
An Efficient Subsumption Test Pipeline
for BS(LRA) Clauses

Martin Bromberger1 , Lorenz Leutgeb1,2(B) , and Christoph Weidenbach1

1 Max Planck Institute for Informatics, Saarland Informatics Campus,
Saarbrücken, Germany

{mbromber,lorenz,weidenb}@mpi-inf.mpg.de
2 Graduate School of Computer Science, Saarland Informatics Campus,

Saarbrücken, Germany

Abstract. The importance of subsumption testing for redundancy elim-
ination in first-order logic automatic reasoning is well-known. Although
the problem is already NP-complete for first-order clauses, the mean-
while developed test pipelines efficiently decide subsumption in almost
all practical cases. We consider subsumption between first-oder clauses of
the Bernays-Schönfinkel fragment over linear real arithmetic constraints:
BS(LRA). The bottleneck in this setup is deciding implication between
the LRA constraints of two clauses. Our new sample point heuristic pre-
empts expensive implication decisions in about 94% of all cases in bench-
marks. Combined with filtering techniques for the first-order BS part
of clauses, it results again in an efficient subsumption test pipeline for
BS(LRA) clauses.

Keywords: Bernays-Schönfinkel fragment · Linear arithmetic ·
Redundancy elimination · Subsumption

1 Introduction

The elimination of redundant clauses is crucial for the efficient automatic rea-
soning in first-order logic. In a resolution [5,50] or superposition setting [4,44], a
newly inferred clause might be subsumed by a clause that is already known (for-
ward subsumption) or it might subsume a known clause (backward subsumption).
Although the SCL calculi family [1,11,21] does not require forward subsump-
tion tests, a property also inherent to the propositional CDCL (Conflict Driven
Clause Learning) approach [8,34,41,55,63], backward subsumption and hence
subsumption remains an important test in order to remove redundant clauses.

In this work we present advances in deciding subsumption for constrained
clauses, specifically employing the Bernays-Schönfinkel fragment as foreground
logic, and linear real arithmetic as background theory, BS(LRA). BS(LRA) is of
particular interest because it can be used to model supervisors, i.e., components
in technical systems that control system functionality. An example for a super-
visor is the electronic control unit of a combustion engine. The logics we use
c© The Author(s) 2022
J. Blanchette et al. (Eds.): IJCAR 2022, LNAI 13385, pp. 147–168, 2022.
https://doi.org/10.1007/978-3-031-10769-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-10769-6_10&domain=pdf
http://orcid.org/0000-0001-7256-2190
http://orcid.org/0000-0003-0391-3430
http://orcid.org/0000-0001-6002-0458
https://doi.org/10.1007/978-3-031-10769-6_10

148 M. Bromberger et al.

to model supervisors and their properties are called SupERLogs—(Sup)ervisor
(E)ffective(R)easoning (Log)ics. SupERLogs are instances of function-free first-
order logic extended with arithmetic [18], which means BS(LRA) is an example
of a SupERLog.

Subsumption is an important redundancy criterion in the context of hier-
archic clausal reasoning [6,11,20,35,37]. At the heart of this paper is a new
technique to speed up the treatment of linear arithmetic constraints as part of
deciding subsumption. For every clause, we store a solution of its associated con-
straints, which is used to quickly falsify implication decisions, acting as a filter,
called the sample point heuristic. In our experiments with various benchmarks,
the technique is very effective: It successfully preempts expensive implication
decisions in about 94% of cases. We elaborate on these findings in Sect. 4.

For example, consider three BS clauses, none of which subsumes another:

C1 := P (a, x) C2 := ¬P (y, z) ∨ Q(y, z, b) C3 := ¬R(b) ∨ Q(a, x, b)

Let C4 be the resolvent of C1 and C2 upon the atom P (a, x), i.e., C4 := Q(a, z, b).
Now C4 backward-subsumes C3 with matcher σ := {z �→ x}, i.e. C4σ ⊂ C3, thus
C3 is redundant and can be eliminated. Now, consider an extension of the above
clauses with some simple LRA constraints following the same reasoning:

C ′
1 := x ≥ 1 ‖ P (a, x)

C ′
2 := z ≥ 0 ‖ ¬P (y, z) ∨ Q(y, z, b)

C ′
3 := x ≥ 0 ‖ ¬R(b) ∨ Q(a, x, b)

where ‖ is interpreted as an implication, i.e., clause C ′
1 stands for ¬x ≥ 1∨P (a, x)

or simply x < 1 ∨ P (a, x). The respective resolvent on the constrained clauses
is C ′

4 := z ≥ 0, z ≥ 1 ‖ Q(a, z, b) or after constraint simplification C ′
4 := z ≥

1 ‖ Q(a, z, b) because z ≥ 1 implies z ≥ 0. For the constrained clauses, C ′
4 does

no longer subsume C ′
3 with matcher σ := {z �→ x}, because z ≥ 0 does not

LRA-imply z ≥ 1. Now, if we store the sample point x = 0 as a solution for
the constraint of clause C ′

3, this sample point already reveals that z ≥ 0 does
not LRA-imply z ≥ 1. This constitutes the basic idea behind our sample point
heuristic. In general, constraints are not just simple bounds as in the above
example, and sample points are solutions to the system of linear inequalities of
the LRA constraint of a clause.

Please note that our test on LRA constraints is based on LRA theory impli-
cation and not on a syntactic notion such as subsumption on the first-order part
of the clause. In this sense it is “stronger” than its first-order counterpart. This
fact is stressed by the following example, taken from [26, Ex. 2], which shows
that first-order implication does not imply subsumption. Let

C1 := ¬P (x, y) ∨ ¬P (y, z) ∨ P (x, z)
C2 := ¬P (a, b) ∨ ¬P (b, c) ∨ ¬P (c, d) ∨ P (a, d)

Then we have C1 → C2, but again, for all σ we have C1σ �⊆ C2: Constructing
σ from left to right we obtain σ := {x �→ a, y �→ b, z �→ c}, but P (a, c) �∈ C2.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 149

Constructing σ from right to left we obtain σ := {z �→ d, x �→ a, y �→ c}, but
¬P (a, c) �∈ C2.

Related Work. Treatment of questions regarding the complexity of deciding sub-
sumption of first-order clauses [27] dates back more than thirty years. Notions
of subsumption, varying in generality, are studied in different sub-fields of the-
orem proving, whereas we restrict our attention to first-order theorem proving.
Modern implementations typically decide multiple thousand instances of this
problem per second: In [62, Sect. 2], Voronkov states that initial versions of
Vampire “seemed to [. . .] deadlock” without efficient implementations to decide
(forward) subsumption.

In order to reduce the number of clauses out of a set of clauses to be con-
sidered for pairwise subsumption checking, the best known practice in first-
order theorem proving is to use (imperfect) indexing data structures as a means
for pre-filtering and research concerning appropriate techniques is plentiful, see
[24,25,27–30,33,39,40,43,45–49,52–54,56,59,61] for an evaluation of these tech-
niques. Here we concentrate on the efficiency of a subsumption check between
two clauses and therefore do not take indexing techniques into account. Fur-
thermore, the implication test between two linear arithmetic constraints is of
a semantic nature and is not related to any syntactic features of the involved
constraints and can therefore hardly be filtered by a syntactic indexing approach.

In addition to pre-filtering via indexing, almost all above mentioned imple-
mentations of first-order subsumption tests rely on additional filters on the clause
level. The idea is to generate an abstraction of clauses together with an ordering
relation such that the ordering relation is necessary to hold between two clauses
in order for one clause to subsume the other. Furthermore, the abstraction as
well as the ordering relation should be efficiently computable. For example, a
necessary condition for a first-order clause C1 to subsume a first-order clause
C2 is | vars(C1)| ≥ | vars(C2)|, i.e., the number of different variables in C1 must
be larger or equal than the number of variables in C2. Further and additional
abstractions included by various implementations rely on the size of clauses,
number of ground literals, depth of literals and terms, occurring predicate and
function symbols. For the BS(LRA) clauses considered here, the structure of the
first-order BS part, which consists of predicates and flat terms (variables and
constants) only, is not particularly rich.

The exploration of sample points has already been studied in the context of
first-order clauses with arithmetic constraints. In [17,36] it was used to improve
the performance of iSAT [23] on testing non-linear arithmetic constraints. In
general, iSAT tests satisfiability by interval propagation for variables. If intervals
get “too small” it typically gives up, however sometimes the explicit generation
of a sample point for a small interval can still lead to a certificate for satisfiability.
This technique was successfully applied in [17], but was not used for deciding
subsumption of constrained clauses.

150 M. Bromberger et al.

Motivation. The main motivation for this work is the realization that comput-
ing implication decisions required to treat constraints of the background theory
presents the bottleneck of an BS(LRA) subsumption check in practice. Inspired
by the success of filtering techniques in first-order logic, we devise an exception-
ally effective filter for constraints and adopt well-known first-order filters to the
BS fragment. Our sample point heuristic for LRA could easily be generalized to
other arithmetic theories as well as full first-order logic.

Structure. The paper is structured as follows. After a section defining BS(LRA)
and common notions and notation, Sect. 2, we define redundancy notions and our
sample point heuristic in Sect. 3. Section 4 justifies the success of the sample point
heuristic by numerous experiments in various application domains of BS(LRA).
The paper ends with a discussion of the obtained results, Sect. 5. Binaries, utility
scripts, benchmarking instances used as input, and the output used for evaluation
may be obtained online [13].

2 Preliminaries

We briefly recall the basic logical formalisms and notations we build upon [10].
Our starting point is a standard many-sorted first-order language for BS with
constants (denoted a, b, c), without non-constant function symbols, with vari-
ables (denoted w, x, y, z), and predicates (denoted P,Q,R) of some fixed arity.
Terms (denoted t, s) are variables or constants. An atom (denoted A,B) is an
expression P (t1, . . . , tn) for a predicate P of arity n. A positive literal is an
atom A and a negative literal is a negated atom ¬A. We define comp(A) = ¬A,
comp(¬A) = A, |A| = A and |¬A| = A. Literals are usually denoted L,K,H.
Formulas are defined in the usual way using quantifiers ∀, ∃ and the boolean
connectives ¬, ∨, ∧, →, and ≡.

A clause (denoted C,D) is a universally closed disjunction of literals A1∨· · ·∨
An∨¬B1∨· · ·∨¬Bm. Clauses are identified with their respective multisets and all
standard multiset operations are extended to clauses. For instance, C ⊆ D means
that all literals in C also appear in D respecting their number of occurrences. A
clause is Horn if it contains at most one positive literal, i.e. n � 1, and a unit
clause if it has exactly one literal, i.e. n + m = 1. We write C+ for the set of
positive literals, or conclusions of C, i.e. C+ := {A1, . . . , An} and respectively
C− for the set of negative literals, or premises of C, i.e. C− := {¬B1, . . . ,¬Bm}.
If Y is a term, formula, or a set thereof, vars(Y) denotes the set of all variables
in Y , and Y is ground if vars(Y) = ∅.

The Bernays-Schönfinkel Clause Fragment (BS) in first-order logic consists
of first-order clauses where all involved terms are either variables or constants.
The Horn Bernays-Schönfinkel Clause Fragment (HBS) consists of all sets of BS
Horn clauses.

A substitution σ is a function from variables to terms with a finite domain
dom(σ) = {x | xσ �= x} and codomain codom(σ) = {xσ | x ∈ dom(σ)}. We
denote substitutions by σ, δ, ρ. The application of substitutions is often written

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 151

postfix, as in xσ, and is homomorphically extended to terms, atoms, literals,
clauses, and quantifier-free formulas. A substitution σ is ground if codom(σ) is
ground. Let Y denote some term, literal, clause, or clause set. A substitution σ
is a grounding for Y if Y σ is ground, and Y σ is a ground instance of Y in this
case. We denote by gnd(Y) the set of all ground instances of Y , and by gndB(Y)
the set of all ground instances over a given set of constants B. The most general
unifier mgu(Z1, Z2) of two terms/atoms/literals Z1 and Z2 is defined as usual,
and we assume that it does not introduce fresh variables and is idempotent.

We assume a standard many-sorted first-order logic model theory, and write
A � φ if an interpretation A satisfies a first-order formula φ. A formula ψ is a
logical consequence of φ, written φ � ψ, if A � ψ for all A such that A � φ. Sets
of clauses are semantically treated as conjunctions of clauses with all variables
quantified universally.

2.1 Bernays-Schönfinkel with Linear Real Arithmetic

The extension of BS with linear real arithmetic, BS(LRA), is the basis for the
formalisms studied in this paper. We consider a standard many-sorted first-
order logic with one first-order sort F and with the sort R for the real numbers.
Given a clause set N , the interpretations A of our sorts are fixed: RA = R and
FA = F. This means that FA is a Herbrand interpretation, i.e., F is the set of
first-order constants in N , or a single constant out of the signature if no such
constant occurs. Note that this is not a deviation from standard semantics in
our context as for the arithmetic part the canonical domain is considered and
the first-order sort has the finite model property over the occurring constants
(note that equality is not part of BS).

Constant symbols, arithmetic function symbols, variables, and predicates are
uniquely declared together with their respective sort. The unique sort of a con-
stant symbol, variable, predicate, or term is denoted by the function sort(Y)
and we assume all terms, atoms, and formulas to be well-sorted. We assume
pure input clause sets, which means the only constants of sort R are (rational)
numbers. This means the only constants that we do allow are rational num-
bers c ∈ Q and the constants defining our finite first-order sort F . Irrational
numbers are not allowed by the standard definition of the theory. The current
implementation comes with the caveat that only integer constants can be parsed.
Satisfiability of pure BS(LRA) clause sets is semi-decidable, e.g., using hierar-
chic superposition [6] or SCL(T) [11]. Impure BS(LRA) is no longer compact
and satisfiability becomes undecidable, but its restriction to ground clause sets
is decidable [22].

All arithmetic predicates and functions are interpreted in the usual way.
An interpretation of BS(LRA) coincides with ALRA on arithmetic predicates
and functions, and freely interprets free predicates. For pure clause sets this is
well-defined [6]. Logical satisfaction and entailment is defined as usual, and uses
similar notation as for BS.

Example 1. The clause y < 5 ∨ x′ �= x + 1 ∨ ¬S0(x, y) ∨ S1(x′, 0) is part of
a timed automaton with two clocks x and y modeled in BS(LRA). It represents

152 M. Bromberger et al.

a transition from state S0 to state S1 that can be traversed only if clock y is at
least 5 and that resets y to 0 and increases x by 1.

Arithmetic terms are constructed from a set X of variables, the set of integer
constants c ∈ Z, and binary function symbols + and − (written infix). Addi-
tionally, we allow multiplication · if one of the factors is an integer constant.
Multiplication only serves us as syntactic sugar to abbreviate other arithmetic
terms, e.g., x + x + x is abbreviated to 3 · x. Atoms in BS(LRA) are either
first-order atoms (e.g., P (13, x)) or (linear) arithmetic atoms (e.g., x < 42).
Arithmetic atoms are denoted by λ and may use the predicates ≤, <, �=,=, >,≥,
which are written infix and have the expected fixed interpretation. We use � as a
placeholder for any of these predicates. Predicates used in first-order atoms are
called free. First-order literals and related notation is defined as before. Arith-
metic literals coincide with arithmetic atoms, since the arithmetic predicates are
closed under negation, e.g., ¬(x ≥ 42) ≡ x < 42.

BS(LRA) clauses are defined as for BS but using BS(LRA) atoms. We often
write clauses in the form Λ ‖ C where C is a clause solely built of free first-order
literals and Λ is a multiset of LRA atoms called the constraint of the clause.
A clause of the form Λ ‖ C is therefore also called a constrained clause. The
semantics of Λ ‖ C is as follows:

Λ ‖ C iff
(∧

λ∈Λ

λ
) → C iff

(∨

λ∈Λ

¬λ
) ∨ C

For example, the clause x > 1∨y �= 5∨¬Q(x)∨R(x, y) is also written x ≤ 1, y =
5||¬Q(x) ∨ R(x, y). The negation ¬(Λ ‖ C) of a constrained clause Λ ‖ C where
C = A1 ∨ · · · ∨ An ∨ ¬B1 ∨ · · · ∨ ¬Bm is thus equivalent to (

∧
λ∈Λ λ) ∧ ¬A1 ∧

· · · ∧ ¬An ∧ B1 ∧ · · · ∧ Bm. Note that since the neutral element of conjunction is
�, an empty constraint is thus valid, i.e. equivalent to true.

An assignment for a constraint Λ is a substitution (denoted β) that maps
all variables in vars(Λ) to real numbers c ∈ R. An assignment is a solution
for a constraint Λ if all atoms λ ∈ (Λβ) evaluate to true. A constraint Λ is
satisfiable if there exists a solution for Λ. Otherwise it is unsatisfiable. Note that
assignments can be extended to C by also mapping variables of the first-order
sort accordingly.

A clause or clause set is abstracted if its first-order literals contain only vari-
ables or first-order constants. Every clause C is equivalent to an abstracted clause
that is obtained by replacing each non-variable arithmetic term t that occurs in
a first-order atom by a fresh variable x while adding an arithmetic atom x �= t
to C. We assume abstracted clauses for theory development, but we prefer non-
abstracted clauses in examples for readability, e.g., a unit clause P (3, 5) is consid-
ered in the development of the theory as the clause x = 3, y = 5 ‖ P (x, y). In the
implementation, we mostly prefer abstracted clauses except that we allow inte-
ger constants c ∈ Z to appear as arguments of first-order literals. In some cases,
this makes it easier to recognize whether two clauses can be matched or not. For
instance, we see by syntactic comparison that the two unit clauses P (3, 5) and
P (0, 1) have no substitution σ such that P (3, 5) = P (0, 1)σ. For the abstracted

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 153

versions on the other hand, x = 3, y = 5 ‖ P (x, y) and u = 0, v = 1 ‖ P (u, v) we
can find a matching substitution for the first-order part σ := {u �→ x, v �→ y}
and would have to check the constraints semantically to exclude the matching.

Hierarchic Resolution. One inference rule, foundational to most algorithms for
solving constrained first-order clauses, is hierarchic resolution [6]:

Λ1 ‖ L1 ∨ C1 Λ2 ‖ L2 ∨ C2 σ = mgu(L1, comp(L2))(
Λ1, Λ2 ‖ C1 ∨ C2

)
σ

The conclusion is called hierarchic resolvent (of the two clauses in the premise).
A refutation is the sequence of resolution steps that produces a clause Λ ‖
⊥ with ALRA � Λδ for some grounding δ. Hierarchic resolution is sound and
refutationally complete for the BS(LRA) clauses considered here, since every
set N of BS(LRA) clauses is sufficiently complete [6], because all constatnts
of the arithemtic sort are numbers. Hence hierarchic resolution is sound and
refutationally complete for N [6,7]. Hierarchic unit resolution is a special case
of hierarchic resolution, that only combines two clauses in case one of them is a
unit clause. Hierarchic unit resolution is sound and complete for HBS(LRA) [6,7],
but not even refutationally complete for BS(LRA).

Most algorithms for Bernays-Schnönfinkel, first-order logic, and beyond uti-
lize resolution. The SCL(T) calculus for HBS(LRA) uses hierarchic resolution
in order to learn from the conflicts it encounters during its search. The hierar-
chic superposition calculus on the other hand derives new clauses via hierarchic
resolution based on an ordering. The goal is to either derive the empty clause
or a saturation of the clause set, i.e., a state from which no new clauses can be
derived. Each of those algorithms must derive new clauses in order to progress,
but their subroutines also get progressively slower as more clauses are derived. In
order to increase efficiency, it is necessary to eliminate clauses that are obsolete.
One measure that determines whether a clause is useful or not is redundancy.

Redundancy. In order to define redundancy for constrained clauses, we need
an H-order, i.e., a well-founded, total, strict ordering ≺ on ground literals such
that literals in the constraints (in our case arithmetic literals) are always smaller
than first-order literals. Such an ordering can be lifted to constrained clauses and
sets thereof by its respective multiset extension. Hence, we overload any such
order ≺ for literals, constrained clauses, and sets of constrained clause if the
meaning is clear from the context. We define � as the reflexive closure of ≺ and
N�Λ‖C := {D | D ∈ N and D � Λ ‖ C}. An instance of an LPO [15] with
appropriate precedence can serve as an H-order.

Definition 2 (Clause Redundancy). A ground clause Λ ‖ C is redundant
with respect to a set N of ground clauses and an H-order ≺ if N�Λ ‖ C � Λ ‖ C.
A clause Λ ‖ C is redundant with respect to a clause set N and an H-order ≺
if for all Λ′ ‖ C ′ ∈ gnd(Λ ‖ C) the clause Λ′ ‖ C ′ is redundant with respect to
gnd(N).

154 M. Bromberger et al.

If a clause Λ ‖ C is redundant with respect to a clause set N , then it can be
removed from N without changing its semantics. Determining clause redundancy
is an undecidable problem [11,63]. However, there are special cases of redundant
clauses that can be easily checked, e.g., tautologies and subsumed clauses. Tech-
niques for tautology deletion and subsumption deletion are the most common
elimination techniques in modern first-order provers.

A tautology is a clause that evaluates to true independent of the predicate
interpretation or assignment. It is therefore redundant with respect to all orders
and clause sets; even the empty set.

Corollary 3 (Tautology for Constrained Clauses). A clause Λ ‖ C is a
tautology if the existential closure of ¬(Λ ‖ C) is unsatisfiable.

Since ¬(Λ ‖ C) is essentially ground (by existential closure and skolemiza-
tion), it can be solved with an appropriate SMT solver, i.e., an SMT solver that
supports unquantified uninterpreted functions coupled with linear real arith-
metic. In [2], it is recommended to check only the following conditions for tau-
tology deletion in hierarchic superposition:

Corollary 4 (Tautology Check). A clause Λ ‖ C is a tautology if the exis-
tential closure of Λ is unsatisfiable or if C contains two literals L1 and L2 with
L1 = comp(L2).

The advantage is that the check on the first-order side of the clause is still
purely syntactic and corresponds to the tautology check for pure first-order logic.
Nonetheless, there are tautologies that are not captured by Corollary 4, e.g.,
x = y ‖ P (x) ∨ ¬P (y). The SCL(T) calculus on the other hand requires no
tautology checks because it never learns tautologies as part of its conflict analysis
[1,11,21]. This property is also inherent to the propositional CDCL (Conflict
Driven Clause Learning) approach [8,34,41,55,63].

3 Subsumption for Constrained Clauses

A subsumed constrained clause is a clause that is redundant with respect to a
single clause in our clause set. Formally, subsumption is defined as follows.

Definition 5. (Subsumption for Constrained Clauses [2]). A constrained
clause Λ1 ‖ C1 subsumes another constrained clause Λ2 ‖ C2 if there exists a sub-
stitution σ such that C1σ ⊆ C2, vars(Λ1σ) ⊆ vars(Λ2), and the universal closure
of Λ2 → (Λ1σ) holds in LRA.

Eliminating redundant clauses is crucial for the efficient operation of an auto-
matic first-order theorem prover. Although subsumption is considered one of the
easier redundancy relationships that we can check in practice, it is still a hard
problem in general:

Lemma 6. (Complexity of Subsumption in the BS Fragment). Deciding
subsumption for a pair of BS clauses is NP-complete.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 155

Proof. Containment in NP follows from the fact that the size of subsumption
matchers is limited by the subsumed clause and set inclusion of literals can
be decided in polynomial time. For the hardness part, consider the following
polynomial-time reduction from 3-SAT. Take a propositional clause set where
all clauses have length three. Now introduce a 6-place predicate R and encode
each propositional variable P by a first-order variable xP . Then a propositional
clause L1 ∨L2 ∨L3 can be encoded by an atom R(xP1 , p1, xP2 , p2, xP3 , p3) where
pi is 0 if Li is negative and 1 otherwise and Pi is the predicate of Li. This way
the clause set N can be represented by a single BS clause CN . Now construct a
clause D that contains all atoms representing the way a clause of length three
can become true by ground atoms over R and constants 0, 1. For example, it
contains atoms like R(0, 0, . . .) and R(1, 1, . . .) representing that the first literal
of a clause is true. Actually, for each such atom R(0, 0, . . .) the clause D contains
|CN | copies. Finally, CN subsumes D if and only if N is satisfiable. ��

In order to be efficient, modern theorem provers need to decide multiple
thousand subsumption checks per second. In the pure first-order case, this is
possible because of indexing and filtering techniques that quickly decide most
subsumption checks [24,25,27–30,33,39,40,45–49,52–54,56,59,61,62].

For BS(LRA) (and FOL(LRA)), there also exists research on how to perform
the subsumption check in general [2,36], but the literature contains no dedicated
indexing or filtering techniques for the constraint part of the subsumption check.
In this section and as the main contribution of this paper, we present the first
such filtering techniques for BS(LRA). But first, we explain how to solve the
subsumption check for constrained clauses in general.

First-Order Check. The first step of the subsumption check is exactly the
same as in first-order logic without arithmetic. We have to find a substitution
σ, also called a matcher, such that C1σ ⊆ C2. The only difference is that it is
not enough to compute one matcher σ, but we have to compute all matchers
for C1σ ⊆ C2 until we find one that satisfies the implication Λ2 → (Λ1σ). For
instance, there are two matchers for the clauses C1 := x + y ≥ 0 ‖ Q(x, y) and
C2 := x < 0, y ≥ 0 ‖ Q(x, x) ∨ Q(y, y). The matcher {x �→ y} satisfies the
implication Λ2 → (Λ1σ) and {y �→ x} does not. Our own algorithm for finding
matchers is in the style of Stillman except that we continue after we find the
first matcher [27,58].

Implication Check. The universal closure of the implication Λ2 → (Λ1σ) can
be solved by any SMT solver for the respective theory after we negate it. Note
that the resulting formula

∃x1, . . . , xn. Λ2 ∧ ¬(Λ1σ) where {x1, . . . , xn} = vars(Λ2) (1)

is already in clause normal form and that the formula can be treated as ground
since existential variables can be handled as constants. Intuitively, the universal
closure Λ2 → (Λ1σ) asserts that the set of solutions satisfying Λ2 is a subset of

156 M. Bromberger et al.

Fig. 1. Solutions of the constraints Λ1σ, Λ2, and Λ3 depicted as polytopes

the set of solutions satisfying Λ1σ. This means a solution to its negation (1) is a
solution for Λ2, but not for Λ1σ, thus a counterexample of the subset relation.

Example 7. Let us now look at an example to illustrate the role that formula (1)
plays in deciding subsumption. In our example, we have three clauses: Λ1 ‖ C1,
Λ2 ‖ C2, and Λ3 ‖ C2, where C1 := ¬P (x, y) ∨ Q(u, z), C2 := ¬P (x, y) ∨ Q(2, x),
Λ1 := y ≥ 0 , y ≤ u , y ≤ x+z , y ≥ x+z−2·u, Λ2 := x ≥ 1 , y ≤ 1 , y ≥ x−1,
and Λ3 := x ≥ 2 , y ≤ 1 , y ≥ x − 2. Our goal is to test whether Λ1 ‖ C1

subsumes the other two clauses. As our first step, we try to find a substitution
σ such that C1σ ⊆ C2. The most general substitution fulfilling this condition is
σ := {z �→ x, u �→ 2}. Next, we check whether Λ1σ is implied by Λ2 and Λ3.
Normally, we would do so by solving the formula (1) with an SMT solver, but to
help our intuitive understanding, we instead look at their solution sets depicted
in Fig. 1. Note that Λ1σ simplifies to Λ1σ := y ≥ 0 , y ≤ 2 , y ≤ 2·x , y ≥ 2·x−4.
Here we see that the solution set for Λ2 is a subset of Λ1σ. Hence, Λ2 implies
Λ1σ, which means that Λ2 ‖ C2 is subsumed by Λ1 ‖ C1. The solution set for Λ3

is not a subset of Λ1σ. For instance, the assignment β2 := {x �→ 3, y �→ 1} is
a counterexample and therefore a solution to the respective instance of formula
(1). Hence, Λ1 ‖ C1 does not subsume Λ3 ‖ C2.

Excess Variables. Note that in general it is not sufficient to find a sub-
stitution σ that matches the first-order parts to also match the theory con-
straints: C1σ ⊆ C2 does not generally imply vars(Λ1σ) ⊆ vars(Λ2). In par-
ticular, if Λ1 contains variables that do not appear in the first-order part
C1, then these must be projected to Λ2. We arrive at a variant of (1), that
is ∃x1, . . . , xn∀y1, . . . , ym. Λ2 ∧ ¬(Λ1σ) where {x1, . . . , xn} = vars(Λ2) and
{y1, . . . , ym} = vars(Λ1) \ vars(C1). Our solution to this problem is to normal-
ize all clauses Λ ‖ C by eliminating all excess variables Y := vars(Λ) \ vars(C)
such that vars(Λ) ⊆ vars(C) is guaranteed. For linear real arithmetic this is
possible with quantifier elimintation techniques, e.g., Fourier-Motzkin elimina-
tion (FME). Although these techniques typically cause the size of Λ to increase
exponentially, they often behave well in practice. In fact, we get rid of almost
all excess variables in our benchmark examples with simplification techniques
based on Gaussian elimination with execution time linear in the number of LRA
atoms. Given the precondition Y = ∅ achieved by such elimination techniques,

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 157

we can compute σ as matcher for the first-order parts and then directly use it
for testing whether the universal closure of Λ2 → (Λ1σ) holds. An alternative
solution to the issue of excess variables has been proposed: In [2], the substitu-
tion σ is decomposed as σ = δτ , where δ is the first-order matcher and τ is a
theory matcher, i.e. dom(τ) ⊆ Y and vars(codom(τ)) ⊆ vars(Λ2). Then, exploit-
ing Farkas’ lemma, the computation of τ is reduced to testing the feasibility of
a linear program (restricted to matchers that are affine transformations).

The reduction to solving a linear program offers polynomial worst-case com-
plexity but in practice typically behaves worse than solving the variant with
quantifier alternations using an SMT solver such as Z3 [36,42].

Filtering First-Order Literals. Even though deciding implication of theory
constraints is in practice more expensive than constructing a matcher and decid-
ing inclusion of first-order literals, we still incorporate some lightweight filters
for our evaluation. Inspired by Schulz [54] we choose three features, so that every
feature f maps clauses to N0, and f(C1) � f(C2) is necessary for C1σ ⊆ C2.

The features are: |C+|, the number of positive first-order literals in C, |C−|,
the number of negative first-order literals in C, and �C�, the number of occur-
rences of constants in C.

Sample Point Heuristic. The majority of subsumption tests fail because we
cannot find a fitting substitution for their first-order parts. In our experiments,
between 66.5% and 99.9% of subsumption tests failed this way. This means our
tool only has to check in less than 33.5% of the cases whether one theory con-
straint implies the other. Despite this, our tool spends more time on implication
checks than on the first-order part of the subsumption tests without filtering on
the constraint implication tests. The reason is that constraint implication tests
are typically much more expensive than the first-order part of a subsumption
test. For this reason, we developed the sample point heuristic that is much faster
to execute than a full constraint implication test, but still filters out the majority
of implications that do not hold (in our experiments between 93.8% and 100%).

The idea behind the sample point heuristic is straightforward. We store for
each clause Λ ‖ C a sample solution β for its theory constraint Λ. Before we
execute a full constraint implication test, we simply evaluate whether the sample
solution β for Λ2 is also a solution for Λ1σ. If this is not the case, then β is a
solution for (1) and a counterexample for the implication. If β is a solution for
Λ1σ, then the heuristic returns unknown and we have to execute a full constraint
implication test, i.e., solve the SMT problem (1).

Often it is possible to get our sample solutions for free. Theorem provers
based on hierarchic superposition typically check for every new clause Λ ‖ C
whether Λ is satisfiable in order to eliminate tautologies. This means we can
already use this tautology check to compute and store a sample solution for
every new clause without extra cost. We only need to pick a solver for the check
that returns a solution as a certificate of satisfiability. Although the SCL(T)
calculus never learns any tautologies, it is also possible to get a sample solution
for free as part of its conflict analysis [11].

158 M. Bromberger et al.

Example 8. We revisit Example 7 to illustrate the sample point heuristic. During
the tautology check for Λ2 ‖ C2 and Λ3 ‖ C2, we determined that β1 := {x �→
2, y �→ 1} is a sample solution for Λ2 and β2 := {x �→ 3, y �→ 1} a sample
solution for Λ3. Since Λ2 implies Λ1σ, all sample solutions for Λ2 automatically
satisfy Λ1σ. This is the reason why the sample point heuristic never filters out an
implication that actually holds, i.e., it returns unknown when we test whether Λ2

implies Λ1σ. The assignment β2 on the other hand does not satisfy Λ1σ. Hence,
the sample point heuristic correctly claims that Λ3 does not imply Λ1σ. Note
that we could also have chosen β1 as the sample point for Λ3. In this case, the
sample point heuristic would also return unknown for the implication Λ3 → Λ1σ
although the implication does not hold.

Trivial Cases. Subsumption tests become much easier if the constraint Λi of
one of the participating clauses is empty. We use two heuristic filters to exploit
this fact. We highlight them here because they already exclude some subsump-
tion tests before we reach the sample point heuristic in our implementation.

The empty conclusion heuristic exploits that Λ1 is valid if Λ1 is empty. In this
case, all implications Λ2 → (Λ1σ) hold because Λ1σ evaluates to true under any
assignment. So by checking whether Λ1 = ∅, we can quickly determine whether
Λ2 → (Λ1σ) holds for some pairs of clauses. Note that in contrast to the sample
point heuristic, this heuristic is used to find valid implications.

The empty premise test exploits that Λ2 is valid if Λ2 is empty. In this case,
an implication Λ2 → (Λ1σ) may only hold if Λ1σ simplifies to the empty set as
well. This is the case because any inequality in the canonical form

∑n
i=1 aixi�c

either simplifies to true (because ai = 0 for all i = 1, . . . , n and 0�c holds) and
can be removed from Λ1σ, or the inequality eliminates at least one assignment
as a solution for Λ1σ [51]. So if Λ2 = ∅, we check whether Λ1σ simplifies to the
empty set instead of solving the SMT problem (1).

Pipeline. We call our approach a pipeline since it combines multiple procedures,
which we call stages, that vary in complexity and are independent in principle,
for the overall aim of efficiently testing subsumption. Pairs of clauses that “make
it through” all stages, are those for which the subsumption relation holds. The
pipeline is designed with two goals in mind: (1) To reject as many pairs of
clauses as early as possible, and (2) to move stages further towards the end of
the pipeline the more expensive they are.

The pipeline consists of six stages, all of which are mentioned above. We
divide the pipeline into two phases, the first-order phase (FO-phase) consisting
of two stages, and the constraint phase (C-phase), consisting of four stages.
First-order filtering rejects all pairs of clauses for which f(C1) > f(C2) holds.
Then, matching constructs all matchers σ such that C1σ ⊆ C2. Every matcher
is individually tested in the constraint phase. Technically, this means that the
input of all following stages is not just a pair of clauses, but a triple of two clauses
and a matcher. The constraint phase then proceeds with the empty conclusion
heuristic and the empty premise test to accept (resp. reject) all trivial cases of

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 159

Algorithm 1: Saturation prover used for evaluation
Input : A set N of clauses.
Output : ⊥ or “unknown”.

1 U := {C ∈ N | |C| = 1}
2 while U �= ∅ do
3 M := ∅
4 foreach C ∈ U do M := M ∪ resolvents(C, N)
5 if ⊥ ∈ M then return ⊥
6 reduce M using N (forward subsumption)
7 if M = ∅ then return “unknown”
8 reduce N using M (backward subsumption)
9 U := {C ∈ M | |C| = 1}

10 N := N ∪ M

11 end
12 return “unknown”

the constraint implication test. The next stage is the sample point heuristic.
If the sample solution β2 for Λ2 is no solution for Λ1 (i.e. � Λ1σβ2), then the
matcher σ is rejected. Otherwise (i.e. � Λ1σβ2), the implication test Λ2 → (Λ1σ)
is performed by solving the SMT problem (1) to produce the overall result of
the pipeline and finally determine whether subsumption holds.

4 Experimentation

In order to evaluate our new approach on three benchmark instances, derived
from BS(LRA) applications, all presented techniques and their combination in
form of a pipeline were implemented in the theorem prover SPASS-SPL, a pro-
totype for BS(LRA) reasoning.

Note that SPASS-SPL contains more than one approach for BS(LRA) rea-
soning, e.g., the Datalog hammer for HBS(LRA) reasoning [10]. These vari-
ous modes of operation operate independently, and the desired mode is cho-
sen via command-line option. The reasoning approach discussed here is the
current default option. On the first-order side, SPASS-SPL consists of a sim-
ple saturation prover based on hierarchic unit resolution, see Algorithm 1. It
resolves unit clauses with other clauses until either the empty clause is derived
or no new clauses can be derived. Note that this procedure is only complete
for Horn clauses. For arithmetic reasoning, SPASS-SPL relies on SPASS-SATT,
our sound and complete CDCL(LA) solver for quantifier-free linear real and
linear mixed/integer arithmetic [12]. SPASS-SATT implements a version of the
dual simplex algorithm fine-tuned towards SMT solving [16]. In order to ensure
soundness, SPASS-SATT represents all numbers with the help of the arbitrary-
precision arithmetic library FLINT [31]. This means all calculations, including
the implication test and the sample point heuristic, are always exact and thus
free of numerical errors. The most relevant part of SPASS-SPL with regards to

160 M. Bromberger et al.

Table 1. Overview of how many clause pairs advance in the pipeline (top to bottom)

lc bakery, tad All

All 1 244 819k 196 437k 1 441 256k

F
O

Filtering 61.21% 85.03% 64.45%

f(C1) ≤ f(C2) 761 905k 61.2061% 167 025k 85.0274% 928 931k 64.4540%

Matching 0.02% 39.83% 7.18%

C1σ ⊆ C2 131k 0.0106% 66 531k 33.8694% 66 664k 4.6254%

C

Empty (pre./con.) 44.73% 100.00% 99.89%

� Λ1σ, � Λ2 59k 0.0047% 66 531k 33.8694% 66 591k 4.6203%

Sample point 59.28% 0.12% 0.18%

� Λ1σβ2 35k 0.0028% 82k 0.0416% 117k 0.0081%

Implication 95.51% 100.00% 98.66%

Subsumes 33k 0.0027% 82k 0.0416% 115k 0.0080%

Table 2. An overview of the accuracy of non-perfect pipeline stages

Test Specificity/Sensitivity Pos./Neg. Predictive Value

Instances lc bakery, tad All lc bakery, tad All

FO Filtering 0.38797 0.14979 0.35552 0.00013 0.00049 0.00020

FO Matching 0.99996 0.60196 0.92841 0.78456 0.00123 0.00275

Empty Conclusion 0.70973 0.00000 0.00103 0.54474 0.00123 0.00173

Sample Point 0.93864 1.00000 0.99998 0.95510 1.00000 0.98653

this paper is that it performs tautology and subsumption deletion to eliminate
redundant clauses. As a preprocessing step, SPASS-SPL eliminates all tautolo-
gies from the set of input clauses. Similarly, the function resolvents(C,N) (see
Line 4 of Algorithm 1) filters out all newly derived clauses that are tautologies.
Note that we also use these tautology checks to eliminate all excess variables
and to store sample solutions for all remaining clauses. After each iteration of
the algorithm, we also check for subsumed clauses. We first eliminate newly gen-
erated clauses by forward subsumption (see Line 6 of Algorithm 1), then use the
remaining clauses for backward subsumption (see Line 8 of Algorithm 1).

Benchmarks. Our benchmarking instances come out of three different appli-
cations. (1.) A supervisor for an automobile lane change assistant, formulated
in the Horn fragment of BS(LRA) [9,10] (five instances, referred to as lc in
aggregate). (2.) The formalization of reachability for non-deterministic timed
automata, formulated in the non-Horn fragment of BS(LRA) [20] (one instance,
referred to as tad). (3.) Formalizations of variants of mutual exclusion proto-
cols, such as the bakery protocol [38], also formulated in the non-Horn fragment
of BS(LRA) [19] (one instance, referred to as bakery). The machine used for
benchmarking features an Intel Xeon W-1290P CPU (10 cores, 20 threads, up
to 5.2 GHz) and 64 GiB DDR4-2933 ECC main memory. Runtime was limited
to ten minutes, and memory usage was not limited.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 161

Table 3. Evaluation of the sample point heuristic

Instances lc bakery, tad All

Bottleneck (C time ÷ FO time)

without sample point 127 2757 14867

with sample point 78 32 89

Avg. pipeline runtime in μs

without sample point 0.0315 89.9401 0.5189

with sample point 0.0311 1.4150 0.2197

Speedup (C time with ÷ without) 1.63 1̇37.88 124.16

Benefit-to-cost (C time taken ÷ saved) 6.74 1̇81.72 163.72

Evaluation. In Table 1 we give an overview of how many pairs of clauses advance
how far in the pipeline (in thousands). Rows with grey background refer to a
stage of the pipeline and show which portion of pairs of clauses were kept, relative
to the previous stage. Rows with white background refer to (virtual) sets of
clauses, their absolute size, and their size relative to the number of attempted
tests, as well as the condition(s) established. The three groups of columns refer
to groups of benchmark instances. Results vary greatly between lc and the
aggregate of bakery and tad. In lc the relative number of subsumed clauses is
significantly smaller (0.0027% compared to 0.0416%). FO Matching eliminates a
large number of pairs in lc, because the number of predicate symbols, and their
arity (lc1, . . . , lc4: 36 predicates, arities up to 5; lc5: 53 predicates, arities
up to 12) is greater than in bakery (11 predicates, all of arity 2) and tad (4
predicates, all of arity 2).

Binary Classifiers. To evaluate the performance of each stage of the proposed
test pipeline, we view each stage individually as a binary classifier on pairs
of constrained clauses. The two classes we consider are “subsumes” (positive
outcome) and “does not subsume” (negative outcome). Each stage of the pipeline
computes a prediction on the actual result of the overall pipeline. We are thus
interested in minimizing two kinds of errors: (1) When one stage of the pipeline
predicts that the subsumption test will succeed (the prediciton is positive) but
it fails (the actual result is negative), called false positive (FP). (2) When one
stage of the pipeline predicts that the subsumption test will fail (the prediction
is negative) but it succeeds (the actual result is positive), called false negative
(FN). Dually, a correct prediction is called true positive (TP) and true negative
(TN). For each stage, at least one kind of error is excluded by design: First-
order filtering and the sample point heuristic never produce false negatives. The
empty conclusion heuristic never produces false positives. The empty premise
test is perfect, i.e. it neither produces false positives nor false negatives, with the
caveat of not always being applicable. The last stage (implication test) decides
the overall result of the pipeline, and thus is also perfect. For evaluation of binary
classifiers, we use four different measures (two symmetric pairs):

SPC = TN ÷ (TN + FP) PPV = TP ÷ (TP + FP) (2)

162 M. Bromberger et al.

The first pair, specificity (SPC) and positive predictive value, see (2), is relevant
only in presence of false postives (the measures approach 1 as FP approaches 0).

SEN = TP ÷ (TP + FN) NPV = TN ÷ (TN + FN) (3)

The second pair, sensitivity (SEN) and negative predictive value (NPV), see (3),
is relevant only in presence of false negatives (the measures approach 1 as FN
approaches 0). Specificity (resp. sensitivity) might be considered the “success
rate” in our setup. They answer the question: “Given the actual result of the
pipeline is ‘subsumed’ (resp. ‘not subsumed’), in how many cases does this stage
predict correctly?” A specificity (resp. sensitivity) of 0.99 means that the clas-
sifier produces a false positive (resp. negative), i.e. a wrong prediction, in one
out of one hundred cases. Both measures are independent of the prevalence of
particular actual results, i.e. the measures are not biased by instances that fea-
ture many (or few) subsumed clauses. On the other hand, positive and negative
predictive value are biased by prevalence. They answer the following question:
“Given this stage of the pipeline predicts ‘subsumed’ (resp. ‘not subsumed’), how
likely is it that the actual result indeed is ‘subsumed’ (resp. ‘not subsumed’)?”

In Table 2 we present for all non-perfect stages of the pipeline specificity
(for those that produce false positives) and sensitivity (for those that produce
false negatives) as well as the (positive/negative) predictive value. Note that the
sample point heuristic has an exceptionally high specificity, still above 93% in
the benchmarks where it performed worst. For the benchmarks bakery and tad
it even performs perfectly. Combined, this gives a specificity of above 99.99%.
Considering FO Filtering, we expect limited performance, since the structure
of terms in BS is flat compared to the rich structure of terms as trees in full
first-order logic. This is evidenced by a comparatively low specificity of 35%.
However, this classifier is very easy to compute, so pays for itself. FO Matching
is a much better classifier, at an aggregate sensitivity of 93%. Even though this
classifier is NP-complete, this is not problematic in practice.

Runtime. In Table 3 we focus on the runtime improvement achieved by the sample
point heuristic. In the first two lines (Bottleneck), we highlight how much slower
testing implication of constraints (the C-phase) is compared to treating the first-
order part (the FO-phase). This is equivalent to the time taken for the C-phase
per pair of clauses (that reach at least the first C-phase) divided by the time taken
for the FO-phase per pair of clauses. We see that without the sample point heuris-
tic, we can expect the constraint implication test to take hundreds to thousands
of times longer than the FO-phase. Adding the sample point heuristic decreases
this ratio to below one hundred. In the fourth line (avg. pipeline runtime) we do
not give a ratio, but the average time it takes to compute the whole pipeline. We
achieve millions of subsumption checks per second. In the fifth line (Speedup), we
take the time that all C-phases combined take per pair of clauses that reach at
least the first C-phase, and take the ratio to the same time without applying the
sample point heuristic. In the sixth line (Benefit-to-cost), we consider the time
taken to compute the sample point vs. the time it saves. The benefit is about two
orders of magnitude greater than the cost.

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 163

5 Conclusion

Our next step will be the integration of the subsumption test in the backward
subsumption procedure of an SCL based reasoning procedure for BS(LRA) [11]
which is currently under development.

There are various ways to improve the sample point heuristic. One improve-
ment would be to store and check multiple sample points per clause. For instance,
whenever the sample point heuristic fails and the implication test for Λ2 → (Λ1σ)
also fails, store the solution to (1) as an additional sample point for Λ2. The new
sample point will filter out any future implication tests with Λ1σ or similar
constraints. However, testing too many sample points might lead to costs out-
weighing benefits. A potential solution to this problem would be score-based
garbage collection, as done in SAT solvers [57]. Another way to store and check
multiple sample points per clause is to store a compact description of a set of
points that is easy to check against. For instance, we can store the center point
and edge length of the largest orthogonal hypercube contained in the solutions
of a constraint, which is equivalent to infinitely many sample points. Computing
the largest orthogonal hypercube for an LRA constraint is not much harder than
finding a sample solution [14]. Checking whether a cube is contained in an LRA
constraint works almost the same as evaluating a sample point [14].

Although we developed our sample point technique for the BS(LRA) frag-
ment it is obvious that it will also work for the overall FOL(LRA) clause frag-
ment, because this extension does not affect the LRA constraint part of clauses.
From an automated reasoning perspective, satisfiability of the FOL(LRA) and
BS(LRA) fragments (clause sets) is undecidable in both cases. Actually, satisfi-
ability of a BS(LRA) clause set is already undecidable if the first-order part is
restricted to a single monadic predicate [32]. The first-order part of BS(LRA) is
decidable and therefore enables effective guidance for an overall reasoning pro-
cedure [11]. Form an application perspective, the BS(LRA) fragment already
encompasses a number of used (sub)languages. For example, timed automata [3]
and a number of extensions thereof are contained in the BS(LRA) fragment [60].

We also believe that the sample point heuristic will speed up the constraint
implication test for FOL(LIA), first-order clauses over linear integer arithmetic,
FOL(NRA), i.e., first-order clauses over non-linear real arithmetic, and other
combinations of FOL with arithmetic theories. However, the non-linear case will
require a more sophisticated setup due to the nature of test points in this case,
e.g., a solution may contain root expressions.

Acknowledgments. This work was partly funded by DFG grant 389792660 as part
of TRR 248, see https://perspicuous-computing.science. We thank the anonymous
reviewers for their thorough reading and detailed constructive comments. Martin
Desharnais suggested some textual improvements.

References

1. Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI),

https://perspicuous-computing.science

164 M. Bromberger et al.

vol. 9322, pp. 69–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24246-0 5

2. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 84–99. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
04222-5 5

3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2),
183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

4. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Log. Comput. 4(3), 217–247 (1994). https://doi.org/10.
1093/logcom/4.3.217

5. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 19–
99. Elsevier and MIT Press, Cambridge (2001). https://doi.org/10.1016/b978-
044450813-3/50004-7

6. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994). https://doi.org/10.1007/BF01190829

7. Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In: Lutz, C.,
Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory
Combination, and All That. LNCS, vol. 11560, pp. 15–56. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-22102-7 2

8. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

9. Bromberger, M., et al.: A sorted datalog hammer for supervisor verification con-
ditions modulo simple linear arithmetic. CoRR abs/2201.09769 (2022). https://
arxiv.org/abs/2201.09769

10. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., Krötzsch, M., Weidenbach,
C.: A datalog hammer for supervisor verification conditions modulo simple linear
arithmetic. In: Konev, B., Reger, G. (eds.) FroCoS 2021. LNCS (LNAI), vol. 12941,
pp. 3–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86205-3 1

11. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the Bernays-Schoenfinkel
Fragment over bounded difference constraints by simple clause learning over the-
ories. In: Henglein, F., Shoham, S., Vizel, Y. (eds.) VMCAI 2021. LNCS, vol.
12597, pp. 511–533. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
67067-2 23

12. Bromberger, M., Fleury, M., Schwarz, S., Weidenbach, C.: SPASS-SATT. In:
Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 111–122. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-29436-6 7

13. Bromberger, M., Leutgeb, L., Weidenbach, C.: An Efficient subsumption test
pipeline for BS(LRA) clauses (2022). https://doi.org/10.5281/zenodo.6544456.
Supplementary Material

14. Bromberger, M., Weidenbach, C.: Fast cube tests for LIA constraint solving. In:
Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 116–132.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1 9

15. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17,
279–301 (1982). https://doi.org/10.1016/0304-3975(82)90026-3

16. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball,
T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg
(2006). https://doi.org/10.1007/11817963 11

https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/978-3-319-24246-0_5
https://doi.org/10.1007/978-3-642-04222-5_5
https://doi.org/10.1007/978-3-642-04222-5_5
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1093/logcom/4.3.217
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1007/BF01190829
https://doi.org/10.1007/978-3-030-22102-7_2
https://arxiv.org/abs/2201.09769
https://arxiv.org/abs/2201.09769
https://doi.org/10.1007/978-3-030-86205-3_1
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-67067-2_23
https://doi.org/10.1007/978-3-030-29436-6_7
https://doi.org/10.5281/zenodo.6544456
https://doi.org/10.1007/978-3-319-40229-1_9
https://doi.org/10.1016/0304-3975(82)90026-3
https://doi.org/10.1007/11817963_11

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 165

17. Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weiden-
bach, C.: Superposition Modulo Non-linear Arithmetic. In: Tinelli, C., Sofronie-
Stokkermans, V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 119–134.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24364-6 9

18. Faqeh, R., Fetzer, C., Hermanns, H., Hoffmann, J., Klauck, M., Köhl, M.A., Stein-
metz, M., Weidenbach, C.: towards dynamic dependable systems through evidence-
based continuous certification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020.
LNCS, vol. 12477, pp. 416–439. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-61470-6 25

19. Fietzke, A.: Labelled superposition. Ph.D. thesis, Universität des Saarlandes
(2014). https://doi.org/10.22028/D291-26569

20. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed
automata. Math. Comput. Sci. 6(4), 409–425 (2012). https://doi.org/10.1007/
s11786-012-0134-5

21. Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: Fontaine, P.
(ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 233–249. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29436-6 14

22. Fiori, A., Weidenbach, C.: SCL with theory constraints. CoRR abs/2003.04627
(2020). https://arxiv.org/abs/2003.04627

23. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure. J.
Satisf. Boolean Model. Comput. 1(3–4), 209–236 (2007). https://doi.org/10.3233/
sat190012

24. Ganzinger, H., Nieuwenhuis, R., Nivela, P.: Fast term indexing with coded context
trees. J. Autom. Reason. 32(2), 103–120 (2004). https://doi.org/10.1023/B:JARS.
0000029963.64213.ac

25. Gleiss, B., Kovács, L., Rath, J.: Subsumption demodulation in first-order theo-
rem proving. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 297–315. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9 17

26. Gottlob, G.: Subsumption and implication. Inf. Process. Lett. 24(2), 109–111
(1987). https://doi.org/10.1016/0020-0190(87)90103-7

27. Gottlob, G., Leitsch, A.: On the efficiency of subsumption algorithms. J. ACM
32(2), 280–295 (1985). https://doi.org/10.1145/3149.214118

28. Graf, P.: Extended path-indexing. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814,
pp. 514–528. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58156-
1 37

29. Graf, P.: Substitution tree indexing. In: Hsiang, J. (ed.) RTA 1995. LNCS, vol. 914,
pp. 117–131. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59200-
8 52

30. Graf, P. (ed.): Term Indexing. LNCS, vol. 1053. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-61040-5

31. Hart, W.B.: Fast library for number theory: an introduction. In: Fukuda, K.,
Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp.
88–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6 18

32. Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of pres-
burger arithmetic with unary uninterpreted predicates is undecidable. CoRR
abs/1703.01212 (2017). http://arxiv.org/abs/1703.01212

33. Purdom, P.W., Brown, C.A.: Fast many-to-one matching algorithms. In: Jouan-
naud, J.-P. (ed.) RTA 1985. LNCS, vol. 202, pp. 407–416. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-15976-2 21

https://doi.org/10.1007/978-3-642-24364-6_9
https://doi.org/10.1007/978-3-030-61470-6_25
https://doi.org/10.1007/978-3-030-61470-6_25
https://doi.org/10.22028/D291-26569
https://doi.org/10.1007/s11786-012-0134-5
https://doi.org/10.1007/s11786-012-0134-5
https://doi.org/10.1007/978-3-030-29436-6_14
https://arxiv.org/abs/2003.04627
https://doi.org/10.3233/sat190012
https://doi.org/10.3233/sat190012
https://doi.org/10.1023/B:JARS.0000029963.64213.ac
https://doi.org/10.1023/B:JARS.0000029963.64213.ac
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1007/978-3-030-51074-9_17
https://doi.org/10.1016/0020-0190(87)90103-7
https://doi.org/10.1145/3149.214118
https://doi.org/10.1007/3-540-58156-1_37
https://doi.org/10.1007/3-540-58156-1_37
https://doi.org/10.1007/3-540-59200-8_52
https://doi.org/10.1007/3-540-59200-8_52
https://doi.org/10.1007/3-540-61040-5
https://doi.org/10.1007/978-3-642-15582-6_18
http://arxiv.org/abs/1703.01212
https://doi.org/10.1007/3-540-15976-2_21

166 M. Bromberger et al.

34. Bayardo, R.J., Schrag, R.: Using CSP look-back techniques to solve exceptionally
hard SAT instances. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 46–60.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2 65

35. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Cal-
culus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp.
223–237. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-
8 19

36. Kruglov, E.: Superposition modulo theory. Ph.D. thesis, Universität des Saarlandes
(2013). https://doi.org/10.22028/D291-26547

37. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment
over ground theories. Math. Comput. Sci. 6(4), 427–456 (2012). https://doi.org/
10.1007/s11786-012-0135-4

38. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974). https://doi.org/10.1145/361082.361093

39. McCune, W.: Otter 2.0. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp.
663–664. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52885-7 131

40. McCune, W.: Experiments with discrimination-tree indexing and path indexing for
term retrieval. J. Autom. Reason. 9(2), 147–167 (1992). https://doi.org/10.1007/
BF00245458

41. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engi-
neering an efficient SAT solver. In: Proceedings of the 38th Design Automation
Conference, DAC 2001, Las Vegas, NV, USA, 18–22 June 2001, pp. 530–535. ACM
(2001). https://doi.org/10.1145/378239.379017

42. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

43. Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation
of indexing techniques for theorem proving. In: Goré, R., Leitsch, A., Nipkow, T.
(eds.) IJCAR 2001. LNCS, vol. 2083, pp. 257–271. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45744-5 19

44. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robin-
son, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes),
pp. 371–443. Elsevier and MIT Press, Cambridge (2001). https://doi.org/10.1016/
b978-044450813-3/50009-6

45. Ohlbach, H.J.: Abstraction tree indexing for terms. In: 9th European Conference
on Artificial Intelligence, ECAI 1990, Stockholm, Sweden, pp. 479–484 (1990)

46. Overbeek, R.A., Lusk, E.L.: Data structures and control architecture for imple-
mentation of theorem-proving programs. In: Bibel, W., Kowalski, R. (eds.) CADE
1980. LNCS, vol. 87, pp. 232–249. Springer, Heidelberg (1980). https://doi.org/10.
1007/3-540-10009-1 19

47. Ramakrishnan, I.V., Sekar, R.C., Voronkov, A.: Term indexing. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes), pp. 1853–
1964. Elsevier and MIT Press, Cambridge (2001). https://doi.org/10.1016/b978-
044450813-3/50028-x

48. Riazanov, A., Voronkov, A.: Partially adaptive code trees. In: Ojeda-Aciego, M., de
Guzmán, I.P., Brewka, G., Moniz Pereira, L. (eds.) JELIA 2000. LNCS (LNAI),
vol. 1919, pp. 209–223. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-40006-0 15

49. Riazanov, A., Voronkov, A.: Efficient instance retrieval with standard and rela-
tional path indexing. Inf. Comput. 199(1–2), 228–252 (2005). https://doi.org/10.
1016/j.ic.2004.10.012

https://doi.org/10.1007/3-540-61551-2_65
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.22028/D291-26547
https://doi.org/10.1007/s11786-012-0135-4
https://doi.org/10.1007/s11786-012-0135-4
https://doi.org/10.1145/361082.361093
https://doi.org/10.1007/3-540-52885-7_131
https://doi.org/10.1007/BF00245458
https://doi.org/10.1007/BF00245458
https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-45744-5_19
https://doi.org/10.1016/b978-044450813-3/50009-6
https://doi.org/10.1016/b978-044450813-3/50009-6
https://doi.org/10.1007/3-540-10009-1_19
https://doi.org/10.1007/3-540-10009-1_19
https://doi.org/10.1016/b978-044450813-3/50028-x
https://doi.org/10.1016/b978-044450813-3/50028-x
https://doi.org/10.1007/3-540-40006-0_15
https://doi.org/10.1007/3-540-40006-0_15
https://doi.org/10.1016/j.ic.2004.10.012
https://doi.org/10.1016/j.ic.2004.10.012

An Efficient Subsumption Test Pipeline for BS(LRA) Clauses 167

50. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM, 12(1), 23–41 (1965). https://doi.org/10.1145/321250.321253, http://doi.
acm.org/10.1145/321250.321253

51. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience series
in discrete mathematics and optimization, Wiley, Hoboken (1999)

52. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In:
Proceedings of the IJCAR-2004 Workshop on Empirically Successful First-Order
Theorem Proving. Elsevier Science (2004)

53. Schulz, S.: Fingerprint Indexing for Paramodulation and Rewriting. In: Gramlich,
B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 477–
483. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31365-3 37

54. Schulz, S.: Simple and efficient clause subsumption with feature vector indexing.
In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics.
LNCS (LNAI), vol. 7788, pp. 45–67. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36675-8 3

55. Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability.
In: Rutenbar, R.A., Otten, R.H.J.M. (eds.) Proceedings of the 1996 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1996, San Jose, CA,
USA, 10–14 November 1996, pp. 220–227. IEEE Computer Society/ACM (1996).
https://doi.org/10.1109/ICCAD.1996.569607

56. Socher, R.: A subsumption algorithm based on characteristic matrices. In: Lusk, E.,
Overbeek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 573–581. Springer, Heidelberg
(1988). https://doi.org/10.1007/BFb0012858

57. Soos, M., Kulkarni, R., Meel, K.S.: CrystalBall: gazing in the black box of SAT
solving. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 371–387.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 26

58. Stillman, R.B.: The concept of weak substitution in theorem-proving. J. ACM
20(4), 648–667 (1973). https://doi.org/10.1145/321784.321792

59. Tammet, T.: Towards efficient subsumption. In: Kirchner, C., Kirchner, H. (eds.)
CADE 1998. LNCS, vol. 1421, pp. 427–441. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054276

60. Voigt, M.: Decidable ∃∗∀∗ first-order fragments of linear rational arithmetic with
uninterpreted predicates. J. Autom. Reason. 65(3), 357–423 (2020). https://doi.
org/10.1007/s10817-020-09567-8

61. Voronkov, A.: The anatomy of vampire implementing bottom-up procedures with
code trees. J. Autom. Reason. 15(2), 237–265 (1995). https://doi.org/10.1007/
BF00881918

62. Voronkov, A.: Algorithms, datastructures, and other issues in efficient automated
deduction. In: Goré, R., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS,
vol. 2083, pp. 13–28. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45744-5 3

63. Weidenbach, C.: Automated reasoning building blocks. In: Meyer, R., Platzer,
A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 172–188.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6 12

https://doi.org/10.1145/321250.321253
http://doi.acm.org/10.1145/321250.321253
http://doi.acm.org/10.1145/321250.321253
https://doi.org/10.1007/978-3-642-31365-3_37
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1007/978-3-642-36675-8_3
https://doi.org/10.1109/ICCAD.1996.569607
https://doi.org/10.1007/BFb0012858
https://doi.org/10.1007/978-3-030-24258-9_26
https://doi.org/10.1145/321784.321792
https://doi.org/10.1007/BFb0054276
https://doi.org/10.1007/BFb0054276
https://doi.org/10.1007/s10817-020-09567-8
https://doi.org/10.1007/s10817-020-09567-8
https://doi.org/10.1007/BF00881918
https://doi.org/10.1007/BF00881918
https://doi.org/10.1007/3-540-45744-5_3
https://doi.org/10.1007/3-540-45744-5_3
https://doi.org/10.1007/978-3-319-23506-6_12

168 M. Bromberger et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	An Efficient Subsumption Test Pipeline for BS(LRA) Clauses
	1 Introduction
	2 Preliminaries
	2.1 Bernays-Schönfinkel with Linear Real Arithmetic

	3 Subsumption for Constrained Clauses
	4 Experimentation
	5 Conclusion
	References

