≺T K. Then L ≺Γ∗ K by 9.8 contradicting assumption.
Thus K ≺T L has to hold since K 6= L. Since H ≺Γ∗ K, maxΓ (H) = Lk

with Lk of level 0 has to hold by 9.9 and 9.11. Now assume that K ≺T H .
Then K ≺Γ∗ H by 9.8 contradicting assumption. Thus H ≺T K has to
hold since H 6= K. By transitivity of ≺T , H ≺T L and thus H ≺Γ∗ L

has to hold.

Totality. First we show that any ground literal is either β-defined and has a level
or β-undefined . Since Γ is consistent, a literal is either β-defined or β-undefined .
We just need to show that if a literal is β-defined , it has a level. By lemma 38 all
defined literals have a level. β-definedness implies definedness. Thus all β-defined
literals have a level. Now assume some arbitrary ground literals L 6= K. We have
several cases:

1. L,K are β-undefined . Since L 6= K we have L ≺T K or K ≺T L by totality
of ≺T on ground literals. Thus by 9.10 L ≺Γ∗ K or K ≺Γ∗ L.

2. One is β-defined . Then either L ≺Γ∗ K or K ≺Γ∗ L by 9.11.
3. Both are β-defined . Then we have several subcases:

(a) L is of level zero and K is of level greater than zero or vice versa. Then
by 9.9 L ≺Γ∗ K or K ≺Γ∗ L has to hold.

(b) maxΓ (L) = Li and maxΓ (K) = Lj and both are of level 1 or higher.
i. L = Mi,k and K = Mj,l. Then either Mi,k ≺Γ∗ Mj,l or Mj,l ≺Γ∗

Mi,k by 9.1.
ii. L = Mi,k and K = Lj or K = comp(Lj). If i ≥ j then by 9.6

Lj ≺Γ∗ Mi,k or comp(Lj) ≺Γ∗ Mi,k. If i < j then by 9.7Mi,k ≺Γ∗ Lj

or Mi,k ≺Γ∗ comp(Lj).
iii. K = Mi,k and L = Lj or L = comp(Lj). Analogous to previous step.
iv. L = Li and K = Lj. Then if i < j by 9.2 Li ≺Γ∗ Lj and Lj ≺Γ∗ Li

otherwise.
v. L = comp(Li) and K = comp(Lj) analogous to previous step for

9.5.

SCL(EQ): SCL for First-Order Logic with Equality 25

vi. L = Li and K = comp(Lj). Then if i ≤ j by 9.4 Li ≺Γ∗ comp(Lj).
If j < i by 9.3 comp(Lj) ≺Γ∗ Li.

vii. L = comp(Li) and K = Lj. Then if i < j by 9.3 comp(Li) ≺Γ∗ Lj .
If j ≤ i by 9.4 Lj ≺Γ∗ comp(Li).

(c) maxΓ (L) = Li and maxΓ (K) = Lj and both are of level 0. Now either
L ≺T K or K ≺T L. Thus by 9.8 L ≺Γ∗ K or K ≺Γ∗ L.

Proof of Lemma 10-3 ≺Γ∗ is a well-founded ordering.

Proof. Suppose some arbitrary subset M of all ground literals, a trail Γ :=
[Li1:C1·σ1

1 , ..., Lin:Cn·σn
n] and a term β such that {L1, ..., Ln} ≺T β. We have to

show that M has a minimal element. We have several cases:

1. L is β-undefined in Γ for all literals L ∈M . Then ≺Γ∗=≺T . Since ≺T is well-
founded there exists a minimal element in M . Thus there exists a minimal
element in M with regard to ≺Γ∗ .

2. there exists at least one literal in M that is β-defined . Then we have two
cases:

(a) there exists a literal in M that is of level zero. Then let L ∈ M be
the literal of level zero, where L ≺T K for all K ∈ M with K of level
zero. We show that L is the minimal element. Suppose there exists a
literal L′ ∈M that is smaller than L. Since L is of level zero, L ≺Γ∗ K

for all literals K of level greater than zero by 9.9 and L ≺Γ∗ H for all
β-undefined literals H by 9.11. Thus L′ must be of level zero. But then
L′ ≺T L has to hold, contradicting assumption.

(b) There exists no literal in M that is of level zero. Let L ∈M be the literal
where maxΓ (L) �Γ maxΓ (K) for all K ∈M and

i. L = maxΓ (L) or
ii. L = comp(maxΓ (L)) and maxΓ (L) 6∈M or
iii. L ≺T H for all H ∈ M such that maxΓ (L) = maxΓ (H) and

maxΓ (L) 6∈M and comp(maxΓ (L)) 6∈M .

We show that L is the minimal element. Suppose there exists a literal
L′ ∈M that is smaller than L. We have three cases:

i. maxΓ (L) = L = Li. Since Li ≺T β we have either L′ = Lj with
j < i by 9.2 or L′ = comp(Lj) with j < i by 9.3 or L′ = Mk,l with
k < i by 9.7. In all three cases we have maxΓ (L

′) ≺Γ maxΓ (L)
contradicting assumption that the defining literal of L is minimal in
M .

ii. L = comp(Li) = comp(maxΓ (L)) and maxΓ (L) 6∈ M . Since Li ≺T

β either L′ = Lj with j < i by 9.4 or L′ = comp(Lj) with j < i

by 9.5 or L′ = Mk,l with k < i by 9.7. In all three cases we have
maxΓ (L

′) ≺Γ maxΓ (L) contradicting assumption that the defining
literal of L is minimal in M .

26 Leidinger et al.

iii. L = Mk,l and maxΓ (L) 6∈ M and comp(maxΓ (L)) 6∈ M . Then
either L′ = Mi,j with i < k or (i = k and j < l) by 9.1 or
L′ = Li or L′ = comp(Li) with i ≤ k. Suppose that L′ = Mi,j

and i < k. Then maxΓ (L
′) ≺Γ maxΓ (L) contradicting assumption.

Suppose that L′ = Mi,j and i = k and j < l. Then L′ ≺T L and
maxΓ (L) = maxΓ (L

′). For L it holds L ≺T H for all H ∈ M such
that maxΓ (L) = maxΓ (H). Contradiction. Suppose that L′ = Li

or L′ = comp(Li) with i = k. Then maxΓ (L) = Li. By assump-
tion maxΓ (L) 6∈ M and comp(maxΓ (L)) 6∈ M . Contradiction. Sup-
pose that L′ = Li or L′ = comp(Li) with i < k. Then we have
maxΓ (L

′) ≺Γ maxΓ (L) contradicting assumption that the defining
literal of L is minimal in M .

Proof of Lemma 17 Assume that all ground terms t with t ≺T β for any β are
polynomial in the size of β. Then testing Propagate (Conflict) is NP-Complete,
i.e., the problem of checking for a given clause C whether there exists a grounding
substitution σ such that Cσ propagates (is false) is NP-Complete.

Proof. Let Cσ be propagable (false). The problem is in NP because β is constant
and for all t ∈ codom(σ) it holds that t is polynomial in the size of β. Checking
if Cσ is propagable (false) can be done in polynomial time with Congruence
Closure [25] since σ has polynomial size.

We reduce 3-SAT to testing rule Conflict. Consider a 3-place predicate R, a
unary function g, and a mapping from propositional variables P to first-order
variables xP . Assume a 3-SAT clause setN = {{L0, L1, L2}, ..., {Ln−2, Ln−1, Ln}},
where Li may denote both Pi and ¬Pi. Now we create the clause

{R(t0, t1, t2) 6≈ true, ..., R(tn−2, tn−1, tn 6≈ true)}

where ti := xPi
if Li = Pi and ti := g(xPi

) otherwise. Now let Γ := {R(x0, x1, x2) |
xi ∈ {0, 1, g(0), g(1)} such that (x0 ∨ x1 ∨ x2) ↓{g(x) 7→(¬x)} is true } be the set
of all R-atoms that evaluate to true if considered as a three literal propositional
clause. Now N is satisfiable if and only if Conflict is applicable to the new clause.
The reduction is analogous for Propagate.

Proof of Theorem 23 Assume a state (Γ ;N ;U ;β; k;D) resulting from a run.
Then (Γ ;N ;U ;β; k;D) is sound.

Proof. Proof by structural induction on (Γ ;N ;U ;β; k;D). Let (Γ ;N ;U ;β; k;D) =
(ǫ,N, ∅, β, 0,⊤), the initial state. Then it is sound according to lemma 21. Now
assume that (Γ ;N ;U ;β; k;D) is sound. We need to show that any application
of a rule results in a sound state.

SCL(EQ): SCL for First-Order Logic with Equality 27

Propagate: Assume Propagate is applicable. Then there exists C ∈ N ∪ U

such that C = C0 ∨ C1 ∨ L, Lσ is β-undefined in Γ , C1σ = Lσ ∨ ... ∨ Lσ,
C1 = L1∨ ...∨Ln,µ = mgu(L1, ..., Ln, L) and C0σ is β-false in Γ . Then a reduc-
tion chain application [I1, ..., Im] from Γ to Lσk:(C0∨L)µ·σ is created with Im :=

(sm#tm·σm, sm#tm ∨ Cm·σm, Ij , Ik, pm). Finally sm#tmσ
k:(sm#tm∨Cm)·σm
m is

added to Γ .
By definition of a reduction chain application (sm#tm)σm = Lσ↓conv(Γ). Thus,
(sm#tm)σm must be β-undefined in Γ and irreducible by conv(Γ), since (C0 ∨
L)µσ ≺T β by definition of Propagate.

– 20.1: Since (sm#tm)σm is β-undefined in Γ , adding (sm#tm)σm does not
make Γ inconsistent. Thus Γ, (sm#tm)σm remains consistent.

– 20.2: (sm#tm)σm is β-undefined in Γ and irreducible by conv(Γ). It remains
to show that Cmσm is β-false in Γ , N ∪ U |= sm#tm ∨ Cm and (sm#tm ∨
Cm)σm ≺T β. By i.h. for all L′σ′l:(L′∨C′)·σ′

∈ Γ it holds that C′σ′ is β-false
in Γ , (L′ ∨ C′)σ′ ≺T β and N ∪ U |= (L′ ∨ C′). By definition of Propagate
C0σ is β-false in Γ and Cσ ≺T β and N ∪ U |= C. (C0 ∨ C1 ∨ L)µ is an
instance of C. Thus C |= (C0∨C1∨L)µ. C0µ = Lµ∨ ...∨Lµ by definition of
Propagate. Thus C |= (C1∨L)µ and by this N∪U |= (C1∨L)µ. By definition
of a reduction chain application Ij either contains a clause annotation from
Γ,Lσk:(C0∨L)·σ or it is a rewriting inference from smaller rewrite steps for all
1 ≤ j ≤ m. Thus, by lemma 14 it follows by induction that for any rewriting
inference Ij := (sj#tj ·σj , sj#tj ∨ Cj ·σj , Ii, Ik, pj) it holds Cjσj is β-false
in Γ , N ∪ U |= sj#tj ∨Cj and (sj#tj ∨Cj)σj ≺T β.

– 20.3 and 20.4 trivially hold by induction hypothesis.
– 20.5: trivially holds since D = ⊤.

Decide: Assume Decide is applicable. Then there exists C ∈ N ∪ U such that
C = C0 ∨ L, Lσ is ground and β-undefined in Γ and C0σ is ground and
β-undefined or β-true in Γ . Then a reduction chain application [I1, ..., Im] from Γ

to Lσk+1:(C0∨L)·σ is created with Im := (sm#tm·σm, sm#tm∨Cm·σm, Ij , Ik, pm).

Finally sm#tmσ
k+1:(sm#tm∨comp(sm#tm))·σm
m is added to Γ .

By definition of a reduction chain application (sm#tm)σm = Lσ↓conv(Γ). Thus,
(sm#tm)σm must be β-undefined in Γ and irreducible by conv(Γ), since (C0 ∨
L)σ ≺T β by definition of Decide.

– 20.1: Since (sm # tm)σm is β-undefined in Γ adding (sm#tm)σm does not
make Γ inconsistent. Thus Γ, (sm#tm)σm remains consistent.

– 20.3: (sm#tm)σm is β-undefined in Γ and irreducible by conv(Γ). N ∪U |=
(sm#tm) ∨ comp(sm#tm) obviously holds. (sm#tm)σm ≺T β holds induc-
tively by lemma 14 and since Lσ ≺T β.

– 20.2 and 20.4 trivially hold by induction hypothesis.
– 20.5: trivially holds since D = ⊤.

Conflict: Assume Conflict is applicable. Then there exists a D′σ such that D′σ

is β-false in Γ . Then:

28 Leidinger et al.

– 20.1 - 20.4 trivially hold by induction hypothesis
– 20.5: D′σ is β-false in Γ by definition of Conflict . Now we have two cases:

1. D′σ is of level greater than zero. Then N ∪ U |= D′ since D′ ∈ N ∪ U

by definition of Conflict .
2. D′σ is of level zero. Then we have to show that N ∪ U |= ⊥. For any

literal L
0:(L0∨D0)·σ
0 ∈ Γ it holds N |= L0, since any literal of level 0 is a

propagated literal. By definition of a level, for any K ∈ D′σ there exists
a core core(Γ ;K) that contains only literals of level 0. Thus N ∪ U |=
core(Γ ;K) and core(Γ ;K) |= ¬K for any such K. Then N ∪U |= ¬D′σ

and N ∪ U |= D′σ and therefore N ∪ U |= ⊥.

Skip: Assume Skip is applicable. Then Γ = Γ ′, L and D = D′ ·σ and D′σ is
β-false in Γ ′.

– 20.1: By i.h. Γ is consistent. Thus Γ ′ is consistent as well.
– 20.2- 20.4: trivially hold by induction hypothesis and since Γ ′ is a prefix of

Γ .
– 20.5: By i.h. D′σ is β-false in Γ and N ∪U |= D′. By definition of Skip D′σ

is β-false in Γ ′.

Explore-Refutation: Assume Explore-Refutation is applicable. Then D = (D′ ∨
s# t)·σ, (s# t)σ is strictly ≺Γ∗ maximal in (D′ ∨ s# t)σ, [I1, ..., Im] is a refuta-
tion from Γ and (s# t)σ, Ij = (sj#tj ·σj , (sj#tj ∨Cj)·σj , Il, Ik, pj), 1 ≤ j ≤ m,
(sj # tj ∨ Cj)σj ≺Γ∗ (D′ ∨ s# t)σ, (sj#tj ∨ Cj)σj is β-false in Γ .

– 20.1-20.4 trivially hold by i.h.
– 20.5. By definition (Cj∨sj # tj)σj is β-false in Γ . By i.h. for all L′σ′l:(L′∨C′)·σ′

∈ Γ it holds that N ∪U |= (L′ ∨C′). By i.h. N ∪U |= D′ ∨ s# t. By defini-
tion of a refutation Ij := (sj#tj ·σj , sj#tj ∨Cj ·σj , Ii, Ik, pj) either contains

a clause annotation from Γ, (s# t)σk:(D′∨s# t)·σ or it is a rewriting inference
from smaller rewrite steps for all 1 ≤ j ≤ m. Thus it follows inductively by
lemma 14 that N ∪ U |= (sj#tj ∨ Cj).

Factorize: Assume Factorize is applicable. Then D = D′·σ.

– 20.1 - 20.4 trivially hold by induction hypothesis.
– 20.5: By i.h. D′σ is β-false in Γ and N ∪ U |= D′. By the definition of

Factorize D′ = D0 ∨ L ∨ L′ such that Lσ = L′σ and µ = mgu(L,L′).
(D0 ∨ L ∨ L′)µ is an instance of D′. Thus N ∪ U |= (D0 ∨ L ∨ L′)µ. Since
Lµ = L′µ, (D0 ∨ L ∨ L′)µ |= (D0 ∨ L)µ. Thus N ∪ U |= (D0 ∨ L)µ and
(D0∨L)µσ is β-false since (D0∨L)µσ = (D0∨L)σ by definition of an mgu.

Equality-Resolution: Assume Equality-Resolution is applicable. Then D = (D′∨
s 6≈ s′)σ and sσ = s′σ, µ = mgu(s, s′). Then

– 20.1 - 20.4 trivially hold by induction hypothesis.
– 20.5: By i.h. (D′ ∨ s 6≈ s′)σ is β-false in Γ and N ∪U |= (D′∨ s 6≈ s′). D′µ is

an instance of (D′ ∨ s 6≈ s′). Thus (D′ ∨ s 6≈ s′) |= D′µ. Thus N ∪U |= D′µ.
D′µσ is β-false since (D′ ∨ s 6≈ s′)σ is β-false and D′µσ = D′σ by definition
of a mgu.

SCL(EQ): SCL for First-Order Logic with Equality 29

Backtrack: Assume Backtrack is applicable. Then Γ = Γ ′,K, Γ ′′ and D =
(D′ ∨ L)σ, where Lσ is of level k, and D′σ is of level i.

– 20.1: By i.h. Γ is consistent. Thus Γ ′ ⊆ Γ is consistent.
– 20.2 - 20.3: Since Γ ′ is a prefix of Γ by i.h. this holds.
– 20.4: By i.h. N ∪ U |= D′ ∨ L and N |= U . Thus N |= U ∪ {D′ ∨ L}
– 20.5: trivially holds since D = ⊤ after backtracking.

Proof of Lemma 26 Assume a state (Γ ;N ;U ;β; k;D) resulting from a regular
run where the current level k > 0 and a unit clause l ≈ r ∈ N . Now assume a
clause C ∨ L[l′]p ∈ N such that l′ = lµ for some matcher µ. Now assume some
arbitrary grounding substitutions σ′ for C∨L[l′]p, σ for l ≈ r such that lσ = l′σ′

and rσ ≺T lσ. Then (C ∨ L[rµσσ′]p)σ
′ ≺Γ∗ (C ∨ L[l′]p)σ

′.

Proof. Let (Γ ;N ;U ;β; k;D) be a state resulting from a regular run where k > 0
and Γ = [L1, ..., Ln]. Now we have two cases:

1. β ≺T (l ≈ r)σ. Since (l ≈ r)σ rewrites L[l′]pσ
′, β ≺T L[l′]pσ

′ has to hold
as well. Thus (l ≈ r)σ is β-undefined in Γ and L[l′]pσ

′ is β-undefined in Γ .
By definition of a trail induced ordering ≺Γ∗ :=≺T for β-undefined literals.
Thus, in case that L[rµ]p)σσ

′ is still undefined, (L[rµ]p)σσ
′ ≺Γ∗ (L[l′]p)σ

′

has to hold since (L[rµ]p)σσ
′ ≺T (L[l′]p)σ

′. Thus, according to the definition
of multiset orderings, (C ∨ L[rµ]p)σσ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′. In the case that

(L[rµ]p)σσ
′ is defined, (L[rµ]p)σσ

′ ≺Γ∗ (L[l′]p)σ
′ has to hold as well by

definition 9.11. Thus, according to the definition of multiset orderings, (C ∨
L[rµ]p)σσ

′ ≺Γ∗ (C ∨ L[l′]p)σ
′.

2. (l ≈ r)σ ≺T β. Since propagation is exhaustive for literals of level 0 (cf. 24.2)
(l ≈ r)σ is on the trail or defined and of level 0. Now we have two cases:
(a) (L[l′]p)σ

′ is of level 1 or higher. Since (L[l′]p)σ
′ is reducible by (l ≈ r)σ,

(L[l′]p)σ
′ 6= Li and (L[l′]p)σ

′ 6= comp(Li) for all Li ∈ Γ . Since (L[l′]p)σ
′

is of level 1 or higher, rewriting with (l ≈ r)σ does not change the defining
literal of (L[l′]p)σ

′. Thus (L[rµ]p)σσ
′ ≺Γ∗ (L[l′]p)σ

′ has to hold since
(L[rµ]p)σσ

′ ≺T (L[l′]p)σ
′. Thus, according to the definition of multiset

orderings, (C ∨ L[rµ]p)σσ
′ ≺Γ∗ (C ∨ L[l′]p)σ

′

(b) (L[l′]p)σ
′ is of level 0. First we show that (L[rµ]p)σσ

′ is still of level
0. Suppose that (L[l′]p)σ

′ = s# s. Then rewriting either the left or
right side of the equation results in (L[rµ]p)σσ

′. Then core(Γ ; (l ≈
r)σ) is also a core for (L[rµ]p)σσ

′ and thus (L[rµ]p)σσ
′ must be of

level 0. Now suppose that (L[rµ]p)σσ
′ = s# s. Then it is of level 0

by definition of a level. Finally suppose that (L[rµ]p)σσ
′ 6= s# s and

(L[l′]p)σ
′ 6= s# s. Then core(Γ ; (L[l′]p)σ

′) ∪ core(Γ ; (l ≈ r)σ) is a core
for (L[rµ]p)σσ

′. Thus (L[rµ]p)σσ
′ is of level 0. Since (L[rµ]p)σσ

′ ≺T

(L[l′]p)σ
′, (L[rµ]p)σσ

′ ≺Γ∗ (L[l′]p)σ
′ according to the definition of ≺Γ∗ .

Thus, according to the definition of multiset orderings, (C∨L[rµ]p)σσ′ ≺Γ∗

(C ∨ L[l′]p)σ
′.

30 Leidinger et al.

Proof of Lemma 27 Let C,D be two clauses. If there exists a substitution σ

such that Cσ ⊂ D, then D is redundant with respect to C and any ≺Γ∗ .

Proof. Let τ be a grounding substitution for D. Since Cσ ⊂ D, Cστ ⊂ Dτ .
Thus, for any L ∈ Cστ it holds L ∈ Dτ and Cστ 6= Dτ . Thus, Cστ ≺Γ∗ Dτ by
definition of a multiset extension and Cστ makes Dτ redundant by definition 1.

Auxiliary Lemmas for the Proof of Lemma 25

Lemma 39. During a regular run, if (Γ ;N ;U ;β; k;⊤) is the immediate result
of an application of Backtrack, then there exists no clause C ∈ N ∪ U and a
substitution σ such that Cσ is β-false in Γ .

Proof. We prove this by induction. For the induction start assume the state
(Γ ′;N ;U ∪ {D};β; i;⊤) after the first application of Backtrack in a regular
run, where D is the learned clause. Since Backtrack was not applied before, the
previous (first) application of Conflict in a state (Γ,K;N ;U ;β; k;⊤) was imme-
diately preceded by an application of Propagate or Decide. By the definition
of a regular run there is no clause C ∈ N with substitution σ such that Cσ is
β-false in Γ . Otherwise Conflict would have been applied earlier. By the defi-
nition of Backtrack, there exists no substition τ such that Dτ is β-false in Γ ′.
Since there existed such a substitution before the application of Backtrack, Γ ′

has to be a prefix of Γ and Γ 6= Γ ′. Thus there exists no clause C ∈ N ∪U ∪{D}
and a grounding substitution δ such that Cδ is β-false in Γ ′.

For the induction step assume the state (Γ ′;N ;U ∪ {D};β; i;⊤) after nth
application of Backtrack. By i.h. the previous application of Backtrack did
not produce any β-false clause. It follows that the the previous application of
Conflict in a state (Γ,K;N ;U ;β; k;⊤) was immediately preceded by an appli-
cation of Propagate or Decide. By the definition of a regular run there is no
clause C ∈ N ∪ U with substitution σ such that Cσ is β-false in Γ . Otherwise
Conflict would have been applied earlier. By the definition of Backtrack, there
exists no substition τ such that Dτ is β-false in Γ ′. Since there existed such
a substitution before the application of Backtrack, Γ ′ has to be a prefix of Γ
and Γ 6= Γ ′. Thus there exists no clause C ∈ N ∪ U ∪ {D} and a grounding
substitution δ such that Cδ is β-false in Γ ′.

Corollary 40. If Conflict is applied in a regular run, then it is immediately
preceded by an application of Propagate or Decide, except if it is applied to the
initial state.

Lemma 41. Assume a state (Γ ;N ;U ;β; k;D) resulting from a regular run.
Then there exists no clause (C ∨ L) ∈ N ∪ U and a grounding substitution
σ such that (C ∨L)σ is β-false in Γ , comp(Lσ) is a decision literal of level i in
Γ and Cσ is of level j < i.

SCL(EQ): SCL for First-Order Logic with Equality 31

Proof. Proof is by induction. Assume the initial state (ǫ;N ; ∅;β; 0;⊤). Then any
clause C ∈ N is undefined in Γ . Then this trivially holds.

Now for the induction step assume a state (Γ ;N ;U ;β; k;D). Only Propagate,
Decide, Backtrack and Skip change the trail and only Backtrack adds a new
literal to U . By i.h. there exists no clause with the above properties in N ∪ U .

Now assume that Propagate is applied. Then a literal L is added to the trail.
Let C1 ∨ L1, ..., Cn ∨ Ln be the ground clause instances that get β-false in Γ

by the application such that L is the defining literal of L1, ..., Ln. Then Li is of
level k for 1 ≤ i ≤ n. Thus Li 6= comp(K) for the decision literal K ∈ Γ of level
k. Thus C1 ∨ L1, ..., Cn ∨ Ln do not have the above properties.

Now assume that Decide is applied. Then a literal L of level k+1 is added to
the trail. Let C1∨L1, ..., Cn∨Ln be the (ground) clause instances that get β-false
in Γ by the application such that L is the defining literal of L1, ..., Ln. By the
definition of a regular run for all Li with 1 ≤ i ≤ n it holds that Li 6= comp(L)
or there exists another literal Ki ∈ Ci such that Ki is of level k+1 and Li 6= Ki,
since otherwise Propagate must be applied. Thus C1 ∨ L1, ..., Cn ∨ Ln do not
have the above properties.

Now assume that Skip is applied. Then there are no new clauses that get
β-false in Γ . Thus this trivially holds.

Now assume that Backtrack is applied. Then a new clause D∨L is added to
U and Γ = Γ ′,K, Γ ′′ such that there is a grounding substitution τ with (D∨L)τ
β-false in Γ ′,K, there is no grounding substitution δ with (D∨L)δ β-false in Γ ′.
Γ ′ is the trail resulting from the application of Backtrack. By lemma 39, after
application of Backtrack there exists no clause C ∈ N ∪ U and a substitution
σ such that Cσ is β-false in Γ ′. Thus there exists no clause with the above
properties.

Proof of Lemma 25 Let N be a clause set. The clauses learned during a
regular run in SCL(EQ) are not redundant with respect to ≺Γ∗ and N ∪U . For
the trail only non-redundant clauses need to be considered.

We first prove that learned clauses are non-redundant and then that only
non-redundant clauses need to be considered, Lemma 45, below.

Proof. Consider the following fragment of a derivation learning a clause:

⇒Conflict

SCL(EQ) (Γ ;N ;U ;β; k;D ·σ)

⇒
{Explore-Refutation,Skip,Eq-Res,Factorize}∗

SCL(EQ) (Γ ′;N ;U ;β; l;C ·σ)

⇒Backtrack
SCL(EQ) (Γ ′′;N ;U ∪ {C};β; k′;⊤)

Assume there are clauses in N ′ ⊆ (gnd(N ∪U)�Γ∗Cσ) such that N ′ |= Cσ. Since
N ′ �Γ∗ Cσ and Cσ is β-defined in Γ , there is no β-undefined literal in N ′, as
all β-undefined literals are greater than all β-defined literals. If Γ |= N ′ then
Γ |= Cσ, a contradiction. Thus there is a C′ ∈ N ′ with C′ �Γ∗ Cσ such that C′

is β-false in Γ . Now we have two cases:

32 Leidinger et al.

1. Γ ′ 6= Γ . Then Γ = Γ ′, ∆. Thus at least one Skip was applied, so Cσ does
not contain a literal that is β-undefined without the rightmost literal of Γ ,
therefore Cσ 6= Dσ. Suppose that this is not the case, so Cσ = Dσ. ThenDσ

is β-false in Γ ′. But since Backtrack does not produce any β-false clauses
by lemma 39, Conflict could have been applied earlier on Dσ contradicting
a regular run. Since C′ �Γ∗ Cσ we have that C′ 6= Dσ as well. Thus, again
since Backtrack does not produce any β-false clauses by lemma 39, at a
previous point in the derivation there must have been a state such that
C′ was β-false under the current trail and Conflict was applicable but not
applied, a contradiction to the definition of a regular run.

2. Γ ′ = Γ , then conflict was applied immediately after an application of Decide
by corollary 40 and the definition of a regular run. Thus Γ = ∆,K(k−1):D′·δ,

Lk:D′′·τ . C′ does not have any β-undefined literals. Suppose that C′ has no
literals of level k. Then all literals in C′ are of level i < k. Since C′ is β-false
in Γ , C′ is β-false in ∆,K as well, since it does not have any literals of
level k. Thus, again since Backtrack does not produce any β-false clauses
by lemma 39, at a previous point in the derivation there must have been
a state such that C′ was β-false under the current trail and Conflict was
applicable but not applied, a contradiction to the definition of a regular run.
Since C′ �Γ∗ Cσ, it may have at most one literal of level k, namely comp(L),
since comp(L) ∈ Cσ by definition of a regular run, since Skip was not ap-
plied, and there exists only L such that L ≺Γ∗ comp(L) and L is of level k.
But L is β-true in Γ . Thus L 6∈ C′ has to hold.
Now suppose that C′ has one literal of level k. Thus C′ = C′′ ∨ comp(L),
where C′′ is β-false in ∆,K. But by lemma 41 there does not exist such a
clause. Contradiction.

Auxiliary Lemma for the Proof of Lemma 43

Lemma 42. Assume a clause L1 ∨ ... ∨ Lm, a trail Γ resulting from a regu-
lar run starting from the initial state, and a reducible (by conv(Γ)) ground-
ing substitution σ, such that Liσ is β-false (β-true or β-undefined) in Γ and
Liσ ≺T β for 1 ≤ i ≤ m. Then there exists a substitution σ′ that is irreducible
by conv(Γ) such that Liσ

′ is β-false (β-true or β-undefined) in Γ , Liσ
′ ≺T β

and Liσ↓conv(Γ) = Liσ
′↓conv(Γ).

Proof. Let L1∨...∨Lm be a clause, Γ a trail resulting from a regular run. Let σ :=
{x1 → t1, ..., xn → tn}. Now set σ′ := {x1 → (t1↓conv(Γ)), ..., xn → (tn↓conv(Γ))}.
Obviously σ′ is irreducible by conv(Γ) and Liσ

′ ≺T β for all 1 ≤ i ≤ m. By
definition, conv(Γ) is a confluent and terminating rewrite system. Since Γ is
consistent, tj↓conv(Γ) ≈ tj is β-true in Γ for 1 ≤ j ≤ n. Thus there exists
a chain such that Liσ →conv(Γ) ... →conv(Γ) Liσ

′ and Liσ
′ is β-false (β-true

or β-undefined) in Γ . Now there also exists a chain Liσ →conv(Γ) ... →conv(Γ)

SCL(EQ): SCL for First-Order Logic with Equality 33

Liσ↓conv(Γ). By definition of convergence there must exist a chain Liσ
′ →conv(Γ)

...→conv(Γ) Liσ↓conv(Γ). Thus Liσ↓conv(Γ) = Liσ
′↓conv(Γ).

Auxiliary Lemma for the Proof of Lemmas 29 and 35

Lemma 43. Suppose a sound state (Γ ;N ;U ;β; k;⊤) resulting from a regular
run. If there exists a C ∈ N ∪U and a grounding substitution σ such that Cσ is
β-false in Γ , then Conflict is applicable. Otherwise, If there exists a C ∈ N ∪U
and a grounding substitution σ such that Cσ ≺T β and there exists at least one
L ∈ C such that Lσ is β-undefined, then one of the rules Propagate or Decide

is applicable and a β-undefined literal K ∈ D, where D ∈ gnd≺T
β(N ∪ U) is

β-defined after application.

Proof. Let (Γ ;N ;U ;β; k;⊤) be a state resulting from a regular run. Suppose
there exists a C ∈ N ∪ U and a grounding σ such that Cσ is β-false in Γ ,
then by lemma 42 there exists an irreducible substitution σ′ such that Cσ′ is
β-false . Thus Conflict is applicable. Now suppose there exists a C ∈ N ∪ U

and a grounding substitution σ such that Cσ ≺T β and there exists at least
one L ∈ C such that Lσ is β-undefined . By lemma 42 there exists a irre-
ducible substitution σ′ such that Lσ′ is β-undefined . Now assume that C =
C0 ∨ C1 ∨ L such that C1σ

′ = Lσ′ ∨ ... ∨ Lσ′ and C0σ
′ is β-false in Γ . Then

Propagate is applicable. Let C1 = L1, ..., Ln and µ = mgu(L1, ..., Ln, L). Now let
[I1, ..., Im] be the reduction chain application from Γ to Lσ′k:(L∨C0)µ·σ

′

. Let Im =
(sm#tm·σm, (sm#tm ∨ Cm)·σm, Ij , Ik, pm). Then Lσ′↓conv(Γ) = sm#tmσm by
definition of a reduction chain application. Thus Lσ′ is β-true in Γ, sm#tmσm.
Since Lσ↓conv(Γ) = Lσ′↓conv(Γ) by lemma 42, Lσ is β-true in Γ, sm#tmσm as
well. If C0σ is β-undefined or β-true in Γ then Propagate is not applicable to
Cσ′. If Decide is not applicable by definition of a regular run, then there exists a
clause C′ ∈ (N∪U) and a substitution δ such that Propagate is applicable. Then
we can apply Propagate by definition of a regular run and a previously undefined
literal gets defined after application as seen above and we are done. Now suppose
that there exists no such clause. Then let [I ′1, ..., I

′
l] be the reduction chain appli-

cation from Γ to Lσ′k+1:C·σ′

and I ′l = (sl#tl·σl, (sl#tl ∨Cl)·σl, I
′
j , I

′
k, pl). Then

Lσ′↓conv(Γ) = (sl#tl)σl by definition of a reduction chain application. Thus Lσ′

is β-true in Γ, (sl#tl)σl. Since Lσ↓conv(Γ) = Lσ′↓conv(Γ) by lemma 42, Lσ is

β-true in Γ, (sl#tl)σl as well. (sl#tl)σ
k+1:(sl#tl∨comp(sl#tl))·σl

l can be added to
Γ by definition of a regular run and also by definition of Decide since C ∈ N ∪U ,
σ′ is grounding for C and irreducible in conv(Γ), Lσ′ is β-undefined in Γ and
Cσ′ ≺T β.

Auxiliary Lemma for the Proof of Lemmas 29

Lemma 44. Suppose a sound state (Γ ;N ;U ;β; k;D·σ) resulting from a regular
run. Then Dσ is of level 1 or higher.

34 Leidinger et al.

Proof. Let (Γ ;N ;U ;β; k;D·σ) be a state resulting from a regular run. Suppose
thatDσ is not of level 1 or higher, thusDσ is of level 0. Then Conflict was applied
earlier to a clause that was of level 1 or higher. Thus there must have been an
application of Explore-Refutation on a state (Γ, Γ ′, L;N ;U ;β; l;D′·σ′) between
the state after the application of Conflict and the current state resulting in a
state (Γ, Γ ′, Ll:(L∨C)·δ;N ;U ;β; l;D′′·σ′′) such that D′σ′ is of level l and D′′σ′′

is of level 0, since no other rule can reduce the level of D′σ′. Then there exists a
K ∈ D′σ′ such that L is the defining literal ofK. Let [I1, ..., Im] be the refutation
of K and Ij = (sj#tj ·σj , (sj#tj ∨Cj)·σj , Ii, Ik, pj) be the step that was chosen
by Explore-Refutation . Then D′′σ′′ = (sj#tj ∨ Cj)σj . Cδ ⊂ Cjσj has to hold
since L is the defining literal of K. Then Cδ must be of level 0 or empty. Note
that Cδ is of level l if L is a decision literal. But then, by the definition of a
regular run, Ll:(L∨C)·δ must have been propagated before the first decision, since
propagation is exhaustive at level 0. Contradiction.

Proof of Lemma 29 If a regular run (without rule Grow) ends in a stuck
state (Γ ;N ;U ;β; k;D), then D = ⊤ and all ground literals Lσ ≺T β, where
L ∨ C ∈ N ∪ U are β-defined in Γ .

Proof. First we prove that stuck states never appear during conflict resolution.
Assume a sound state (Γ ;N ;U ;β; k;D ·σ) resulting from a regular run. Now
we show that we can always apply a rule. Suppose that Dσ = (D′ ∨ L ∨ L′)σ
such that Lσ = L′σ. Then we must apply Factorize by the definition of a reg-
ular run. Now suppose that Factorize is not applicable and Γ := Γ ′, L and
Dσ is false in Γ ′. If Dσ = (D′ ∨ s 6≈ s′)σ such that sσ = s′σ, we can ap-
ply Equality-Resolution . So suppose that Equality-Resolution is not applica-
ble. Then we can apply Skip. Now suppose that Γ := Γ ′, Lk:(L∨C)δ and L is
the defining literal of at least one literal in Dσ, so Skip is not applicable. If
Dσ = (D′ ∨ L′)σ where D′σ is of level i < k and L′σ is of level k and Skip

was applied at least once during this conflict resolution, then Backtrack is ap-
plicable. If Skip was not applied and L = comp(L′σ) and L is a decision lit-
eral, then Backtrack is also applicable. Otherwise, let (s# t)σ ∈ Dσ such that
K ≺Γ∗ (s# t)σ for all K ∈ Dσ. (s# t)σ exists since Factorize is not applica-
ble. By lemma 44, (s# t)σ must be of level 1 or higher. By the definition of
≺Γ∗ , L must be the defining literal of (s# t)σ since L is of level 1 or higher
and any literal in Dσ that has another defining literal is smaller than (s# t)σ.
Now suppose that L is a decision literal and (s# t)σ = comp(L). Then (s# t)σ
is of level k and all other literals K ∈ Dσ are of level i < k, since (s# t)σ
is the smallest β-false literal of level k and Factorize is not applicable. In this
case Explore-Refutation is not applicable since a paramodulation step with the
decision literal does not make the conflict clause smaller. But Backtrack is ap-
plicable in this case even if Skip was not applied earlier by the definition of a
regular run. Thus (s# t)σ 6= comp(L) or L is a propagated literal has to hold.
We show that in this case Explore-Refutation is applicable. Let [I1, ..., Im] be a
refutation of (s# t)σ from Γ , Im = (sm#tm·σm, (sm#tm ∨Cm)·σm, Ij , Ik, pm).

SCL(EQ): SCL for First-Order Logic with Equality 35

Since [I1, ..., Im] is a refutation sm#tmσm = s′ 6≈ s′. Furthermore any Ii ei-
ther contains a clause annotation from Γ, (s# t)σk:D·σ or it is a rewrite infer-
ence from Ij′ , Ik′ with j′, k′ < i. Thus by lemma 14 it inductively follows that
Cmσm = D′σm∨...∨D′σm∨C′

1σm∨...∨C′
nσm, where C′

1σm, ..., C ′
nσm are clauses

from Γ without the leading trail literal and Dσ = D′σm∨ (s#t)σ. Since L is the
defining literal of (s# t)σ there must exist at least one C′

i such that C′
iσm = Cδ.

If L is a propagated literal, then any literal in C′
iσm is smaller than (s# t)σ, since

they are already false in Γ ′. If L is a decision literal, then C′
iσm = comp(L).

Then comp(L) is smaller, since (s# t)σ 6= comp(L) and (s# t)σ 6= L. Thus
comp(L) ≺Γ∗ (s# t)σ. Any other literal in C1σm, ..., C ′

nσm is smaller in ≺Γ∗ ,
since they are already defined in Γ ′. Since Factorize is not applicable (s# t)σ
is also strictly maximal in D′σm. Thus (sm#tm ∨Cm)σm ≺Γ∗ Dσ which makes
Explore-Refutation applicable.
Now by lemma 43 it holds that if there exists an β-undefined literal in gnd≺T β(N∪
U), we can always apply at least one of the rules Propagate or Decide which
makes a previously β-undefined literal in gnd≺Tβ(N ∪ U) β-defined .

Proof of Lemma 30 Suppose a sound state (Γ ;N ;U ;β; k;D) resulting from
a regular run where D 6∈ {⊤,⊥}. If Backtrack is not applicable then any set
of applications of Explore-Refutation , Skip, Factorize, Equality-Resolution will
finally result in a sound state (Γ ′;N ;U ;β; k;D′), where D′ ≺Γ∗ D. Then Back-
track will be finally applicable.

Proof. Assume a sound state (Γ ;N ;U ;β; k;D ·σ) resulting from a regular run.
Let (s# t)σ ∈ Dσ such that L �Γ∗ (s# t)σ for all L ∈ Dσ. If (s# t)σ oc-
curs twice in Dσ, then Factorize is applicable. Suppose that it is applied. Then
Dσ = (D′ ∨ (s# t) ∨ L)σ, where Lσ = (s# t)σ. Then µ = mgu(s# t, L) and
the new conflict clause is (D′ ∨ s# t)µσ ≺Γ∗ Dσ. Thus in this case we are
done. If Factorize is not applicable, then the only remaining applicable rules
are Skip, Explore-Refutation and Equality-Resolution . If Γ = Γ ′, L, Γ ′′ where
L is the defining literal of (s# t)σ, then Skip is applicable |Γ ′′| times, since
otherwise (s# t)σ would not be maximal in Dσ. So at some point it is no longer
applicable. Since Dσ is finite, Equality-Resolution can be applied only finitely
often. Thus we finally have to apply Explore-Refutation. Then [I1, ..., Im] is
a refutation of (s# t)σ from Γ , and there exists an 1 ≤ j ≤ m, such that
Ij = (sj#tj ·σj , (sj#tj ∨ Cj)·σj , Il, Ik, pj), (Cj ∨ sj # tj)σj ≺Γ∗ (D′ ∨ s# t)σ.
Otherwise Explore-Refutation would not be applicable, contradicting lemma 29.
Thus in this case we are done.
Now we show that Backtrack is finally applicable. Since ≺Γ∗ is well-founded
and Γ is finite there must be a state where Explore-Refutation , Skip, Factorize,
Equality-Resolution are no longer applicable. By lemma 44 the conflict clause in
this state must be of level 1 or higher, thus ⊥ cannot be inferred. Suppose that
it is always of level i ≥ l for some l. The smallest literal of level l that is false
in Γ is comp(L), where L is the decision literal of level l. Since we can always
reduce if Backtrack is not applicable and since we can always apply a rule by

36 Leidinger et al.

lemma 29, we must finally reach a conflict clause comp(L) ∨ C, where C is of
level j < l. Thus Backtrack is applicable.

Proof of Lemma 33 Let N be a set of clauses and β be a ground term. Then
any regular run that never uses Grow terminates.

Proof. Assume a new ground clause Dσ is learned. By lemma 25 all learned
clauses are non-redundant. Thus Dσ is non-redundant. By the definition of a
regular run Factorize has precedence over all other rules. Thus Dσ does not
contain any duplicate literals. By theorem 23, Dσ ≺T β has to hold. There are
only finitely many clauses Cσ ≺T β, where Cσ is neither a tautology nor does it
contain any duplicate literals. Thus there are only finitely many clauses Dσ that
can be learned. Thus there are only finitely many literals that can be decided or
propagated.

Proof of Lemma 34 If a regular run reaches the state (Γ ;N ;U ;β; k;⊥) then
N is unsatisfiable.

Proof. By definition of soundness, all learned clauses are consequences of N ∪U ,
definition 20.5, and Γ is satisfiable, definition 20.1.

Proof of Theorem 35 Let N be an unsatisfiable clause set, and ≺T a desired
term ordering. For any ground term β where gnd≺T β(N) is unsatisfiable, any
regular SCL(EQ) run without rule Grow will terminate by deriving ⊥.

Proof. Since regular runs of SCL(EQ) terminate we just need to prove that
it terminates in a failure state. Assume by contradiction that we terminate in
a state (Γ ;N ;U ;β; k;⊤). If no rule can be applied in Γ then for all s# t ∈
C for some arbitrary C ∈ gnd≺Tβ(N) it holds that s# t is β-defined in Γ

(otherwise Propagate or Decide woud be applicable, see Lemma 43) and there
aren’t any clauses in gnd≺T β(N) β-false under Γ (otherwise Conflict would be
applicable, see again lemma 43). Thus, for each C ∈ gnd≺Tβ(N) it holds that
C is β-true in Γ . So we have Γ |= gnd≺T β(N), but by hypothesis there is a
superposition refutation of N that only uses ground literals from gnd≺T β(N),
so also gnd≺T β(N) is unsatisfiable, a contradiction.

Lemma 45 (Only Non-Redundant Clauses Building the Trail). Let Γ =

[Li1:C1·σ1

1 , ..., Lin:Cn·σn
n] be a trail. If L

ij :Cj·σj

j is a propagated literal and there
exist clauses {D1∨K1, ..., Dm∨Km} with grounding substitutions δ1, ..., δm such
that N := {(D1∨K1)δ1, ..., (Dm∨Km)δm} ≺Γ∗ Cjσj and {(D1∨K1)δ1, ..., (Dm∨
Km)δm} |= Cjσj, then there exists a (Dk ∨Kk)δk ∈ N such that

[Li1:C1·σ1

1 , ..., L
ij−1:Cj−1·σj−1

j−1 ,K
ij :(Dk∨Kk)·δk
k , ..., Lin:Cn·σn

n]

is a trail.

SCL(EQ): SCL for First-Order Logic with Equality 37

Proof. Let N = {(D1 ∨K1)δ1, ..., (Dm ∨Km)δm} and L
ij :Cj ·σj

j be as above. Let

Γ ′ = [Li1:C1·σ1

1 , ..., L
ij−1:Cj−1·σj−1

j−1]. Now suppose that for every literal L ∈ N

it holds L ≺Γ∗ Lj. Then every literal in N is defined in Γ ′ and Γ ′ |= N ,
otherwise Conflict would have been applied to a clause in N . Thus Γ ′ |= Cjσj

would have to hold as well. But by definition of a trail Lj is undefined in Γ ′.
Thus there must be at least one clause (Dk ∨ Kk)δk ∈ N with Kk = Lj and
Dkδk ≺Γ∗ Lj (otherwise (Dk ∨Kk)δk 6≺Γ∗ Cjσj), such that Γ ′ 6|= Dk. Suppose
that Γ ′ |= Dk. Then N 6|= Cjσj , since there exists an allocation, namely Γ ′,¬Lk

such that Γ ′,¬Lk |= N but Γ ′,¬Lk 6|= Cjσj . Thus we can replace L
ij :Cj ·σj

j by

K
ij :(Dk∨Kk)·δk
k in Γ .

5.2 Further Examples

For the following examples we assume a term ordering ≺kbo, unique weight 1
and with precedence d ≺ c ≺ b ≺ a ≺ a1 ≺ ... ≺ an ≺ g ≺ h ≺ f . Further
assume β to be large enough.

Example 46 (Implicit Conflict after Decision). Consider the following clause set
N

C1 := h(x) ≈ g(x) ∨ c ≈ d C2 := f(x) ≈ g(x) ∨ a ≈ b

C3 := f(x) 6≈ h(x) ∨ f(x) 6≈ g(x)

Suppose we apply the rule Decide first to C1 and then to C2 with substitution
σ = {x→ a}. Then we yield a conflict with C3σ, resulting in the following state:

([h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x) 6≈g(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x) 6≈g(x))·σ];

N ; {}; 2;C3·σ)

According to ≺Γ∗ , f(a) 6≈ h(a) is the greatest literal in C3σ. Since f(a) ≈ g(a)
is the defining literal of f(a) 6≈ h(a) we can not apply Skip. Factorize is also not
applicable, since f(a) 6≈ h(a) and f(a) 6≈ g(a) are not equal. Thus we must apply
Explore-Refutation to the greatest literal f(a) 6≈ h(a). The rule first creates a
refutation [I1, ..., I5], where:

I1 := ((f(x) 6≈ h(x))·σ,C3·σ, ǫ, ǫ, ǫ)
I2 := ((f(x) ≈ g(x))·σ, (f(x) ≈ g(x) ∨ f(x) 6≈ g(x))·σ, ǫ, ǫ, ǫ)
I3 := ((h(x) ≈ g(x))·σ, (h(x) ≈ g(x) ∨ h(x) 6≈ g(x))·σ, ǫ, ǫ, ǫ)
I4 := ((h(x) 6≈ g(x))·σ, (h(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x))·σ, I2 , I1, 1)
I5 := ((g(x) 6≈ g(x))·σ, (g(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x)

∨h(x) 6≈ g(x))·σ, I4, I3, 1)

Explore-Refutation can now choose either I4 or I5. Both, (h(x) 6≈ g(x))σ and
(g(x) 6≈ g(x))σ are smaller than (f(x) 6≈ h(x))σ according to ≺Γ∗ and false in
Γ . Suppose we choose I5. Now our new conflict state is:

([h(a) ≈ g(a)1:(h(x)≈g(x)∨h(x) 6≈g(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x) 6≈g(x))·σ];

38 Leidinger et al.

N ; {}; 2; (g(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ f(x) 6≈ g(x) ∨ h(x) 6≈ g(x))·σ)

Now we apply Equality-Resolution and Factorize to get the new state

([g(a) ≈ h(a)1:(g(x)≈h(x)∨g(x) 6≈h(x))·σ, f(a) ≈ g(a)2:(f(x)≈g(x)∨f(x) 6≈g(x))·σ];

N ; {}; 2; (f(x) 6≈ g(x) ∨ h(x) 6≈ g(x))·σ)

Now we can backtrack. Note, that this clause is non-redundant according to our
ordering, although conflict was applied immediately after decision.

Example 47. Consider the following ground clause set N :

C1 := f(a, a) 6≈ f(b, b) ∨ c ≈ d C2 := a ≈ b ∨ f(a, a) ≈ f(b, b)

Suppose that we decide f(a, a) 6≈ f(b, b). Then C2 is false in Γ . Conflict state
is as follows: ([f(a, a) 6≈ f(b, b)1:f(a,a) 6≈f(b,b)∨f(a,a)≈f(b,b)];N ; {}; 2;C2). Explore-
Refutation creates the following ground refutation for a ≈ b, since it is greatest
literal in the conflict clause:

I1 := (f(a, a) 6≈ f(b, b), f(a, a) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b), ǫ, ǫ, ǫ)
I2 := (a ≈ b, C2, ǫ, ǫ, ǫ)
I3 := (f(b, a) 6≈ f(b, b), f(b, a) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b),

I2, I1, 11)
I4 := (f(b, b) 6≈ f(b, b), f(b, b) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b)

∨f(a, a) ≈ f(b, b), I3, I1, 12)

As one can see, the intermediate result f(b, a) 6≈ f(b, b) is not false in Γ . Thus it
is no candidate for the new conflict clause. We have to choose I4. The new state
is thus:

([f(a, a) 6≈ f(b, b)1:f(a,a) 6≈f(b,b)∨f(a,a)≈f(b,b)];N ; {}; 2;

f(b, b) 6≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b) ∨ f(a, a) ≈ f(b, b))

Now we can apply Equality-Resolution and two times Factorize to get the final
clause f(a, a) ≈ f(b, b) with which we can backtrack.

Example 48. Assume clauses:

C1 := b ≈ c ∨ c ≈ d

C2 := a1 ≈ b ∨ a1 ≈ c

...

Cn+1 := an ≈ b ∨ an ≈ c

The completeness proof of superposition requires that adding a new literal to an
interpretation does not make any smaller literal true. In this example, however,
after adding b ≈ c to the interpretation, we cannot any further literal, since it
breaks this invariant. So in superposition we would have to add the following
clauses with the help of the EqualityFactoring rule:

Cn+2 := b 6≈ c ∨ a1 ≈ c

...

C2n+1 := b 6≈ c ∨ an ≈ c

SCL(EQ): SCL for First-Order Logic with Equality 39

In SCL(EQ) on the other hand we can just decide a literal in each clause to get
a model for this clause set. As we support undefined literals we do not have to
bother with this problem at all. For example if we add b ≈ c to our model, both
literals a1 ≈ b and a1 ≈ c are undefined in our model. Thus we need to decide
one of these literals to add it to our model.

Example 49 (Rewriting below variable level). Assume the clause set N :

C1 := f(x) ≈ h(b) ∨ x 6≈ g(a) C2 := c ≈ d ∨ f(g(b)) 6≈ h(b)
C3 := a ≈ b ∨ f(g(b)) ≈ h(b)

Let σ = {x→ g(a)}. C1σ must be propagated: Γ = [f(g(a)) ≈ h(b)0:C1σ]. Now
suppose that we decide f(g(b)) 6≈ h(b). Then Γ = [f(g(a)) ≈ h(b)0:C1σ, f(g(b)) 6≈
h(b)1:f(g(b)) 6≈h(b)∨f(g(b))≈h(b)] and C3 is a conflict clause. Explore-Refutation now
creates the following refutation for a ≈ b:

I1 := (f(x) ≈ h(b)·σ,C1·σ, ǫ, ǫ, ǫ)
I2 := (f(g(b)) 6≈ h(b), C2, ǫ, ǫ, ǫ)
I3 := (a ≈ b, C3, ǫ, ǫ, ǫ)
I4 := (f(g(b)) ≈ h(b), f(g(b)) ≈ h(b) ∨ g(a) 6≈ g(a) ∨ f(g(b)) ≈ h(b), I3, I1, ǫ)
I5 := (h(b) 6≈ h(b), h(b) 6≈ h(b) ∨ g(a) 6≈ g(a) ∨ f(g(b)) ≈ h(b)

∨f(g(b)) ≈ h(b), I4, I2, ǫ)

Multiple applications of Equality-Resolution and Factorize result in the final
conflict clause C4 := f(g(b)) ≈ h(b) with which we can backtrack. The clause
set resulting from this new clause is:

C1 = f(x) ≈ h(b) ∨ x 6≈ g(a) C′
2 = c ≈ d

C4 = f(g(b)) ≈ h(b)

where C′
2 is the result of a unit reduction between C4 and C2. Note that the

refutation required rewriting below variable level in step I4. Superposition would
create the following clauses (Equality-Resolution and Factorization steps are
implicitly done):

N ⇒Sup(C2,C3) N1 ∪ {C4 := c ≈ d ∨ a ≈ b}
⇒Sup(C1,C2) N2 ∪ {C5 := c ≈ d ∨ g(a) 6≈ g(b)}
⇒Sup(C4,C5) N3 ∪ {C6 := c ≈ d}

For superposition the resulting clause set is thus:

C1 = f(x) ≈ h(b) ∨ x 6≈ g(a) C2 = a ≈ b ∨ f(g(b)) ≈ h(b)
C6 = c ≈ d

Example 50 (Propagate Smaller Equation). Assume the ground clause set N

solely built out of constants

C1 := c ≈ d C2 := c 6≈ d ∨ a ≈ b

C3 := a 6≈ b ∨ a ≈ c

40 Leidinger et al.

and the trail Γ := [c ≈ d0:C1 , a ≈ b0:C2 , b ≈ d0:C3]. Now, although the first
two steps propagated equations that are strictly maximal in the ordering in their
respective clauses, the finally propagated equation b ≈ d is smaller in the term
ordering ≺kbo than a ≈ b. Thus the structure of the clause set forces propagation
of a smaller equation in the term ordering. So the more complicated trail ordering
is a result of following the structure of the clause set rather than employing an
a priori fixed ordering.

	SCL(EQ): SCL for First-Order Logic with Equality

