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Abstract

Quantum computation represents a powerful alternative to, amongst others, handle amounts of
data that would pose an intractable problem for our current classical computers. However, scaling
quantum computers presents considerable difficulties in experimental implementation, which has
so far led to the development of quantum computers whose implemented resources are orders of
magnitude too small to be used for practical purposes. Therefore, finding an equivalent simulation
of quantum systems with circuits that require fewer resources is of particular interest. One option
to achieve such a compaction is to narrow our interest down to Gaussian systems, owing to the fact
that the probability distribution describing such systems has characteristics that can be utilized for
a more efficient representation. However, notwithstanding the importance of bosonic computing,
there is little research in the subfield of bosonic Gaussian circuits that addresses a concrete approach
to achieve this aim. This paper therefore reviews previous research on compressed fermionic
Gaussian computation in a first instance, and suggests generalizations of these findings to bosonic
Gaussian systems in a second instance. Consequently, we will investigate the classical simulatability
of both types of circuits, as well as provide evidence that, under certain conditions, the computation
of fermionic and bosonic Gaussian systems can be equivalently simulated in polynomial time with
logarithmic-sized quantum circuits.
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CHAPTER 1

Introduction

Owing to the multitude of new counterintuitive insights proposed by quantum mechanics
after its emergence in the 20th century, a variety of new approaches to existing research
areas such as information processing have surfaced. Quantum computers, first intro-
duced in 1980 [3], are profoundly different from classical common computers, as they
utilize precisely these new insights, such as quantum superposition, quantum entangle-
ment, and interference, to process information in a more efficient manner. Among other
aspects, one justification for this distinction is that the classical resources to model a
generic quantum many-body system, as handled by quantum computers, grow expo-
nentially with the system size. This suggests that, conversely, quantum computation
could be relied upon to access solutions to problems that are intractable with classical
computation as they require the manipulation of large amounts of information. The
factorization problem of integers is an example of such an intractable problem enabled
by quantum computations. Although to this day it is considered classically infeasible in
polynomial time, i.e. there is no known algorithm to factorize a natural number repre-
sented by N bits using poly(N) operations, quantum computers are able to do so using
the Shor factorization algorithm [10].

However, in the current state of the art, the implementation of quantum computers is a
fairly difficult task as it requires precise manipulation of the system, which has resulted
so far in the development of quantum computers with a limited number of qubits [1].
However, the effective count needed for practical applicability is orders of magnitude
larger, so there is a particular interest in finding solutions to reduce the resources in
terms of qubits and/or the number of quantum gates required to simulate specific quan-
tum systems. A kind of these specific systems that might allow for such a compactified
description are Gaussian systems. The idea is that by restricting ourselves to Gaussian
states, i.e. thermal states of quadratic Hamiltonians, and to Gaussian transformations,
i.e. transformations that leave Gaussian states Gaussian, one could exploit the specific
properties of the probability distributions describing such quantum systems to describe
their evolution in a more efficient way. Accordingly, this approach could be used to
describe the quantum circuits used to realize Gaussian quantum algorithms to achieve
new encodings in equivalent circuits that require fewer resources.
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This thesis aims to investigate this matter considering two different cases, namely fermionic
and bosonic Gaussian systems. Reviewing the work of R. Jozsa et al. [7] on the charac-
terization of matchgate circuits, i.e. equivalent circuits to fermionic Gaussian ones, and
proposing an analysis of bosonic Gaussian systems, we attempted to provide evidence for
the equivalence of Gaussian and reduced-space circuits, i.e. quantum circuits described
by fewer modes than the Gaussian circuit.

This work has been divided into the following parts. The remainder of this chapter
will focus on introductory concepts, revolving around our used mathematical toolset;
then we will devote Chapter Il to reviewing approaches to fermionic compression, i.e.
recoding matchgate circuits into circuits with reduced resources. Using these reviewed
fermionic methods, we will characterize bosonic Gaussian systems and present evidence
for the equivalence between bosonic linear optic and space-reduced circuits in Chapter
[TI. Finally, in Chapter IV we will make concluding remarks and suggest directions for
future research.

I.1 Many-body systems

Consider a system of N indistinguishable particles described by
Hovy = 'H%J)V =HyHOHH®...0Haq) = span {|A1) @ (M) ® ... ® [An)} (L.1)

then, because of indistinguishability, our subspace of physically meaningful pure states
is spanned by

|>‘17 Aoy - 7)\N> = NZCP |/\p1> ® |)‘p2> ®...Q |>‘pN> (1-2)
P

where N is the normalization, the sum is going over all permutations of the N indices,
and

(L.3)

¢ = {1 for a symmetric state in the bosonic case
p

sgn(p) = £1 for an asymmetrical state in the fermionic case

where sgn(p) is the signature of the permutation p. However, the expression of Eq. 1.2
can become somewhat tedious, so we will use the much more practical formalism known
as second quantization as reviewed in [4]. With this formalism we can represent our
state with the occupation number basis (occ. basis) |ng, n1,ne, . . .) where ny specifies the
number of particles in the state |lambda). Nevertheless, because of the Pauli exclusion
principle, we can further specify both symmetry cases separately:

(L4)

Ny for bosons
ny € .
{0,1} for fermions.

Now, we will define the “ladder operators” connecting these states as

1
al i, ngms, .. ) = (ny+ 12X ng, ... ony+1,...) 15)

~ 1
a)\|n1,n2,n3,...) = (n,\)Zés* ]nl,...,nA — 1,>
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where ¢ = 4+1 (—1) for bosons (fermions) and Sy = 327" n;. With these ladder opera-
tors, we now define Hermitian quadratures (Majoranas) as

Ny S Y
N a; + a; PN .a; — a4 ‘ (16)

Ti (Coi1) = 7 b (éo) =1 NG

These operators satisfy the following canonical (anti-)commutation relations (CCR)

- b oat - 5 D
iy Ujle = (W, Uil = 0 iy Ly = Wi Pj] — 0 AA
{[a aj]i Gy, G ’ {[i ;J] [ ”PJ] ’ {{Ci’cj} =" (1.7)

where [A, B], = [A,B] = AB — (+1)- BA and [A, B]_ = {A,B} = AB— (—1)- BA. In
Chapter II and Chapter III we will see an advantage in working with vectors with 2NV
operator components

ay T
N : C1
. a ay . X TN . _
r = "T = A.'. s 7 = ~ = N y C = (I 8)
a aj p p1 .
. . CoN
djv DN

because their CCR can be written in a more compact way
(i, 7ile = €5 { .
) '2172 :1Qi‘ 9 { é’mé = ]]-QNZ" 19
{w;]g—zfj o =i da g = T, (L.9)

with the 2V x 2N matrices

oV 1V 1y oV

We can also see that we can express the relation between the ladder operators and the
quadratures (Majoranas) as a linear transformation

2l v

7, =
with A~" = AT € U(2N).

1.2 Gaussian systems

We will call a state, represented by its density matriz p, a Gaussian state if it is the
thermal Gibbs state of a quadratic Hamiltonian of the form:

(1.12)

Hy,=13"h*s + (d*)" 2 = T (d")"# for bosons (bqH)
L i "t for fermions (fqH)
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where h* (g°) is a real (skew-)symmetric 2N x 2N matrix, h" (g") is a complex (skew-
Yhermitian 2N x 2N matrix, and d?/" is a real /complex 2N dimensional vector, as shown
in Appendix A. The absence of linear terms in the fermionic model is due to the parity
superselection rule (PSSR) [16], and we omit any overall additive constant, as it would
just result in an energy shift and thus not influence the evolution of our system. In fact,
it would also not change the ground or thermal state of the Hamiltonian. Thus, any
Gaussian state (GS) can be written as
—BH —BH

- eﬁA::eﬂN (1.13)
Tr [e—ﬂH } Z

pc(B)

where H is a quadratic Hamiltonian. However, since the purity condition is p* = p we
can see that, by construction,

Tre[effgj\f] is mized,
7 Peloeel (1.14)
—BH\r .
T PN . is pure.
Remark

In fact, any bosonic state, pure or mixed, represented by p has an equivalent represen-
tation by a function in the quadrature phase space, namely the Wigner characteristic
function

x(€) = Tr [pexp (1&:TQ£)} (I.15)

where & € R*Y and the inverse function given by

R 1 .
p= ~ /dQNﬁx(E) exp (—wTQé) . (I.16)
(27)
The Wigner characteristic function is the Fourier transform of the normalized nonpositive

(quasi-)probability distribution, the Wigner function

1
(2m)2N

W(x) = / d*NEx(€) exp (—ix" Q). (1.17)

In fact, for a bosonic Gaussian state, its Wigner function, and therefore its Wigner
characteristic function, is as the name of the state indicates, Gaussian [15].

We will now call a reversible quantum channel Gaussian if it preserves the Gaussianity of
any Gaussian state. Moreover, because such reversible quantum channels are represented
by unitaries, we will represent a Gaussian reversible quantum channel by the Gaussian
unitary (GU) Ue. However, because any unitary is generated by a Hamiltonian, we can
write according to Eq. .13

Hg defigc — &

Z

UG,@GU& — ei e—fi—iﬁg-}—%[ﬁ,ﬁg]-i—ﬁ[ﬁ,[ﬁ,ﬁg“ﬁ- — € 661 (118)
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with Oy = —H — iHg + ; [H Hg] 5 [I:I, [ﬁ, I:I(;” + .- according to the Baker-
Campbell-Hausdorft formula. Consequently, we can rewrite

UGﬁGUT _ %e—OAH-iﬁG—é[OA1,1€IG]—1;[OA1,[OA1,JEIG”+ S €Z (119)

e~ 02
Z
to be a GS is that all commutators are quadratic or linear. Thus, Hg needs to be a
quadratic hamiltonian in the form of Eq. [.12 as the commutator conserves the poly-
nomial degree due to the CCR in Eq. [.20. Consequently, we can state that bosonic
Gaussian unitaries (bGU) as well as fermionic Gaussian unitaries (fGU), are, in fact,

unitaries generated by quadratic Hamiltonians.

I.3 Compressed quantum circuits

Throughout this thesis, we will work with a quantum circuit model (QC) that, depending
on whether we are in the fermionic' or the bosonic case, can be decomposed into the
following components:

e An input state p;, that represents the initial state of our system. For a qubit
circuit, the pure initial state of the N-entangled particle system is represented in
our computational basis, such as, for example, the product state |0001011) for 7
qubits. For a bosonic circuit we will directly represent the state of our N-mode
system in the occ. basis, such as, for example, [21073) for a pure state of 5 modes.
We will assume that we arrange the qubits/modes as a one-dimensional grid and
thus we can characterize qubits with a notion of proximity:.

e A combination of M two-* or one-particle/mode quantum gates, which we will call
elementary gates, that implement the desired algorithm, represented by the uni-
taries UM . UM—l . .-Ul = UQC. We restrict ourselves to two- or one-particle/mode
gates to be able to quantify the difficulty to implement the circuit experimentally,
moreover we will define the depth of our circuit as the longest path in the circuit
and thus of the order of the number of such elementary gates.

e A final measurement on a single particle/mode’, retrieving the desired information
from our probability distribution. For the qubit case we represent this measure-
ment, WLOG, by the expectation value of the Pauh 7 operator, acting on the k-th
qubit line, (Zk for the final state p; = UQCmeQC For the bosonic case we mea-

sure the expectation value of a one-body operator (O>f with O = Z,\,,v:o a/\O,wa,\,
where Oy = ()| O(l) |\’) is the matrix element of O(l) that acts on H

We define the process of compressing a QC efficiently as recoding it into a new reduced-
space QC, i.e. whose number of needed qubits/modes is reduced, such that the required

"We will show in Section I1.2 that fermionic and qubit circuits are equivalent, thus we will refer
commonly to fermionic circuit as qubit circuits.

2If we talk about a two-particle / mode gate we implicitely talk about a nearest neigbhour (n.n.) gate.

3The implication of such a single qubit/mode measurement will be discussed in Chapter 1V.2
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number of reduced-space elementary gates stays polynomial in the initial number of
elementary gates.

Chapter Summary:

e Throughout this thesis, we will mainly use the operator vectors t = ( ;) ,
72— (X) and & = (&, -+ éoy)”
p
e obeying the following canonical commutation relations (CCR):

[7s, Pile = Q2 s a1 .
{['ﬁ 7;}& . 23] s {[Zu Zj] = lﬂij , {{Ci7 Cj} = (:I].QN)Z‘j. (120)
i Tyle = &ij

e Gaussian states are thermal Gibbs states of quadratic Hamiltonians.
e Gaussian unitaries are generated by quadratic Hamiltonians.

e We will simplify a quantum circuit to an initial state p;,, M consecutive
elementary gates, and a final measurement represented by (Zy) for the
fermionic case, and (O) s, with O being a one-body operator, in the bosonic
case.

o With efficient compression we define the action of re-encoding a QC into a
reduced-space QC with a depth that stays polynomial in the initial number
of elementary gates.
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Compression of fermionic Gaussian circuits

This chapter will be structured as follows. First, in Section 1.1 we will introduce the
underlying mathematical concept that allows a reduced-space description of fermionic
Gaussian circuits (fGC); then in Section 1.2 we will discuss the equivalence between
fermionic and qubit systems to transfer this mathematical concept to our qubit circuits.
This is followed by Section II1.2, which reviews the first implication of the reduced
description, namely the classical simulatability as proposed by Jozsa et al. [6]. The
chapter will then go on to review arguments related to the ones from [7] that fGCs are
simulatable by a reduced-space QC in Section [I1.3 to finally, in Section I1.5, outline the
ensuing possible encodings, also closely related to [7], to characterize whether f{GCs can
be compressed efficiently.

II.1 Compressed description of fGUs

As we saw in Chapter I, to achieve compression, we need to describe the action of our
QC with a reduced number of parameters and then implement efficiently this reduced
amount of data into a QC. In this section, we will look at the first part, that is, how to
describe the action of our circuit with fewer parameters.

Consider a fermionic QC described by the action of the total unitary UQC on our initial
state |1;) in the Schrodinger picture, then this action can also be interpreted as the
evolution of our final measurement observable in the Heisenberg picture as UQCOUQC

However, from the definition of the ladder operators in Eq. [.5 we can follow that {ai N
and thus their unitary linear combination {¢;, ¢;}, are complete sets of generators for the
operator algebra acting on our fermionic N particle system. Consequently, to describe
the action of our fermionic QC, it is sufficient to describe the evolution of our ladder
operators or our Majoranas in the Heisenberg picture.

Nevertheless, if we consider a Gaussian fermionic circuit and if we recall that f{GUs are
generated by fqHs, we can see that the evolutions of our Majoranas and our ladder
operators have special forms.



8 Compression of fermionic Gaussian circuits

Theorem 1. Let Ug be a fermionic Gaussian unitary generated by a quadratic Hamil-
tonian, ¢ the Majorana operator vector, and t the ladder operator vector of a fermionic
N-particle system; then:

UleUg=R-& and ULiUg=U - (IL.1)

where R € SO(2N) and U € U(2N).

Proof. Recalling that f{GUs are generated by quadratic Hamiltonians of the form
Hy =i-¢ g°¢c, (I1.2)

we can see Ug;ékUG as the time developed ¢;(0) = ¢ in this fqH ]:If. Thus, we can use
the Heisenberg equation to get

deg(t) . . Bq 112 1 % 0 . N A AN
— = i[H, ()] a4 _égijUg (¢ [¢5, éx] + [6, & &) U (I1.3)

Considering that [A, B] = {A, B} — 2BA we have

(¢i ¢, r) + G, C) &) = €i{¢j, G} — 2€:i6¢5 + ¢{Ci, G} — 2616i¢5 (I1.4)
and because of the CCR of Eq. 1.20 we have ¢,¢;¢; = —¢¢x¢; + {é, ¢ }¢; and with

éi,é' = 52 we get
] j &

déy (1)
dt

1 ~ ~ 3 1 c c\ N 7
= —5U& g5(@dn — &0:)Ue = =505 [((99)" = 9°) -], Ve (IL5)

Moreover, g¢ is skew-symmetric, as shown in Appendix A, thus we get the differential
equation

de(t)
—— =g°-¢(t), I1.6
o =9 e) (I1.6)
thus by solving it and setting t = 1 we retrieve
Ulelg=e9 ¢ =R -&. (IL.7)
However, we know that real skew-symmetric matrices are infinitesimal generators of spe-

cial orthogonal matrices; hence ¢9° = R is an element of SO(2N).

To prove the transformation of ¥ recall that ¢ = A - T, consequently, we have
UtU=UATeU=AT-R-A -} (IL.8)

but because A € U(2N), we have AT- R- A = U € U(2N). O

The importance of this theorem lies in the fact that even if H comprises any possible
combination of the basis elements and thus could map onto the entire Hilbert space
H%J)V , one can represent the action of Ue on our Majoranas / ladder operators with at
most 4N? parameters. This insight is the underlying concept, which allows compression
in qubit circuits, and we will now see how to concretely implement it.
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I1.2 Fermionic and qubit systems are equivalent

Consider a qubit system of N qubits represented by the computational basis {lz122...2n) :
z; = 0,1} with the usual Pauli operators X;,Y;, Z;, then we can interpret this basis as
an occ. basis and implement the corresponding ladder operators as [§]

o; = indicates |0)(1| that acts on the j-th qubit. This transformation is referred to as
the Jordan-Wigner transformation. Similarly, we can implement the Majoranas as [7]:

7—1 times

V2o, =XT1--1 V2e65=2X1---1 - 2 1=2 -2 X1I---1
7—1 times
V2 g =YI-1 V2-¢,=0VI--I V2 bop =2 -2 YI---1

(I1.10)
However, because {f XY , Z } is a basis for any operator, any qubit gate is generated
by a Hamiltonian, which can be expressed in terms of Pauli operators and identities.
Consequently, we can directly define qubit gates as Gaussian if they are generated by a
Hamiltonian that is quadratic in the Majoranas as defined in Eq. [1.10. Such a Gaussian
qubit gate can be decomposed into Gaussian elementary qubit gates, which, by definition,
act only on one or two n.n. qubit lines. Such Gaussian elementary qubit gates are called
matchgates (MG) and can be written in the form of [7]

p 0 0O

G(A,B) = with A:(f z> and B:(Z’ 'Zf) (IL.11)

n O O

0
0
r

ow &
o w8

where A, B € SU(2) or A, B € U(2). Consequently, we call such Gaussian qubit circuits
matchgate circuits (MGC). However, by converting Theorem 1 to the action of match-
gates, we can describe the action of a MGC with fewer parameters. We will now discuss
the implications of this reduced description.

I1.3 Classical simulatability of MGCs

In the next sections, we review R. Jozsa et al.’s thorough analysis [7] of compressed
quantum computation with matchgate circuits, and propose additional aspects originat-
ing from a more general fermionic approach.

Consider a circuit of N qubits, M matchgates and some input state p;,', with Ue =
UM-...-UQ-Ul,then

<Zk>f = <ﬁéZkUG>in~ (I1.12)
Using Eq. [1.10 we can see that Zk = —2iCop_1Cok, hence
<Zk>f = _2i<U£‘é2k—IUG : Uéézk(]c)m, (I1.13)

"'We will restrict us to circuits where all qubits are acted on by at least one of the M elementary gates,
thus M > N/2
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and here we can use Theorem 1 to get

1, 4

§<Zk>f = Ryi—1,Ror j(CiCj)in (I1.14)
where R is the rotation assimilated with Ug. Defining I';; == (¢i¢;)in = Tr[pin€ij] as

the correlation matriz we can rewrite the expectation value as
i

2<Zk>f — (2k — 1| RTR" |2k) . (I1.15)

Interestingly, our initial expectation value, where the observable was described by O (2N )
parameters, has been reduced to a matrix element of a 2N x 2N matrix. We can even go
a step further and discuss the classical computation time of each element in Eq. 11.15.

o If we restrict ourselves to an initial pure product state py, = Vi XVin| With ¥y, =
V1 ® - - @Yy, each entry of the correlation matrix I' can be calculated, for i # j,
as a product of two terms® (¢;|¢;|0i) - (0;|¢;105) = (1| Llbr) ... (Wléilabs) - .. .-
(jléi;) - ...+ (Wn|L|Yn) and for ¢ = j directly as one term (v;]¢Z|¢);). Thus,
the 4N? < 16M? entries of T' can be calculated in O(N?), hence, O(M?) time.

e By decomposing the rotation in Eq. [1.15 as R = Ry; - ... - Ry - Ry WAith each
R; € SO(4) extended to 2n dimensions, corresponding to its matchgate U; acting
on the k-th and (k+1)-th qubit, according to [7]:

ita i { 242 Ri[j, e, for j =2k — 1,2k, 2k + 1,2k + 2
iGYi =9 .

, (I1.16)
Cj for all other j ’s

we can compute R as a product of M 2N x 2N matrices in O(M?) time.

e Finally, to compute the matrix element in Eq. [1.15, we need to sum over at most
O(N?) < O(M?) terms.

Consequently, we can classically compute the expectation value (Zk> 7 in poly(M) time?,
thus, by defining a “polynomial-sized” MGC as a MGC having a number of elementary
MGs equal to a polynomial of the number of qubits N, we arrive at the first main result

Result 1 Any polynomial-sized MGC having an initial state which is a pure
product state, can be classically computed in polynomial time.

This is in fact a remarkable result, considering that to naively simulate a quantum system
by classical means, one would need ressources that are scaling exponentially with the
system size. However, we can extend the analysis of Eq. [1.15 to find another really
interesting proprety.

2Because of the PSSR |¢;) = |0), |1), consequently (v;|¢;|1;) can be directly computed without needing
to calculate a superposition sum and thus is only accounted for as one term.

3Here we related the computation time of each element to an order of number of gates M because it is
defining the depth of the circuit.
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I1.4 Reduced-space simulatability of MGCs

The form of Eq. I1.15 is suggestive of a possible reduced-space quantum simulability,
and since we have already specified that R is an orthogonal rotation, we only need to
take a closer look at T to complete the picture. To do so, we firstly take a look at the
ladder operator correlation matrix

T.. T
NS T . ata aa
(Tio)y = (P)75) = [ATTA] = ( T T )ij (IL.17)
with
(Tara)iy = (alay) = (ala;) = (T, )i
(Laat)ij = <diA}> = <&j&;r> = (Fgm)ij (I1.18)
(Darar)yy = (alal) = (a;a:) = (T}, )i

Thus, I';, is Hermitian and, therefore, can be diagonalized by a unitary U € U(2N)
according to

U1 o --- 0
r., =UT,U = 0 h : (I1.19)
0 ... 0 VaN

with v; € R. However, as shown in [12], diagonalizing the correlation matrix amounts to
finding a canonical transformation of modes, i.e. a set of new modes that also satisfies
the CAR, such that the expression in those new modes of the density matrix, for which
the correlations of I';i; are evaluated, represents N decoupled 1-mode systems of the

D! AN
form p¥ = @,_, pr, because then

A\ o~ o~ ] i R 1.1 PSSR
(I‘IPO.)Z‘?gj =Tr |:(® pi) Tirj] z Tr [plln} -Tr [ple]] ="0. (II20)
However, with this so-called uncorrelated state, we can compute

(TR a)i = (al?) = 0= (a?) = (TF,)a
(Fe?m>ii i Ni) (11:21)
(TL0)u = (aia)) =

I
—
Q>
& -
>
-~
Il
— o~ O

thus, the diagonal form of the ladder correlation matrix can be written as

a0 .- 0

l.o.

o - - (11.22)

0 ... .0 1—ny

where n; = (NN;) is the mean occupation number of the i-th uncorrelated mode. However,
because of the PSSR the density matrix needs to commute with the parity operator, so
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the only 1-mode state which is physically allowed is given, in the computational basis,

by
ro=(15" ) (11.23)

with p € [0, 1] given by the positive definiteness condition, and because

p="Tr [(1 o7 g) (8 (1))} =Ty [ﬁl(p)]ﬂ = (I1.24)

we can fully describe any 1-mode state by its mean occupation number n, where,

.
10 00

oL = , = n=p=0,1 for pure states,

Ppur (o o) (o 1) P P

1—n 0
/\1 . — —

Consequently, if we know the uncorrelated form of a state p” we can compute its diagonal
form from Eq. [1.22, and we can also note that for pure states, and, what we are going
to call, “equi-occupied mized states” where the uncorrelated form can be written as

(I1.25)

= 1 €]0,1] for mized states.

p€]0,1]

N
7= Qi | ok = pha(p), i1 - 1), (I1.26)

I';,. only has two eigenvalues, namely 0, 1 for the pure state® and #i;, 1 — 7, for the
mixed state.

However, because similarity transformations conserve hermiticity and the eigenspectrum,
the same applies also for I' = AT, A. Consequently, we can see that T satisfies a special
and useful condition.

Theorem 2. Let T' be a correlation matrix of a pure state or a equi-occupied mized state
of a fermionic N-particle system. Then there exists an o € C such that:

i(T+a-1) € O@2N). (IL.27)

In fact, with n € [0,1] the expectation value of the one-mode number operator of the

uncorrelated state
1 1\’
a=—§+i\/1—(n—§) . (I1.28)

4This is due to the fact that for the state to be pure, each 1-mode state needs to be pure, hence the
eigenvalues can only be 0 and 1.
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A Tm(z)
ﬁ/

\ Re (z)

1-n

QL

Figure I1.1.: Graphical proof of Theorem 2.

Proof. Let A be a 2N x 2N Hermitian matrix; thus, there exists a unitary U such that
U'AU = AP = diag(\, ..., \oy) with \; € R. Hence,

A+a-1=UAU"+a-UU"-1=U (A" +a-1)U' (11.29)

and, therefore, A+ a - 1 is unitary iff AP + - 1 is unitary. However, this condition can
be written as

(AP +a-1)' (AP +a-1) =1, (I1.30)

thus,
N+ Ni+a)=1 Vi=1,...,2N (11.31)

and solving this equation, we get

A\i = +4/1—Im(a)* —Re(a) Vi (11.32)

Consequently, because for all Aj, Ay such that |[A\; — Az| < 2 there exists an a € C such
that A2 = £4/1 — Im (o) — Re («), and because I is hermitian, there exists an a € C
such that I' + o - 1 is unitary iff I' only has the two eigenvalues n; and 1 — ny; with
ny € [0, 1], which is given for a pure or a equi-occupied mixed state. In fact, if

fi; = —Re (a) £ /1 — Im ()”

(I1.33)
1 —7; = —Re(a) F1/1 —Im(a)’,
then
Re (o) = —3
5 (I1.34)
fm (@) = /1= (7 = 3) ",
Moreover, for this o we have
- [i@a) = iee) YT i) fori

— 2=
(@ +ia "2\ 1- (-1 fori=

hence i(T' + « - 1) is a real unitary for a pure or a equi-occupied mixed state. ]
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However, because

(2k — 1| RIR" |2k) = (2k — 1| 1|2k) = 0, (I1.36)
we have )
— §<Zk>f = (2k — 1| R(il’ +ia- 1) RT |2k) (11.37)

and therefore, for pure and equi-occupied mixed states, computing the final expecta-
tion value is equivalent to computing the probability distribution of a developed state

W), = U |2k) with U = R (il +ia - 1) R" € O(2N).

As a result, any MGC with M matchgates and an initial N-qubit state p;, that is an
initial pure or equi-occupied mixed state, can be mapped, with the right encoding, to a
fermionic QC with O(log, V) qubits, because O(log, N) qubits are sufficient to represent
2N degrees of freedom®. We will now determine the exact encoding of such a compression
to characterize the exact number of qubits and elementary operations needed.

I1.5 Encoding of MGCs into reduced-space QCs

Similarly to the argumentation in Section 4.1 of [7], we will now propose evidence, that
MGCs can be encoded into reduced-space QCs with a well-defined number of elementary
gates.

11.5.1 Encoding of the majorana rotation

To arrive at such a generalized statement about the equivalence between MGCs and
reduced-space QCs, it is important first to be able to express any MGC with a predefined
finite set of properties. In fact, following [7], we will assume that the gates of the circuit
are drawn from a finite set of elementary MGs which generates the algebra of all possible
MGs acting in our circuit, we will call those MGs “generators”. Hence, each gate in our
MGC can be classified by a triple (g,), where g gives the position of the generator in
the finite set and i indicates on which two qubits (i, i4+1) it acts. Hence, any MGC can
be classified by M° tuples

(9aryinr) - -+ (g2, 42) (91, i) (11.38)

That is, if we can find a finite set of elementary gates generating all our MGs and
then find the encoding of each one of them into an elementary reduced-space quantum
gate, we have a general translation method between any MGC” and their corresponding
reduced-space QC, where we are able to quantify its depth by the number of resulting
elementary reduced-space gates.

To address the first step, remember from Theorem 1 that every SO(4) rotation has a
corresponding MG; however, due to the Euler decomposition [5], every four-dimensional
rotation can be decomposed into six rotations, each acting nontrivially in a different
two-dimensional subspace of R*. Moreover, each two-dimensional rotation of a certain

5We will assume WLOG that N is a power of 2.
SWhere M corresponds to the number of already decomposed gates.
"As long as we can express them, to an adequate precision, in terms of those generators.
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angle can be generated, up to a desired precision, by succession of rotations of an irra-
tional multiple of w. Consequently, choosing a set of six Matchgates, each corresponding
by Theorem 1 to a two-dimensional rotation of an irrational multiple of 7 acting in a
different two-dimensional subspace of R*, we can generate any Matchgate with suitable
precision, and thus we have the desired finite set of elementary gates from the previous
paragraph.

Now, we deal with the second part, namely the encoding of each of these 6 elementary
rotations into an elementary space-reduced quantum gate following [7] once more. To
do so, we first need to note that each elementary rotation acting nontrivially in two
dimensions only, which we will call R, is of the form®

1

Rt - 1 1 (1139)

where (¢%) € O(2), hence it is not a tensor product of the foom R, = 1® ---® 1 ®
R®1®- - --® 1. Consequently, we cannot directly interpret it as a representation of
a quantum gate because then it would generally act on all log, 2N qubits, and thus it
would not be an elementary generator of the reduced-space gate algebra. To solve this
problem, we can interpret R; as a two-dimensional rotation conditioned on the values of
the remaining log, N — 1 qubits, and then use the algorithm from Section 7.5 of [2] to
represent an r-fold controlled single-qubit gate by O(r) two-qubit gates.

However, to be able to use this algorithm, the two-dimensional rotation should corre-
spond to a single qubit gate, but, because R, is acting arbitrarily on two out of four
dimensions, they do not need to be adjacent; hence, depending on the representation of
the dimension 1,...,2n by logs2N qubits, R; will generally act on the subspace of two
qubits that are arbitrarily distant” from each other, controlled by the other loga N — 1
qubits. Consequently, we need to conjugate'” R, by an adequate sequence of X; and
CX;;"' gates to make it act in the two-dimensional subspace of a single qubit. However,
because the two qubits will be arbitrarily separated for a given representation of the
dimensions, the length of such a sequence will vary depending on which dimension R,
acts on and could be of order of logs2/N.

To overcome this issue, instead of representing each dimension 1,...,2N to a string of
lenght 2z = log, 2N with the usual binary representation, we associate each dimension

8Tn the case where the rotation is acting on the first and fourth dimension.

9In terms of nearest neigbhours.

10Tn the sence of a similarity transformation.

1With X; the Pauli X gate acting on the i-th qubit and CX the CNOT gate acting on the i-th qubit
and controlling the j-th qubit.
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to a string of length z according to the Gray code [9]

1) = 0,0,...,0,0,0) 1) = 0,0,...,0,0,0)
2) = 10,0,...,0,0,1) 2) = 0,0,...,0,0,1)
‘ 3) = 0,0,...,0,1,0) 3) = [0,0,...,0,1,1)
Binary: 14) = 10,0,...,0,1,1)" Gray: 14) = 10,0,...,0,1,0)
5) = 10,0,...,1,0,0) 5) = 10,0,...,1,1,0)
\ : \
(11.40)

This ensures that two adjacent dimensions correspond to two strings having Hamming
distance 1, consequently, R; acts on the subspace spanned by two Gray strings hav-
ing Hamming distance < 3. Thus, they are denoted by two strings that have at least
z—3 common values s; = 0, 1 and, at most, three different values d},d? = 0,1 : d} # d?.

17

As an example, let R; act on the subspace spanned by

1,55,0,1 s
{Isl, 53,0, 1,86, 57, ., 52) (IL41)

|817 07 53, 17 07 56,57, - .- 7Sz>

then, applying C' X5, - C'Xyo - Xy, with each gate controlled on the values sy, s3,...,s.,
we get

|817178370707567‘977"'7'53) (1142)
’317 07 $3, 07 07 S6y 87y Sz> .
Consequently,
(CXs5p- OXyp - Xg)Ri(C X0 - CXyp - Xy) 7 (11.43)

is a sequence of r-fold controlled gates that act in the subspace of the third qubit, with
r < z.

In fact, repeating this for two generic strings of Hamming distance < 3 can be done by
finding the sequence of X gates to bring |d") — |0)'?, hence bringing |d*) — [1)'*, and
then applying a sequence of CX gates to bring ‘d2> — |e1) with e; the i-th standard basis
vector of the computational basis. However, because d' is at most a three-dimensional
vector, we need at most a sequence of three X and two CX gates. As a result, by adding
an ancillary qubit and using the algorithm of Section 7.5 of [2], we can encode R; in a
circuit of O(log, N) two qubit gates; hence, assuming that we expressed our MGC in
terms of M generators, we can encode R from

i

2<Zk>f — (2k — 1| RTR” |2k) (11.44)

into O(M -log, N) elementary gates that act on z + 1 qubits.

2Here d’ denotes the vector having the differing values dg of the gray string i as components, thus its
dimension is equal to the hamming distance of string 1 and 2.
BI1) = 11,...,1)
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Furthermore, because in the classification (gg,ix) of each generator the length of gy,
indicating the position of the generator in the finite set, is constant and the length of 7,
indicating which of the N qubit the generator acts on, is of O(log, N), the translation
of each generator to its reduced-space elementary gate, can be done classically in space
O(logy N).

11.5.2 Encoding of the correlation matrix

Now that we have managed to find an encoding for our rotation R, all that remains is
to be able to encode our correlation matrix I' or better the rotation given by iI' + ia1.
For a general pure or equi-occupied mixed state, iI' + ia1 is a 2N-dimensional rotation;
therefore, according to the generalization of Euler angles [5], it can be decomposed into
2N? — N two-dimensional rotations.

Recalling the previous process, we can see that il'+iadl can be encoded into O(N? log, N)
elementary reduced-space gates by adding an additional ancillary qubit. Consequently,
we arrive at the desired destination, that is,

Result 2 The final measurement of any N-qubit MGC that can be decom-
posed into M generators that act on an initial state that is pure or equi-occupied
mixed can be computed by a reduced-space QC that has O(M?log, N) elemen-
tary gates that act on (logy 2N + 3) qubits.

Remark

However, as we can see, the number of elementary quantum gates needed to implement
the correlation matrix for a generic pure or equi-occupied mixed state is growing quadrat-
ically in M; but in fact, for the vacuum state |0), the expectation value of ¢;¢; is only
non-zero for i’s and j’s such that ¢;¢; = éi or ¢;¢; =12 - Zk, hence the correlation matrix
takes the form

1 1
2 2
1 1
2 2
1 1
r= 3 2 , (IL.45)

ISR
DO [ =

11
consequently, in the usual binary representation, it represents the tensor product ( 13 >®

2 2
1®---® 1, therefore I' 4+ ia1 is also a tensor product, and the whole discussion about
an r-fold controlled operation is redundant. However, in the used Gray representation,

Eq. I1.45 does not represent a tensor; therefore, we will need to use the translational
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circuit presented in [9]. This O(log, N) circuit maps the Gray code to the binary code,
so conjugating il + ial by it will make it a tensor product form in the Gray represen-
tation. As a result, we can compute our I' with a QC of depth O(log, N) instead of
O(M?1og, N), thus the whole MGC can be simulated with O(M -log, N) elementary
gates. The reason why this result is interesting is that qubit circuits with an arbitrary
initial occ. basis state can be maped to a qubit circuit with an initial vacuum state with
O(N?) elementary operations [7], and hence we can generalize the computation with a
vacuum state correlation matrix to any initial basis state.

Furthermore, to encode the correlation matrix into a circuit of elementary quantum
gates, we first not only need to classically calculate it but also compute its decompo-
sition; however, for a general pure or equi-occupied mixed state, this calculation can
become arbitrarily complicated. It is, in fact, dependent on the number of superposi-
tions, which we will look at a little closer in Section II1.2. Therefore, the statement of
result 2 is not totally true; in practice, our initial state is only allowed to have a certain
number of superpositions defined by the available classical resources; consequently, the
use of the vacuum state is even more attractive.

Chapter Summary:

e We can fully characterize the action of a fGU circuit in the Heisenberg
picture by its action on the Majorana vector:

UlelUs=R-& with Re SO@2N). (I1.46)

e The fermionic occ. basis and the qubit computational basis can be con-
nected by defining the Majoranas as

7—1 times

V2 b 1 =2 -2 X1---1

j—1 times

(I1.47)

A

V2 b =2 - Z Y11,

e Matchgates are the qubit equivalents of elementary fGUs and a QC with
M matchgate operators are called matchgate circuits (MGC).

e The final expectation value, computed by a matchgate circuit, can be
written as

%(z@ ;= (2k — 1| RTRT |2k) , (1L.48)

where R is the rotation associated with the MGC and I';; = (¢;¢;)4n is the
correlation matriz.
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Result 1 If the initial state of a polynomial sized matchgate circuit is a
pure product state, it is classically simulatable in polynomial time.

We can rewrite the final expectation value as

1 -
— (Z)s = 2k — 1| R(iT +ia - 1) R |2k), (11.49)

[\]

thus, if py, is pure or equi-occupied mixed, R (il' +ica - 1) RT is a real
unitary and we can map the MGC to a QC on O(log, N) qubits.

The rotation R can be encoded into O(M - log, N) elementary gates act-
ing on log, N + 1 qubits. Furthermore, the translation can be be done
classically in space O(log, N).

Result 2 The final measurement of any N-qubit MGC with a pure or equi-
occupied mixed initial state can be computed using a O(log, N)-qubit QC
with depth O(M?log, N).







CHAPTER 111

Compression of bosonic Gaussian circuits

Despite the relevance of bosonic linear optics, which, as we will see in Section [I1.3,
are a special case of bosonic Gaussian systems, to date and to our knowledge only a few
references in the literature [14] have dealt with a concrete approach to the compression of
bosonic Gaussian circuits (bGC). Consequently, this chapter discusses whether and under
what conditions a bGC can be compressed efficiently. The sections will be structured
analogously to Chapter II: Section III.1 presents the underlying mathematical concept
that allows a reduced-space description of bGUs; in Section [11.2, we provide evidence for
the classical simulatability, to then, in Section I11.3 discuss conditions for reduced-space
quantum simulatability. Finally, in Section I11.4 we will explore the encoding possibilities
to charaterize whether bGCs can be simulated in polynomial time.

III.1 Compressed description of bGUs

Similarly to the fermionic case, {di,d}} and their unitary transformation {%;, 2;} are
complete sets of generators' for the operator algebra acting on our bosonic system.
Therefore, it is sufficient to describe the action of the unitary UQC, which represents the
QC, on our ladder operator vector  or our quadrature vector Z to classify the action of
the quantum gates on the inital state p;, in the Schrodinger picture.

Recalling that bGUs are generated by quadratic Hamiltonians, as described in Eq. 1.12,
we can see that once again the evolution of our ladder operators and our quadratures
have specific forms.

Theorem 3. Consider an N-mode bosonic system with Ue a bosonic Gaussian unitary
generated by a bgH of the form of

A 1 1
= 52"ha+ (d)" 2= SHhT £+ () (ITL.1)
with © the ladder operator vector and z the quadrature operator vector; then:

UliUc=8"-#4+ 0" and UlaUg=S* -2+ 3 (I11.2)

In fact this statement can become critical if we consider infinite number of particles, therefore we will
disregard this case throughout the coming chapters.
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where

S" = =M ¢ §p(2N,C), S§F =M € Sp(2N,R) and B € CN/R*N. (1I1.3)

Ifmof. Analogously to Theorem 1,Afor the ladder operator vector, we can interpret
UliUg = e el = #(t) with H the corresponding bqH to Ug and t = 1. Thus,
using the Heisenberg equation

II 1
dir(t) .o S R A
;f ) _ i[H, 7 (t)] =1 g(éhij[rjrj,k] +d;[7, 7)) Uc, (IT1.4)

however, because of the CCR in Eq. [.20, we have
I=d/Q=[Q"-d],, (IIL.5)

and

IT = h}, Qi — hi S5 7 = [QT(R)T -+ — (Z%)Th" - §],. (I11.6)
Moreover, as shown in Appendix A, for the ladder vector expression of bqHs, h" is a
Hermitian matrix of the block form

A B
h"= (5 — I1I.
(5 %) (uL.7)
T:
thus, IT simplifies to
II=—-2[X°h" 7], . (IIL.8)
Solving the differential equation and setting ¢t = 1, we retrieve
Ulilg == 5 —iQ - d'. (111.9)
Similarly, for the quadrature operator vector, we have
1 1
dzi(t - 9 i L
0 i1, 2000 "L 04 R R+ € ) (I11.10)
with
I=id;Qu =1[Q" - d°], (I11.11)
and
II = ih;, Q% + 1h; Qa2 =i [(QT ()" + Q"h%) - 7] . (I11.12)

Using that for the quadrature expression of a bqH, h is real and symmetric, by solving
the differential equation and setting t = 1, we get

UlaUsg =™ .2+ Q- d°. (I11.13)
However, the generators of the symplectic group Sp(2N, F') over a field F = R, C are of

the block matrix form
G- (é —iT> (IL.14)

)
BT=B
CTf
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and thus,
—i33h" _ _ A_ B_
e exp{ 1<—B —A)] i (II1.15)
BT=B
is a complex symplectic matriz; and because h* = (é“T g) ‘AT:A € R2Vx2N
DT=D
. B" D
Qh*
e = exp [(—A —B)} A (I11.16)
DT=D
is a real symplectic matrix. O

Consequently, equivalently to the fGCs, we can fully describe the action of our bGC on
the initial state by the action of a 2N x 2N symplectic matrix on the operator vectors
t and z. Interestingly, in the bosonic case, we have an additional displacement vector
B"/% that originates from the displacement term d't/d?z in the bqH representation in
Eq. [.12, which is not present in the fermionic case.

Furthermore, Theorem 3 is also consistent with the fact that such Gaussian transfor-
mations, generated by a quadratic Hamiltonian, produce canonical transformations that
conserve the CCR [11]. The reason is that, first, anti-commutator relations, for the
fermionic case, would not allow for a transformation with a displacement constant,
wherein commutator relations, for the bosonic case, would allow for it, since [, Br/ 1 =0.
And second, for the transformation S"/ to conserve the CCR it needs to conserve € as

SIS = Q (T11.17)
which is, by definition, the symplectic group.

From Theorem 3 we can follow that a description in O(N?) of our (9(2N )—parameter
system is possible and can be utilized, similarly to the fermionic case, to classically
simulate our bGC, as we will see in Section 1.2, and even to simulate it, for some
conditions, with a new logarithmic-sized quantum circuit, as shown in Section III.3.

I11.2 Classical simulatability of bGCs

Consider a quantum circuit with N bosonic modes, M elementary bosonic Gaussian gates,
and the initial state p;,. Again, we will only consider bGCs where there is no mode that
is not acted upon by an elementary gate, thus M > % The purpose of this circuit is to
provide information on the probability distribution of our final state by measuring the
expectation value of a one-body operator

N
O: Z CALJ;\OAX&)\/ = Z 72;0)\)\/72)\/ (III].S)

where O, is the matrix element of an observable acting on the Hilbert space of one
particle H ;). By denoting the whole unitary unitary acting on the initial state as
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0@ = UM S Ul we can write this expectation value as
N
Oy = > 0T U - UlinUg)in, (IIL.19)
AN =1

then, using Theorem 3 we get

N 2N
<O>f = Z O Z [ A 7:\’j (fjfﬁm + Srfj5;<fj>in + Sfmﬁ?@bm + 5::85 (111-20)
AN =1 i,j=1

where S* is the symplectic map and 3" is the displacement assimilated with U. Conse-
quently, by defining the Hermitian matrix I := <fjf]>m as in Section 11.3, we can rewrite
the expectation value as

N N
)= Y O (<A| STSTIN) + 3 [ (1) + 655 ()] +ﬂ:ﬂ;}) .
AN =1 ij=1
(II.21)
This shows that, similar to the fermionic case, the expectation value is equal to an
expression of 2N-dimensional matrix elements, and thus we can approach this bGC with

a time-efficient classical computation. In fact,

e if we restrict ourselves again to an initial occ. basis state |nq,...,ny), computing
the correlation matrix T is equivalent to computing 2N terms (n;|#17;|n;) because
for © # j the matrix element is zero. Therefore I' can be classically computed in
O(N) thus, at most, O(M) time.

e Similarly, the 2N terms of (£) and (#!) are zero and do not need to be accounted
for.

e The symplectic transformation and the displacement vector that act on I' or
(#)in/ (#)in can be decomposed into " = S, -...- 87 with each 8] € Sp(4,C) ex-
tended with identities to 2N dimensions and 3" = B}, +...+ 3] with each 8] € C*
zero-extended to 2N dimensions. Each S} and 3] corresponds to the elementary
bGU U; acting on the k-th and (k+1)-th mode, according to (Theorem 3):

0140, = {ng} ST, )i+ Bl[j]  forj e {k} = {k,k+1k+N,k+N+1}
T for all other j ’s.
(I11.22)
As a result, S” is a product of M 2N x 2N matrices and 3" is a sum of M 2N-
dimensional vectors, so they can be calculated, respectively, in O(M?) and O(M?)
time.

e Finally, we can calculate the expectation value (O); as the sum of 4N* = O(M*)
terms.

In summary, we can compute the final expectation value <O> of any bGC in poly(M),
thus, as in the fermionic case, we have
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Result 3 Any polynomial-sized bGC having an initial state that is a pure
occ. basis state, can be classically computed in polynomial time.

This is once again a remarkable result as the naive simulation of a quantum circuit would
expect exponentially scaling resources. However, as indicated by the form of Eq. I11.21,
a re-simulation with a new space-restricted QC is also possible as we will see in the next
section.

II1.3 Reduced-space simulatability of bGCs

Looking at Eq. [11.21

N N
O)y= > O <<A| STSN) + Y [BIIS ®) + B[S ()] +ﬁ_i’ﬂﬂ>
AN =1 ij=1
A (I11.23)
we can see that for S",T' € U(2N) and 8" = 0 we find a form of (O) corresponding to
the fermionic quantum compressed case, wherefore we will take a closer look at these
elements hereafter.

I11.3.1 Unitarity of the symplectic transformation

In fact, the first condition, namely S” € U(2N) A 3" = 0, is satisfied by bGUs that are
generated by special bqHs.

Theorem 4. Consider an N-mode bosonic system with Ug =e g unitary generated by

a bosonic quadratic Hamiltonian H and ¢ the ladder operator vector, then
UlilUs =U - ¥, (I11.24)
with U € U(2N) iff H is a particle number-conserving Hamiltonian. In fact, U is a

block matrixz of the form
_(Uy

with Uy € U(N).

Proof. We recall from Theorem 3 that the canonical transformation for t is of the form

UliUg = 8" -1+ 6" (I11.26)

537 A B
r _ _—iX°h" __ s
S =e —exp{ 1(_—B _—I)}

with
, (I11.27)

Af=A
BT=B
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because 4 B

BT=B
However, S" is unitary iff —i3*h" is skew-hermitian, meaning that

™Wi—pHT
PO s L s = [, 2 =0, (111.29)

(—iX?h")
but because ¥? is a block diagonal matrix o¢ 1, it follows that h” also needs to be a
block diagonal matrix, hence

c (A O
h¢ = (0 Z) . (III.30)
At=A

Nevertheless, if we recall the expression for the Hamiltonian generating the bGU, we can
see that for this kind of block diagonal matrix h" the first term of Eq. [.12 only has
terms in d}&j:

hiilty = Ayala; + Ayl = 24000, + c- 1 (IT1.31)
where the constant ¢ = Tr[A] results in a non-essential energy shift and thus can be
neglected. Hence, S" is unitary iff the first term of the bqH H that generates the bGU

is number-preserving. Moreover, with h" in block diagonal form, we can write S” as

ST = TR (UN U_) (111.32)
N UN:efiA

with Uy € U(N) because A is hermitian. However, 8" = —iQ2 - d’, where d" is the
generator of linear terms in Eq. [.12 thus 8" = 0 iff H does not have linear terms.
Consequently,

UliUg=U -t (I11.33)
iff both terms of H in Eq. [.12 are number-preserving. O

In fact, such a bGU that produces a unitary transformation of the ladder operators
corresponds to the action of a linear interferometer on our N-mode bosonic system.
Thus, from Eq. I[I1.21 we can see that for any bosonic QC that uses linear optical
elements to implement the gates experimentally, we can express the final measurement
as

N
(O)y= > O (AUTU'|X). (I11.34)
AN =1

However, the sum only goes over the first N x N block matrix elements of UTU, which
because U is a block diagonal matrix, can be written as

(uru), = <UNI‘&T&U},)H for i,j=1,...,N (IIL.35)
ij

.|_

where (T'st5)i; = (a}a;) which we will call the “reduced correlation matrix” (rCM). Thus,

N
(O) =" O NUNTGUN X)) (LIL.36)

AN =1
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Consequently, we can conclude that if we find conditions such that T';i, is unitary, we
can apply the same method as in Chapter Il and compute this expectation value with a
reduced-space quantum circuit by computing the probabilities of a time-developed state
1) = U|N) with U = UnyTa,UL,.

However, we can further note that, using Oy = (A Oy |N) we can rewrite Eq. 111.36
value as

A~ ~ t T
(O)=Tr {Ou) : (UNF&TaU N) } , (I11.37)

consequently, it is very similar to another quantum case, namely the expectation value of
O for a state represented by the density matrix that takes the form I‘&TT , and develops
over time by the unitary U y. Therefore, we have two different approaches to consider,

which we will discuss in the next two sections.

111.3.2 Unitarity of the rCM

In this subsection, we will deal with the first part, namely finding conditions such that
UnLiis U;rv represents a unitary to apply the method of Section I1.4.

The very first intuition would be to use Theorem 2, however, even if it is very useful for
the fermionic correlation matrix, because an initial state will only have occ. numbers 0
and 1, it is not the case for a general bosonic state. To see that, we firstly take a look

at the eigenvalues of the rCM. In fact, because (I‘;Td)ij = (d}d» = (L4t4)ij, the rCM is
Hermitian, thus there exists a unitary transformation such that

vy 0 - 0
I7, =Ul,U' = ’ (I11.38)
: -0
0 ... 0 UN
However, for each unitary U there exists a Hermitian matrix A such that
U=e'4, (I11.39)

consequently, according to Theorem 4, U corresponds to the canonical transformation
of the ladder operator vector T caused by the conjugation with the bGU Uy generated

by ﬁ(A) = Azjdj&] + AU(AIZCAL}L according to
U-a'+U-a=U.t0g. (I11.40)
Hence,

[UTwaU'yy = UadlUei) = (OkalUc - Uka;Uc) = Tr |ala;UepUf| . (111.41)

Remark
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For T';; = (7;7;), it is not given that there exists a corresponding bGU for any diagonal-
izing unitary UTU' = ', because bGUs only generate unitaries of the block diagonal
form

Usy = (UN U_N> : (111.42)

Thus, diagonalizing I';+; once again amounts to finding a basis in which the state is not
correlated and therefore UgﬁU(T; = ®]kV:1 pr. Consequently,

(M) 0 -0
D 0 :
Lt ' (I11.43)
: .0
0 ... 0 (Ny)

A

with (V;) > 0 the mean occupation number of the i-th decoupled mode. Consequently,
because Theorem 2 is only applicable to a Hermitian matrix that has only two eigenvalues
A1, Ag such that |\ — Ao < 2, it would only be applicable to the bosonic case if the initial
state only has two decoupled mode occ. numbers separated by less than two. Hence,
for example, any initial state of the form |0,0,0,n) : n > 2 cannot be considered; thus,
the theorem is far too restrictive to generalize our results sufficiently. Thence, we will
introduce another property of the correlation matrix.

Theorem 5. Let 'y, be a rCM of an initial state that has at most two different mean
occ. numbers iy and Ny in its uncorrelated form, then there exist an o € R and ay € Rt
such that:

v-Taa+a-1 € U(N). (I11.44)
In fact,
ni + N 2
— d - I11.4
o A od 7= Ao (1I1.45)
where An = |ng — Na|.
A TIm(z)
a a
Re (z)

Figure III.1.: Graphical proof of Theorem 5.
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Proof. Let A be a N x N Hermitian matrix; thus, there exists a unitary U such that
UAU' = AP = diag(\, ..., \y) with \; € R. Hence, similarly to the proof of Theorem
2, vA + a1 is unitary iff

(YA + @) (YN + ) = 1. (I11.46)

Therefore, solving for \; we get
YA = —Re (a) £ 1/1 — Im (a)?, (T11.47)
consequently, because for all A, Ay € R there exist an o € C and a v € R* such that
Ao = % (—Re (@) /1 —TIm (a)z) : (T11.48)

for all I';i; of an initial state that has at most two different mean occ. numbers n; and
7o, there exist an o € C and a v € R such that

~v-Tais +a-1 € UN). (I11.49)

N4 :% —Re (@) — /1 — Im ()

Furthermore, for

(I11.50)
Ny = % —Re(a) +4/1 —Im(a)? ),
we have
An = 24/1 —Im(a)?
An:=|ni1—ng > (III51)
ny +ng = —QR;}(Q)
hence,
a(y) = -2 ET) gy (78 (I11.52)
2 2
Consequently, if o is real, v = 2, thus a = -2 e R, O
This result is indeed quite useful because we have
MUNOT a0 +a)UL VY =7 (N UnTaraUN [N + - Oy, (I11.53)
hence, we can follow from Eq. I11.36 that
N
7 (O)s +a-Tr [Op] = - O N UN(Tas + a)UY X) (IIL54)

AN =1

Consequently, we arrive at our desired result, computing the final expectation value of
a bGC is equivalent to computing a sum of the probabilistic results of a developed state
[Ws) = UN) with U = U x(Ts15 + 1)UL,

As a result, any bGC with N modes, M number conserving elementary bGUs and an
initial state that has at most two different mean occ. numbers in its uncorrelated form can
be mapped, with the right encoding, to a QC with O(log, N) qubit or modes. However,
we can achieve this result with another approach based on another very useful property
of the rCM, which we will discuss now.
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I11.3.3 Positive semi-definiteness of the correlation matrix

We saw that, by imposing certain conditions, we have a unitary expression for the rCM,;
however, correlation matrices, in general, and in particular the rCM TI';:,, have another
useful property that can be utilized.

Theorem 6. Consider an N-mode bosonic system with the raising and lowering operators
acting on the i-th mode dj» and a; respectively, and some state p. Then the correlation
matriz Ty, defined by the expectation value of the state p

(Tara)ij = (alay), (IT1.55)
s positive semi-definite.
Proof. Consider some operator vector § := (§1,...,5y) and some complex vector ¢ =
(Coy---,cn) € CN. Now, let us define the correlation matrix T of § as the expectation
value matrix of the state p as
(T);; = (515,). (I11.56)

Then we have

¢ T c= Zc_ichr [ég%,ﬁ} ="Tr

ij

Zagjcjgjp] : (I11.57)

ij

and by defining € == 3" . Ci8;, we can write
¢.T-c=Tr [é*ﬁé} . (I11.58)

However, p is a positive semi-definite density matrix and can thus be decomposed as
p = x'¢, hence
¢l -Tee=Tr|(1&) (18], (I1L.59)

but because ()Zé )T(fgé ) is also positive semi-definite, and because the trace is base inde-
pendent, thus it is the sum of the eigenvalues, we can follow that

¢ -T-c>0 VYeeCV. (I11.60)
Consequently, I' > 0, and therefore I';+; is also positive semi-definite. n
Interestingly, this shows that not only T'si, is positive semi-definite, but also T', the

bosonic expectation matrix of ¥, and it can also be proved similarly that the fermionic
case is equivalent, thus I' and T';,, of Chapter II are also positive semi-definite.

Remark

Another noteworthy matter is the relation of this positive semi-definiteness and the
uncertainty principle. In fact, if we define the bosonic covariance matrix V' as

1 1 1
Ly = (7ify) = 5({%@'}) + 3 =V + -3}

5 il (I11.61)
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then the sufficient condition that the state satisfies the uncertainty principle is given by
[11]

1
c - (V + 523) >0 VeeC™. (111.62)
Thus, the positive semi-definiteness of the correlation matrix, which arises from the

positive semi-definiteness of the density matrix, can be interpreted as equivalent to the
uncertainty principle.

Knowing that I';i; > 0, and setting the condition that I';i; > 0, we can now rewrite Eq.
[T1.37 as

T
A ~ | RPEPY
(O)f=Tr [F&Ta} -Tr |Oqy - (UNWTW}URJ (I11.63)

with Tss/Tr [Fam} positive (semi-)definite, Hermitian, and trace one. Therefore, we

can interpret this expression for <(5) 7 as the expectation value of O(l) of some state

developed in time by Uy represented by the density matrix p() = (Tsra/Tr [Tara] )

Moreover, the trace of the rCM can be directly computed from the initial state as

Tr [Tara] = D (alas) = 3 (Ni) =7 (IIL.64)

A

with (N;) = the mean occ. number of the i-th mode and thus 7 the total (mean) particle
number of the initial state, hence the condition for the trace to be non-zero simplifies to
the condition that the initial state cannot be the vacuum state. Consequently, we can
write the final measurement of our bGC as

<O>f =n-Tr OA(1)UN/3(1)U]TV] (I11.65)
where U vy = Uy and Py = I‘::fm /n.. Therefore, we arrive at a similar result to the
one in the previous subsection, namely that, with the right encoding, any bGC acting
with M number preserving elementary bGUs on N modes can be maped to a QC with
O(logy N) qubits or modes, but this time we do not need to impose conditions on the

initial state except the condition that it should not be the vacuum state, which, for a
number preserving (np.) circuit, is not that deplorable.

Remark

The physical idea behind I11.65 is quite interesting; in fact, if we interpret I';i, /7 as a
density matrix, it will represent the statistical mixture of the state of one particle being

~

in each of the N modes given the state of i particles, similarly, Oy will represent the
observable O for one particle in the N modes. Hence, calculating the expectation value
of our n-particle observable O for the statistics of i particles is equivalent to calculat-
ing the expectation value of the 1-particle-observable 0(1) for the mean statistics of one
particle and then multiply it by the total number of particles 7.
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Furthermore, the beauty of a bGC is that the action of its unitary can be mapped bijec-
tively to its action on the rCM. Therefore, instead of computing the expectation value by
calculating the correlation of a time-developed state, and thus needing to calculate the
time development of the n particles, we can compute the whole process in the 1-particle
picture by implementing the action of the bGU as the time development of the 1-particle
state UNﬁ(l)U]J(,.

We will now determine the exact encoding of such a mapping in order to characterize
the exact number of qubits/modes and elementary operations required and hence discuss
whether it is really an efficient compression.

II1.4 Encoding of bGCs into reduced-space QCs

We will now propose evidence that, similarly to MGCs, bGCs can be encoded into
reduced-space QCs with a well-defined number of elementary gates as well. However,
even if the quantum simulation could be done equivalently with a bosonic circuit as with
a qubit circuit, we will propose an encoding in the qubit circuit only, because the form
of the reduced-space QC to be used in this chapter is very similar to the one in Chapter
IT and thus we can use the already established encoding from Section I1.5.

I11.4.1 Encoding of the unitary transformation

In fact, similarly to Eq. [I1.22, each elementary np. bGU U acting on the k-th and
(k+1)-th qubit corresponds to a two-dimensional unitary U’ according to:

k+1 yrtr: 114 .
R . U:lj, 1 f =k k+1
UZTCALJU,L _ x =k z[jv ]al or j ) + (11166)
a; for all other j s,
and hence can be written as
1
. 1
U' = a 3 (II1.67)

1

where (%) € U(2). Consequently, we can directly interpret each U} as a log, N — 1-fold
controlled 1-qubit gate, and similarly to Section I1.5, using the method from [2], we can
encode Uy = UN - ... - U} from Eq. 111.36

N
(O)y = Y Oxv N UNTaUN X)) (I11.68)

AN =1

into a circuit of O(M -log, N) elementary gates acting on log, N + 1 qubits.
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I11.4.2 Encoding of the unitary rCM

In this subsection, we will devote the argumentation to the first method of reduced-space
simulatability, namely, where we compute the final expectation value with Eq. I11.54

N
v (O);+a-Tr {O(l)] = 3 0 N UN(Tas + al)UL V). (IIL.69)
AN =1

However, because we have already found the encoding for U y, all that remains is to find
an encoding for the N-dimensional unitary given by vI';i, + al. In fact, interpreting it
as a quantum gate acting on log, N qubits, we can decompose it according to Section
8 of [2] into O((logy N)? - 422 N) = O(N?*(log, N)*) two-qubit gates using no ancillary
qubit. Consequently, we arrive at our fourth main result

Result 4 The final measurement of any N-qubit np. bGC that can be de-
composed into M generators that act on an initial state that has at most two
different occ. numbers in its uncorrelated form can be computed by a reduced-
space QC that has O(M?(log, N)?) elementary gates that act on (logy N + 2)
qubits.

Remark

We can even go a step further and take a look at a specific initial state, namely
In,0,...,0). In fact, because, compared to a qubit circuit, the vacuum state |0) is
rather useless as an initial state for a number-conserving bosonic circuit, we need an-
other more generalizable state. However, by applying a series of n.n. “hopping gates”
on an initial state, which we define as h; = ;d, 41, any occ. basis state can be achieved
from an initial state |n,0,...,0), therefore, it could be capable of fulfilling this role of
a generalized initial state. However, computing the rCM with this state |n,0,...,0) we
get the real diagonal form

T4 = diag(n,0,...,0), (I11.70)

hence, with & = —n/n = —1 and v = 2/n v, T4i4 + al is a real unitary of the form
Yais + al = diag(—1,1,...,1) € O(N). (II1.71)

Consequently, by representing the dimensions with the Gray code, we can directly in-
terpret it as a —Z; gate controlled on all the other log, N — 1 qubits. Therefore, using
Lemma 7.1 of [2], we can encode it in a circuit of 2'°¢2¥ — 2 = N — 2 elementary gates.
Consequently, if our initial state is |n,0,...,0), then the final expectation value can be
simulated by a QC using O(M - log, N) elementary gates.
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I11.4.3 Encoding of the density matrix rCM

For the second method, we interpret I';i; or rather I‘gm as a density matrix; hence
the difficulty in this process will mainly be to first calculate the reduced correlations
classically and then prepare a state that corresponds to this rCM, interpreted as a density
matrix, up to a desired precision. However, because the experimental implementation is,
at first sight, very case-specific, we will devote this subsection mainly to the discussion
about the classical simulation complexity. Nevertheless, recalling Eq. I11.65

(O = 1T | Oy Onpiy U | (IIL.72)

we see that we do not only need to implement the rCM as a density matrix but also the
one-body operator O(l) as a final observable, however, assuming that the N-mode final
observable is defined beforehand, we can directly compute the N? elements of O(l) clas-
sically. Thus, it only remains to find the right experimental implementation; however,
similarly to the rCM, it seems to be quite problem-specific, and therefore we will not
discuss any general approach.

Each element of the rCM can be calculated from <aj&j>, consequently, as we saw in
Section I11.2 for an occ. basis state |nq,...,n,) each element is non-zero iff i = j, hence,
the rCM takes the form

Lo = diag(ng, ..., ng). (IIL1.73)

In fact, for any pure or mixed uncorrelated state with occupation numbers nq,...,ny,
the rCM can be defined directly as the matrix

I‘&T& = diag(ﬁl, .. ,’f_LN) (11174)

However, if we consider a general pure state expressed in the occ. basis as”

No
) = Ini) (IT1.75)
i=1
with No the number of superpositions and n; = (n},...,n’) we can see that the com-

plexity of the computation of the rCM directly depends on the number of superpositions;
hence for a general state it becomes impossible to classically compute it, as the number
of possible superpositions tend to infinity.

Remark

In fact, even if we restrict ourselves to a pure eigenstate of the total occ. number
operator N = > d;rdi, with eigenvalue the total particle number (tp. number) n®, then
each superposition have a fixed total particle number n = ||n;||; Vi, thus we can compute
the maximal number of possible superpositions No™** by doing a simple combinatorial
process. In fact, if we consider a state having n particles that we decompose as

2 4
~ = ——
n=14+14+1+14+14+1+1+14+1+---+1=24+1+4+14+1+---4+1 (IIL76)

2Up to a normalization.
3We will once again omit the bar because n does not have a variance for an eigenstate of V.
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then we can decompose n as a sum of any number of “+”s. However, if this state
represents N modes, n needs to be decomposed by N —1 “+”s, thus the question of how
many occ. basis state have the same tp. number is equivalent to the number of ways to
arrange N — 1 “+7s in a sequence of n “1”s and N — 1 “+”s. Consequently,

mar __ n+N—1 _(TL+N—1)'

However, we can see that this expression does not scale polynomially with the size of the
system, which increases with the number of modes N and the tp. number n. In fact, if
we make the approximation that the state has the same total number of particles as it
has modes, hence n = N, we can rewrite No™*" as

mae (2N —1\ N (2N
and using the Stirling approximation for large Ns, N! ~ /27N (%)N, we find that

22N—1
Nomax ~

Vit (111.79)

hence, the possible number of superpositions grows exponentially with the number of
modes N. Consequently, for a generic pure eigenstate of N , we will need, for each term
of T or (£), to compute a sum of a O(No™*N?) number of terms that is growing
exponentially in N. As a result, even for a generic state with a fixed particle number, we
cannot compute I';+, classically in polynomial time.

However, we can solve this problem by restricting ourselves to states® that have a set
number of superpositions No = poly(/N) in the occ. basis, because then the classi-
cal computation of T4, is feasible in O(poly(N) - N?) = poly(N) time. However, this
restriction is also relevant for the previous method in which we encode the rCM as a
unitary because to do so we first need to classically compute the rCM and its decompo-
sition vI';1, + a1, before being able to encode it into a reduced-space QC. Consequently,
we will not account for this restriction for the second method more than for the first;
therefore, we can write the fifth and final result of this thesis as

Result 5 The final measurement of any N-qubit np. bGC that can be de-
composed into M generators that act on any initial state different from the
vacuum state can be computed by a reduced-space QC that has O(M - log, N)
elementary gates that act on log, NV + 2 qubits.

4Which do not need to be eigenstates of N.
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Chapter Summary:

e Similarly to the fermionic case, we can fully characterize the action of a
bGU circuit in the Heisenberg picture by its action on the ladder operator
vector

UliUg = 8" -1+ 8" (IIL.80)

where S" is a complex symplectic matriz and the displacement vector (3"
is a complex vector of 2N dimensions.

e Result 3 A polynomial-sized bGC with a final measurement represented
by the expectation value of the observable

O = Z (AIJ;\O)\A/(AI)\/ = Z ’I")\O)\A/T)\/ (11181)
AN=0

and an initial state that is a basis state of the occ. basis |¢,)
Ini,...,ny) is classically simulatable in polynomial time.

e For a particle number preserving bGC we can write the final expectation
value as

N
Z Oy N UNT31,UN XY = Tr |O0)UnTara ULy | (111.82)

with T15 = (ald;) the rtCM, Uy an N-dimensional unitary corresponding
to the transformation of  that is induced by the bGC, and O(l) is defined
by Oxv = (Al Oq) [X).

e If the initial state has at most two different occ. numbers in its uncorre-
lated form, we can rewrite the final expectation value as

N
v (O)f +a-Tr [0“(1)} = 3 O AUn(1Tara + o)UY V) (11L83)
AN=1

with U n (7T 44 + a]l)UEV € U(N), thus, we can map the bGC to a QC
on O(log, N) qubits.

e If the initial state is not the vacuum state, we can rewrite the final expec-
tation value as

(O); =7 Tr O Unpa UN] (IIL.84)

where UN = Uy and pay =T aTa/n with 7 the total number of particles,
thus we can map the bGC to a QC on O(log, N) qubits with a second
method.
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e Result 4 The final measurement of any N-mode bGC with an initial state
having at most two different occ. numbers in its uncorrelated form can be
computed using a O(log, N)-qubit QC with depth O(M?(log, N)?).

e Result 5 The final measurement of any N-mode bGC with an initial state
that is not the vacuum state can be computed using a O(log, N)-qubit QC
with depth O(M - log, N).







CHAPTER IV

Conclusion

In this chapter, we will present a brief summary of the thesis in Section V.1, and then
we will discuss limitations of the reasoning we used as well as possible future research
directions in Section [V.2.

IV.1 Summary

The goal of this thesis was to provide evidence that Gaussian quantum circuits can be
efficiently simulated with reduced-space quantum circuits. To this end, we considered
the fermionic and bosonic cases separately.

For the fermionic case, due to the Jordan-Wigner transformation (I1.2), a qubit circuit
can represent a fermionic quantum circuit; therefore, we derived the following results
for a model of a N qubit circuit consisting of a sequence of M elementary matchtgates,
which is the qubit equivalent of fermionic Gaussian unitaries, acting on an initial state,
and a final measurement represented by the expectation value of the Pauli operator Z
acting on the k-th qubit.

We showed that, firstly, if the initial state is a pure product state, any of these match-
gate circuits can be simulated by a classical circuit in poly(M) time. Therefore, any
polynomial-sized matchgate circuit having an initial pure product state can be classi-
cally simulated in polynomial time (I1.3).

Moreover, any of these matchgate circuits that have an initial state that is either a pure
or a “equi-occupied mized” state can be simulated with a quantum circuit with O(log, N)
qubits and O(M?log, N) elementary gates (I1.5).

For the bosonic case, we used a circuit model that consists of an initial state acted on by
a sequence of M elementary bosonic Gaussian and then evaluated with an expectation
value of a one-body operator O = POINY d;O axay where O is the matrix representation
of the one-particle operator O(l).
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We showed that any of these bosonic model circuits that have an initial state that is
a pure occupation basis state can be simulated by a classical circuit in poly(M) time.
Therefore, similarly to the fermionic case, any polynomial-sized bosonic Gaussian circuit

having an initial pure occupation basis state can be classically simulated in polynomial
time (I11.2).

Furthermore, we found two methods, which have slightly different conditions, to simu-
late any particle number preserving bosonic Gaussian circuits with a reduced-space qubit
circuit comprising O(log, N) qubits and having two different orders of the number of el-
ementary gates. Firstly, if the initial state has at most two different occupation numbers
in its uncorrelated form, we can implement the correlation matrix as a unitary acting
on log, N modes and thus simulate the bosonic Gaussian circuit with a quantum circuit
comprising O(M?(log, N)?) elementary gates. And secondly, if the initial state is not the
vacuum state, we can implement the correlation matrix as a density matrix of an initial
state of log, N modes and thus simulate the bosonic Gaussian circuit with a quantum
circuit comprising O(M - log, N) elementary gates (I11.4).

However, comparing both the fermionic and bosonic cases, we can recognize resemblances
allowing for generalizations. For example, as noted in Section I11.4, one could also have
considered the encoding of bosonic, but also fermionic Gaussian circuits into a reduced-
space bosonic quantum circuit.

Furthermore, similarly, we can see that the compression methods used in this thesis
can be, by adapting the conditions, generalized from one to the other case directly. For
example, because Z = dkdz — d;dk, we can see that the second bosonic encoding method
can be utilized for the fermionic circuit under the condition that the initial state is not
the vacuum state. This would, firstly, allow one to drop the condition on the initial
state to be pure or equi-occupied mixed that we have for the method of Section 1.5,
and secondly, allow for an efficient simulation with O(M - log, N) elementary gates. As
a result, this would mean that both fermionic and bosonic Gaussian systems can be,
under certain conditions, equivalently simulated in polynomial time with logarithmic

sized quantum circuits.

IV.2 Limitations and Outlook

The main limitation of this work comes from the form of the measurements used; in fact,
in both the bosonic and fermionic cases, we limited ourselves to one-particle measure-
ments. However, one can simply see that with these types of measured observables, we
cannot achieve the measurement result of a projector on a given state |nq,...,n;) such
that ¢ > 2.

This is particularly unfortunate in the bosonic case, because any circuit composed of
linear optical elements is in fact a bosonic Gaussian circuit; thus, one could hope to
compress boson sampling circuits, which can be used to evaluate the permanents of
unitaries [13]. However, a general boson sampling circuit has a final measurement rep-
resented by a projection on some state written in the occ. basis as |x) == |zq,...,ZN).
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However, such a projector can be decomposed as
)| = |z1)21] © - @ [zn )] (IV.1)
and thus expressed in terms of ladder operators and the vacuum projector
)| = (a])™ --- (aly)™ [OXO] (an)™ - -- (a1)". (IV.2)
Using that for a finite number of particles n, the vacuum projector |0)0] can be expressed

ojol = T <f_‘,f>

k#n

, (IV.3)

n=0

we see that |x)(x| can be expressed as a polynomial of ladder operators of order > 2.
Consequently, this projector does not fall into our set of single-particle observable, and
thus our methods cannot compress general boson sampling circuits. In fact, such an
observable would replace the correlation matrix with a tensor having the same order as
the polynomial of the projector.

However, Gaussian states can be completely characterized by their correlation matrix I'
and their means (£)" [12][15], consequently, if the initial state of our Gaussian circuit is
Gaussian, there should exist a way to decompose such a tensor of polynomial order into
a polynomial of correlation matrices and thus by applying a procedure similar to the one
used in Chapter II1 we could compress bosonic sampling circuits having an initial state
that is Gaussian.

Another direction which could be quite interesting to pursue is the idea of expressing a
generic quantum circuit with an exponentially-spaced Gaussian quantum circuit. The
reason is that, if in the future Gaussian gates were more easily realizable experimentally,
then one could translate any circuit into a Gaussian circuit, which could be useful even
if the Gaussian circuit uses a number of qubits that is exponentially larger. In fact, this
has already been done for the fermionic case by R. Jozsa et al.’s [7], but for the bosonic
case has not been explored in depth. Actually, in the bosonic case, not only would it be
helpful if Gaussian unitaries were more easily realizable but also, in general, one could
translate any qubit/bosonic circuit to a linear optical quantum circuit.

IFor a fermionic state their mean is zero because of the PSSR, hence we will not account for it.






APPENDIX A

Appendix

In this appendix, we show some properties of the matrices of Eq. 1.12.

I.1 The bqH

For the bosonic case, recall that the Hamiltonian expressed in terms of quadratures takes
the form

|
Hy, = §zThzz + (d*)7z, (A1)

because z has a block vector form, it turns out to be useful to consider h* as the block

matrix 4
. B
h* = (C D) ) (A.2)

Now, let us define the block matrix

~ [(A+ Y! B+ X
= (c - X" D+ Y2) (A3)
where Y is skew-symmetric, then
2Hy(h*) — 2(d*)TF = hi 525 + Xy — Xypidy + Y Laid; + Y00, (A.4)

However, because of the CCR we have X ;;p;2; = X;;2,p; +1X,;;0;; and Y}j@-ﬁcj =
=Y @i =0 =Y pip;, thus

= t
Consequently, Hb(;;;) and Hy(h?) describe the same physical Hamiltonian, so X, Y
and Y2 can be freely chosen. Therefore, by choosing
2X=C"-B
2yt =AT-A | (A.6)
2Y?’=D"-D
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we can rewrite h® WLOG as the symmetric matrix
. A B
(5 o)

where A, B, D have been redefined. Moreover, H, has to be Hermitian, therefore
(h*)' = h* and d* = d?, thus h” is real and symmetric and d” is also real.

(A7)

=A

AT
DT_

For the expression of the Hamiltonian in terms of bosonic ladder operators we have

1
H, = 5f~Th"f~ + (d")"t. (A.8)

Hence, we can proceed similarly and get the free parameters X, Y ' and Y2 for the block
matrix form

~ (A+X B+ Y!
h = (C’ +Y? D- XT) (A.9)
thus, by choosing
2X=D"- A
2Y'=BT-B | (A.10)
2y’ =C" - C
we can rewrite h® WLOG as the block matrix
, A B
e (4B )
cT=c
Furthermore, for H, to be Hermitian, h" needs to be Hermitian, thus
, A B
(A 8) ay
t—

I.2 The fqH

For the fermionic case the Hamiltonian expressed in terms of Majoranas takes the form

- 1
Hy = iiéTgcé. (A.13)

In this case, however, we will not describe the matrix using a block-form approach,
instead, because {a!,a;} = 1

, (A.14)

thus, our degree of freedom in the fermionic case translates to g§; = 0. Moreover, because
{¢;,¢;} =0 for i, we have

cAA '7£j_C"A

9568 E —gieien = (9" = 4", (A.15)
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and thus, because H;E = ﬁf we get (g¢)T = —g¢, thus g¢ is real and skew-symmetric.

However, if we recall that ¢ = A - T, we have
~ U S
Hy= 1§rA geAT = i;tg't, (A.16)

thus g" = Afg°A. Moreover, because (ATg°A)t = —ATg°A, g" is a complex skew-
hermatian matrix.
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