Supporting Information to:

The importance of calcium and amorphous silica

for Arctic soil CO₂ production

Peter Stimmler¹, Mathias Göckede², Susan M. Natali³, Oliver Sonnentag⁴, Benjamin S. Gilfedder⁵, Nia Perron⁴, Jörg Schaller^{1,*}

¹ Centre for Agriculture Landscape Research e.V. (ZALF), Müncheberg, Germany

² Max Planck Institute for Biogeochemistry, Jena, Germany

⁵ Limnological Station, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth, Germany

* Correspondence:

Jörg Schaller

Joerg.Schaller@zalf.de

³ Woodwell Climate Research Center, Falmouth, USA

⁴ Département de géographie, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V 0B3, Canada

Fig. S1: CO₂ production for the soil from Siberia Chersky C1, NE-Russia after 4 weeks (A+B) and 8 weeks (C+D) under drained (A+C) and waterlogged (B+D) conditions. Each square represents a treatment (n=5) with Si $(+0, +3, +6, and +10 \text{ mg g}^{-1} DW)$ and Ca $(+0, +5, +10, and +15 \text{ mg g}^{-1} DW)$. Colour represents differences between the treatment CO₂ production in comparison to the control treatment, with green-blue showing a decreased CO₂ production and red showing an increased CO₂ production in comparison to the control treatment.

Fig. S2: CO₂ production for the soil from Siberia Chersky C2, NE-Russia after 8 weeks (A+B) and 12 weeks (C+D) under drained (A+C) and waterlogged (B+D) conditions. Each square represents a treatment (n=5) with Si $(+0, +3, +6, and +10 \text{ mg g}^{-1} DW)$ and Ca $(+0, +5, +10, and +15 \text{ mg g}^{-1} DW)$. Colour represents differences between the treatment CO₂ production in comparison to the control treatment, with green-blue showing a decreased CO₂ production and red showing an increased CO₂ production in comparison to the control treatment.

Fig. S3: CO_2 production for the soil Cal from the Canadian after 8 weeks (A+B) and 12 weeks (C+D) under drained (A+C) and waterlogged (B+D) conditions. Each square represents a treatment (n=5) with Si (+0, +3, +6, and +10 mg g⁻¹ DW) and Ca (+0, +5, +10, and +15 mg g⁻¹ DW). Colour represents differences between the treatment CO_2 production in comparison to the control treatment, with green-blue showing a decreased CO_2 production and red showing an increased CO_2 production in comparison to the control treatment.

Fig. S4: CO_2 production for the soil from the moist acidic tundra (MAT), Alaska after 4 weeks (A+B), 8 weeks (C+D) and 12 weeks (E+F) under drained (A+C+E) and waterlogged (B+D+F) conditions. Each square represents a treatment (n=5) with Si (+0, +3, +6, and +10 mg g⁻¹ DW) and Ca (+0, +5, +10, and +15 mg g⁻¹ DW). Colour represents differences between the treatment CO₂ production in comparison to the control treatment, with green-blue showing a decreased CO₂ production and red showing an increased CO₂ production in comparison to the control treatment.

Fig. S5: CO₂ production for the soil from the moist non-acidic tundra (MNT), Alaska after 4 weeks (A+B), 8 weeks (C+D) and 12 weeks (E+F) under drained (A+C+E) and waterlogged (B+D+F) conditions. Each square represents a treatment (n=5) with Si (+0, +3, +6, and +10 mg g⁻¹ DW) and Ca (+0, +5, +10, and +15 mg g⁻¹ DW). Colour represents differences between the treatment CO₂ production in comparison to the control treatment, with green-blue showing a decreased CO₂ production and red showing an increased CO₂ production in comparison to the control treatment.