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Background: Isovector giant dipole resonance (IVGDR) is one of the hallmark probes in nuclear 
structure studies. Almost all the nuclei exhibit IVGDR in the nuclear chart. Most of our understanding 
of GDR comes from studying the GDR in even-even nuclei. Many theoretical works based on random 
phase approximation (RPA) have been carried out to understand GDR’s physical nature, primarily in 
even-even nuclei. The experimental and theoretical search for these modes is very scarce in odd-mass 
deformed nuclei.
Purpose: We investigate the IVGDR in a well-deformed odd-even 175Lu with two different GDR 
models, categorized as macroscopic and microscopic models. We compare the results obtained by two 
models with the available experimental data for the photo-absorption cross-section.
Methods: The microscopic approach for giant dipole resonance (GDR) is based on the linear response 
theoory which simulates the nuclear density response to the dipole radiation through single-particle 
wave functions. The wave functions are calculated with a triaxial Woods-Saxon (WS) potential. 
The nuclear shape is obtained using the same WS potential in a microscopic-macroscopic approach. 
The macroscopic approach models the GDR as the sum of the Lorentzians with peaks at resonance 
energies given by frequencies corresponding to the model Hamiltonian. The model Hamiltonian for 
the macroscopic model is the sum of the anisotropic harmonic oscillator Hamiltonian and a dipole-
dipole interaction.
Results: The results for the photo-absorption cross-section obtained from both the models are 
compared with the experimental data reported in Ref. [1]. The value of the deformation parameter 
obtained from our microscopic-macroscopic approach is compared with the experimentally obtained 
value of deformation as well as with the results of the finite-range droplet mode (FRDM).
Conclusion: The value of the deformation parameter (b2) obtained from our model for PES lies 
between the result of FRDM and the experimental b2. The results from the microscopic model show a 
splitting of GDR strength into K = 0 and K = 1 components due to large quadrupole deformation. The 
splitting of the GDR peak is consistent with the experimental data. The microscopic approach performs 
better overall, but in the lower energy region (8-13 MeV), the results obtained from the macroscopic 
model perform better.
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1. Introduction
The atomic nucleus is a fnite-size quantum many-body 
system that exhibits collective excitations connected to the 
underlying nuclear structure. One of the most common 
examples of such collective excitations is the Giant resonances 
(GRs) [2]. GRs are an efective probe into the response 
of a nucleus subjected to a weak electromagnetic external 
perturbation. Quantum mechanically, it is the transition 
between the ground state and a collective excited state. 
Isovector E1 (dipole) transition has the highest probability, 
and thus giant dipole resonance (GDR), which primarily 
refers to isovector GDR, is the most prominent among all 

the GRs. Since its discovery in 1937 [3], there has been an 
extensive study in the feld of GDR, both experimentally  
[4, 5, 6, 7, 8] and theoretically [9, 10, 11, 12, 13, 14, 15].

Theoretical models can be broadly identifed as either 
macroscopic or microscopic. Macroscopic models [11, 16, 
17] calculate the GDR observable by connecting the GDR 
to the deformation parameters describing the nuclear shape. 
Macroscopic models have successfully reproduced overall 
GDR observ-ables even at fnite temperature and spin  
[8, 10]. Macroscopic models connect the GDR directly to 
the underlying nuclear shape and model the GDR as the 
out-of-phase oscillations between the proton and neutron 
fuids under the infuence of an external electromagnetic feld 

https://www.sciencedirect.com/science/article/%0Dpii/0375947469906447
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which can be induced by an emitted or absorbed photon. 
Coupling of GDR directly to the shape of the nucleus 
provides useful structure information in the macroscopic 
approaches. In a spherical nucleus, the GDR strength 
manifests as a single peak, but in a deformed nucleus, it 
splits depending upon the shape of the nucleus [2, 18]. 
In a prolate nucleus, the GDR strength splits into two 
components because the frequency of GDR oscillation 
is inversely proportional to the length of the semi-major 
axis. One component represents the oscillation along the 
symmetry axis (K = 0), and the other component is along 
the perpendicular plane to the symmetry axis (K = 1). The 
K = 1 component is always doubly degenerate for a prolate 
shape as it represents the oscillations along two shorter semi-
major axes, which are equal in length.

On the other hand, the microscopic models model the 
GDR as the superposition of particle-particle (pp), particle-
hole (ph), and hole-hole (hh) excitations. There are several 
microscopic models which are developed over the years, 
such as the phonon damping model (PDM) [19], the 
time dependant Hartree-Fock (TDHF) [15], the separable 
random-phase approximation (SRPA) [20], the extended 
quantum molecular dynamics (EQMD) model [21], the fnite 
amplitude quasiparticle random phase approximation (FAM-
QRPA) [22], the QRPA based on the relativistic Hartree-
Bogoliubov model [23], and the relativistic random phase 
approximation (RRPA) [24]. There are stochastic [25], and 
semi-classical [26] approaches as well. Linear response theory 
(LRT) framework [27, 28, 29] is one of the most common 
RPA-based microscopic methods which addresses the 
collective excitations in the nucleus. Many of the theoretical 
works primarily focus on the even-even nuclei, and almost all 
our understanding of GDR comes from studying the even-
even nuclei. The experimental and theoretical studies which 
are focused on odd-even nuclei are scarce.

One of such odd-even nuclei is the 175Lu where the 
experimental data is available for a long time [1], but there 
have been only a few theoretical works have been carried out 
for this nucleus. The astrophysical importance [30] of this 
nucleus necessitates more investigation with more microscopic 
approaches. Recent work [31] in this nucleus has been successful 
in explaining the GDR features in the lower energy and uses 
Translation and Galilean quasiparticle phonon nuclear model 
(TGI-QPNM) [32]. The TGI-QPNM is based on the one-
phonon QRPA method, in which only the harmonic efects 
are taken into account [31]. In this study, the shape of the 
nucleus is taken as the input parameter and is inferred from the 
empirical fndings on the other hand, in this work, we discuss 
a microscopic approach for GDR in deformed nuclei within 
the framework of linear response theory (LRT) [33] that 
can be combined with a microscopic-macroscopic approach 
for nuclear potential energy calculations. The equilibrium 

deformation of the nucleus is identifed by minimizing the 
potential energy in deformation space calculated using the 
Strutinsky method with the triaxial Woods-Saxon (WS) 
potential. The single-particle wavefunctions resulting from the 
same calculations are utilized to evaluate the GDR properties. 
We compare the macroscopic and microscopic approaches to 
GDR by comparing the results with the experimental data 
reported in Ref. [1].

The present article is organized as follows: the 
theoretical formalism for the nuclear potential energy 
surface (PES) calculations and the WS mean-feld, along 
with the formalism of macroscopic and microscopic model 
for GDR, is discussed in section 2. In section 3, we present 
our results, and the conclusions are given in the section 4.

2. Theoretical Framework
The GDR is built on a nuclear state and hence the methods 
to calculate the structure of the state and the collective 
excitation can be better described in parts. We start with the 
description of our mean-feld calculations and subsequently 
present the details of the shell correction method, 
microscopic and macroscopic approaches for GDR, and the 
wavelet analysis of GDR cross-sections.

2.1.  The Triaxial Woods-Saxon Potential
In a phenomenological way, the nuclear potential is 
considered as a sum of central mean-feld-potential 
V rws

,  , q f( ) , the Coulomb potential V rcoul
,  , q f( )  and 

the spin-orbit potential V rs o. . ,  , q f( ) , given by

 V r V r V r V rws coul s o
   , , , ,. . ,  ,  ,  , q f q f q f q f( ) = ( )+ ( )+ ( )

 (1)

2.1.1. Central Mean-Field Potential The central mean-field 
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where V0 is the depth of potential, dist     r rs s s( , ), ,q f q f( )   
is the distance between a point r(q, f) and the nearest point 
rs(qs, fs) on the nuclear surface, b represents the surface 
thickness of the potential, + and − signs stand for protons 
and neutrons, respectively. K represents the strength of the 
isospin dependence.

The surface R(q, f) of a deformed nucleus can be 
written as

https://books.google.co.in/books%3Fid%3DPTynSMnMA8C
https://www.sciencedirect.com/science/article/pii/0375947469906447
https://doi.org/10.1016/0375-9474%2885%2990409-9
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where R0 is the radius of the equivalent spherical nucleus with 
the same volume, alμ are deformation parameters, Ylμ are 
the spherical harmonics, and C is the volume conservation 
constant. Restricting to only even and lowest multipoles up 
to l = 4 , R(q, f) can be written as
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The parameters alμ can be defined in terms of deformation 
parameters b, b4, g as
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2.1.2. Coulomb Potential The Coulomb term is given by

 V r e
r

r r
d rcoul
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− ′
′∫  (6)

where r r( ) ( ) /′ ≡ −r Z e V0 1 , represents the nuclear 
charge density with uniform charge distribution. Here e 
and V represent the electronic charge and the volume of 
the nucleus, respectively. This can be expressed in terms of 
multipole expansion through spherical harmonics as

 V r V r Ycoul
c, , . ,  q f q fl

l
l( ) = ( ) ( )∑ Σ

Σ
Σ  (7)

2.1.3. Spin-Orbit Potential The spin-orbit potential is given by
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Here V1(r, q, f) has the Woods-Saxon form (2). ls.o, 
� ��s,   

and M represent the spin-orbit potential strength parameter, 
Pauli matrices, angular momentum operator and the mass 
of the nucleon, respectively.

We construct the Hamiltonian matrix in a harmonic 
oscillator basis with quantum numbers n (radial quantum 
number), ℓ (orbital quantum number), j (total angular 
momentum quantum number) and Ω (quantum number 
for the projection of j on the third axis). The basis is set 
up for defned maximum values of n and j. These values 
are crucial, as discussed in Sec. 2.2. The radial part of basis 
wave functions is evaluated up to 30 fm in steps of 0.1 fm. 
The parameters for Woods-Saxon potential were chosen 
from the universal parameter set [34]. The Hamiltonian is 
then diagonalized numerically to obtain the single-particle 
energies (ei) and the corresponding eigenvectors (Di) 
separately for protons and neutrons. The single particle wave 
functions are of the form

 ψ q f χi
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where Rnℓ and χ1
2

 represent the radial wave function and 

the wave function corresponding to the spin of nucleons, 
respectively.

2.2. Shell Corrections
The total free energy of the nucleus can be defned as the 
sum of the smooth liquid drop model (LDM) energy and 
the oscillatory part representing the strength of the quantum 
efects [35, 36], which can be written as

 E E ETOT LDM
Z N

= + ∑ d
,

,
 

 (10)

where dE represents the discrete term called the shell correction, 
which can be calculated separately for protons (Z) and neutrons 
(N), from the microscopic models. The shell correction term 
(dE) consists of correction due to shape fuctuation (dEsp) and a 
correction due to pairing energy (dE pc), i.e.,

 d d dE E Esp pc= + .  (11)

dEsp can be calculated as the diference between the sum of 
single-particle energies (ei) and their averaged energies [37], 
given as
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where Np is the total number of single particles. The smearing 
parameter gs should be larger than the average energy 
diference between the two main shells, w0

1 341≈ −A . 
Here ni  are the smoothed occupation numbers, given as
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and q is the parameter determining the degree of the 
polynomial or the order of smearing. Mc  is given by
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Mc  makes dE to be less sensitive to gs and 

hence gives a broader plateau for which the conditions are 
given as
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The shell correction due to pairing energy (dEpc) is given 
by [38]
 dE E Epc pc pc= −  .  (16)

Epc and Epc is calculated using the relations
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where ek are the single-particle energies calculated using the 
triaxial Woods-Saxon potential. vk

2 , ∆, and λ are the BCS 
occupation probability, pairing gap, and chemical potential, 
respectively.  g( )l  denotes the average level density at the 
Fermi level which is calculated using

 g e e C H x
s

x

i
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m i
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1 0g π
 (19)

∆  is taken as  
12

A
 in our calculations. The pairing force 

strength (G) is chosen for protons and neutrons as [39]
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where gp
0, g

p
1, g

n
0, and g1

n are chosen as 17.90, 0.176, 18.95, and 
0.078, respectively.

2.3. The Microscopic Model for GDR
We investigate the infuence of an external time-dependent 
feld (with energy E)

 F t F e F e
i E

h
t i E

h
t^ ^  ( ) ˘ ,= +

−  (21)

where F f t a akl kl k l
^ ^  ^( )= Σ  is the one body operator. In 

quasi-particle picture these operators are transformed into 
quasi-particle creation (b†) and annihilation (b) operators 
with the restricted canonical Bogoliubov transformation 
[40] as

 b υm m m m mu a a  ,= +  (22)

 b υm m m m mu a a= − −
 ,  (23)

where vm
2 is BCS occupation probability of mth quasi-particle 

state and m refers to the time-reversed conjugation of state 
m. Any single-particle operator like F

^  is transformed to its 
quasi-particle representation ( F

^ ) as [18]
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where F0, F11, F20 are defned through canonical Bogoliubov 
transformation [18]. We assume that the feld is weak, i.e., 
it introduces only linear perturbation in the density matrix 
of the nucleus. The frst order (linear) change in the density 
matrix of the nucleus under the infuence of external time-
varying perturbation can be written as

 r r drt t( ) = + ( )0 ,  (25)

where ro is the density matrix of the unperturbed ground 
state. The perturbation of the density matrix mirrors the 
variation of external perturbation over time as

 dr r rt e e
i E

h
t i E

h
t

( ) = +( ) − ( )1 1  

.  (26)

Here r obeys the following equation of motion

 i h f t� �r r r= ( )+ ( ) , ,  (27)

where h(r) is the density-dependent single-particle 
Hamiltonian of the nucleus. dr is determined by the linear 
response equation [41, 33, 18]

https://books.google.co.in/books%3Fid%3DPTynSMnMA8C
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where Em is the quasi-particle energy of the mth quasi-
particle state with its occupation number nm. vmm´nn´ is the 
residual interaction that will be treated later as a separable 
dipole-dipole interaction [Eq. (31)]. We defne the response 
function (R) through the relation

 drmm mm nn
nn

nnR E F′ ′ ′
′

′= ( )∑1
2

.  (29)

The response function R is determined by the linearized 
Bethe-Salpeter equation

 R R R R= + ⋅ ⋅0 0 υ ,  (30)

where R0 is the response function for vanishing residual 
interaction. As the form of the perturbation is clearly defned 
in Eq. (21), our aim is to calculate the response function for 
a given separable form of residual interaction. We utilize the 
following separable interaction of the form [41, 33]

 H H D D
^ ^ ^  ^

,= +
=

∑0

1

31
2

ka
a

a a  (31)

where H
^

0  is the single-particle Hamiltonian with the WS 
potential [Eq. (1)]. D

^
a  is the single-particle dipole operator 

and is identical to the external feld operator F
^

 where a 
represents the three spatial directions and ka is the strength 
parameter of the dipole-dipole force. D

^
a  is defined as [42]

 D
NZ
A

r rcom
N

com
P

a = −( ),  (32)

where rN
om and rP

om are the centers of mass of neutrons and 
protons, respectively.

The response function represents the change in 
expectation value of dipole operator D

^
 in the presence of 

an external feld of type D
^

, which oscillates at frequency  
E


. The response function matrix R can be calculated using 

the linearized Bethe-Salpeter equation [18, 33, 41], with 
matrix elements given by

 R
R
Rab

ab

aa ak
=

−

0

01
,  (33)

where R0 is  the  response  function  without  the residual 
interaction given by [41]
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where m runs over all the quasi-particle states m( ) . Em are the 

quasi-particle energies given by Em m= − +( )e l 2 2∆ , where A 
and ∆ are chemical potential and the pairing gap, respectively. 
em are the single-particle energies that are calculated by 
diagonalizing the triaxial Woods-Saxon potential [Eq. (9)]. 
Self consistent values of coupling strengths ka are [33]

 k k w aa = ( )3 2A
NZ

M ,  (35)

where w2(a) are the oscillator frequencies corresponding to 

the structure of the nucleus calculated with the H
^

0 , and 

are given by ( ( ) ( ) ( ))w w w1 2 3 41
1

3

1

3=
−

A  [33]. Here w´ s 
are inversely proportional tothe semi-axes lengths R(1) = 

R(q = π
2

, f = 0), R(2) = R(q = π
2

, q = π
2

), R(3) = R(q 

= 0, f = π
2

), where R(q, f) defned through Eq. (3). The 
resonance peak position is fxed by the parameter k. The 
width parameter k in response function [Eq. (34)] is chosen 
to be energy dependent [43] as

 Γ Γa
a

d

=








0

0

E
E

,  (36)

where Ea is the energy of peak in GDR cross-section 
for spatial direction a and E0 is the peak energy for zero 
deformation. Γ0 is the parameter that determines the width 
of the cross-section. In this work, the value of d is taken 
as 1.9 [5]. The cross-section in the intrinsic frame can be 
calculated as [33]

 s b g s b ga
a

E E, , , ,    2, 2( ) = ( )
=

∑
1

3

 (37)

where

 s
π

a aa=
− ( )4 2e E

c
R



Im ,  (38)

where E is interpreted as the incident energy in the photo-
absorption cross-section, and e is the speed of light in the 
vacuum.

If the nucleus is rotating with angular frequency wrot and 
cranked around the axis of rotation, transforming energies 
from intrinsic frame to laboratory frame leads to shifting in 
the energy of amount hwrot and cross-section in lab frame is 
given as

 a b g sμ w b g
μ

lab rotE E, , , ,   2 2( ) = −( )
=−
∑ 

1

1

 (39)

 

s
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w b g
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e E
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Im , , .  2  (40)
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The term RD D1 1μ μ
 is defned as

 R R R i R RD D11 11

1
2 22 33 23 32= +( )+ −( )  (41)

 R RD D10 10 11=  (42)

 R R R i R RD D1 1 1 1

1
12 22 33 23 32− −

= +( )− −( ).  (43)

For a non-rotating nucleus, the cross-section in the lab 
frame and the intrinsic frame has no diference.

2.4. The Macroscopic Model for GDR
In macroscopic approaches, GDR observables are related to 
the nuclear shapes irrespective of the details of the mean-feld 
Hamiltonian or the single-particle states (for more details, 
see Refs. [44, 11, 10]). In such approaches, we represent the 
model Hamiltonian ( )

^
H M  as

 H H D DM osc
^ ^ ^  ^

,= + h  (44)

where H osc
^

 stands for the anisotropic harmonic oscillator 
Hamiltonian, h, and D

^
 are the dipole-dipole interaction 

strength and dipole operator, respectively. The total GDR 
cross-section (s) is the sum of the Lorentzians with peaks at 
resonance energies (Ea) given by frequencies corresponding 
to ( )

^
H M  and can be written as [11]

 s
sa

a as

E
E E E

( ) =
+ +( ) ( )∑1 2 2 2 2Γ

,  (45)

where E is the incident photon energy, sa and Γa are 
the peak cross-section and full width at half maximum, 
respectively. Γa is energy dependent as given in Eq. (36) and 
can be written as [5]

 Γa a≈ 0 026 1 9. ,.E  (46)

sa for component a is given by

 s
π

aa
a

= +( )60
2 1

0 86 1
NZ
A Γ

. ,  (47)

where a is taken as 0.3. We need not adjust a because it 
only afects the peak value of the cross-section, and we scale 
all cross-sections for the sake of comparison within diferent 
models or experiments.

3. Results and Discussion
We start our discussion by showing our results for the 
potential energy surface (PES) for the 175Lu which is 
calculated using the Nilsson-Strutinsky method as discussed 
in section 2.2. The minimum of the PES corresponds to 

the most probable shape for the nucleus. In Fig. 1, we show 
the PES where the black circle represents the minimum. 
The single-particle energies used in the shell corrections are 
calculated within the triaxial Woods-Saxon potential. The 
single-particle wave functions from the same potential are 
utilized in calculating the GDR response. The equilibrium 
value of b2 and g obtained from the PES is taken as the 
input for the WS potential used in the GDR response 
calculations. Our PES show the minimum at the value of 
b2 = 0.3 and g = 0.0 which are closer to the finite-range 
droplet model (FRDM) [45] which gives the value of b2 
as 0.287 whereas the experimental results of E2 transition 
probabilities for the neighboring even-even isotope gives the 
value of b2 as 0.3226 [46].

Table 1: Comparison of the microscopic model results for centroid 
energies and the widths of the two humps calculated with different 
deformation values and the corresponding experimental data [1]. 
Here E1 and Γ1 represent the energy and width of the lower energy 
peak, and E2 and Γ2 are the energy and width of the higher energy 
peak in the GDR cross-section.

b2
E1 

(MeV)
Γ1 

(MeV)
E2 

(MeV)
Γ2 

(MeV)

Exp. [1] - 12.35 2.70 15.52 4.50

Theory 0.287 
0.300 
0.322

12.3 
12.2 
12.1

3.9 
3.0
2.8

15.6 
15.7 
15.9

4.336 
4.356 
4.362

Figure 1: Potential Energy Surface (PES) for 175Lu calculated 
using triaxial WS potential. The contour line spacing is 0.5 
MeV. The minimum is represented with a solid black circle.

After getting the deformation value for the nucleus, we 
discuss the GDR cross-section results, where we compare the 
results with the experimental data taken from Ref. [1]. The 
dipole-dipole interaction strength parameter (k) is taken as 
0.35, and such a reduction in the dipole-dipole interaction 
strength is necessary to corroborate with the experimental 
data. [33, 42]. The value of parameter Γ0 (Eq. (36)) is taken 
as 1 MeV to match the width of the experimental data. 
In Fig. 2, we show our results for the GDR cross-section 

https://link.aps.org/doi/10.1103/PhysRevC.69.054313
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where we compare the results with the experimental data 
at three different deformations, i.e., at b2 = 0.287 which is 
obtained from FRDM [45] results [Fig. 2(a)], at b2 = 0.3, 
which is obtained from our PES [Fig. 2(b)], and at b2 = 
0.3226 taken from Ref. [46] [Fig. 2(c)]. We also compare 
the experimental results with the results of our macroscopic 
model, where the value of parameter h is taken as 3.2 [12, 
10].

The experimental GDR cross-section shows a two-
hump structure as it is a highly deformed prolate nucleus. 
The microscopic model performs better in reproducing the 
GDR results in all three cases. However, the macroscopic 
model is better at reproducing the lower energy hump 
but overestimates the GDR strength in the higher energy 
range. On the other hand, the microscopic model fails to 
reproduce the lower energy hump at deformation given 
by the FRDM results (b2 = 0.287), but when we utilize 
the higher deformation obtained from our PES (b2 = 
0.3), the result of the microscopic model starts showing 
the lower energy hump. This pattern continues when 
we increase the deformation further using experimental 
deformation (b2 = 0.322). Increasing deformation helps 
in reproducing the lower energy hump but also contributes 
to increasing the GDR width. Thus the microscopic results 
start overestimating the higher energy hump at higher 
deformation (Fig. 2(c)). The deformation obtained from 
our PES gives the best fit with the experimental results. 
This can be understood in terms of the K components as 
well, where K = 1 represents the GDR oscillation along 
the perpendicular direction to the symmetry axis, which 
is degenerate as it accounts for two components along 
the two equal axes, and K = 0 shows the component of 
GDR oscillation along the symmetry axis. For a prolate 
case like 175Lu, the two components split such that the  
K = 0 component dominates the energy range from 8 to 
14 MeV and K = 1 branches dominate the 13 to 20 MeV 
region, which is the cause of the two-hump structure in 
the microscopic model results. Increasing the deformation 
leads to increased splitting between these components. 
Thus, the two-hump structure is enhanced, but this 
splitting also increases the GDR width, which is reflected 
in the overall GDR cross-section when we increase the 
deformation.

In Table 1, we compare the peak energy and widths 
of the two peaks in the result of the microscopic model 
with the experimental results from Ref. [1] at all three 
deformations. The width of the lower energy peak (Γ1) is 
better reproduced if we utilize the experimental higher b2 = 
0.322. Still, the peak positions are better reproduced when 
we take a lower deformation value from the FRDM. Hence, 
the intermediate deformation provided by our PES provides 
the best fit with the experimental data. We have established 

that the microscopic model can reproduce the GDR results 
in an odd nucleus like 175Lu, giving a better result than 
the macroscopic model. The deformation obtained from 
our PES value of deformation gives the best fit with the 
experimental data.

Figure 2: Experimental GDR cross-sections of 144Nd (filled-
circles) taken from Ref. [1] are compared with the microscopic 
(solid line) and macroscopic (dashed line) model calculations with 
deformations obtained from: (a) the finite-range droplet model 
(FRDM) [45], (b) our PES from Fig. 1, and (c) the experimental 
results of E’l transition probabilities for the neighboring even-even 
isotope [46]. The corresponding contribution of K = 0 and K = 1 
components is also shown.

4. Conclusions
In the present work, we have presented a microscopic 
model for GDR based on the linear response theory. The 
underlying single-particle structure is obtained using the 
triaxial Woods-Saxon (WS) potential. We have investigated 
the isovector GDR in 175Lu which is a highly deformed 
prolate nucleus. The deformation of the nucleus is obtained 
within the microscopic-macroscopic approach of the 
Nilsson-Strutinsky method. The same WS potential used 
in the linear response theory is used for obtaining the shell 
corrections. We also compare our results with the results of 
the macroscopic model to establish a benchmark.

Our results show that the microscopic model performs 
better than the macroscopic model, especially in the higher 
energy region; however, the macroscopic model better 
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reproduces the lower energy hump in the experimental data. 
We also compare the results at three different deformations, 
including the deformation obtained from the finite range 
droplet model results and the results of E2 transition 
probabilities of the neighboring even-even isotope, and the 
equilibrium deformation obtained from our microscopic 
macroscopic approach.

Our results show that the overall best ft with the 
experiment is obtained with the deformation given by our 
potential energy surface. This corrobora-tion favors the self-
consistent approach as both the PES and the microscopic 
model depend upon the same mean feld of the triaxial WS 
potential. The GDR strength for a prolate nucleus is split into 
the K = 0 and K = 1 branches, and the microscopic model 
reasonably reproduces a two-hump structure. The extension 
of this microscopic model to a thermally excited system can 
prove helpful as most of the macroscopic model is already very 
successful in such regimes, and only a few microscopic studies 
are done in hot and rotating nuclei.
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