
Realizing a deep reinforcement learning agent
discovering real-time feedback control strategies for a quantum system

Kevin Reuer,1, ∗ Jonas Landgraf,2, 3 Thomas Fösel,2, 3 James O’Sullivan,1 Liberto Beltrán,1
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To realize the full potential of quantum technologies, finding good strategies to control quantum
information processing devices in real time becomes increasingly important. Usually these strategies
require a precise understanding of the device itself, which is generally not available. Model-free
reinforcement learning circumvents this need by discovering control strategies from scratch without
relying on an accurate description of the quantum system. Furthermore, important tasks like state
preparation, gate teleportation and error correction need feedback at time scales much shorter than
the coherence time, which for superconducting circuits is in the microsecond range. Developing
and training a deep reinforcement learning agent able to operate in this real-time feedback regime
has been an open challenge. Here, we have implemented such an agent in the form of a latency-
optimized deep neural network on a field-programmable gate array (FPGA). We demonstrate its
use to efficiently initialize a superconducting qubit into a target state. To train the agent, we use
model-free reinforcement learning that is based solely on measurement data. We study the agent’s
performance for strong and weak measurements, and for three-level readout, and compare with simple
strategies based on thresholding. This demonstration motivates further research towards adoption of
reinforcement learning for real-time feedback control of quantum devices and more generally any
physical system requiring learnable low-latency feedback control.

Future quantum information processing devices will rely
on the ability to continuously monitor their state via quan-
tum measurements and to act back on them, on timescales
much shorter than the coherence time, conditioned on
prior observations. Such real-time feedback control of
quantum systems, which offers applications e.g. in qubit
initialization [1–3], gate teleportation [4, 5] and quantum
error correction [6–8], typically relies on an accurate model
of the underlying system dynamics. With the increasing
number of constituent elements in quantum processors
such accurate models are generally not available. Model-
free reinforcement learning [9] promises to overcome such
limitations by learning feedback-control strategies without
prior knowledge of the quantum system.

Reinforcement learning, a subfield of machine learning,
has had outstanding success in tasks ranging from board
games [10] to robotics [11]. Reinforcement learning, how-
ever, has only very recently been started to be applied to
complex physical systems, with training performed either
on simulations [12–18] or directly in experiments [19–26],
for example in laser [19, 22, 26], particle [20, 21], soft-
matter [23] and quantum physics [24, 25]. Specifically
in the quantum domain, during the past few years, a
number of theoretical works have pointed out the great
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promises of reinforcement learning for tasks covering state
preparation [27–31], gate design [32], error correction [33–
35] and circuit optimization/compilation [36, 37], making
it an important part of the machine learning toolbox for
quantum technologies [38–40]. In first applications to
quantum systems, reinforcement learning was experimen-
tally deployed, but training was mostly performed based
on simulations, specifically to optimize pulse sequences
for atoms and spins [14, 15, 18]. Beyond that, there are
two pioneering works demonstrating the training directly
on experiments [24, 25] which was used to optimize pulses
for quantum gates [24] and to accelerate the tune-up of
quantum dot devices [25]. However, in none of these ex-
periments [14, 15, 18, 24, 25] real-time quantum feedback
was required.

Here, we realize a reinforcement learning agent which
interacts with a quantum system on a sub-microsecond
timescale. This rapid response time enables the agent’s
use for real-time quantum feedback control. We imple-
ment the agent using a novel low-latency neural network
architecture, which processes data concurrently to data
acquisition, on a field-programmable gate array (FPGA).
As a proof of concept, we train the agent using model-
free reinforcement learning to initialize a superconducting
qubit into its ground state without relying on a prior
model of the quantum system. The training is performed
directly on the experiment, i.e. by acquiring experimental
data with updated network parameters in every train-
ing step. In repeated cycles, the trained agent acquires
measurement data, processes it and applies pre-calibrated
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pulses to the qubit conditioned on the measurement out-
come until the agent terminates the initialization process.
We study the evolution of the agent’s performance during
training and demonstrate convergence in less than three
minutes wall clock time and based on less than 30,000
episodes of training data. Furthermore, we explore the
agent’s strategies in more complex scenarios, i.e. when
performing weak measurements or when resetting a qutrit.

I. REINFORCEMENT LEARNING FOR A
QUANTUM SYSTEM

In model-free reinforcement learning, an agent interacts
with the world around it, the so-called reinforcement
learning environment (see Fig. 1). In repeated cycles, the
agent receives observations s from the environment and
selects actions a according to the respective observation s
and its policy π. In the important class of policy-gradient
methods [9], this policy is realized as a conditional prob-
ability distribution πθ(a|s), which can be modelled as a
neural network with parameters θ. To each sequence of
observation-action pairs, called an episode, one assigns
a cumulative reward R. The goal of reinforcement learn-
ing is to maximize the reward R̄ averaged over multiple
episodes, by updating the parameters θ e.g. via gradient
ascent ∆θ ∼ ∇θR̄ [9]. Such a policy-gradient procedure
is able to discover an optimal policy even without ac-
cess to an explicit model of the reinforcement learning
environment’s dynamics.

In the present work, our goal is to use reinforcement
learning to learn strategies for real-time control of quan-
tum systems. Here, observations are obtained via quan-
tum measurements, actions are realized as unitary gate
operations, and the reward is measured in terms of the
speed and fidelity of initializing the quantum system into
a target state, see schematic in Fig. 1. In our experiment
the quantum system is realized as a transmon qubit
with ground |g〉, excited |e〉, and second excited state
|f〉 dispersively coupled to a superconducting resonator
(see App. A for details). We probe the qubit with a
microwave field, which scatters off the resonator and gets
amplified and digitized to result in an observation vector
s = (I,Q), where I and Q are time traces of the two
quadrature components of the digitized signal [41–43]
(see App. B for details and App. C for averaged time
traces). Depending on s the agent selects, according to its
policy π, one of several discrete actions in real time. In the
simplest case, it either idles until the next measurement
cycle, it performs a bit-flip as a unitary swap between |g〉
and |e〉 or it terminates the initialization process.

To train the agent, we transfer batches of episodes to a
personal computer (PC) serving as a reinforcement learn-
ing trainer. The reinforcement learning trainer computes
the associated reward for each episode and updates the
agent’s policy accordingly (see App. D for details), before
sending back the updated network parameters θ to the
FPGA.
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Figure 1. Concept of the experiment. A reinforcement
learning (RL) agent, realized as a neural network (red) on a
field-programmable gate array (FPGA), receives observations
s (blue trace) from a quantum system, which constitutes the
reinforcement learning (RL) environment. Here, the quantum
system is realized as a transmon qubit coupled to a readout
resonator fabricated on a chip (see photograph). The agent
processes observations on sub-microsecond timescales to decide
in real time on the next action a applied to the quantum
system. The update of the agent’s parameters is performed
by processing experimentally obtained batches of observations
and actions on a PC.

II. IMPLEMENTATION OF THE
NEURAL-NETWORK-BASED REAL-TIME

AGENT

We implemented this scheme in an experimental setup,
in which the agent, for each episode, is able to perform
multiple measurement cycles j, in each of which it receives
a qubit-state-dependent observation sj and selects an
action aj , until it terminates the episode, see Fig. 2(a).
If the agent selects the flip action, a π-pulse is applied
after a total latency of τEL,tot = 451 ns, dominated by
analog-to-digital and digital-to-analog converter delays.
The agent’s neural network contributes only τNN = 48 ns
to the total latency as it is evaluated mostly during
qubit readout and signal propagation (see App. B for
detailed discussion of the latency). To provide the agent
with a memory about past cycles we feed downsampled
observations (sj−1, ..., sj−l) and actions (aj−1, ..., aj−l)
from up to l = 2 previous cycles into the neural network.
To characterize the performance of the agent, we perform
a verification measurement sver after termination.

Any neural-network agent used for real-time system
control greatly benefits from short latencies in the signal
processing. For our FPGA implementation we therefore
introduce a novel network architecture, which aims to
keep latencies at a minimum, see Fig. 2(b). First, we
implement the agent as a feedforward neural network [44]
on the FPGA, rather than a more resource-demanding
recurrent neural network, like a long short-term memory
network (LSTM) [45]. Second, we process information
from previous cycles in a two-layer pre-processing network
before the start of the current cycle, thus not contribut-
ing to the latency. Third, and most importantly, we
implement a novel low-latency network architecture, in
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Figure 2. Schematic of neural-network-based real-time
feedback control. (a) Timing diagram of a reinforcement
learning episode. In each cycle j, the observation sj resulting
from a measurement (blue) is continuously fed into a neural
network (red) which decides on the next action aj (green).
Once the agent terminates after several cycles, a verification
measurement is performed. (b) Schematic of the neural net-
work implemented on an FPGA. The neural network consists
of fully-connected (red lines) layers of feed-forward neurons
(red dots) and input neurons (blue dots for observations, green
dots for actions). The first layers form the preprocessing
network (yellow background). During the evaluation of the
low-latency network (blue background), new data points from
the signal trace sj are fed into the network as they become
available. The network outputs the action probabilities for
the three actions. Only the execution of the last layer (red
background) contributes to the overall latency.

which new measurement data is processed as soon as it
becomes available. More specifically, we sequentially feed
elements Ijk, Qjk of the digitized time trace sj = (Ij ,Qj)
into each layer of the neural network concurrent with its
evaluation, see Fig. 2(b) and App. E. As a result, only
the execution of the last layer contributes to the total
latency while all other layers are evaluated in parallel
with the data acquisition. For the experiments presented
in the following, we use a network with 7 hidden layers
and 12 neurons per layer. The output layer has only three
neurons, corresponding to the three actions. However, as
the exact neural network structure may in general depend
on the properties of the specific quantum system and the
agent’s task, the width and depth of the neural network
are adjustable parameters in our FPGA design. We have
also explored the use of the same type of neural network
for quantum state discrimination, in a supervised-learning
setting (see App. C) .

III. TRAINING THE AGENT WITH
EXPERIMENTAL DATA

To train the agent, we experimentally acquire 1000
observation-action pairs (s, a) with the FPGA, before
transferring them to the reinforcement learning trainer
on the PC, see Fig. 1. The reinforcement learning trainer
then updates the parameters θ of the agent’s policy πθ(a|s)
using a state-of-the-art algorithm (proximal policy opti-
mization, PPO) [46, 47], with the goal to maximize the
cumulative reward R = Uver/∆U − nλ (see App. D for
details). Here, the integrated observation in the final verifi-
cation measurement Uver = wss

ver serves as an indicator
for the ground-state population, with a normalization
factor ∆U = ws (〈sg〉 − 〈se〉) setting the scale, and the
second term penalizes each cycle with a constant amount λ.
Thus, λ controls the trade-off between short episode length
and high initialization fidelity. The updated parameters θ
are then transferred back to the FPGA, and we repeat this
procedure until the cumulative reward R is maximized.

We first train the reinforcement learning agent to ini-
tialize the qubit using fast, high-fidelity readout. In this
regime, an initialization strategy based on weighted inte-
gration and thresholding is close-to-optimal, and we can
thus easily verify and benchmark the strategies discovered
by the reinforcement learning agent. To study the agent’s
learning process, we monitor the average initialization er-
ror 1−Pg, inferred from a fit to the measured distribution
of Uver (see App. B for details), and the average number of
cycles 〈n〉 until termination, see Fig 3(a) and (b). While
the initial random policy results in only Pg ∼ 50%, the
agent quickly learns how to initialize the qubit for both
prepared initial states, which we choose to be the equilib-
rium state (red) and its counterpart with the population
inverted by a π-pulse (dark blue). The initialization error
1−Pg has already converged to about 0.2 % after training
with about 30,000 episodes, which includes 100 parameter
updates by the reinforcement learning trainer on the PC,
and takes only three minutes wall clock time. The short
training duration, limited mainly by data transfer between
the PC and FPGA, enables frequent readjustment of the
neural network parameters and thus allows to account for
drifts in experimental parameters. The average number
of cycles 〈n〉 converges to about 1.1 for the initial equilib-
rium, and to about 2.2 for the inverted equilibrium state,
indicating that for strong measurements the agent only
needs an additional cycle to terminate for about 10 %, or
respectively 20 %, of the episodes.

IV. POLICY AND PERFORMANCE FOR
STRONG MEASUREMENTS

After the training has been completed, we analyze
the policy. Instead of directly investigating the (high-
dimensional) dependence of the agent’s policy π(a|s) on
the full time trace s, we simply extract the probabilities
P (a) for the agent to select the possible actions depending
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Figure 3. Experimental data for reinforcement learning with a network-based real-time agent. (a) Initialization error 1− Pg
and (b) average number of cycles 〈n〉 until termination vs number of training episodes Ntrain, when preparing an equilibrium
state (red squares) and when inverting the population with a π-pulse (dark blue circles) for three independent training runs
(solid and transparent points). Each datapoint is obtained from an independent validation data set with ∼ 180, 000 episodes. (c)
Probability of choosing an action P (a) vs the integrated measurement signal U . Actions chosen by the threshold-based strategy
are shown as background colors (also for (e)). (d) Initialization error 1− Pg vs average number of cycles 〈n〉 until termination
for an equilibrium state for the reinforcement learning agent (red circles) and the threshold-based strategy (black crosses).
Stars indicate the strategies used for the experiments in (c) and (e). (e) Histogram of U in equilibrium (blue circles), for the
measurement in which the agent terminates (green diamonds) and for the verification measurement (red triangles). Lines are
bimodal Gaussian fits, from which we extract ground state populations as shown in the inset. The dashed black line indicates
the rethermalization limit (see main text).

on the integrated signal U , see Fig. 3(c). We compare
the agent’s selection of actions to a simple strategy in
which the process is terminated (green background) for U
values below an acceptance threshold and a flip (blue back-
ground) is applied for U larger than a state discrimination
threshold. We observe that for U far below the acceptance
threshold the agent nearly always terminates, while the
agent predominantly selects the flip action for U far above
the state discrimination threshold. This is expected as, in
both cases, the agent has high certainty about the qubit
state. Between the two thresholds where uncertainty is
large, the agent is more likely to idle. The transitions of
the individual probabilities are smooth. This is not due
to some deliberate randomization of action choices, but
rather a sign that the agent’s policy depends on additional

information beyond the integrated signal U shown here:
the agent has access to the full measured time trace.

To evaluate the agent’s performance we analyze the
tradeoff between initialization error 1− Pg and average
cycle number 〈n〉 as a function of the control parameter λ.
As expected, we find that an increase in 〈n〉, controlled
by lowering λ, results in a gain of initialization fidelity
until 1 − Pg converges to about 0.18% (for 〈n〉 ≥ 1.1
cycles), see Fig 3(d). We attribute the remaining infi-
delity mostly to rethermalization of the qubit between the
termination and the verification cycle, and, possibly, state
mixing during the final verification readout. In our exper-
iment, this rethermalization rate is Neq/T1 ≈ 1 kHz with
Neq = 1.4 %, contributing ∼ 0.07 % to the infidelity. As
anticipated, the agent’s performance matches the perfor-
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mance of simple, close-to-optimal, thresholding strategies,
where we vary the acceptance threshold to control the
average cycle number 〈n〉 (black crosses). This indicates
that the strategies discovered by the agent are also close-
to-optimal. We also deduce that the agent’s performance
is limited mostly by rethermalization by analyzing the
bimodal Gaussian distribution of the integrated qubit
readout signal Uver in the verification measurement (red
triangles in Fig. 3(e)). While the integrated signal in
the termination cycle (green diamonds) has only very
few counts above the state discrimination threshold, the
number of such instances rises to about 0.18% in the
verification measurement, indicating transitions into the
excited state occuring between the two cycles. Compared
to the equilibrium state (blue circles) the excited state
fraction is reduced by about a factor 10 by using the
reinforcement learning initialization scheme.

V. WEAK MEASUREMENTS AND QUTRIT
READOUT

The observations until this point demonstrate that our
real-time agent performs well and trains reliably on ex-
perimentally obtained rewards. Next, we discuss regimes
where good initialization strategies are more complex. As
a first example, we investigate the agent’s strategy and
performance when only weakly measuring the qubit. We
reduce the power of the readout tone, while keeping its
duration and frequency unchanged, such that bimodal
Gaussian distributions of a prepared ground and excited
state overlap by 25 % (see App. B). In this case, we find
that the agent profits from memory, if it is permitted
access to information from l previous cycles. In that case,
its strategy not only depends on the current signal Ut,
but also on the signal Ut−1 from the previous cycle, see
Fig. 4(a). Whenever the current measurement hints at the
same state as the previous measurement (upper right and
lower left in each panel) the agent gains certainty about
the state and thus becomes more likely to terminate the
process (green region in lower left corner) or swap the |g〉
and the |e〉 state (blue region in upper right corner). As
for strong measurements, we find a trade-off between 〈n〉
and 1 − Pg when varying λ, see Fig. 4(b). Importantly,
we observe that agents making use of memory (l = 2, red
circles) require fewer rounds 〈n〉 to reach a certain initial-
ization error than agents without memory (l = 0, green
triangles) or a thresholding strategy (black crosses). This
indicates that the observed dependence of the strategy
on Ut−1 does result in a performance improvement; the
reinforcement learning agent can exploit the possibility
of measuring multiple times, in contrast to the simple
thresholding strategy.

In addition, we have studied the performance of the
agent when also considering the second excited state |f〉,
which we have neglected so far. The |f〉 state is populated
with a certain probability due to undesired leakage out
of the computional states |g〉 and |e〉 during single-qubit,

two-qubit and readout operations [48]. Thus, schemes
which also reset |f〉 into |g〉 are required. For this purpose,
we enable the agent to also swap |f〉 and |g〉 states by
adding a fourth action, and train the agent on a qutrit
mixed state with one third |g〉, |e〉 and |f〉 population,
prepared by idling the qubit, swapping the qubits |g〉 and
|e〉 state, and swapping the qubits |g〉 and |f〉 state, with
probability 1/3 respectively. For this qutrit system, state
assignment typically processes two different projections
of the measurement trace U = wUsver and W = wWsver,
where wU and wW form an orthonormal set of weights.
Here, we use U and W to visualize the agent’s strategy.
We find that, if the qubit would be classified to be in
the |f〉 state, the agent is most likely to swap |f〉 and
|g〉 (orange), as expected, see Fig. 4(d). Similarly, if
the qubit is classified to be in |g〉, the agent most likely
terminates, while the agent swaps |e〉 and |g〉, if it is
classified to be in |e〉. Around the state discrimination
threshold between |g〉 and |e〉, however, the agent mostly
idles, as the qubit state is uncertain. Interestingly, along
the state discrimination threshold between |e〉 and |f〉,
the agent almost never idles, as it is more advantageous
either to apply a flip from |e〉 to |g〉 or a flip from |f〉 to
|g〉. After the operation, the qubit will be in the ground
state if, by chance, the correct action was applied, while
it would never be in the ground state if the agent chose
to idle.

To study the performance of the reinforcement learning
agent, we trained the agent on a qutrit mixed state. We
find that an agent that can swap |f〉 to |g〉, in addi-
tion to the other actions, efficiently resets the transmon
from a qutrit mixed state with an initialization error
1−Pg ≈ 0.2% for 〈n〉 ≈ 2 (blue squares), see Fig. 4(d). In
contrast, an agent which cannot access the gf -flip action
needs significantly more rounds till termination to reach
a similar initialization error, as the agent needs to rely on
decay from the |f〉 level, which in our setup had a lifetime

of T
(f)
1 = 6 µs.

These examples demonstrate the versatility of the rein-
forcement learning approach to discovering state initial-
ization strategies under a variety of circumstances.

VI. CONCLUSION

In conclusion, we have implemented a real-time neural-
network agent with a sub-microsecond latency enabled by
a network design which accepts data concurrently with
its evaluation. This is about 100 times faster than in
the fusion control experiments of Ref. [17], which is, to
our knowledge, the fastest reinforcement learning agent
deployed in a physics experiment so far. The need for such
optimized real-time control will increase due to the ever
more stringent requirements on the fidelities of quantum
processes as quantum devices grow in size and complexity.
We have successfully trained the agent using reinforcement
learning in a quantum experiment and demonstrated its
ability to adapt its strategy in different scenarios, includ-



6

In
te

gr
at

ed
si

gn
al

,W
(V
)

- 2.

0.

2.

0. 2. 4.

- 2.

0.

2.

0. 2. 4.
0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

ac
tio

n

Integrated signal, U (V)

b)a)

c) d)

f f

f f

Weak measurements

Qutrit reset

Figure 4. Reinforcement learning results for weak measurements and three-level systems. (a) Probability P (a) of choosing the
action indicated in the top left corner vs the signal of the current Ut and the previous Ut−1 cycle for l = 2. The radii of the
black circles indicate the standard deviation around the means (black dots) of the fitted bi-modal Gaussian distribution. Black
lines are the state discrimination thresholds (normalized to 0, see App. B). P (a) is shown for each bin with at least a single
count. Empty bins are colored white (also for (d)). (b) Initialization error 1− Pg vs 〈n〉 for weak measurements for an initially
mixed state for l = 2 (red circles), l = 0 (green triangles) and a thresholding strategy (black crosses). Performance for l = 1 (not
shown) is similar to l = 2. (c) Probability P (a) of choosing the action indicated in the top left corner vs U and W . Black circles
indicate the standard deviation ellipse around the means (black dots) of the fitted tri-modal Gaussian distribution. Black lines
are the state discrimination thresholds (see App. B). (d) Initialization error 1− Pg for a completely mixed qutrit state vs 〈n〉
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triangles).

ing those for which memory is beneficial. Our experiments
are a first example of reinforcement learning of real-time
feedback control on a quantum platform. Applying this
method to larger systems will enable the discovery of new
strategies for tasks like quantum error correction [33–35]
and many-body feedback cooling [28–31].
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Appendix A: Experimental setup and device
calibration

For the experiments, we use a transmon qubit coupled
to a readout resonator on the chip shown in Fig. 5. The
chip is mounted on the base temperature stage (20 mK)
of a dilution refrigerator and housed inside three magnetic
shields, two made from cryoperm, one from aluminum,
see sketch of the experimental setup in Fig. 6. We ap-
ply microwave pulses to the chip via charge lines with
20 dB attenuation each on the 4 K, 100 mK and base
temperature stage for signal conditioning [49]. To adjust
the qubit frequency, we change the magnetic flux in its
superconducting quantum interference device (SQUID)
loop by generating currents in an inductively coupled flux
line.

To readout the qubit, we generate a 256-ns-long mi-
crowave pulse at the readout frequency ωro with a mi-
crowave generator (MWG) and apply it to the readout
resonator combined with its Purcell filter through the
input line. The response of the resonator is then amplified
by a traveling wave parametric amplifier (TWPA) with

g-e frequency, ωge/2π [GHz] 6.524
e-f frequency, ωef/2π [GHz] 6.316
anharmonicity, α/2π [MHz] -209

lifetime of |e〉, T (e)
1 [µs] 13

lifetime of |f〉, T (f)
1 [µs] 6

dephasing time of |e〉, T ?(e)2 [µs] 2

dephasing time of |f〉, T ?(f)2 [µs] 3
equilibrium excited state population, Ptherm [%] 1.4
readout frequency, ωro/2π [GHz] 7.259
dispersive shift, χ/2π [MHz] 10.4

Table I. Measured device parameters.

Figure 5. False color optical micrograph of the sample of
the used transmon qubit (blue). Depicted are the readout
resonator (green) coupled to the feed line (yellow) via a Purcell
filter (light green). A flux line (cyan) and a charge line (pink)
couple to the qubit. Uncolored parts of the chip are not used.

20 dB gain, a high-electron mobility transistor (HEMT)
and a room-temperatur amplifier (blue line in Fig. 6).
We down-convert the readout signal to 250 MHz, using
a local oscillator and an IQ mixer. For image rejection,
we re-combine the I and Q channels of the IQ mixers
using an IQ combiner, which adds a 90° phase shift to
the Q channel. After further filtering and amplification,
we digitize the signal with an analog-to-digital converter
(ADC) and forward it to an FPGA. In the reinforcement
learning approach for initializing the qubit (see main
text), the agent on the FPGA then selects an action, and
if flip is chosen, triggers an arbitrary waveform generator
(AWG) (dashed green line). The AWG then plays a pre-
programmed derivative removal by adiabatic gate (DRAG)
pulse [50], which is up-converted to the qubit frequency
using a local oscillator and an IQ mixer. We then combine
this conditional pulse with a periodically-triggered pulse
channel used for preparation pulses and apply it to the
qubit via a charge line (green line).

Using this setup, we achieve a feedback latency, defined
as the time between the end of the readout pulse and the
start of the conditional π-pulse at the qubit, of τEL,tot ≈
451 ns. Main contributors to the latency are the ADC
(τADC = 160 ns, including the delay to generate a trigger
for the AWG), the AWG (τAWG = 107 ns) and the FPGA
(τFPGA = 144 ns). In addition, there is τG ≈ 40 ns delay
due the signal propagation from the room-temperature
electronics to the sample and back through in total about
6 meters of coaxial cable. The latency of the neural
network τNN = 48 ns is included in the FPGA latency
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Figure 6. Experimental setup for operating the transmon qubit. For details, see text.

τFPGA; inefficient signal pre-processing is responsible for
88 ns.

Considering the readout pulse duration τRO = 256 ns
and the duration of the π−pulse flipping the qubit τAP =
60 ns, we obtain a minimum cycle duration τcycle,min =
τRO + τAP + τEL,tot ≈ 767 ns. When including a gf-flip,
implemented as a π-pulse on the |f〉-|e〉 manifold, followed
by a π-pulse on the |e〉-|g〉 manifold (τAP = 112 ns), we
find τcycle,min = 819 ns. For the presented experiments,
we have chosen a cycle time of 856 ns for both cases,
leaving room for further optimization of the cycle time
by about 40 ns in future experiments.

We measure the basic device parameters presented in
Table I by performing single- and two-tone spectroscopy,
as well as Rabi, Ramsey and coherence measurements for
the ground state to excited state and excited to second
excited state transitions, as presented in Ref. [51].

Appendix B: Readout characterization and
population extraction

To characterize the readout detection chain, we mea-
sure the dephasing β = |ρ01,on(T )|/|ρ01,off(T )| induced
by a readout pulse of length T , where ρ01,on(t) is time
dependent off-diagonal element of the qubit’s density

matrix with the readout pulse present, while ρ01,off(t) is
for without the readout pulse. We then compare β to the
signal-to-noise ratio (SNR) of the processed readout signal
[52], see Fig. 8(a). As, for a given dephasing β,

√
4β is the

maximum possible SNR, we define the quantum efficiency
η as η = SNR2/4β. We measure β in a Ramsey-like
experiment, applying a readout pulse of varying amplitude
in between the two π/2 pulses. For these amplitudes, we
then also evaluate the SNR of the measurement signal, by
preparing the qubit in |g〉 and |e〉, creating a histogram
of the integrated signal U and fitting a bimodal Gaussian
distribution agN (µg, σ

2
g) + aeN (µe, σ

2
e), with means µg,

µe, variances σ2
g , σ

2
e and amplitudes ag,ae to U . The SNR

is then defined as SNR2 = |µg − µe|2/σ2
g . We observe, as

expected, a linear dependence between SNR2 and 4β, see
Fig. 7, and we obtain the quantum efficiency of η = 15.2%
from a linear fit to the data, likely due to losses before the
TWPA and added noise by amplifiers after the TWPA,
whose gain was not large enough to overcome other noise
sources.

Furthermore, we evaluate the performance of the read-
out in different regimes by extracting the readout infidelity
1 − F . For this purpose, we prepare the qubit in |g〉,
|e〉 (and second excited |f〉) states, after heralding the
ground state with a pre-selection readout pulse, and fit a
bimodal (trimodal) Gaussian distribution to the combined
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Figure 7. Squared signal-to-noise ratio SNR2 vs four times
the measurement induced dephasing 4β for different readout
powers. Line is a linear fit to the data, η is extracted from
the fit.

histogram of both (all) prepared states, see Fig. 8. For
two-level-readout, we define a threshold t = (µg + µe)/2
and assign shots with U < t to |g〉 and with U > t to
|e〉, see Fig. 8(a,b). By counting the missassigned shots,
we extract P (g|e), the probability to assign a prepared
excited state to |g〉, and P (e|g) the probability to assign
a prepared ground state to |e〉, and obtain the readout
infidelity of 1 − F = 1

2 (P (g|e) + P (e|g)) = 1.95 % for
strong and 13.9 % for weak measurements. The strong
measurements are limited by the decay of the excited state
into the ground state during the 256 ns-long readout pulse,
while overlap errors dominate in the weak measurement
case. For three-level readout, we define three assignment
regions based on the fitted Gaussian distributions and
obtain an infidelity of 1−F = 11.3 %, see Fig. 8(c). We
note that the readout was optimized for two-level readout,
resulting in the comparatively large error [48, 53] when
choosing to distinguish between all three states.

These finite readout infidelities 1 − F will lead to er-
rors in the extraction of the initialization error 1 − Pg
when using thresholding. Therefore we use a a differ-
ent method: We first obtain the means µg and µe and
variances σ2

g and σ2
e from a fit of a bimodal Gaussian

distribution to the histogram of the initial equilibrium
state. For the weak measurement case, we facilitate
the fitting by assuming σ2

g = σ2
e , as this is expected

for low readout powers. In the three-level case, we
fit a two-dimensional tri-modal Gaussian distribution
agN (µg,Σg) + aeN (µe,Σe) + afN (µf ,Σf ) to the two-
dimensional histogram of U and W of the initial equilib-
rium state, and obtain means µg, µe and µf and covari-
ance matrices Σg, Σe and Σf . In a second step, we then
fit the amplitudes ag and ae (af ) to the histogram of U
(and W ) from the verification measurement, using the
previously obtained means and variances (covariance ma-
trices). The extracted populations are then given by the
amplitude ratios Pg = ag/(ag +ae) and Pe = ae/(ag +ae)
(Pg = ag/(ag + ae + af ), Pe = ae/(ag + ae + ag) and

Pf = ae/(ag + ae + af )). We note that the binning of the
shots in the histogram leads to Poissonian noise, making
standard least squares fitting procedures inaccurate. In-
stead we use a maximum likelihood procedure as described
in Ref. [54] to fit the bi-/tri-modal Gaussian distributions.

Appendix C: State discrimination with neural
networks

Since qubit state initialization relies on the distinguisha-
bility between the two states given an observation s, we
also study the ability of the neural network to accomplish
this task. We compare its performance with the one of
a standard classifier, which integrates s with a set of
optimal filter coefficients ws to obtain U = s · ws and
assigns a state by thresholding U [43, 55]. To train the
neural network in assigning the correct state, we use
supervised learning [56] on a labelled data set consisting
of 8212 individual time-traces in which we prepare ground
and excited states after heralding an initial ground state
with a pre-selection readout. The performance of the
neural network classifier is evaluated based on an inde-
pendent validation data set, which was interleaved with
the training data set.

The two example time-traces for prepared |g〉 and |e〉
states (dashed blue and orange lines in Fig. 9(a)) become
distinguishable on a timescale of about 50 ns. The fluc-
tuations around their respective average response 〈sg〉
and 〈se〉 (solid orange and blue lines) are dominated by
Gaussian noise added during the amplification process.
In addition, there are few instances in which the time-
dependent signal suddenly changes its amplitude (black
trace in Fig. 9(a)), indicating possible state transition
events during the measurement mostly due to decay from
|e〉 to |g〉.

For short measurement times τ up to 200 ns the readout
infidelity 1−F = 1

2 (P (g|e) + P (e|g)), where P (i|j) is the
fraction of states prepared in state |j〉 and assigned to
|i〉, decreases for both classifiers when increasing τ , see
Fig. 9(b). The neural network’s performance matches
the readout fidelity of the standard classifier, which is
known to be optimal for integration times much shorter
than the qubit lifetime τ � T1. For longer measurement
times τ , the readout infidelity of the standard classifier
starts to increase because of state transitions during the
measurement, which the linear filtering technique cannot
resolve. In contrast, the neural network’s performance
further improves up until τ ≈ 300 ns and stays con-
stant afterwards as the neural network is able to detect
such state transition events. Thus the neural network
outperforms the standard classifier in this regime. For
example, the neural network classifier correctly assigned
the time-trace shown in black in Fig. 9(a), while it was
misclassified by the standard classifier. We note that for
the two outliers in the performance of the neural network
(around τ = 0.75 µs and τ = 1.8 µs in Fig. 9(b)) the
training algorithm most likely converged to non-optimal
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a)

b)

c)

Figure 8. (a,b) Histogram of the integrated readout signal U , when preparing a ground (g, red) and excited state (e, dark
blue) for (a) strong and (b) weak measurements, after heralding the ground state with a pre-selection readout pulse. Lines
are a bimodal Gaussian fit to the data. (c) Two-dimensional histogram of the integrated readout signals U and W (see main
text), when preparing a ground (g, red), excited (e, dark blue) or second excited (f, green) state after heralding the ground state
with a pre-selection readout pulse. Black points and circles indicate the fitted means and standard deviation ellipses. Marginal
distributions with the corresponding fits are shown in the top and right subpanel. For each panel, all prepared states are fitted
with the same means and variances, but different amplitudes. Assignment regions are shown as background colors.

network parameters.

Appendix D: Experimental reinforcement learning

Algorithm1 Training algorithm

Require: Initial network parameters θ and ζ of the policy
and critic network πθ and Vζ
for training step=1,2,...,Nsteps do

Transfer θ to the FPGA
Record episodes in the quantum system
Transfer episodes to the PC
Evaluate the critic network Vζ
Calculate the rewards (see Eq. (D1))
Update θ and ζ with PPO [46, 47]

end for

To train the network, we perform 500 training steps,
i.e. 500 updates of the neural network parameters θ, in
around 8 min, starting from a random policy. During each
training step, the FPGA records initialization episodes
with a cycle time of 856 ns and a repetition rate of 10 KHz
until 1000 measurements have been carried out. The mea-
surement outcomes and the chosen actions are transferred

Hyperparameter Value
Adam parameter η 5× 10−4

Adam parameter β1 0.98
Adam parameter β2 0.999
Discount rate γ 0.92
Entropy coefficient 0.01
Cliprange 0.04
λ of the generalized advantage estimation 0.98
Number of training minibatches per update 1
Number of epochs for surrogate optimization 8
Maximum value for gradient clipping ∞

Table II. Hyperparameters used for training, for definition of
the hyperparameters see [46, 47]

to a personal computer (PC) in around 0.6 s. The PC
updates the parameters θ of the policy network πθ within
0.1 s, and the updated parameters θ are transferred back
to the FPGA in around 0.3 s.

The only accessible information during the initialization
procedure is the measurement results during the feedback
loop and the verification measurements; thus, the reward
function can only be based on them. We choose the
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a)

b)

Figure 9. State discrimination via neural network. (a) Mea-
sured average (solid lines, ±σ standard deviation shaded) and
single-shot (dotted) quadrature I (single-shot down-sampled
with a six point boxcar filter) for the qubit being in the ground
(orange) or the excited (dark blue) state, as well as a single-shot
during a potential decay event (black). (b) Readout infidelity
1−F with respect to the prepared state vs observation time
τ , when assigning the states with the standard classifier (blue
dots) and with a trained neural network classifier for a verifica-
tion data set (red squares) and a training data set (red circles),
respectively. Simulated readout infidelity of the standard
classifier (solid black line), considering overlap errors (dotted)
and errors due to decoherence (dashed).

reward rt within time step t ∈ {1, ..., n} as

rt =
Ut+1 − Ut
Ug − Ue

− λ (D1)

with the projected measurement result of the tth iteration
Ut, the projected verification measurement Un+1 and a
control parameter λ. Ug and Ue are the average projected
readout signals if the qubit is prepared in the ground
or excited state. Ut+1 − Ut provides the progress of
the initialization compared to the previous round and
gives direct information if the action at resulted in a
quantum state closer to the target state. The parameter
λ penalizes every action and thus controls the trade-off
between average episode length and initialization fidelity.

The network parameters θ are modified in every update
step to maximize the averaged cumulative reward 〈R〉,

defined as

〈R〉 =
〈 n∑
t=1

rt
〉

(D2)

where 〈·〉 denotes the average over all possible episodes.
With our chosen reward function, the average cumulative
reward equals

〈R〉 =
〈Uver〉 − Ue
Ug − Ue

− λ〈n〉+ const. (D3)

The first term approximates the initialization fidelity, the
second one penalizes long episodes and the constant is
independent of the agent’s policy.

For the training step we use the Proximal Policy Opti-
mization (PPO) algorithm [46] from the Python library
Stable Baselines [47]. In addition to the policy network
on the FPGA, the PPO algorithm makes use of a second
network, the so-called critic network Vζ with its param-
eters ζ. Based on the current observation, the critic
estimates the expected future cumulative reward given
the current policy πθ. By comparing the cumulative
reward for each observation collected on the FPGA to the
expectation of the critic, the PPO algorithm identifies
action sequences that perform better than expected and
modifies the agent’s policy such that the agent is more
likely to select these action sequences. The critic is only
required for the update step while it is not required for the
decision-making process. Therefore, the critic network is
only running on the PC. We implement the critic network
as a feedforward network with two hidden layers with 64
neurons per layer. All additional hyperparameters of the
PPO algorithm are listed in Table II.

The whole training loop described above is summarized
in Algorithm 1.

Appendix E: Low-latency neural network
implemented on the FPGA

In implementing the agent’s policy as a neural network
on an FPGA (see Fig. 3), we aimed for an architecture
which achieves high initialization fidelities while keeping
processing latencies at a minimum. In the following,
we discuss design considerations of the neural network
architecture to reach this goal by making optimal use of
the available FPGA resources.

1. Implementation of dense layers

Our network is a feedforward network and consists of
multiple dense layers, each of which transforms the values
of N input neurons y(in) into the values of M output
neurons y(out) according to

y
(out)
j = f

(
N−1∑
k=0

wjky
(in)
k + bj

)
(E1)
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with j ∈ {0, ...,M−1}. Here, f is the nonlinear activation
function, w the M × N -dimensional kernel matrix and
b the M -dimensional bias vector (where w and b are
different for different layers).

To compute the values of all y
(out)
j in parallel and

with minimum latency on the FPGA we multiply all

y
(in)
k with their respective weights wjk within one clock

cycle of duration τclock = 8 ns and then add them up
sequentially in subsequent clock cycles, see Fig. 10. Since
two subsequent additions are performed within one clock
cycle, the number of summands gets reduced in each
clock cycle by at most a factor 22 = 4, such that the total
number of clock cycles required to perform the summation
is dlog4(N + 1)e, where the ”+1” accounts for the bias bj .
We evaluate the nonlinear activation function f chosen
to be the Rectified Linear Unit (ReLU) function in the
last clock cycle. Therefore, the execution time τdense of a
single dense layer is given by

τdense = τclock (1 + dlog4(N + 1)e) , (E2)

In our specific experiment, we choose N = 20 for each
layer of the low-latency network resulting in an execution
time of 32 ns per layer.

2. Implementation of the preprocessing network

We equip our network with a memory of the past by
providing it in each cycle t with the readout signals sj and
actions aj from l previous rounds. As this information is
already available after the previous action was selected,
this input is evaluated in a pre-processing network (see
Fig. 3) while the agent is waiting to receive the most
recent readout signal st of the current cycle. Thus, no
additional latency is introduced to the feedback loop. To
reduce the amount of data to be processed, we apply
a 32-point boxcar filter to the previous measurement
results before feeding them into the network. Each of
the previous actions is expressed by a three-bit string.
A fourth bit is added if the gf -flip action is considered.
The preprocessing network consists of two layers with 12
neurons per layer.

y(in)
0

wj0

y(in)
1

wj1

y(in)
2

wj2

y(in)
3

wj3

y(in)
18

wj18

y(in)
19

wj19

bj

+

+

+

+

+
+

+
+

+ apply f

τclock 2τclock 3τclock 4τclock

Multiplication Summation

y(out)
j

Figure 10. Evaluation for N = 20 input neurons on the
FPGA. All output neurons are evaluated in parallel. In the
first clock cycle, the inputs are multiplied with their respective
weights. In the following cycles, these products and the bias
are summed pairwise. Two summations are performed per
clock cycle.

3. Implementation of the low-latency network

We start to evaluate the network as soon as the first
element of the signal arrives. The first layer processes this
information together with the output of the preprocessing
network. Layer by layer, the most recent measurement
data is fed into the network until the whole signal is
processed.

The measurement signal, recorded with a time resolu-
tion of 1 ns, is down-sampled with an eight-point boxcar
filter, introducing a latency of 16 ns. We feed four ele-
ments of the in-phase and out-of-phase component of the
down-sampled signal and the output of 12 neurons from
the previous layer into the subsequent layer resulting in
an input size of N = 20.

The last layer has one output neuron per action and
each neuron value encodes the probability of choosing its
corresponding action. In order to sample an action, we
use the Gumbel-max trick [57] which does not introduce
any additional latencies.

The network execution adds a latency of 48 ns, where
16 ns result from the eight-point boxcar filter and 32 ns
from the execution of the last layer.
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learning and the physical sciences, Review of Modern
Physics 91, 045002 (2019).

[39] A. Dawid, J. Arnold, B. Requena, A. Gresch, M. P lodzień,
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