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Abstract 

We introduce a framework for the preparation, coherent manipulation and 

characterization of free-electron quantum states, experimentally demonstrating 

attosecond pulse trains for electron microscopy. Specifically, we employ phase-

locked single-color and two-color optical fields to coherently control the electron 

wave function along the beam direction. We establish a new variant of quantum 

state tomography –“SQUIRRELS” – to reconstruct the density matrices of free-

electron ensembles and their attosecond temporal structure. The ability to tailor 

and quantitatively map electron quantum states will promote the nanoscale 

study of electron-matter entanglement and the development of new forms of 

ultrafast electron microscopy and spectroscopy down to the attosecond regime. 

 

Optical, electron and x-ray microscopy and spectroscopy reveal specimen 

properties via spatial and spectral signatures imprinted onto a beam of radiation 

or electrons. Leaving behind the traditional paradigm of idealized, simple probe 

beams, advanced optical techniques increasingly harness tailored probes, or 

even their quantum properties and probe-sample entanglement. The rise of 

structured illumination microscopy1, pulse shaping2, and multidimensional3 and 

quantum-optical spectroscopy4 exemplify this development. Similarly, electron 

microscopy explores the use of shaped electron beams exhibiting particular 

spatial symmetries5 or angular momentum6,7, and novel measurement schemes 

involving quantum aspects of electron probes have been proposed8,9. Ultrafast 

imaging and spectroscopy with electrons and x-rays are the basis for an ongoing 

revolution in the understanding of dynamical processes in matter on atomic 

scales10–13. The underlying technology heavily rests on laser science for the 
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generation and characterization of ever-shorter femtosecond electron10,14 and x-

ray15–17 probe pulses, with examples in optical pulse compression18 and streaking 

spectroscopy19–21. The temporal structuring of electron probe beams is 

facilitated by time-dependent fields in the radio-frequency22–24, terahertz18,25 or 

optical domains. Promising a further leap in temporal resolution, recent findings 

suggest that ultrafast electron diffraction and microscopy with optically phase-

controlled and sub-cycle, attosecond-structured wave functions may be 

feasible8,26–30. Specifically, light-field control may translate the temporal 

resolution of ultrafast transmission electron microscopy (UTEM)31,32 and 

electron diffraction (UED)10,33, currently at about 200 fs34 and 20 fs14,23, 

respectively, to the range of attoseconds26,27,35. However, such future 

technologies call for means to both prepare and fully analyze the corresponding 

quantum states of free electrons. 

Here, we demonstrate the coherent control and attosecond density 

modulation of free-electron quantum states using multiple phase-locked optical 

interactions. Moreover, we introduce quantum state tomography for free 

electrons, providing crucial elements for ultrafast free-electron quantum optics. 

In the first set of experiments, (sketched in Fig. 1a), two laser beams at 

frequencies ω and 2ω are focused onto a single-crystalline graphite flake that is 

transparent for 120-keV electrons. A pulsed electron beam, generated by an 

ultrafast field-emission cathode34, traverses the dual-color optical near-field, and 

its kinetic energy spectrum is subsequently recorded. The relative phase 

between the two laser pulses is precisely controlled by a pair of dispersive 

wedges. Single-color excitation (upper two panels in Fig. 1c) induces spectra with 

symmetric sideband peaks separated by the respective photon energy, as 

previously reported in the context of photon-induced near-field electron 

microscopy (PINEM)36,29,30,26,37 and free-electron Rabi-oscillations8,26. Coupled to 

both near-fields, however, the electron spectrum develops a strong asymmetry 

(lower two panels in Fig. 1c) towards energy gain or loss, controlled by the 

relative phase of both fields (cf. Fig. 1d). 
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Figure 1: Experimental scheme. a) Optical pump pulses at frequencies ω (λ = 800 nm) and 2ω (λ = 400 

nm) are spatially and temporally overlapped with a pulsed electron beam on a single-crystalline 

graphite flake. Fused silica wedges are used to control the relative phase between the laser pulses. An 

electron-energy-loss spectrometer (EELS) records the electron energy spectrum, which initially exhibits 

a narrow peak at a central energy of 120 keV and an energy width of 0.6 eV. b) The electron-light-

interaction can be described as a phase modulation of the electron wavefunction. For two-color laser 

fields, the phase modulation becomes non-sinusoidal (purple curve). c) Experimental electron energy 

spectra recorded for single-color (red and blue curves) and two-color excitation (purple and magenta 

curves). In the latter case, the spectra are strongly asymmetric and depend on the relative phase of 

the two colors (ϴ1=π, ϴ 2=0). d) The measured spectral shape oscillates back and forth for varying 

wedge insertion. The spectra in c are taken from the positions marked by the purple and magenta 

arrows. e) The corresponding calculated spectra (Eq. 2) using coupling constants gω = 2.20 and g2ω = 

0.76 for the fundamental and second harmonic, respectively. Contributions from low-loss plasmon 

bands were subtracted from all spectra. Note that, throughout the paper, the photon order refers to 

the fundamental frequency ω. 
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These observations can be rationalized by adapting the theoretical 

description of inelastic electron-light scattering29,30,38,26,8 to the present two-

color scenario. For interaction with a single light field at frequency ω, the spatial 

wavefunction of the free-electron quantum state |𝜓⟩ experiences a sinusoidal 

phase modulation in the beam direction26,30, 

𝜓(𝑧) = exp (2𝑖|𝑔𝜔| sin (
𝜔𝑧

𝑣
+ arg(𝑔𝜔))) ∙ 𝜓in(𝑧) =: 𝐴(𝑔𝜔, 𝜔) ∙ 𝜓in(𝑧). 

(1) 

Here, 𝜓in(𝑧) denotes the wavefunction of the unperturbed electron quantum 

state (leaving out dependencies on transverse coordinates for simplicity), v the 

electron velocity, z the spatial coordinate along the electron trajectory, and gω is 

a dimensionless coupling constant as defined in Refs.26,30. Equivalently, the 

quantum state can be written as a coherent superposition of momentum 

sidebands26,29,30. The action of two fields at frequencies ω and 2ω is now 

described in terms of two superimposed phase modulations, which for the 

typically small total energy changes (relative to the initial electron energy) 

results in the electron quantum state 

𝜓out(𝑧) =  𝐴(𝑔𝜔, 𝜔) ∙ 𝐴(𝑔2𝜔, 2𝜔) ∙ 𝜓in(𝑧), 
(2) 

where gω and g2ω are the two complex coupling constants. Overall, the dual 

phase modulation is non-sinusoidal (cf. Fig. 1b), resulting in the observed  

asymmetric electron spectra. The phase-dependent experimental spectrograms 

(Fig. 1d) are reproduced by a cycling of the relative phase 𝜃 = arg(𝑔𝜔) −

arg(𝑔2𝜔)/2 in Eq. (2). A rich variety of tailored quantum states is accessible by 

variation of the relative phase and amplitudes of such bichromatic fields, and a 

further design of such momentum state synthesis may be realized by optical 

pulse-shaping techniques39.  

Multiple phase-controlled interactions at one or more frequencies not 

only enable the preparation but also the characterization of free-electron 

quantum states, as we demonstrate in the following. Slightly shifting our 

perspective on the experimental scenario, we now regard the interaction of the 

electron with the 2ω-field as the preparation of a specific quantum state, 

described by a density operator 𝜌 to account for the possibility of mixed states, 

which is then probed by the ω-field. Based on this interpretation, we introduce 

a new variant of quantum state tomography40,41 termed “Spectral QUantum 

Interference for the Regularized Reconstruction of free-ELectron States”, 

abbreviated as “SQUIRRELS”. As illustrated in Fig. 2a and detailed in the 
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Appendix (section 3), SQUIRRELS reconstructs the free-electron density matrix 𝜌 

in the longitudinal momentum basis from experimental spectrograms. 

Specifically, the action of the ω-field on 𝜌, described by a unitary transformation 

U, results in a final quantum state 𝜌out that depends on the relative phase 𝜃, 

𝜌out(𝜃) =  𝑈(𝜃)𝜌𝑈
ϯ(𝜃)   with   ⟨𝑁|𝑈(𝜃)|𝑀⟩ = 𝑒𝑖(𝑁−𝑀)𝜃 𝐽𝑁−𝑀(2|𝑔𝜔|). 

(3) 

Here, the integers N and M label the electron momentum states of the individual 

photon sidebands (positive/negative for energy gain/loss), and JN-M denotes the 

Bessel function of the first kind. Note that Eq. (3) generalizes Eq. (1) to mixed 

states and treats the ω-field as a type of local oscillator, which in the present 

context is regarded as an ideal phase modulator. The populations 𝑝𝑁,𝜃 =

⟨𝑁|𝜌out(𝜃)|𝑁⟩ constitute our observables, namely the phase-dependent 

sideband intensities in the spectrogram (Fig. 2b). While the diagonal entries of 

𝜌, namely the populations ⟨𝑁|𝜌|𝑁⟩ of the prepared quantum state, can be 

readily measured in a single-color experiment, the off-diagonal terms or 

coherences ⟨𝑁|𝜌|𝑀⟩, 𝑁 ≠ 𝑀 initially remain unknown and must be 

reconstructed from the two-color data 𝑝𝑁,𝜃. In order to obtain the full density 

matrix 𝜌, we thus use Eq. (3) to solve a linear system of coupled equations, which 

in mathematical terms is ill-posed. Stable solutions of the resulting (ill-

conditioned) matrix equation are achieved by iterated Tikhonov regularization, 

as detailed in the Appendix (section 3), employing the positive-semidefiniteness 

of physical density matrices as a constraint on 𝜌. We note that the present 

scenario is closely related to established techniques for the retrieval of spectral 

phases of ultrashort and attosecond optical pulses, such as FROG42 and 

RABBITT43. In the Appendix (section 5), we also apply RABBITT to reconstruct the 

free-electron quantum state. 

Figure 2 presents an exemplary SQUIRRELS reconstruction, in the form of 

Wigner functions44 of the intermediate (ρ) and final quantum state (ρout). The 

Wigner function is a quantum-mechanical quasi-probability distribution in phase 

space that completely describes the quantum state of the electron ensemble, 

and whose marginal distributions, i.e. integrals along horizontal and vertical 

axes, correspond to the density distributions of the longitudinal momentum and 

position, respectively. Negative values of the Wigner function illustrate the non-

classical nature44,45 of the electron quantum state. Albeit being equivalent to the 

density matrix, the Wigner function provides a more intuitive representation by 

revealing the sinusoidal momentum modulation (Fig. 2c) induced by the 

interaction (Further reconstructions at growing field amplitudes are shown in 
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Suppl. Fig. 5). This sinusoidal shape is complemented by a mirrored sinusoidal 

feature composed of alternating positive (red) and negative (blue) stripes, such 

that electron energies corresponding to non-integer photon numbers 

destructively interfere. The non-sinusoidal momentum modulation of the 

corresponding final two-color state ρout is apparent in Fig. 2d.  

 

Figure 2: SQUIRRELS reconstruction of the free-electron quantum state. a) Reconstructed density 

matrices and illustration of the underlying tomographic principle: Preparation of the free-electron 

quantum state with density matrix ρ is obtained by applying a laser pulse at frequency 2ω to the 

incident quantum state ρin. In a second step, a laser pulse at frequency ω and relative phase ϴ with 

respect to the first pulse probes the quantum state ρ by transforming it into ρout. Note that only the 

populations (diagonal elements, marked by the black line) of the density matrices ρ are accessible in 

the measurement, the coherences (off-diagonal elements) remain unknown. The shown density 

matrices ρ and ρout(ϴ=π) were reconstructed from experimental data. b) Spectrogram containing the 

phase-dependent populations ρout(ϴ). Upper panel: reconstructed, lower panel: measured. c) The 

reconstructed and simulated Wigner functions for the single-color quantum state ρ illustrate the 

sinusoidal phase modulation. d) Corresponding two-color Wigner functions for ρout(ϴ=π). The lower 

panels in c) and d) show model calculations for pure quantum states (gω = 2.16, g2ω = 0.63). Black solid 

lines: phase modulation according to Eq. 1 or 2 as guide to the eye. 

Instead of employing two-color fields in a single interaction plane, 

quantum state reconstruction is also possible by sequential actions in separate 

planes, either by dual or single-color fields. In the following, we implement this 
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concept in two scenarios, namely a µm-sized and a millimeter-sized separation 

of interaction distances. Figure 3 presents SQUIRRELS applied to a measurement 

conducted in the geometry introduced in Ref. 8, with a few-micron distance 

between two phase-locked near-field interactions of the same frequency. 

Excellent agreement between the reconstructed density matrix (Fig. 3c) and 

Wigner function (Fig. 3d) with a corresponding simulation (Figs. 3e,f) is found, 

with only minor loss of phase coherence indicated by damped elements far off 

the main diagonal. 

 

Figure 3: Application of SQUIRRELS to spatially separated optical near-fields. a) Experimental 

spectrogram (data from structure in Ref. 8). b) Sketch of the experimental scenario. c) Reconstructed 

density matrix (left) and Wigner function (right) of the electron quantum state prepared by the first 

optical near-field after free-space propagation over a distance of 5 µm. d) Corresponding simulations 

for a pure state with g = 1.97. 

We now apply this scheme to experimentally demonstrate the creation of 

a train of attosecond density spikes, as recently proposed26. In the 

measurements presented in Fig. 4, the distance to the second interaction plane 

is increased to 1.5 mm. This allows for a dispersive reshaping of the electron 

density by a shearing of the phase-space distribution, as also utilized in 
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accelerator-based applications of longitudinal beam structuring46. In Figure 4b, 

the final spectrum is displayed as a function of relative phase over multiple 

cycles. Using SQUIRRELS, we retrieve the corresponding sub-cycle electron 

density structure (Fig. 4d), which exhibits a baseline density at 0.27 of the 

maximum value, and, notably, a train of attosecond peaks of a width of 277 as 

(root-mean-square or rms; full-width-at-half-maximum: 655 as). Accordingly, 

the high-quality Wigner function reconstruction (Fig. 4c) exhibits a sheared 

sinusoidal shape, with many fine interference features. From a comparison with 

model simulations, we estimate that spatial and temporal averaging over 

different mutual phases in both planes is limited to below 189 mrad (80 as rms, 

cf. Suppl. Fig. 6). In the present experiments, geometrical constraints limited the 

dispersive propagation to 1.5 mm, while the shortest attosecond pulses are 

expected for 2.75 mm propagation for gpump = 3.95. The pronounced attosecond 

density modulation achieved here enables the nanoscale exploration of 

optically-driven electronic and valence changes in electron microscopy with sub-

cycle, attosecond accuracy. In future experiments, a further reduction in pulse 

duration to less than 100 as seems feasible, employing optimized propagation 

distances, field strengths and phase stability. Moreover, also the quantitative 

reconstruction of isolated attosecond electron pulses will be possible by 

adapting the approach presented.  

In conclusion, we demonstrated the coherent control, quantum state 

reconstruction and attosecond structuring of free-electron beams. The approach 

links ultrafast transmission electron microscopy with tools from both attosecond 

spectroscopy and quantum optics. We envisage the application of this 

framework in novel quantum measurement schemes in electron microscopy, 

yielding structural and electronic observables with nanometer spatial and 

attosecond temporal resolutions, possibly on the level of single quantum 

systems. Extending the approach to transverse scattering of electrons will 

establish the programmable, three-dimensional shaping of free-electron wave 

packets as a basic element of free-electron quantum optics technology.   
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Figure 4: Experimental 
demonstration of attosecond 
electron pulse trains. a) Sketch 
of the experimental setup 
employing two graphite flakes 
for the preparation (upper 
plane) and characterization 
(lower plane) of attosecond 
electron pulse trains. Inset: 
Photograph showing the 
custom-built TEM sample 
holder. b) Experimental 
spectrogram recorded over 
multiple optical cycles and 
close-up of two cycles. c) The 
reconstructed Wigner function 
(using gprobe = 3.52) reveals a 
pronounced shearing due to 
free-space propagation. d) The 
temporal projection of the 
Wigner function exhibits 
density modulations with a rms 
pulse duration of 277 as (after 
baseline subtraction, full-
width-at-half-maximum: 655 
as). e) Corresponding electron 
energy spectrum (momentum 
projection). The results are in 
excellent agreement with 
calculations employing pure 
states (cf. Suppl. Fig. 6). 
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Appendix 

1. Experimental details 

The experiments were performed in an ultrafast transmission electron 

microscope equipped with a nanoscopic tip emitter, as described in detail in 

Refs. 8,26,34. Supplementary Figure 1 depicts the optical beam path and the 

interferometer designs used for the two different sets of measurements. A 

pulsed laser beam from an amplified fs-laser system (250 kHz repetition rate, 

800 nm central wavelength, 50 fs pulse duration) is split in two parts, one of 

which is frequency-doubled in a β-barium borate (BBO) crystal and focused onto 

a zirconium-oxide covered tungsten tip to generate a pulsed photoelectron 

beam (probe beam). For the two-color experiments, an interferometer labelled 

‘A’ in Suppl. Fig. 1 was set up: The second part of the laser beam (pump beam) 

is frequency-doubled in another BBO crystal and separated into two beam paths 

at 800 nm and 400 nm wavelength. The 800-nm and 400-nm pump pulses are 

stretched to a duration of 2.7 ps and 1.3 ps (cf. Suppl. Fig. 2), by propagation 

through a 19-cm SF6 and a 10-cm BK7 glass slab, respectively. This ensures laser 

pulse durations exceeding that of the electron pulse, such that the electrons 

experience a constant near-field amplitude (see Ref. 26) and the electron-light 

interaction can be described by a single coupling constant as in Eq. (3), a 

requirement for the present reconstruction algorithm. The two laser beams at 

frequencies ω and 2ω are recombined and focused onto the sample within the 

TEM chamber (~30 µm spot size) after passing two wedges (fused silica, wedge 

angle 4°) for precise phase control. The electron beam (~17 nm focus size) and 

both pump laser beams are spatially and temporally overlapped on a single 

crystalline graphite flake (about 100 nm thick), obtained by mechanically 

cleaving a natural graphite single crystal.  

To measure the attosecond temporal structuring of the electron density, 

we implemented a custom TEM holder capable of carrying two TEM grids with 

single-crystalline graphite flakes, spatially separated by 1 mm. A second 

interferometer (labelled ‘B’ in Suppl. Fig. 1) equipped with a motorized mirror 

mount in one of the interferometer arms allows for an independent control of 

the laser focus positions on the top and bottom sample planes. The 

interferometer is actively stabilized using a 400-nm cw-laser. The electron beam 

diameter was increased to a ~3 µm focus size to reduce the influence of mutual 

phase differences between the optical excitation of the top and bottom 

interaction regions. For both experiments, the resulting electron energy 
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distribution is recorded in an electron spectrometer with 5 s and 40 s integration 

time, respectively. 

 

2. Data analysis 

 Besides the coherent interaction with the optical near-field, the electron 

may also interact with the sample itself, e.g. by plasmon excitation, giving rise to 

a weak, spectrally broad energy-loss feature in the recorded spectra, which was 

removed from the data. While the energy spectra are recorded with an energy 

resolution better than the photon energy, we reduce the experimental data to 

the photon sideband populations for further analysis. To this end, we employ a 

global fit function consisting of Pseudo-Voigt profiles separated by the photon 

energy, which are offset by an asymmetric Gaussian describing the plasmon 

contribution. The obtained sideband amplitudes constitute a reduced form of 

the spectrograms, which serve as the input to the reconstruction algorithm. 

 A reliable reconstruction result requires knowledge of the probe pulse 

coupling constant gω, since it is a parameter entering the unitary operator U in 

the reconstruction algorithm. The value of gω can be obtained in multiple ways: 

For instance, if an experimental single-color spectrum has been recorded for the 

same excitation conditions as in the two-color spectrogram, fitting Bessel 

amplitudes to this single-color spectrum yields gω (see also Appendix section of 

Ref. 8). Alternatively, the two-color spectrogram can be fitted by Eq. (2), yielding 

values for both gω and g2ω corresponding to the pure states which are closest to 

the experimental conditions. Finally, gω can be obtained with an optimization 

routine on the SQUIRRELS algorithm which minimizes the discrepancy between 

the experimental and reconstructed spectrogram under variation of gω. All 

approaches have resulted in very similar values for the coupling constants. 

 

3. Description of SQUIRRELS algorithm 

Let us consider the electron density matrix reconstruction within the 

framework of closed quantum systems. In this case, the density operator evolves 

according to the time-dependent Liouville-von Neumann equation 

𝑑𝜌

𝑑𝑡
= −

𝑖

ħ
[𝐻 + 𝐻2𝜔(𝑡) + 𝐻𝜔(𝑡), 𝜌(𝑡)], 

(E1) 
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where H is the Hamiltonian of the electron in the absence of any laser field, and 

H2ω(t) and Hω(t) describe its interaction with two overlapping quasi-

monochromatic laser pulses, A2ω(t)cos(2ωt) and Aω(t)cos(ωt+ϴ), respectively. As 

was shown in Refs. 8,26, if the energy transfer during the interaction is small 

compared with the initial energy of the electron, then H2ω(t) and Hω(t) can be 

regarded as commuting operators. Consequently, the unitary transformation in 

the interaction picture can be split into a product of two commuting unitary 

operators, U2ω and Uω, associated with each laser pulse. As a result, the quantum 

evolution from an initial state ρin at t = -∞ to a final state ρout at t = +∞ can be 

seen as a two-step process passing through an intermediate state. This situation 

may be illustrated by the diagram 

𝜌𝑖𝑛  
   𝑈2𝜔   
→     𝜌 

   𝑈𝜔(𝜃)  
→      𝜌𝑜𝑢𝑡(𝜃).  

In this diagram, the first action serves as the preparation of a quantum 

state, with which a second, phase-controlled field interacts. The main difficulty 

in the determination of a quantum state stems from the lack of knowledge about 

the coherent (off-diagonal) part of the density matrix in quantum 

measurements. Here, we show how this information can be retrieved in a series 

of von Neumann’s selective projective measurements47, where the diagonal 

elements of ρout(ϴ) are measured at different phase delays ϴ between the two 

fields. This provides statistical information necessary for a reconstruction of the 

unknown off-diagonal elements of the intermediate-state’s density matrix ρ. 

The second step in the diagram is described, in the interaction picture, by 

the unitary transformation 

𝜌out(𝜃) = 𝑈𝜔(𝜃)𝜌𝑈𝜔
†(𝜃), 𝑈𝜔(𝜃) = 𝒯 exp(−

𝑖

ħ
∫ 𝐻𝜔,𝑖𝑛𝑡(𝑡)𝑑𝑡
∞

−∞

), (E2) 

where 𝒯 is the time-ordering operator. We use the dagger notation (†) to denote 

the Hermitian conjugation. In the basis of eigenstates of H, 𝐻|𝑙⟩ = (𝐸0 +

𝑙ħ𝜔)|𝑙⟩, Uω(ϴ) is given by8,26,30 

⟨𝑘|𝑈𝜔(𝜃)|𝑙⟩ = exp(𝑖(𝑘 − 𝑙)𝜃) 𝐽𝑘−𝑙(2|g|), 
(E3) 

where Jk-l(2|g|) is the Bessel function of the first kind, and g is the coupling 

constant associated with the second laser pulse. The measurement is described 

by a positive operator-valued measure (POVM) with operators 𝛱𝑙 = |𝑙⟩⟨𝑙| such 

that the probability for the outcome l to occur in the experiment with a given set 
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of phase delays 𝜃 ∈ (0, 𝜋) is given by 𝑝𝑙,𝜃 = 𝑡𝑟[𝛱𝑙𝜌out(𝜃)] = ⟨𝑙|𝜌out(𝜃)|𝑙⟩. 

Combining this expression with Eq. (E2), we obtain the mapping of the unknown 

density matrix ρ to the experimental data 

[𝑇(𝜌)]𝑙𝜃 = 𝑝𝑙,𝜃, (E4) 

where T is a linear operator defined by [𝑇(𝜌)]𝑙𝜃 ≔ ⟨𝑙|𝑈𝜔(𝜃)𝜌𝑈𝜔
†(𝜃)|𝑙⟩. 

Although the Hilbert space is infinite-dimensional, in practice essentially only a 

finite number of states m = 2lmax+1≈ΔE/ħω is occupied, corresponding to the 

expected energy width ΔE of the quantum state ρ. Therefore, T is very well 

approximated by an operator on the finite-dimensional space 𝓧 of Hermitian 

complex matrices ρ with ρkl = 0 if k or l are odd. The latter follows from the fact 

that only states |𝑙⟩ with even l can couple to |0⟩ due to the second harmonic 

interaction. 𝓧 is naturally equipped with the Hilbert-Schmidt inner product 

〈𝜌, 𝜌̃〉 = 𝑡𝑟(𝜌†𝜌̃) and the corresponding norm ‖𝜌‖2 = 〈𝜌, 𝜌〉 = ∑ |𝜌𝑘𝑙|
2

𝑘,𝑙 .  

It turns out that the inverse problem (E4) is ill-posed in the sense that T 

does not have a bounded inverse with respect to any natural norm, which leads 

to ill-conditioned finite matrices and implies that noise in the experimental data 

is strongly amplified by “naïve” matrix inversions. A remedy against ill-posedness 

is regularization. We use variational or Tikhonov regularization as one of the 

most well-known and commonly used regularization methods (see, e.g., Ref. 48), 

since it is very flexible and in particular allows us to incorporate the a-priori 

knowledge that ρ is positive semidefinite as a constraint into the inversion 

process: 

𝜌𝛼 = argmin
𝜌∈𝒳

[‖𝑇(𝜌) − 𝑝‖2 + 𝛼‖𝜌 − 𝜌(0)‖
2
]  subject to 𝑡𝑟(𝜌) = 1, 𝜌 ≥ 0. (E5) 

The penalty term 𝛼‖𝜌 − 𝜌(0)‖
2

 with a regularization parameter α > 0 and some 

initial guess ρ(0) (in our case, ρ(0) = 0) already restores stability, but the constraint 

ρ ≥ 0 has an additional strongly stabilizing effect. Equation (E5) can also be 

interpreted as a maximum posterior estimator from a Bayesian point of view 

where the term 𝛼‖𝜌 − 𝜌(0)‖
2

 corresponds to the prior49. Equation (E5) has the 

form of a quadratic semidefinite program (SDP)50, the numerical solution of 

which will be discussed later. 

Often, the approximation error can be reduced by iterating Eq. (E5) in the 

form 
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ρ𝛼
(𝑗+1)

= argmin
𝜌∈𝒳

[‖𝑇(𝜌) − 𝑝‖2 + 𝛼‖𝜌 − 𝜌(𝑗)‖
2
]  subject to 𝑡𝑟(𝜌) = 1, 𝜌 ≥ 0. (E6) 

This is known as iterated Tikhonov regularization48 and can also be interpreted 

as an instance of the proximal point algorithm51 for minimizing ‖𝑇(𝜌) − 𝑝𝑜𝑢𝑡‖
2 

under the constraints tr(ρ) = 1 and ρ ≥ 0. We always performed three iterations 

of Eq. (E6) since on simulated data we only obtained significant improvements 

in the first three iterations. 

To choose the regularization parameter α in Eq. (6), we use the 

discrepancy principle48 

α = sup
𝛽𝜖𝓐

𝛽 , 𝓐 = {𝛽 ∶  𝛽 > 0, ‖𝑇 (𝜌
𝛽
(3)
)−𝑝‖  ≤ 𝜏𝛿}. (E7) 

Classically, δ denotes a bound on the noise level, i.e. ‖𝑇(𝜌̂) − 𝑝𝑜𝑢𝑡‖ ≤ 𝛿 where 

𝜌̂ is the true (unknown) density matrix. Since such a bound is difficult to obtain 

in our case, we chose 𝛿 = lim
𝛼→0

‖𝑇 (𝜌𝛼
(3)
) − 𝑝‖. We point out that, in our case, 

‖𝑇 (𝜌𝛼
(3)
) − 𝑝‖ is a monotonically increasing function of α, and thus the limit δ 

is always non-negative. With this definition, the signal-to-noise ratio ‖𝜌𝑜𝑢𝑡‖/𝛿 

takes values between 3.8 and 6.4 for our experimental data sets. With the 

parameter τ = 1.01, the choice of α according to Eq. (E7) yields good results for 

simulated data in all our experimental settings and plausible results for our 

experimental data. 

We return to Eq. (E5) and discuss an equivalent transformation of the 

quadratic SDP (E5) into a linear SDP with a quadratic cone constraint52, which we 

solve with the help of the open source optimization software SDPT3-4.053. Let T 

be a matrix representation of the linear operator T, and R†R=T†T+αI be the 

Cholesky decomposition with 𝑹 ∈ ℂ𝑚
2×𝑚2. Then ‖𝑇(𝜌) − 𝑝‖2 +  𝛼‖𝜌 −

𝜌(0)‖
2
= ‖𝑅(𝜌)‖2 − 2〈𝜌, 𝑇†(𝑝) + 𝛼𝜌(0)〉 + 𝐶, where R is the operator 

associated with the matrix R, and C is a constant independent of ρ. Therefore, 

the problem (E5) is equivalent to 

𝜌𝛼 = argmin
𝜌,𝑡,𝑠

[
𝑡

2
− 〈𝜌,𝑇†(𝑝)+𝛼𝜌(0)〉]  

subject to 𝑡 ≥ ‖𝑠‖2, 𝑠 = 𝑅(𝜌), 𝑡𝑟(𝜌) = 1, 𝜌 ≥ 0. 

(E8) 

The paraboloid {(𝑡, 𝑠) ∈ ℝ × ℂ𝑚×𝑚 ∶ 𝑡 ≥ ‖𝑠‖2} can be described as a section of 

the quadratic cone 𝒦 ≔ {(𝑢, 𝑣, 𝑠) ∈ ℝ2 × ℂ𝑚×𝑚 ∶  𝑢2 ≥ ‖𝑠‖2 + 𝑣2} by a 
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change of variables 𝑡 =  2𝑣 − 1 = 2𝑢 + 1. This leads to the equivalent linear 

semidefinite program (SDP) 

𝜌𝛼 = argmin
𝜌∈𝒳,(𝑢,𝑣,𝑠)∈𝒦

[𝑣 − 〈𝜌,𝑇†(𝑝)+𝛼𝜌(0)〉]  

subject to 𝑠 = 𝑅(𝜌), 𝑡𝑟(𝜌) = 1, 𝜌 ≥ 0, 

(E9) 

which was solved by SDPT3-4.0 using an infeasible primal-dual interior point 

method. Actually, this software cannot treat complex SDPs directly, but supports 

the conversion of complex SDPs into equivalent real SDPs with matrices of 

double size. 

 

4. Performance of reconstruction 

We would like to comment on how to choose the probe strength gω for 

optimal reconstruction results. While our reconstruction method could in 

principle be applied for arbitrarily small probe strengths, it is advised to employ 

values 𝑔𝜔 ≅ 2𝑔2𝜔, as we will discuss in the following. To test the algorithm 

performance, we conducted numerical experiments in which we added Poisson 

noise to synthetic spectrograms calculated from pure-state density matrices. The 

numerical experiments were repeated for six different values of g2ω to exclude a 

dependence on the absolute pump strength. Suppl. Fig. 3 illustrates the main 

findings: The reconstruction error decreases exponentially with the probe-pump 

ratio, until a noise level dependent minimal value is reached around gω/g2ω ≈ 3.5. 

This illustrates severe ill-posedness of the inverse problem (E4) for small values 

of gω/g2ω corresponding to an exponential decay of the singular values of T. We 

observed numerically that the condition number of discrete representations of 

T increases exponentially as gω/g2ω→0. If gω/g2ω is increased beyond 3.5, the 

reconstruction results slowly deteriorate. For gω/g2ω = 2, the respective single-

color electron energy spectra have the same absolute energy width (the factor 

of two results from the ratio of the probe and pump photon energies). 

Consequently, all sidebands are being interfered with each other, and 

information about the corresponding coherences is directly encoded in the 

spectrogram. If gω is small, however, higher-order off-diagonals in the 

reconstructed density matrix are significantly underestimated, especially for 

highly noisy data (cf. Suppl. Fig. 3b). Mixed states arising from an incoherent 

average of relative phases between pump and probe pulse would be described 

by a similar density matrix, such that pure states with noisy spectrograms and 

true mixed states are indistinguishable for small gω. Hence, the probe coupling 
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strength gω should preferably be chosen about two to four times the pump 

coupling strength g2ω, and noise contributions must be kept below a tolerable 

level. 

 

5. Application of RABBITT 

In this Section, we show that a technique known as RABBITT, which stands 

for “reconstruction of attosecond beating by interference of two-photon 

transitions” and was invented to measure the relative phases of two neighboring 

sidebands in high harmonic generation43, can be adapted to our experimental 

scenario. To this end, we consider the case where the coupling to the ω-field is 

small enough to only populate the first-order sidebands N = ±1, i.e. |gω| < 0.5. A 

pure quantum state prepared by the 2ω-field can be written as 

|𝜓⟩ =  ∑ 𝑐𝑁𝑁 even |𝑁⟩ with 𝑐𝑁 = 𝑒
𝑖
𝑁

2
arg(𝑔)𝐽𝑁

2

(2|𝑔|) =  |𝑐𝑁|𝑒
𝑖𝜑𝑁, (E10) 

where ⟨𝑧|𝑁⟩ = 𝑒𝑖𝑘𝑁𝑧 = 𝑒𝑖(𝑘0+∆𝑘)𝑧 is a plane wave with an electron momentum 

shifted from its initial value ħk0 by Δk=Nħω/v. The magnitude |𝑐𝑁| of the 

sideband amplitudes is readily calculated from the measured spectrogram, while 

the sideband phases 𝜑𝑁 are not directly accessible. In the presence of the weak 

ω-field, the energy spectrum of the quantum state is only slightly perturbed, but 

odd-order sidebands are occupied (Suppl. Fig. 4a). The population of these 

intermediate energy levels is governed by interference between the two 

adjacent sidebands, and is explicitly given by 

|𝑎𝑁(𝜃)|
2 = 𝐽1(2|𝑔|)

2 [|𝑐𝑁−1|
2 + |𝑐𝑁+1|

2

+ 2|𝑐𝑁−1||𝑐𝑁+1| cos(2𝜃 + 𝜋 + 𝜑𝑁+1 − 𝜑𝑁−1)], 𝑁 odd, 

(E11) 

where ϴ is the relative phase between the two laser fields. According to Eq. 

(E11), the populations of the odd-order sidebands oscillate in a cosine-fashion 

upon variation of ϴ, which is clearly visible in the experimental spectrogram 

(Suppl. Fig. 4b). The phase offset in oscillations from different orders encodes 

the phase difference 𝜑𝑁+1 − 𝜑𝑁−1 between two neighboring energy levels, 

which can thus be obtained from a fit of cosine functions to the experimental 

sideband intensities. Note that in contrast to the common RABBITT scheme, 

here, the electrons undergo free-free instead of bound-free transitions, so that 

atomic phases naturally do not occur and do not have to be accounted for. 
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The retrieved sideband phases (red squares, Suppl. Fig. 4c) are in good 

agreement with the values expected from Eq. (E10) (black circles). There are, 

however, two drawbacks in the RABBITT-approach. The first issue concerns 

experimental uncertainties: The sideband phases are retrieved by adding up 

phase differences, such that experimental errors cumulate in the higher orders. 

To overcome this issue, in SQUIRRELS, we employ stronger probe pulses that 

couple several (ideally all) sidebands to each other. Consequentially, Eq. (E11) is 

no longer valid, and new algorithms such as SQUIRRELS are required to recover 

the sideband phases from spectrograms. The second issue concerns the scope of 

the RABBITT method: Equation (E10) implies a pure quantum state, which 

generally may not be the case. Pure state (i.e., fully coherent) descriptions may 

for instance severely underestimate the retrieved pulse durations in ultrashort-

pulse characterization methods using partially coherent beams, as discussed in 

Ref.  54. Our SQUIRRELS method includes the possibility of mixed states, which 

are generally closer to experimental scenarios, and is thus more widely 

applicable.  
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Supplementary Figure 1: Experimental setup. The electron pulses are generated by single-photon 

photoemission from a heated ZrO/W Schottky-field-emitter using laser pulses at 50-fs pulse duration, 

frequency doubled to 400-nm wavelength in a BBO crystal. Part of the same laser beam is used for 

sample excitation to ensure synchronization between the laser-pump and electron-probe pulses. For 

two-color excitation (interferometer A), this part of the beam is further split into two parts, one of 

which is also frequency-doubled. The linear polarization state as well as the laser intensity can be 

individually adjusted for both colors. After beam recombination, the relative phase between the two 

pulses is controlled with fused-silica wedges. For the spatially-separated structure, interferometer B is 

used. A motorized mirror mount in one of the two beam paths allows to create two spatially-separated 

laser foci within the UTEM. The interferometer is stabilized by a feedback loop (PID control).  
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Supplementary Figure 2: Electron-photon cross-correlation. a) Measured electron energy spectra as a 

function of the time-delay between the electron and laser pulses at frequency ω (upper panel) and 2ω 

(lower panel). b) Corresponding calculations employing Eq. (21) from Ref. 30. c) Electron-photon cross-

correlation for two-color excitation to confirm optimized temporal overlap between both laser pulses. 

d) Intensity envelopes of the three pulses involved, used for the calculation shown in (b). Retrieved 

pulse durations (FWHM of intensity): 820 fs (electron pulse), 2.7 ps (ω pulse), 1.3 ps (2ω pulse). 

Electron pulse chirp is not included in the calculation, so that the experimentally observed tilt of the 

photon sidebands55 is not reproduced. 
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Supplementary Figure 3: Algorithm performance for noisy synthetic data. a) We applied the 

reconstruction algorithm to synthetic spectrograms with different degrees of Poisson noise, i.e., 

spectra for different numbers of counts per spectrum. The reconstruction error ‖𝜌 − 𝜌̂‖Fro decreases 

with increasing ratio of the probe and pump coupling constant, until it reaches a noise-dependent 

minimum, followed by a slow increase of the error for even larger ratios. Best reconstruction results 

are obtained for probe-pump-ratios around three to four. Error bars correspond to the standard 

deviation of an average over six values for g2ω. b),c) Reconstructed density matrices for decreasing 

Poisson noise (from left to right) with ratio gω/g2ω = 0.3 (b) and 2 (c).  The reconstruction significantly 

improves with smaller noise levels and larger ratios gω/g2ω. Pump coupling strength g2ω = 1.73. 
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Supplementary Figure 4: Application of RABBITT to obtain the electron quantum state. a) Illustration 

of the underlying principle: A weak probe pulse (gω = 0.13) populates intermediate energy levels (red) 

in the electron energy spectrum (blue) of the free-electron quantum state as prepared by coherent 

interaction with the 2ω pulse (g2ω = 1.85). b) Experimental spectrogram obtained by varying the 

relative phase of the two-color excitation. The phase-dependent populations of the odd order 

sidebands exhibit a cosine modulation, whose phase offset encodes the phase difference between two 

adjacent sidebands. c) The phases of the sideband amplitudes (solid red squares) retrieved from the 

experimental spectrogram are in good agreement with the values expected from theory (open black 

circles).  
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Supplementary Figure 5: Experimental and calculated spectrograms and corresponding reconstructed 

Wigner functions. a) Measured spectrograms after subtraction of the low-loss plasmon band with the 

full spectral resolution provided by the spectrometer. b) Calculations employing coupling constants as 

given in the figure reproduce well the prominent phase-dependent spectral features, while minor 

differences are attributed to phase averaging effects not accounted for in Eq. (2). c) Wigner function 

reconstructed from experimental spectrograms. The increase of the coupling constant g2ω from top to 

bottom is reflected in a growing amplitude of the sinusoidal phase modulation. Black solid lines 

according to Eq. (1) serve as guide to the eye. 
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Supplementary Figure 6: Simulation of attosecond temporal reshaping a) Simulated spectrogram 

assuming a pure state with gpump = 3.95 and gprobe = 3.52, including a small timing jitter of 80 as (3% of 

the optical period). These parameters correspond to the experimental values in Fig. 4. b) 

Corresponding Wigner function. c) The temporal projection of the Wigner function exhibits density 

modulations with a r.m.s. pulse duration of 296 as (after baseline subtraction, FWHM = 531 as). d) 

Corresponding electron energy spectrum (momentum projection). 
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