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Alfonso, Álvaro, Aritz, Carles, Carlos, Daniel, Diana, Eloy, Enric, Ernesto, Héctor, Iván, Jan
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Resumen

En este trabajo se desarrolla una introducción a la Teoŕıa de Homotoṕıa, centrada en el
estudio de los grupos de homotoṕıa. Primeramente, se introducen ciertas nociones sobre
categoŕıas, confiriendo estas nociones un lenguaje natural para establecer algunos conceptos
fundamentales de la Topoloǵıa Algebraica. Después, se presenta una pequeña introducción
a ideas básicas de la Teoŕıa de Homotoṕıa, y se muestra su capacidad de desarrollar invari-
antes topológicos a través de la construcción del grupoide fundamental y el grupo funda-
mental, junto con el ejemplo del cómputo del grupo fundamental de la circunferencia. Se
continúa introduciendo los grupos de homotoṕıa, junto a un breve estudio sobre algunas de
sus propiedades. Para finalizar, se introduce una sección dedicada en términos amplios al
cómputo de los grupos de homotoṕıa. Se usa esta sección como pretexto para introducir
pinceladas sobre temas de estudio en el ámbito de la Teoŕıa de Homotoṕıa, como la clasifi-
cación de espacios recubridores, ó la Teoŕıa de Homotoṕıa Estable, buscando dar una pequeña
muestra de las direcciones en las que uno puede progresar en el estudio de la teoŕıa general
más allá de este trabajo.

Abstract

In this essay, an introduction to Homotopy Theory is developed, centred around the study
of the homotopy groups. Firstly, some notions on categories are described, constructing
the language to develop several fundamental concepts of Algebraic Topology. Then, we
present some basic definitions of Homotopy Theory, and we illustrate its ability to construct
topological invariants through the fundamental groupoid and the fundamental group, along
with the example of the computation of the fundamental group of the circumference. The
homotopy groups are then introduced, together with a brief study of some of their properties.
Lastly, a section is included which is dedicated to their computation in broad terms. It is
used as pretext to give little insights into several topics of study in the ambit of Homotopy
Theory, as the classification of covering spaces or Stable Homotopy Theory, giving a little
taste of the directions in which one can further study the general theory beyond this essay.

4



1 Introduction

Jean Dieudonné attributes ([11]) to Henri Poincaré both the vision of the role Topology was
to play in Mathematics, and the introduction, together with mathematicians like Bernhard
Riemann and Felix Klein, of the first insights into what was to become Algebraic Topology.

The first challenge of Topology once the notion of homeomorphism was defined, was
the classification of topological spaces up to homeomorphism. This was soon realised to be
a hopeless goal, as even classes of “simple” spaces, like the subspaces of R2, resulted too
complicated to classify. There was then a shift in attitude, as fields like Algebraic Topology
were born with the objective of, not fully classifying all topological spaces, but assigning
them invariants that were the same for two homeomorphic spaces.

In 1895, Poincaré published Analysis situs ([14]), a treatise through which, together with
a series of other papers called the Complements à l’Analysis Situs, he established intuitions
of what was to be Algebraic Topology, introducing for the first time some concepts of what
now is called Homology, and the fundamental group. Poincaré introduced in these papers
the Betti numbers, which in Analysis Situs, he connected to a notion of “orders of connect-
edness” established by Enrico Betti. Peter Hilton attributes ([8]) to Pavel Aleksandroff and
Heinz Hopf the observation, while they were studying Lefschetz’s fixed point theorem, of a
connection between the result and these Betti numbers; and he attributes to Emmy Noether
the introduction of algebraic concepts to the theory, as she noticed that the Betti numbers
corresponded to algebraic invariants of abelian groups associated to the topological space,
the homology groups. And so, Algebraic Topology was born.

The notion of homotopy was introduced by L.E.J. Brouwer in 1911 as an auxiliary concept
to Homology, in particular regarding the study of the fundamental group, still in a purely
homological context. It was through the work of Hopf on maps into spheres in the 1930s
([9]) that Homotopy Theory proper was developed, and Eduard Čech first defined higher
homotopy groups in 1935.

From there, Homotopy Theory and its relations to Homology exploded in popularity
among the mathematical community. In the 1950s, Samuel Eilenberg and Saunders MacLane
introduced Category Theory ([17]) in their work on the foundations of Algebraic Topology,
and it quickly spread to many other fields of Mathematics. It did not only became the natural
language for Homotopy Theory, but it also generalised notions from Algebraic Topology to
other areas of Mathematics, allowing the development of new fields such as Homological
Algebra and K Theory.

It was this environment that allowed the work of mathematicians like Daniel Quillen,
who developed model categories to generalise the construction of the topological homotopy
category ([16]); and Alexander Grothendieck, who, among many other things, pushed the
notion that the ∞−groupoids, purely algebraic objects that remained to that day with-
out a clear rigorous definition, ought to be defined as to allow them to model topological
homotopy types ([7]).
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2 Brief notes on Category Theory

Category Theory is a field that engages in abstract study of mathematical structures, and the
relationships that arise between them. Its objects of study are categories, which represent
collections of mathematical objects, together with morphisms between them.

The mathematical language of this theory has a broad capacity to generalise and translate
results and notions between different areas of Mathematics. For example, many Algebraic
Topological notions have been abstracted from the study of topological spaces, and success-
fully implemented in other areas, such as Homology being widely used in the study of groups,
and Homotopy being translated to the context of Category Theory itself.

In this essay, we will use notions from Category Theory to formulate how some geometric
and topological notions can be given an algebraic structure, and how this process can be
understood as describing relations between categories of topological spaces, and categories of
algebraic objects, such as groups. These relations can be used to design topological invariants,
widely used in the context of the classification of topological spaces.

A brief introduction to Category Theory is developed here. The results described here
will be basic enough that any book with a categorical approach will include most of them,
like Allen Hatcher’s Algebraic Topology ([1]).

Definition 2.1 (Category). A category, C, consists of:

• A class ob(C). Each element of ob(C) is called an object of C.

• ∀A,B ∈ ob(C), a set homC(A,B). Each element f of this set is called a morphism or
an arrow from A to B, and we can denote it by f : A → B. The sets homC(A,B) are
called the hom-sets of C.

such that they follow these conditions:

• ∀A,B,C ∈ ob(C), there exists a composition

· ◦ · : homC(B,C)× homC(A,B) −→ homC(A,C)

(f, g) 7−→ f ◦ g

• If A ̸= C or B ̸= D, then homC(A,B) and homC(C,D) are disjoint sets.

• The composition of morphisms is associative.

• ∀A ∈ ob(C), ∃1A ∈ homC(A,A) such that 1A ◦ f = f, ∀f ∈ homC(B,A) and g ◦ 1A =
g, ∀g ∈ homC(A,B). These morphisms are called identity morphisms, and in some
categories are denoted idA instead of 1A.

In general, we can think of the class of objects of a given category as the collection of
all mathematical objects of some given form, and their morphisms as select maps between
them. We observe some examples of this

Example 2.2. We define the category Set as the category such that its objects are the sets
and, for two given sets A,B, the hom-set homSet(A,B) is the set of maps with domain A
and codomain B, and morphism composition is given by usual map composition.
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Observation 2.3. When we state that ob(C) is a class for some category C, it is intentionally
allowed to be a proper class instead of a set. Observe that this is required, as if the class
of objects was required to be a set, a category of all sets would not exist, as standard Set
Theory doesn’t allow for universal sets (sets that contain all sets) to exist.

When defining hom-sets, a more general definition of category allows them too to be
proper classes. When considering the more general definition, the categories we have defined
are usually called locally small categories. As every category in this essay will be locally
small, no conflict will arise from this divergence in definitions.

Example 2.4. We define the category Grp as the category such that its objects are the
groups and, for two given groups, G,K, the set of morphisms homGrp(G,K) is the set of
group homomorphisms with domain G and codomain K, and morphism composition is given
by usual map composition.

Example 2.5. We define the category Top as the category such that its objects are the
topological spaces and, for two given topological spaces X and Y , homTop(X, Y ) is the set
of continuous maps with domain X and codomain Y , with morphism composition given by
usual map composition.

Definition 2.6 (Isomorphism). Let C be a category, and f be a morphism between two
objects, A,B ∈ ob(C). We say f is an isomorphism if ∃g morphism between B and A such
that f ◦ g = 1A and g ◦ f = 1B.

If two objects, A,B, are such that there exists some f ∈ homC(A,B) with f isomorphism,
we say A and B are isomorphic, and we write A ∼= B.

For some f isomorphism, the associated g is called the inverse of f . For some isomorphism
f , its inverse can be denoted f−1.

Proposition 2.7. Let C be a category, and f : X → Y be a morphism in C. If ∃g : Y → X
inverse of f in C, it is unique.

We observe that, for example, the concept of isomorphism in the category of sets corre-
sponds with bijections. In the category of topological spaces, isomorphisms correspond with
homeomophisms, and in the category of groups, they correspond with group isomorphisms.

Definition 2.8 (Functor / Covariant functor). Let C and D be categories. A (covariant)
functor F : C → D is comprised of:

• A map between classes F : ob(C) → ob(D).

• ∀A,B ∈ ob(C), a map F : homC(A,B) → homD
(
F (A), F (B)

)
.

such that these conditions are followed:

• If g and f are morphisms of C that can be composed, then F (f ◦ g) = F (f) ◦ F (g).

• ∀A ∈ ob(C), F (1A) = 1F (A).

Note 2.9. What has been defined in definition 2.8 is what’s called a covariant functor, to
distinguish it from contravariant functors.

For a given category, C, we can consider its opposite category, Cop, which is the category
such that ob(Cop) = ob(C), and ∀A,B ∈ ob(C), homCop(A,B) = homC(B,A), where if f ∈
homCop(A,B), g ∈ homCop(B,C), their composition in Cop, g ◦Cop f , is equal to f ◦C g, their
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composition in C. In this sense, for each morphism f : A → B in C, we have a correspondence
with a morphism f op : B → A, such that f op = f , with f op being an equal morphism but
“with the direction of the arrow reversed”.

The relation between covariant and contravariant functors can then be understood as
both being essentially the same, but with the latter reversing the direction of the morphisms.
Both notions are used in practice, as many important functors are contravariant, but when
we refer to functors we will mean covariant functors by default, as all the functors we will
describe in this essay are covariant.

Proposition 2.10. Let C and D be categories, and F : C → D be a functor. Then, if f is
an isomorphism between two objects, A,B ∈ C, F (f) is an isomorphism between F (A) and
F (B). It follows that A ∼= B =⇒ F (A) ∼= F (B).

This observation implies that functors are useful tools for the search of invariants in many
different fields.

For example, take the category Top. Isomorphisms in this category are homeomorphisms.
This means that, if we take a functor F : Top → C to some category C, two homeomorphic
topological spaces will have isomorphic images through this functor. This can be used to
distinguish topological spaces that are not homeomorphic. Consider the following example.

Example 2.11. Consider F : Top → Set such that F
(
(X, T )

)
= X and F (f) = f as a map

of sets. F is a functor. Then, if two topological spaces are homeomorphic, their base sets are
isomorphic in Set, that is, bijective. Obviously, the reciprocal implication is not true.

This functor is called “forgetful”, because it doesn’t transform the structure of the objects
and morphisms, so much as making them “forget” some of the structure they already had. In
this case, the base set is preserved, but the information about the topology on it is lost.

3 Basic definitions and results

Algebraic Topology is the field of study that deals with describing topological invariants with
algebraic structure. We will present it through the theory of homotopy, which develops a
series of functors between categories of topological spaces and Grp, the homotopy groups,
which can be used for the study and classification of topological spaces. We will deal in section
5 with the construction and several basic properties of these groups. For the next sections,
the main references are Allen Hatcher’s Algebraic Topology ([1]), which contains most of the
results presented in this essay; and Sze-Tsen Hu’s Homotopy Theory ([10]), which contains
alternative approaches to some of the proofs and parts of the theory.

In this essay, we will consider X and Y topological spaces. Any time we describe a
topological subspace of Rn without specifying its topology, we will assume it to be the usual
topology.

We will denote by I the interval [0, 1]; by Dn the set {x ∈ Rn | ∥x∥ ≤ 1}, with x :=
(x1, x2, · · · , xn) and ∥ · ∥ the Euclidean norm; by Sn the set {x ∈ Rn+1 | ∥x∥ = 1}; and, when
context so indicates, we will denote by ∗ a set with a single element, or the topological space
on that set together with the trivial topology.

In this essay it is also assumed that N = {1, 2, · · · }. When results related to natural
numbers extend to the case n = 0, it will be explicitly stated.

Definition 3.1 (Homotopy). Let f0, f1 : X → Y be continuous maps. A homotopy from f0 to
f1 is a continuous map F : X×I → Y such that F (x, 0) = f0(x) and F (x, 1) = f1(x), ∀x ∈ X.
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We note that, if we consider for each t ∈ I the map ft : X → Y given by ft(x) = F (x, t)
for all x ∈ X, we can think of a homotopy as an indexed family of continuous maps, {ft}t∈I .
We will indistinctly describe homotopies either way throughout this essay.

If for some A ⊆ X we have that f0|A = f1|A, and F (a, t) = f0(a) ∀t ∈ I,∀a ∈ A, we say
that F is a homotopy from f0 to f1 relative to A.

We will introduce before we move forward an interesting lemma, to which we will turn to
continuously, as it allows us simple proofs of the continuity of some maps.

Lemma 3.2 (Gluing lemma). Let f : X → Y be a map. If X = U ∪ V , where U, V are open
(closed) in X, and f |U , f |V are continuous, then f is continuous.

This result generalises to any open cover {Uα}α∈A of X, while it only works in general
for finite closed covers.

The importance of such lemma comes from the fact that many of the homotopies we
will describe arise from piece-wise maps, and the gluing lemma allows for easy proofs of
their continuity.

Definition 3.3 (Homotopic maps). Let f, g : X → Y be continuous maps. We say f and g
are homotopic, and denote it f ≃ g, if there exists a homotopy from f to g. If H : X×I → Y
is any such homotopy, we can also denote this by H : f ≃ g to specify it.

If f and g are homotopic, and the homotopy H is relative to some subspace A ⊆ X, we
say f and g are homotopic relative to A, and denote this by f ≃A g, or H : f ≃A g if we
want to specify the homotopy.

We can think of a homotopy between continuous maps as a continuous deformation of
one into the other, happening over time as indexed by the parameter t.

We observe that f ≃ g ⇐⇒ f ≃∅ g, and so, when we are able, we will prove statements
using relative homotopy to offer as much generality as possible.

Proposition 3.4. Let X, Y, Z be topological spaces, A ⊆ X, B ⊆ Y , f0, f1 : X → Y ,
g0, g1 : Y → Z continuous maps such that fi(A) ⊆ B, and f0 ≃A f1 and g0 ≃B g1. Then,
g0 ◦ f0 ≃A g1 ◦ f1.

Proof. Let H : f0 ≃A f1 and G : g0 ≃B g1 be the homotopies between the maps. We will
prove the statement by giving the homotopy between the composition maps.

Let L : X × I → Z be the map given by L(x, t) = G (H(x, t), t). This map is clearly
continuous, L(x, 0) = G(H(x, 0), 0) = g0(f0(x)), and L(x, 1) = G(H(x, 1), 1) = g1(f1(x)).

Observe that, if x ∈ A, H(x, t) = f0(x), ∀t ∈ I, and f0(x) ∈ B, ∀x ∈ A, and so
L(x, t) = G(f0(x), t) = g0(f0(x)), ∀t ∈ I,∀x ∈ A, implying the homotopy is relative to A.

Proposition 3.5. Let A ⊆ X be a subspace. The relation ≃A between continuous maps from
X to Y is an equivalence relation.

Proof. Let f0, f1, f2 : X → Y be continuous maps. We must prove ≃A is reflexive, symmetric
and transitive.

• If we consider H : X × I → Y given by H(x, t) = f0(x), we have H : f0 ≃A f0, and so
≃A is reflexive.
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• If we have F : f0 ≃A f1, the map H : X × I → Y given by H(x, t) = F (x, 1 − t) is
continuous, and so a homotopy between H(x, 0) = f1(x) and H(x, 1) = f0(x), with
H(a, t) = F (a, 1 − t) = F (a, 0), ∀a ∈ A, ∀t ∈ I, and so H : f1 ≃A f0, and ≃A is sym-
metric.

• Let F1 : f0 ≃A f1 and F2 : f1 ≃A f2. Consider the map H : X × I → Y given by

H(x, t) =

{
F1(x, 2t) if t ∈

[
0, 1

2

]
F2(x, 2t− 1) if t ∈

[
1
2
, 1
]

H is well defined, as both maps are compatible at t = 1
2
, and is continuous by lemma

3.2, as X ×
[
0, 1

2

]
, X ×

[
1
2
, 1
]
are closed, cover X × I and H is continuous over them.

This means H is homotopy, and H : f0 ≃A f2, as H(x, t) = f0(x), ∀x ∈ A,∀t ∈ I, as
it is equal to either F1(x, 2t) or F2(x, 2t− 1), and both are relative to A. This implies
≃A is transitive.

Definition 3.6 (Homotopy invariant functor). Let F : Top → C be a functor between the
category of topological spaces and some category C. We say F is a homotopy invariant
functor if, ∀f, g : X → Y morphisms in Top such that f ≃ g, then F (f) = F (g).

To understand the motivation behind definition 3.6, we first need to introduce the concept
of homotopy equivalence of spaces.

Definition 3.7 (Homotopy equivalence. Homotopy type). Let f : X → Y be a continuous
map such that there exists a continuous map g : Y → X with g ◦ f ≃ idX and f ◦ g ≃ idY .
Then, we say f is a homotopy equivalence from X to Y .

We write X ≃ Y if there exists a homotopy equivalence from X to Y . This relation is
an equivalence relation, and two spaces in the same equivalence class are said to possess the
same homotopy type.

Let X ≃ Y be topological spaces. Then, by definition 3.7, we have two continuous maps,
f, g, such that g ◦ f ≃ idX and f ◦ g ≃ idY . Let F : Top → C be a homotopy invariant
functor. Then, by definitions 2.8 and 3.6, we have:

F (g) ◦ F (f) = F (g ◦ f) = F (idX) = idF (X)

F (f) ◦ F (g) = F (f ◦ g) = F (idY ) = idF (Y )

This obviously means that F (f) is an isomorphism in C with inverse F (g), and so we have
that X ≃ Y =⇒ F (X) ∼= F (Y ) in C.

If we compare homotopy equivalences and homeomorphisms, it can be seen that X ∼=
Y =⇒ X ≃ Y , and in fact, we can verify that the homotopy equivalence is a strictly weaker
equivalence relationship than that of homeomorphism.

Definition 3.8. We say a topological space X is contractible if a single point space ∗ has
the same homotopy type as X.

Definition 3.9 (Retract. Deformation retract. Strong deformation retract). Let A ⊆ X be
a subspace of X, and i : A ↪→ X the canonical inclusion. Let r : X → A be a continuous map.

10



• We say r is a retract if r ◦ i = idA.

• We say r is a deformation retract if it is a retract, and i ◦ r ≃ idX .

• We say r is a strong deformation retract if it is a deformation retract, and i◦ r ≃A idX .

We also say that A is a retract (deformation retract, strong deformation retract) of X if
∃r : X → A a retract (deformation retract, strong deformation retract).

Observation 3.10. When proving a given subspace A ⊆ X is a (strong) deformation retract,
we will normally just give a homotopy between idX and some continuous map r : X → X
(relative to A) with r(X) ⊆ A. We will do this by implicitly considering the map r : X → A
(restriction of r in codomain to A) as the (strong) deformation retract, and leaving the rest
of the conditions in the definition as easily verifiable.

Proposition 3.11. Deformation retracts are homotopy equivalences.

Example 3.12. R ̸∼= ∗, but R is contractible.

Proof. Evidently, they are not homeomorphic, because their base sets are not bijective. If
we consider F : R× I → R given by F (x, t) = (1− t)x, it is continuous, and so a homotopy
relative to {0}, which corresponds to a strong deformation retract. This means that R has
the homotopy type of a point, but it is not homeomorphic to a point.

In fact, this is a particular example of the more general fact that convex subsets of Rn

are contractible. Consider any convex subset V ⊆ Rn, and any point x0 ∈ V . As V is
convex, for any point x, the segment between x0 and x is contained in V . This means
that tx0 + (1 − t)x ∈ V, ∀t ∈ I. If we consider the homotopy F : V × I → V given by
F (x, t) = tx0 + (1 − t)x, we have that {x0} is a strong deformation retract of V , which
implies V is contractible.

Example 3.13. Sn−1 is a strong deformation retract of Dn \{0}, where 0 denotes the centre
of the disk.

Proof. Let r : Dn \ {0} → Dn \ {0} be given by r(x) = x
∥x∥ , where we consider the usual

euclidean norm, and consider the homotopy H : (Dn\{0})×I → Dn\{0} given by H(x, t) =
(1− t)x+ tr(x).

Trivially, H
(
(Dn \ {0})× I

)
⊆ Dn \ {0}, so it is well defined, it is continuous, H(x, t) =

(1− t)x+ t x
∥x∥ = x, ∀x ∈ Sn−1, and H(x, 1) ∈ Sn−1,∀x ∈ Dn \ {0}.

Example 3.12 shows that, as we claimed, non-homeomorphic spaces can have the same
homotopy type. Then, homotopy invariant functors are those functors that cannot distinguish
homotopy equivalences from homeomorphisms. There’s an equivalent way of understanding
them as functors that only consider the homotopy types of the spaces for determining their
images, which is formalised through the concept of the homotopy category.

First some notation. From here on, if f : X → Y is a continuous map, we will use [f ] to
refer to the equivalence class of continuous maps which are homotopic to f .

If we are to consider homotopies relative to some subspace A ⊆ X, then we will denote
the class of continuous maps homotopic to f relative to A by [f ]A, although we may just
denote it [f ] if it is clear through context that the homotopy is relative to some the set A.

We will denote by [X, Y ] the set {[f ] | f : X → Y continuous map}, and [X, Y ]A will
denote {[f ]A | f : X → Y continuous map}.
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Example 3.14. Let X, Y be topological spaces, with Y a convex subspace of Rn. Then, we
have [X, Y ] = ∗.

Proof. Let f, g : X → Y be continuous maps, with Y a convex subspace of Rn. It suffices to
show that f ≃ g, and so they belong to the same homotopy class. Consider the homotopy
H : X × I → Y given by H(x, t) = tf(x) + (1− t)g(x). It is continuous, and so a homotopy,
and H(x, 1) = f(x) and H(x, 0) = g(x), ∀x ∈ X, so we have H : g ≃ f .

Definition 3.15 (Homotopy category). Let π(Top) be the category such that ob
(
π(Top)

)
=

ob(Top), and for twoX, Y ∈ ob
(
π(Top)

)
, homπ(Top)(X, Y ) = [X, Y ], and for two composable

morphisms in π(Top), [f ], [g], the composition [g]◦ [f ] is defined to be [g◦f ]. We call π(Top)
the homotopy category.

Observe that the composition is well defined due to proposition 3.4. We observe that the
identity of an object X ∈ ob(π(Top)), idX , is equal to [idX ], the class of the identity in Top.

This implies that, for two morphisms in π(Top), [f ], [g], we have that [g]◦ [f ] = idX ⇐⇒
[g ◦ f ] = [idX ] ⇐⇒ g ◦ f ≃ idX . This clearly implies that a morphism [f ] is an isomorphism
in π(Top) if and only if f is a homotopy equivalence in Top.

This means that two topological spaces, X, Y , are isomorphic in π(Top) if and only if
they have the same homotopy type.

Proposition 3.16 (Universal property of the homotopy category). The homotopy category
has the universal property that, ∀F : Top → C homotopy invariant functor, ∃!F̃ : π(Top) → C
functor such that the diagram

Top C

π(Top)

η

F

F̃

commutes, where η : Top → π(Top) is the projection functor, such that η(X) = X and
η(f) = [f ].

Proof. Let F : Top → C be a homotopy invariant functor, and construct F̃ : π(Top) → C by
F̃ (X) = F (X), and F̃ ([f ]) = F (f).

Observe that, if f is homotopy equivalence, [f ] is isomorphism, and so F (f) = F̃ ([f ])
is isomorphism.

Observation 3.17. Although we will not define in this essay a notion of equivalence among
categories, if we were to do so, and we let C ′ be another category with this property, the
functors induced by the result would be enough guarantee C ′ to be equivalent to π(Top) in
the usual way considered in Category Theory.

The objects of study in this essay, the homotopy groups, are constructions that correspond
to homotopy invariant functors. These will be constructed in general in 5.1, and the first of
them, the fundamental group, will be constructed in the next section.

Before proceeding with that, it is important to note that, even before constructing our
first homotopy invariant functor, we have placed strict limits to their ability to classify
topological spaces. We have seen that homotopy invariant functors are those for which the
image through them of a continuous map f : X → Y which is a homotopy equivalence, is an
isomorphism. We have seen that being a homotopy equivalence is strictly weaker than being

12



an isomorphism, so this implies that homotopy invariant functors are not fine enough to
discriminate all non-homeomorphic spaces. Even more, we have not introduced any hint to
the fact that homotopy types induce a non-trivial partition, most of our examples of homotopy
equivalences so far having been for contractible spaces, which could make us wonder if every
space is homotopy equivalent to every other space.

We will prove to the contrary in the next section, when we introduce our first homo-
topy invariant functor, the fundamental group, and show that the space S1 has non-trivial
fundamental group.

4 The fundamental group

4.1 The fundamental groupoid

We will now introduce some definitions that will help us define an interesting functor, the
fundamental groupoid, which we will use to illustrate the construction of the fundamen-
tal group.

Definition 4.1 (Groupoid). We say the pair (G, ∗) is a groupoid if G is a set and ∗ is a
binary operation on G (not necessarily defined for every pair of elements of G), such that:

• If for elements a, b, c ∈ G, a ∗ b and b ∗ c are defined, then (a ∗ b) ∗ c and a ∗ (b ∗ c) are
defined and equal.

• ∀a ∈ G, ∃a−1 ∈ G such that a ∗ a−1 and a−1 ∗ a are always defined, and such that for
all b ∈ G with a ∗ b defined, a ∗ b ∗ b−1 and a−1 ∗ a ∗ b are defined, and a−1 ∗ a ∗ b = b,
a ∗ b ∗ b−1 = a.

We will usually denote a groupoid (G, ∗) by G for the sake of brevity if it does not induce con-
fusion.

For two groupoids G,G′, a map f : G → G′ is a groupoid homomorphism if for all a, b ∈ G
with a ∗ b defined, then f(a) ∗ f(b) is defined and equal to f(a ∗ b), and if f(a−1) = f(a)−1,
∀a ∈ G.

Equivalently, a groupoid can be defined categorically as a category G such that ob(G) is
a set, and ∀A,B ∈ ob(G), homG(A,B) is a set of isomorphisms. The morphisms of G can
be thought of as the elements of the groupoid, and the operation corresponds to morphism
composition. Here, groupoid homomorphisms correspond to functors between groupoids
as categories.

Definition 4.2. Grpd is the category such that its objects are the groupoids, and its mor-
phisms are the groupoid homomorphisms.

Definition 4.3 (Path. Product of paths). Let X be a topological space. We say α is a path
on X if it is a continuous map from I into X.
For α, β paths such that α(1) = β(0), we define the path product α ∗ β : I → X as the path
given by

(α ∗ β)(t) =

{
α(2t) if t ∈

[
0, 1

2

]
β(2t− 1) if t ∈

[
1
2
, 1
]

This map is a path, because [0, 1
2
], [1

2
, 1] are closed sets that cover I with α(1) = β(0), and

so α ∗ β is continuous by lemma 3.2.

13



Lemma 4.4. If p : I → I is a homeomorphism, and α : I → X is a path on X, then α ≃ α◦p.
In particular, reparametrizations of paths on X are homotopy equivalences. Moreover, if
p(0) = 0 and p(1) = 1, this homotopy is relative to ∂I = {0, 1}.

Proof. It is enough to define the homotopy explicitly. If we consider the continuous map
H : I × I → X given by

H(x, t) = α
(
tx+ (1− t)p(x)

)
we have H(x, 0) = α

(
p(x)

)
= (α ◦ p)(x) and H(x, 1) = α(x) for all x, so H is a homotopy

from α ◦ p to α.
Moreover, if p(0) = 0 and p(1) = 1, we have H(0, t) = α(0) and H(1, t) = α(t+ 1− t) =

α(1), ∀t ∈ I, so this homotopy is relative to ∂I.

Lemma 4.5. If x ∈ X is a point, we denote by ex : I → X the constant map given by
ex(t) = x,∀t ∈ I.

Let α : I → X be a continuous map. Then, we define the inverse path α : I → X as the
map given by α(t) = α(1− t). If α(0) = x0 and α(1) = x1, we have that α ∗ α ≃∂I ex0, and
α ∗ α ≃∂I ex1.

Proof. Observe that α ∗α is well defined, as α(0) = α(1). We prove this case, as the case for
α ∗ α is equivalent because α = α.

We prove the assertion by giving an explicit homotopy. Let ϕ : I × I → I be given by

ϕ(x, t) =

{
2tx if x ∈ [0, 1

2
]

2t(1− x) if x ∈ [1
2
, 1]

ϕ is a continuous map, as I ×
[
0, 1

2

]
, I ×

[
1
2
, 1
]
are closed sets that cover I × I and both

maps are continuous and agree on the intersection, allowing us to apply lemma 3.2, and so
H = α ◦ ϕ : I × I → X is a homotopy, because it is continuous by composition of continuous
maps. Moreover, ϕ(0, t) = 0 and ϕ(1, t) = 0, ∀t ∈ I, and so it is a homotopy relative to
{0, 1}. We observe that H(x, 0) = α(0) = x0, ∀x ∈ I, and

H(x, 1) =


α(2x) if x ∈

[
0,

1

2

]
α (2− 2x) if x ∈

[1
2
, 1
]
 = (α ∗ α)(x)

as α(2− 2x) = α
(
1− (2x− 1)

)
= α(2x− 1). This implies that H : ex0 ≃∂I α ∗ α.

Proposition 4.6. Let X be a topological space. Let ΠX = [I,X]∂I . We write its elements
as [α] instead of [α]∂I for the sake of brevity.

We define the operation on ΠX such that [α] ∗ [β] = [α ∗ β] when the product α ∗ β is
defined. Then, (ΠX, ∗) is a groupoid, with the inverse given by [α]−1 = [α].

Proof. We have to prove the items of definition 4.1. We prove them one by one.

• Let [α], [β], [γ] ∈ ΠX be such that [α] ∗ [β] and [β] ∗ [γ] are defined. By definition of
∗, this means the products α ∗ β and β ∗ γ are defined. We have that the end point of
α ∗ β is the same as that of β, and the starting point of β ∗ γ is the same as that of
β, meaning that (α ∗ β) ∗ γ and α ∗ (β ∗ γ) are defined, and so are [α] ∗ ([β] ∗ [γ]) and
([α] ∗ [β]) ∗ [γ].
The fact they are equal classes comes from the fact that α ∗ (β ∗ γ) and (α ∗ β) ∗ γ are
reparametrizations of each other, and applying lemma 4.4.
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• To prove the assertion regarding the inverse, we observe that, by lemma 4.5, α ∗α and
α ∗ α are always defined, and so are [α] ∗ [α]−1 and [α]−1 ∗ [α].
To prove [α]∗ [α]−1∗ [β] = [β] for β a path in X with β(0) = α(0) = x0, we observe that,
again by lemma 4.5, α∗α∗β ≃∂I ex0 ∗β with ex0 constant, which is a reparametrization
of β, and so the thesis follows by applying lemma 4.4.

Definition 4.7 (Fundamental groupoid). Let X be a topological space. We call the pair
(ΠX, ∗) the fundamental groupoid of X.

Lemma 4.8. Let α, β : I → X be paths on X such that α(1) = β(0), and f : X → Y be a
continuous map. Then, (f ◦ α) ∗ (f ◦ β) = f ◦ (α ∗ β).

Proposition 4.9. A continuous map f : X → Y , induces a groupoid homomorphism on the
fundamental groupoids, f∗ : ΠX → ΠY , given by

f∗ : ΠX −→ΠY

[α] 7−→[f ◦ α]

Proof. We have to prove that f∗ is well defined, and that it is a groupoid homomorphism.
To prove f∗ is well defined, we have to show that if [α] = [α′], then [f ◦ α] = [f ◦ α′]. By

definition, [α] = [α′] implies that there exists a homotopy H : α ≃{0,1} α′. As f ≃X f , by
proposition 3.4, we have that f ◦ α ≃{0,1} f ◦ α′, and so [f ◦ α] = [f ◦ α′].

We have to prove it is a groupoid homomorphism. Taking [α], [β] ∈ ΠX such that
α(1) = β(0), we have that [f ◦ (α ∗ β)] = [f ◦ α] ∗ [f ◦ β] by lemma 4.8, and so f∗([α] ∗ [β]) =
f∗([α]) ∗ f∗([β]). Also, (f ◦ α)(t) = (f ◦ α)(1− t) = (f ◦ α)(t), ∀t ∈ I, and so

f∗([α])
−1 = [f ◦ α] = [f ◦ α] = f∗([α]) = f∗([α]

−1), ∀[α] ∈ ΠX

This implies f∗ is a groupoid homomorphism.

Corollary 4.10 (Functoriality of the fundamental groupoid). Π: Top → Grpd given by
Π(X) = ΠX and Π(f) = f∗ is a functor.

Proof. We have to prove the conditions in 2.8 and 3.6. First, if f, g : X → Y are continuous
maps, applying the induced homomorphisms to each [α] ∈ ΠX, we have

Π(g ◦ f)([α]) = (g ◦ f)∗([α]) = [(g ◦ f) ◦ α] = g∗([f ◦ α]) = (g∗ ◦ f∗)([α]) = (Π(g) ◦Π(f))([α])

and so Π(g ◦ f) = Π(g) ◦ Π(f).
The fact that Π(1X) = 1Π(X) comes from the fact idX ◦ α = α for all paths α on X, and

so
Π(idX)([α]) = [idX ◦ α] = [α], ∀α ∈ ΠX

Example 4.11. Π∗ ∼= 1 (the trivial groupoid with only one element).

Proof. If we consider a map α : I → ∗, we see that there is only one possible such map. This
means that Π∗ trivially has only one element, the class of the constant map.
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We can understand the fundamental groupoid as studying the structure of the paths on
a given space. Although we have only shown the fundamental groupoid of a one-point space,
and it resulted in the trivial groupoid, fundamental groupoids of spaces are non-trivial in
general, and computing them is a very hard endeavour. Observe that, for any given point x
in a topological space X, there exists an element [ex]∂I ∈ ΠX, implying that the fundamental
groupoid has at least as many elements as points are in the space X. We can use this to
see that Π: Top → Grpd is not a homotopy invariant functor, as ΠR has an uncountable
number of objects, while Π∗ is trivial, and if Π was a homotopy invariant functor, we would
expect the two groupoids to be isomorphic, as R is contractible by example 3.12.

Instead of giving any more computations of fundamental groupoids, we will use them
as a basis for introducing another functor which will be of more use for our purposes: the
fundamental group.

The idea of the fundamental group will be to analyse the structure of a subset of all
the paths on a given topological space, making it less cumbersome than the fundamental
groupoid, and giving it stronger algebraic structure in the process. Another advantage of the
fundamental group is that it will yield our first homotopy invariant functor.

4.2 The fundamental group

We will add some more definitions before we introduce the fundamental group.

Definition 4.12 (Based topological space. Pointed map). Let X be a topological space, and
x0 ∈ X a point. We call (X, x0) a based topological space, and we say x0 is the base-point of
the space. Pointed maps are continuous maps f : X → Y such that f(x0) = y0. We denote
this by f : (X, x0) → (Y, y0). We may, however, still call a map f of that form a continuous
map if the additional condition of it being a pointed map is clear enough.

More generally, if A ⊆ X and B ⊆ Y , if f : X → Y is a continuous map such that
f(A) ⊆ B, we will denote it f : (X,A) → (Y,B).

This notation will be further extended, as if we have C ⊆ A ⊆ X and D ⊆ B ⊆ Y
topological spaces, then we can denote a continuous map f : (X,A) → (Y,B) such that
f(C) ⊆ D by f : (X,A,C) → (Y,B,D).

Definition 4.13. Top∗ is the category such that its objects are the based topological spaces,
and its morphisms are the pointed maps with the usual composition.

As the morphisms in the category are base-point preserving, it is natural to require that
for two pointed maps to be homotopy equivalent, they be at least homotopic relative to the
base-point. This will be a standard assumption when we work with homotopy groups.

Definition 3.6 extends to this category in the following way: a functor F : Top∗ → C to
some category C will be homotopy invariant if for f, g : (X, x0) → (Y, y0) such that f ≃{x0} g,
we have F (f) = F (g).

The same way, we will extend definition 3.7 by considering two based spaces to be ho-
motopy equivalent if ∃f : (X, x0) → (Y, y0) such that f is a homotopy equivalence with an
associated map g : (Y, y0) → (X, x0) as before, which also follows that the homotopies in the
definition are relative to {x0} and {y0}.

We can also extend definition 3.15 in a natural way to consider the homotopy category
of based topological spaces, π(Top∗). Homotopy invariant functors on this category are also
extended in such way.
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Definition 4.14 (Fundamental group). Let (X, x0) be a based topological space. We define
π1(X, x0) the set of classes of equivalence of paths α : (I, {0, 1}) → (X, x0) up to the relation
of homotopy equivalence relative to ∂I. We will denote the elements of π1(X, x0) by [α]
instead of [α]∂I for the sake of brevity.

We have π1(X, x0) is a group with operation given by [α] ∗ [β] = [α ∗ β], [α]−1 = [α], and
trivial element [ex0 ], where ex0 is the constant map. We call π1(X, x0) the fundamental group
of (X, x0).

The observation that it is a group comes from the same arguments to show ΠX was a
groupoid, together with the fact that α ∗β is always defined here, because α(1) = β(0) = x0.
Paths of the form α : (I, {0, 1}) → (X, x0) will be called loops on X based at x0.

Definition 4.15 (Simple connected space). Let (X, x0) be a based topological space. We
say X is simple connected if X is path-connected and π1(X, x0) = 1, the trivial group with
one element.

The reason why we say X is simple connected, and not (X, x0), is that, as we will prove
in proposition 5.13, this is a topological property of X and not dependent on the choice
of base-point.

We will not prove here many properties about the fundamental group, because it will be
immediately generalised once we introduce higher homotopy groups, of which the fundamen-
tal group is just a particular example.

It is important to note now, however, that we will be able to prove that π1 induces a
homotopy invariant functor π1 : Top

∗ → Grp, and so when we now proceed to compute the
fundamental group of S1, we will be giving our first non-trivial computation of a homotopy
invariant functor on Top∗.

4.3 The fundamental group of the circle

We will now introduce our first real computation. Through the process, we will employ the
continuous map p : R → S1 given by p(t) = (cos(2πt), sin(2πt)) extensively. The result will
employ the following lemma involving it.

Lemma 4.16. Given some topological space Y, some continuous map F : Y × I → S1, and
some continuous map F̃ : Y ×{0} → R such that F (y, 0) = (p◦ F̃ )(y, 0), ∀y ∈ Y , there exists
a unique continuous extension F̃ : Y × I → R such that F = p ◦ F̃ .

This lemma will have to be left without a proof for the sake of simplicity, as it would
be highly involved. Nevertheless, it is a particular case of a more general result presented
in proposition 6.34, which will be given a proof. Let us now proceed with computing the
fundamental group of S1.

Theorem 4.17 (The fundamental group of the circle). Consider the space S1 = {(x, y) ∈
R2|x2 + y2 = 1}. Then,

π1

(
S1, (1, 0)

) ∼= Z
The isomorphism is given by

ϕ : Z −→π1

(
S1, (1, 0)

)
n 7−→[ωn]

where ωn : I → S1 is the loop given by ωn(s) =
(
cos(2πns), sin(2πns)

)
.
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Proof. Let ω̃n : I → R be the map given by ω̃n(s) = ns, and observe ωn = p ◦ ω̃n. We have
that, if f̃ : I → R is a path such that f̃(0) = 0 and f̃(1) = n, then H : f̃ ≃{0,1} ω̃n, with H

given by H(x, t) = tf̃(x) + (1− t)ω̃n(x). Then, [p ◦ f̃ ] = [p ◦ ω̃n] = [ωn], and so ϕ(n) = [p ◦ f̃ ]
for any such f̃ .

The next step will be verifying ϕ is homomorphism. Let n,m ∈ Z, and τm : R → R be
given by τm(x) = m+ x. Then, τm ◦ f̃ is a path from m to m+ n if f̃ was a path from 0 to
n. We observe that p ◦ (τm ◦ f̃) = p ◦ f̃ for all m ∈ Z.

This means that, for f̃ path from 0 to n, and g̃ path from 0 to m, as g̃ ∗ (τm ◦ f̃) is a
path from 0 to n + m, we have ϕ(n + m) = [p ◦ (g̃ ∗ (τm ◦ f̃))]. By lemma 4.8, this means
ϕ(n+m) = [(p ◦ g̃) ∗ (p ◦ τm ◦ f̃)], and so

ϕ(n+m) = [(p ◦ g̃) ∗ (p ◦ τm ◦ f̃)] = [p ◦ g̃] ∗ [p ◦ τm ◦ f̃ ] = [p ◦ g̃] ∗ [p ◦ f̃ ] = ϕ(n) ∗ ϕ(m)

from which we extract that ϕ is homomorphism.
The fact that it is an isomorphism will follow from two more observations:

• For each f : I → S1 with f(0) = x0, and each choice of x̃0 ∈ R such that p(x̃0) = x0,
∃!f̃ : I → R with f̃(0) = x̃0 and f = p ◦ f̃ .

• For each homotopy ft : I → S1 relative to {0, 1}, and each choice of x̃0 such that
p(x̃0) = x0, ∃!f̃t : I → R homotopy relative to {0, 1} such that ft = p ◦ f̃t, ∀t ∈ I.

These are deduced from lemma 4.16. For the first one, we just consider Y × I = {y0}× I ∼= I
in the statement of the lemma. For the second one, we first apply the first observation to f0
to find a map f̃0 : I → R, and then apply the lemma again for Y = I.

Now, we can use these observations to deduce the isomorphism. Let [f ] ∈ π1

(
S1, (1, 0)

)
.

We have f : I → S1 is a continuous map with f(1) = f(0) = (1, 0). By the first observation,
∃f̃ : I → R such that f = p ◦ f̃ and f̃(0) = 0. As f(1) = (1, 0), we have that f̃(1) = n ∈ Z =
p−1
(
(1, 0)

)
, and so [f ] = [p ◦ f̃ ] = ϕ(n) for some n ∈ Z, and ϕ is surjective.

To prove injectivity, assume ϕ(n) = ϕ(m). This means there is a homotopy ft : I×I → S1

relative to {0, 1} from ωn to ωm. But, by the second observation, there exists a homotopy
f̃t : I × I → R relative to {0, 1} with ft = p ◦ f̃t ∀t ∈ I. As f̃t is relative to the endpoints,
f̃t(1) is independent of t. As we have n = f̃0(1) and m = f̃1(1), we conclude n = m, proving
the injectivity of ϕ.

We must observe, before we carry on, the difficulty involved in proving our first non-trivial
example of a fundamental group, even when we have used a lemma left for the moment
without a proof, which is technical in itself. This is not out of a deliberate choice of a “bad”
case, but out of the fact that calculations of homotopy groups, in general, can be very hard.
We will, after we introduce higher homotopy groups, come back to the question of computing
these groups.

We can also, before we move on, indulge in some applications of the fundamental group
of the circle we have just computed.

Corollary 4.18 (Brouwer Fixed-Point Theorem). Let D2 = {(x, y) ∈ R2|x2 + y2 ≤ 1}. For
any continuous map f : D2 → D2, ∃x0 ∈ D2 such that f(x0) = x0.

Proof. We proceed by contradiction, assuming ∃f : D2 → D2 with f(x) ̸= x, ∀x ∈ D2.
We first define a map g : D2 → ∂D2 = S1 by the following process. Consider, for a given

x ∈ D2, the ray that starts at f(x) and crosses x. This will be well defined, as f(x) ̸= x for
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all x ∈ D2. We define a map g : D2 → S1, by defining g(x) to be the point at which this ray
intersects S1, ∀x ∈ D2. We now seek to prove g is continuous.

The points of the ray are given by f(x) + r
(
x − f(x)

)
for some r ≥ 0. Then, g(x) =

f(x) + r(x)
(
x− f(x)

)
for some map r : D2 → [0,+∞) such that the resulting g(x) is in S1,

or, equivalently, ∥g(x)∥ = 1. If this r is continuous, g will be continuous, because it is a
linear combination of continuous maps.

We have ∥∥f(x) + r(x)
(
x− f(x)

)∥∥ = 1 ⇐⇒(
f(x) + r(x)

(
x− f(x)

))
·
(
f(x) + r(x)

(
x− f(x)

))
= 1 ⇐⇒

∥f(x)∥2 + 2r(x)
(
f(x) ·

(
x− f(x)

))
+
(
r(x)

)2∥x− f(x)∥2 = 1 ⇐⇒

∥x− f(x)∥2
(
r(x)

)2
+ 2
(
f(x) ·

(
x− f(x)

))
r(x) + (∥f(x)∥2 − 1) = 0

Solving for r, we geometrically know there will be two distinct solutions for all x, one positive,
corresponding to the point where the line containing f(x) and x intersects S1 nearer to x,
x if x ∈ S1, and one non-positive, corresponding to the intersection nearer to f(x), or f(x)
if f(x) ∈ S1. Because there will always exist a positive root, and have defined r(x) to be
non-negative, we take the positive root at each point x:

r(x) =
−f(x) ·

(
x− f(x)

)
+

√(
f(x) ·

(
x− f(x)

))2
− ∥x− f(x)∥2(∥f(x)∥2 − 1)

∥x− f(x)∥2

Last expression is well defined and continuous ∀x ∈ D2, because ∥f(x) − x∥ ̸= 0 for all
x ∈ D2 due to the assumption that f(x) ̸= x.

Now, as g is continuous, we can consider G : D2 × I → D2 given by

G(x, t) = tg(x) + (1− t)x

G is continuous, G(x, 0) = x and G(x, 1) = g(x). This means (S1, (1, 0)) is a deformation
retract of (D2, (1, 0)).

Now, because deformation retracts are homotopy equivalences, and the fact we will prove
in next section that π1 : Top

∗ → Grp is a homotopy invariant functor, this would imply that

π1

(
D2, (1, 0)

) ∼= π1

(
S1, (1, 0)

)
but we have computed that π1

(
S1, (1, 0)

) ∼= Z, and π1

(
D2, (1, 0)

)
= 1 because it is a convex

subset of Rn, and so it is contractible, contradiction.

In the following result, we will use that we can think of (S1, (1, 0)) ⊆ (R2, (1, 0)) as a
subset of (C, 1) in the usual way. Then, S1 ⊆ C is the set of points z ∈ C for which ∥z∥ = 1.
In this case, ωn : (I, ∂I) → (S1, 1) is given by ωn(x) = e2πnix.

Corollary 4.19 (Fundamental Theorem of Algebra). Every non-constant polynomial with
coefficients in C has a root in C.
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Proof. We can assume a polynomial q : C → C to be of the form

q(z) = zn + an−1z
n−1 + · · ·+ a0, ai ∈ C

Assume q has no roots in C, and consider ft : I → C given by

ft(x) =
q(te2πix)/q(t)

∥q(te2πix)/q(t)∥

We have ∥ft(x)∥ = 1 for all t ∈ R+, x ∈ I. This means that ft defines a loop in
(
S1, 1

)
for

all t, as ft(1) = ft(0) = 1. We have f0 is the trivial constant loop, and so frt is a homotopy
relative to {0, 1} from the trivial loop to fr for any r ∈ R+, which implies [fr] is the trivial
element of π1

(
S1, (1, 0)

)
for all values of r.

Now, we fix a value of r such that r ≥
∑n−1

i=0 ∥ai∥ and r > 1. If ∥z∥ = r, we have

∥zn∥ = ∥z∥n = ∥z∥∥z∥n−1 = r∥z∥n−1 ≥ (∥a0∥+ ∥a1∥+ · · ·+ ∥an−1∥)∥zn−1∥ ≥

≥ ∥a0∥+ ∥a1∥∥z∥+ · · ·+ ∥an−1∥∥zn−1∥ ≥ ∥a0 + a1z + · · ·+ an−1z
n−1∥

This means ∥zn∥ ≥ ∥a0 + a1z + · · ·+ an−1z
n−1∥, and so, ∀t ∈ I,

∥zn + t
(
a0 + a1z + · · ·+ an−1z

n−1
)
∥ ≥ ∥zn∥ − t∥a0 + a1z + · · ·+ an−1z

n−1∥ ≥ 0

Defining a homotopy between zn and q(z),

qt(z) = zn + t
(
a0 + a1z + · · ·+ an−1z

n−1
)

this means qt has no roots z with ∥z∥ = r, ∀t ∈ I.
If we replace q with qt in the first expression of the proof, we can define gt : R → C,

given by

gt(x) =
qt(re

2πix)/qt(r)

∥qt(re2πix)/qt(r)∥
It is clear gt defines a homotopy relative to {0, 1}, with g1 = fr and

g0(x) =
rne2πnixr−n

∥rne2πnixr−n∥
= e2πnix = ωn(x)

Now, we know [fr] is trivial in π1

(
S1, 1

)
, which means that through this homotopy we have

[ωn] is also trivial. But [ωn] = [ω1]
n, with [ω1] a generator of π1 (S

1, 1), which is isomorphic
to Z, contradiction.

5 The homotopy groups

From this chapter on, we will frequently use products of the unit interval, In = I× n· · · ×I,
and some spaces derived from them. We consider their border, ∂In, which, if we think of In

as geometric n−cubes, are composed of the union of their faces.
Notations which will be of particular use will be In−1, which in the context of a subspace

of In is to be regarded as In−1 × {0}, and can be geometrically thought as representing the
“bottom face” of the cube; and Jn−1 = ∂In \ In−1, which can be thought of as the union of
the remaining faces.

Other remark on notation is that, when proving the properties of higher homotopy groups,
it will be seen that they are abelian for most values of n. This implies that we will from now
on use abelian notation when dealing with these cases, which implies that the trivial group,
until now denoted 1, may appear denoted by 0.
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5.1 The absolute case

The problem that led to the homotopy groups was the problem of classifying the classes
of continuous maps from spheres Sn to other topological spaces. For example, of great
importance for the development of the theory was Hopf’s paper of 1931([9]), in which he
showed the set of classes of continuous maps f : S3 → S2 up to homotopy was infinite.
Consider this equivalent way of defining the fundamental group.

We have defined π1(X, x0) as the set of classes up to homotopy of loops, that is, classes of
pointed maps f : (I, ∂I) → (X, x0) up to homotopy equivalence relative to ∂I. Now, we can
obtain S1 as a quotient space on I by identifying the points 0 and 1. By the universal property
of quotient spaces, then, there is a correspondence between continuous maps f : I → X such
that f(0) = f(1), and continuous maps f̃ : S1 → X. Then, π1(X, x0) becomes the set
of classes of pointed maps f̃ : (S1, (1, 0)) → (X, x0) up to homotopy equivalence relative
to (1, 0).

We can then think of generalising this to sets πn(X, x0) given by pointed maps from
(Sn, ∗) to (X, x0) modulo homotopy relative to the base-point ∗ = (1, 0, ...., 0).

As Sn can be constructed as the quotient given by taking In and collapsing ∂In to a
single point, we will take the equivalent approach of considering classes of continuous maps
f : (In, ∂In) → (X, x0) up to homotopy equivalence relative to ∂In, although viewing the
elements of the groups as classes of relative homotopy of pointed maps f : (Sn, ∗) → (X, x0)
will be useful at some points.

Definition 5.1 (n−th homotopy group). Let (X, x0) be a based topological space, and n ∈ N.
We define πn(X, x0) as the set of classes of equivalence of continuous maps α : (In, ∂In) →
(X, x0) up to a relationship of homotopy relative to ∂In. When dealing with the class of
some map α, we will denote it [α] instead of [α]∂In to simplify the notation.

We will denote x := (x1, x2, · · · , xn) for simplicity.
We have that πn(X, x0) is a group, with operation given by [α] ∗ [β] = [α ∗ β], [α]−1 = [α]

and the trivial element given by [ex0 ], with ex0 the constant map. Here, α ∗ β is given by

(α ∗ β)(x) =

{
α
(
(2x1, x2, · · · , xn)

)
if x1 ∈

[
0, 1

2

]
β
(
(2x1 − 1, x2, · · · , xn)

)
if x1 ∈

[
1
2
, 1
]

and α is given for α by α(x) = α
(
(1− x1, x2, · · · , xn)

)
.

We call (πn(X, x0), ∗) the n−th homotopy group of (X, x0), and we denote it πn(X, x0)
for simplicity.

We can also extend this to define π0(X) as the set of path-components of X. This case
has the inconvenience that it is not given a group structure. However, if we define π0(X) to
be trivial when it has only one element (i.e., X is path-connected), then it fits nicely in some
results, like 6.10. In this sense, π0(X, x0) is defined as a based set, that is, a set with one
distinguished element, composed of the path-components of X, with the path-component of
x0 as the base element.

5.2 The relative case

We can, in fact, take the definition of n−th homotopy groups and generalise it further.

Definition 5.2 (Relative n−th homotopy groups). Let (X, x0) be a based topological space,
x0 ∈ A ⊆ X subspace of X, and n ∈ N.

21



We remember some of the notation introduced at the start of the section.

In−1 = {x ∈ In | xn = 0}

∂In = {x ∈ In | ∃i ∈ {1, 2, · · · , n} such that xi ∈ {0, 1}}
Jn−1 = ∂In \ In−1

Using the notation of continuous maps between triples of topological spaces, we can
also extend the notion of relative homotopic continuous maps to this setting. Two maps
f, g : (X,A,C) → (Y,B,D) are said to be homotopic relative to (A,C) if f |C = g|C , and
there is a homotopy H : f ≃C g such that H(x, t) ∈ B, ∀x ∈ A,∀t ∈ I. This homotopy
relative to (A,C) can be also denoted H : f ≃(A,C) g, and it can be proven that ≃(A,C) is an
equivalence relation through an argument similar to that of ≃A.

We will define πn(X,A, x0) as the set of equivalence classes of continuous maps of the form
α : (In, ∂In, Jn−1) → (X,A, x0) up to homotopy equivalence relative to (∂In, Jn−1). When
dealing with the class of some map α, we will denote it [α] instead of [α](∂In,Jn−1) to simplify
the notation.

For all n ≥ 2, πn(X,A, x0) is a group, with the operation, neutral element and inverse
given by the same expressions as in the absolute case. We call πn(X,A, x0) the n−th homo-
topy group relative to A, and we say it is a relative homotopy group.

Relative homotopy groups can be thought of as relaxing the condition for its elements
that the faces of In be mapped to x0. Instead, we require all of them but one to be mapped
to x0, and only require the face In−1 to be mapped to some subspace A, with x0 ∈ A.

These groups are of great interest for several reasons, among them because the absolute
case is a particular case of the relative one, as πn(X, {x0}, x0) = πn(X, x0), and because
several basic propositions we are now to prove generalise nicely to them. We will prove the
relative versions when we can to show these results with as much generality as possible.

Observe that the condition n ≥ 2 is necessary in general, as π1(X,A, x0), while definable
as a set, may not have group structure in general with the operation we have defined. How-
ever, it trivially does have group structure in the case A = {x0}, as it corresponds to the
fundamental group.

The case π0(X,A, x0) is not obvious, and will be given a definition in proposition 5.3 that
is different to that of other relative homotopy sets, but fits nicely with future results.

5.3 Basic properties

Proposition 5.3. Let X, Y be topological spaces, x0 ∈ A ⊆ X, y0 ∈ B ⊆ Y subspaces and
points in them, and f : (X,A, x0) → (Y,B, y0) be a continuous map. Let n ∈ N ∪ {0}.

We define the map f∗ : πn(X,A, x0) → πn(Y,B, y0) depending on the value of n. If n ∈ N,
then it is given f∗([α]) = [f ◦ α].

Before we describe the case n = 0, we observe that πn(X, {x0}, x0) = πn(X, x0),∀n ∈ N,
and we define π0(X, {x0}, x0) to be equal to π0(X, x0). We define f∗ : π0(X, x0) → π0(Y, y0)
such that, if [α] ∈ π0(X, x0) represents the path-component of some point x ∈ X, then f([α])
represents the path-component of f(x). If i : (A, x0) ↪→ (X, x0) is the canonical inclusion, we

define the general relative case set for n = 0 by π0(X,A, x0) = π0(X, x0)
/
i∗(π0(A, x0)) , and

f∗ : π0(X,A, x0) → π0(Y,B, y0) in the same way as the absolute case.
For n ≥ 2, or n = 1 and A = {x0}, B = {y0}, f∗ will be a group homomorphism. In the

rest of cases, the sets don’t have group structure, and f∗ will be an induced map between sets.
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Proof. We prove the case n ≥ 2. Consider the map f∗ as described in the statement. We
observe that, for all [α] ∈ πn(X,A, x0), f∗([α]) ∈ πn(Y,B, y0), as (f ◦ α)(∂In) ⊆ f(A) ⊆ B,
and (f ◦ α)(Jn−1) = f({x0}) = {y0}.

We have to prove it is well defined and a homomorphism. To prove it is well defined,
we consider two α, α′ such that [α] = [α′] in πn(X,A, x0). This means we have a homotopy
H : (In×I, ∂In×I, Jn−1×I) → (X,A, x0) with H : α ≃(∂In,Jn−1) α

′ homotopy between them.
Then, we see that f ◦H : f ◦ α ≃(∂In,Jn−1) f ◦ α′ as in proposition 3.4.

It is easy to see that f∗([α] ∗ [β]) = f∗([α]) ∗ f∗([β]) by just writing the definition of α ∗ β
and applying f on it, and we have that

f∗([α]
−1) = [f ◦ α] = [f ◦ α] = f∗([α])

−1

and so f∗ is a group homomorphism for the cases indicated.
It is easy to verify that the map is well defined as a map between sets in the rest of cases.

Corollary 5.4 (Functoriality of the homotopy groups). If we consider πn : Top
∗ → Grp

given by πn

(
(X, x0)

)
= πn(X, x0) and πn(f) = f∗, we have that πn is a homotopy invariant

functor on Top∗, ∀n ∈ N.
If we consider the category Set∗ of based sets, that is, sets together with a distinguished el-

ement, (A, a), π0 : Top
∗ → Set∗ such that the distinguished element of π0(X, x0) corresponds

to the path-component of x0 is also a homotopy invariant functor.

Proof. We have to prove the items of definitions 2.8 and 3.6 for the case n ≥ 1.
Firstly, the fact that πn(f ◦ g) = πn(f) ◦ πn(g) follows applying the corresponding homo-

morphism to every [α] ∈ πn(X, x0), as we have

πn(g ◦ f)([α]) = [(g ◦ f) ◦ α] = g∗([f ◦ α]) = (g∗ ◦ f∗)([α]) =
(
πn(g) ◦ πn(f)

)
([α])

Then, we can prove πn(1(X,x0)) = 1πn(X,x0) from the fact that id(X,x0) ◦ α = α, implying
[id(X,x0) ◦ α] = [α].

The homotopy invariance follows from the fact that, ifH : f ≃{x0} g is a relative homotopy
equivalence between them, G : X × I → Y given by G(x, t) = H

(
α(x), t

)
will be a relative

homotopy equivalence from f ◦ α to g ◦ α, and so f∗([α]) = [f ◦ α] = [g ◦ α] = g∗([α]) for all
[α] ∈ πn(X, x0), meaning f∗ = g∗.

Observation 5.5. We could also define the category of pairs of topological spaces given by a
topological space and a subspace of it (X,A), denoted PTop, the category of based pairs of
topological spaces (X,A, x0), denoted PTop∗, define homotopy invariant functors on both of
them, and show that the relative case of homotopy groups yields homotopy invariant functors
πn : PTop∗ → Grp for n ≥ 2, and π0, π1 : PTop∗ → Set∗. However, as it would be done in
a similar way to what we have already established for the absolute case, and we will not deal
with these categories directly, we will not reproduce such argument in this essay.

Proposition 5.6. Let (X, x0) be a based topological space. Then, πn(X, x0) is abelian for all
n ≥ 2.

Proof. We just have to prove that, for two [f ], [g] ∈ πn(X, x0), f ∗g ≃∂In g ∗f . We will prove
this by giving explicit homotopies.

H1

(
x, t
)
=


f
(
2x1, (1 + t)x2, · · · , xn

)
if x1 ∈ [0, 1

2
], x2 ∈ [0, 1

1+t
]

g
(
2x1 − 1, 2x2−t

2−t
, · · · , xn

)
if x1 ∈ [1

2
, 1], x2 ∈ [ t

2
, 1]

x0 otherwise

23



f g =⇒

x0

x0

=⇒
f x0

gx0

f

g
=⇒

g

x0 f

x0

g f=⇒

Figure 1: Representation of the homotopies in the proof of proposition 5.6, showing the
domains of a piece-wise decomposition of the maps. For example, the first figure represents
the domains of f and g in the definition of f ∗ g. The first homotopy goes from the first to
the third figure, with the second showing a transition step. The second homotopy goes from
the third to the fourth, and the last homotopy goes from the fourth to the last. Observe
that the lines signalling the borders are all mapped to x0, which is omitted from the drawing
for simplicity.

H2

(
x, t
)
=


f
(
2x1 − t, 2x2, · · · , xn

)
if x1 ∈ [ t

2
, 1+t

2
], x2 ∈ [0, 1

2
]

g
(
2x1 − 1 + t, 2x2 − 1, · · · , xn

)
if x1 ∈ [1−t

2
, 2−t

2
], x2 ∈ [ t

2
, 1]

x0 otherwise

H3

(
x, t
)
=


f
(
2x1 − 1, (2− t)x2, · · · , xn

)
if x1 ∈ [1

2
, 1] ∧ x2 ∈ [0, 1+t

2
]

g
(
2x1, (2− t)x2 − 1 + t, · · · , xn

)
if x1 ∈ [0, 1

2
] ∧ x2 ∈ [1−t

2−t
, 1]

x0 otherwise

We observe that, if we take the closure of the domains marked as “otherwise”, the maps
still map to x0, as the intersection of the domains of each map is always mapped to x0. As
counting the closure of those domains, we have closed sets that cover In × I, with each Hi

agreeing in the intersections, by lemma 3.2, each is continuous and so a homotopy.
We have also that Hi(∂I

n, t) = {x0}, ∀t ∈ I, i = 1, 2, 3; and H1(x, 0) = (f ∗ g)(x),
H1(x, 1) = H2(x, 0), H2(x, 1) = H3(x, 0) and H3(x, 1) = (g ∗ f)(x) for all x ∈ In, so we have
proven the required equivalence.

We must remark two things about this result. The first, is that the fundamental group
of a based topological space is not abelian in general. In fact, in 6.3, we will show that any
given group G is the fundamental group of some path-connected topological space.

The second is that, while this result doesn’t directly translate to relative homotopy groups,
it does for n ≥ 3. In this proof, we are reproducing what’s called an Eckmann-Hilton
argument, by “sliding f and g to change their positions”. The homotopies in the proof above
can be better visualised through figure 1.

However, for relative homotopy groups, we have that the base of the cube is mapped
to A in a way we “cannot control”, as it complicates creating the blocks that are mapped
to x0 in figure 1. In the relative case, in the figure, the bottom edge would not necessarily
be mapped to x0 but to A in a more general way, and so creating the bottom-left block x0

may not be doable in general. This implies that one more coordinate is needed to reproduce
the argument. However, this comment is not enough to prove π2(X,A, x0) is not abelian in
general. For this, we will give a counterexample in proposition 6.61.

Definition 5.7 (Homotopy extension property). Let (X,A) be a pair of topological spaces,
with A subspace of X. We say that the pair (X,A) has the homotopy extension property
if for each Y , each homotopy ft : A → Y and each continuous map f̃0 : X → Y such that
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f0 = f̃0|A, ∃f̃t : X → Y homotopy such that ft = f̃t|A for all t ∈ I, and f̃0 agrees as expected
by notation.

We say f̃t is an extension of ft and f̃0.

Observation 5.8. Let A be a closed subset of X. If we consider the equivalent notation for
homotopies, either by indexed families of continuous maps, ft : X → Y , or continuous maps
of the form F : X × I → Y , the homotopy extension property can be equivalently described
as every continuous map F : (X × {0}) ∪ (A× I) → Y having a continuous extension of the
form F̃ : X × I → Y .

This is because we can consider the map F : (X × {0}) ∪ (A× I) → Y given by

F (x, t) =

{
f̃0(x) if t = 0

ft(x) if x ∈ A

which is continuous because both maps agree on their intersection, and applying lemma
3.2, as both domains are closed when A is closed. A continuous extension of this map,
F̃ : X × I → Y , is equivalent to the homotopy extension we wanted.

Lemma 5.9 (Characterisation of the homotopy extension property). A pair (X,A) of topo-
logical spaces, with A a closed subspace of X, has the homotopy extension property if and
only if (A× I) ∪ (X × {0}) is a retract of X × I.

Proof. Assume (X,A) has the homotopy extension property. If we take Y = (X × {0}) ∪
(A× I), the identity on Y , idY : (X×{0})∪ (A× I) → (X×{0})∪ (A× I), has a continuous
extension, we will denote r : X × I → (X × {0}) ∪ (A× I). It can be seen that r suffices as
a retract.

Assume now that there is some continuous map r : X × I → (A× I) ∪ (X × {0}) which
defines a retract. If we have a continuous map of the form F : (X × {0}) ∪ (A × I) → Y ,
F̃ = F ◦ r : X × I → Y is a suitable homotopy extension.

Lemma 5.10. The pair (In, ∂In) has the homotopy extension property for all n ∈ N.

Proof. As ∂In is the union of a finite number of closed faces, it is a closed set of In, and we
just have to prove that (In × {0}) ∪ (∂In × I) is a retract of In × I.

Consider r : In × I → (In × {0}) ∪ (∂In × I) given by the following process. Take the

point P =
( (

1
2
, 1
2
, · · · , 1

2

)
, 2
)
∈ In ×R. The image of a point (x, t) ∈ In × I, r(x, t), is given

by the intersection with (In × {0}) ∪ (∂In × I) of the ray that starts in P and crosses (x, t).
This can be visualised for n = 2 in figure 2.

It can be verified that the map r is continuous, and that it is a retract.

Lemma 5.11. Let (X,A) be a pair of topological spaces, where A ⊆ X is a closed subset,
which has the homotopy extension property. Then, for any topological space W , (X×W,A×
W ) also has the homotopy extension property.

Proof. By lemma 5.9, (X×{0})∪(A×I) is a retract ofX×I. If r : X×I → (X×{0})∪(A×I)
defines this retract, r′ : (X × I) ×W → (X × {0} ×W ) ∪ (A × I ×W ) given by r′(x, y) =
(r(x), y) suffices.
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P P

X x

r(x) r(x)

Figure 2: Image of a point x through the retract from I2 × I to (∂I2 × I) ∪ (I2 × {0})

Proposition 5.12. Let (X, x0) be a based topological space. If α : I → X is a path with
α(0) = x0 and α(1) = y0, and [f ] ∈ πn(X, x0) any element, we define the operation α · [f ] by
considering the homotopy ft : ∂I

n → X given by ft(x) = α(t), ∀x ∈ ∂In, the map f̃0 : I
n → X

given by f̃0 = f , and setting α·[f ] = [f̃1], where f̃1 is the final map of any homotopy extension
of ft and f̃0, which is guaranteed to exist by lemma 5.10.

If we consider the map βn
α : πn(X, x0) → πn(X, x0) given by βn

α([f ]) = α · [f ], we have that
it is well defined, and it follows these properties for all n ∈ N, for all α, α′ : I → X paths
on X:

1. α ≃∂In α′ =⇒ βn
α = βn

α′.

2. βn
α([f ] ∗ [g]) = βn

α([f ]) ∗ βn
α([g]), ∀[f ], [g] ∈ πn(X, x0).

3. βn
ex0

([f ]) = [f ], ∀[f ] ∈ πn(X, x0).

4. βn
α ◦ βn

α′ = βn
α′∗α.

Proof. We first start by showing that, if α ≃∂I α
′, then α · [f ] = α′ · [f ] for all [f ] ∈ πn(X, x0).

If f̃t, f̃
′
t are the homotopy extensions involved in the constructions of α · [f ] and α′ · [f ], we

can define H : In × I → X as given by

H(x, t) =

{
f̃1−2t(x) if t ∈

[
0, 1

2

]
f̃ ′
2t−1(x) otherwise

We observe that H(x, t) = (α ∗ α′)(t) if x ∈ ∂In, and by assumption that α ≃∂I α
′, we have

that there exists a homotopy W : α ∗ α′ ≃∂I ex0 .
As by lemma 5.11 we have that the pair (In × I, ∂In × I) has the homotopy extension

property, if we take g̃0 : I
n × I → X given by g̃0(x, s) = H(x, s), and gt : ∂I

n × I → X,
given by gt(x, s) = W (s, t), we have that ∃g̃t : In × I → X homotopy extension. Consider
the following map R : In × I → X given by

R(x, t) =


g̃0(x, 3t) if t ∈

[
0, 1

3

]
g̃3t−1(x, 1) if t ∈

[
1
3
, 2
3

]
g̃1(x, 3− 3t) if t ∈

[
2
3
, 1
]

The domains are closed sets that cover In × I, and the maps coincide and are continuous in
their domain, so G is a homotopy by lemma 3.2. We have R(x, 0) = f̃1(x), R(x, 1) = f̃ ′

1(x)
and R(∂In × I) = {x0}, so R : f̃1 ≃∂In f̃ ′

1.

26



We observe that, as α ≃∂I α, this implies that any homotopy extension we might find
in the construction will yield the same class α · [f ] for any fixed map f , so we have proven
that the operation is well defined with respect to any choice of homotopy extension in the
construction of α · [f ].

To prove that L : f ≃∂In f ′ =⇒ α · [f ] = α · [f ′], we observe that, if f̃ ′
t is the homotopy

extension in the construction of α · [f ′], the homotopy L̃ : In × I → X given by

L̃(x, t) =

{
L(x, 1− 2t) if t ∈

[
0, 1

2

]
f̃ ′
2t−1(x) if t ∈

[
1
2
, 1
]

is indeed a homotopy, as the domains are closed, the maps are continuous and agree and they
cover In× I, and we have L = L̃|∂In×I is given by L(x, t) = ex0 ∗α, L̃(x, 0) = L(x, 0) = f(x),
and so L̃ coincides with the extension in the construction of (ex0 ∗ α) · [f ]. Considering that
α ≃∂I ex0 ∗α, this implies α · [f ] = α · [f ′], as both constructions coincide at t = 1. With the
arguments given until now, we have proven that the operation is well defined and follows the
first property.

To prove α · [f ∗ g] = (α · [f ]) ∗ (α · [g]), we consider that if f̃t, g̃t : I
n × I → X are

homotopy extensions for the construction of α · [f ] and α · [g], we observe that the homotopy
ht : I

n × I → X given by ht = f̃t ∗ g̃t for each t ∈ I is compatible with the construction of
α · [f ∗ g].

Lastly, to prove βn
α ◦ βn

α′ = βn
α∗α′ , we observe that, if f̃t is the homotopy from the con-

struction of α · [f ], and f̃ ′
t is the homotopy from α · [f̃1], the homotopy ht given by

ht(x) =

{
f̃ ′
2t(x) if t ∈

[
0, 1

2

]
f̃2t−1(x) if t ∈

[
1
2
, 1
]

has h1 = f̃ ′
1, and ht is compatible with the extension in the construction of (α ∗ α′) · [f ].

Proposition 5.13. Let X be a topological space, x0, y0 ∈ X, with x0 and y0 being in the
same path-component. Then, πn(X, x0) ∼= πn(X, y0), ∀n ∈ N.

Proof. Let α : I → X be a path from x0 to y0. It exists because they are in the same path-
component. Then, consider βn

α : πn(X, x0) → πn(X, y0) as in proposition 5.12. By the second
property in that proposition, we have that βn

α is a homomorphism, and by the first, third
and fourth properties, it has inverse βn

α, and so it is an isomorphism.

Observation 5.14. The definition of the maps βn
α and their properties will be used later.

In particular, the maps βn : π1(X, x) → Aut (πn(X, x)), given by βn([α]) = βn
α, will define

interesting group actions, which we will explore in proposition 6.15. These actions can be
extended to the action of π1(X, x) on itself by conjugation.

Proposition 5.15. Let X be a topological space, x0 ∈ A ⊆ X. If A0, X0 represent the
path-components of x0 in A and X, then πn(X,A, x0) ∼= πn(X0, A0, x0), for all n ∈ N ∪ {0}.

Proof. Trivial from the fact In, In+1 are path-connected, and so the image of every continuous
map from In, and every homotopy of all such maps, are contained in the path-component of
the base-point.
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The two last propositions imply that homotopy groups are limited to the scope of the
path-component of the base-point, and that inside of a given path-component, they are
independent of the choice of base-point. This means that homotopy groups only depend on
a choice of path-component for a given space X. This allows us to, in abuse of notation,
write πn(X) instead of πn(X, x0) when X is a path-connected space. This abuse may be used
even in contexts when we don’t know if X is path-connected, but specifying the base-point
is not required.

There exists an analogous result to that of proposition 5.13 regarding relative homotopy
groups, as for x, y in the same path-component of A ⊆ X, πn(X,A, x) ∼= πn(X,A, y) for all
n ∈ N, and so when A is path-connected, we just write πn(X,A).

These results also show that, in the case of restricting to path components, the homotopy
groups ofX coincide with those of its subspaces. This, however, does not mean that homotopy
groups behave nicely with subspaces. We have even shown that, while S1 ⊆ D2, we have
π1(S

1) = Z and π1(D
2) = 1. We will come back to the homotopy groups of subspaces, and

their relation with relative homotopy groups, after introducing proposition 6.10.
Homotopy groups can be used to generalise the notion of simple connection, in a way

in which we now can see is a topological property of the spaces, as now we know that for
path-connected spaces, this property is independent of the choice of base-point.

Definition 5.16 (n−connected pairs. n−connected spaces). Let (X,A) be a pair of X
together with a subspace A ⊆ X. If X is path-connected, we will say that (X,A) is a
0−connected pair. We will say that the pair (X,A) is n−connected if it is 0−connected and
πi(X,A) = 0, ∀i ≤ n.

Taking A = {x0}, for x0 any point inX, we can extend this notion to the 0−connectedness
and n−connectedness of topological spaces. Trivially, 0−connectedness is equivalent to path-
connectedness, and 1−connectedness is equivalent to simple connection.

Proposition 5.17. Let {(Xα, xα)}α∈A be a collection of path-connected based topological
spaces, indexed by some set A. Then, if we consider the based topological space corresponding
to the product space,

(
Πα∈AXα, (xα)α∈A

)
, we have that, ∀n ∈ N,

πn

(∏
α∈A

Xα

)
∼=
∏
α∈A

πn(Xα)

Proof. By the product’s universal property, a continuous map f : In →
∏

α∈AXα corresponds
to a family of continuous maps {fα : In → Xα}, so every element of πn

(∏
α∈AXα

)
has an

associated element in every πn(Xα).
Also, this follows for maps f : In+1 →

∏
α∈AXα, and so if we have two maps f, g : In →∏

α∈AXα with H : f ≃∂In g, it induces a homotopy Hα : fα ≃∂In gα for each α ∈ A. This
means that the classes [f ] ∈ πn

(
Πα∈AXα

)
correspond exactly with elements ([fα])α∈A ∈

Πα∈Aπn(Xα) in a way that clearly preserves the group structure.

Example 5.18. If we consider the torus T = S1 × S1, π1(T) = Z× Z.

Summarising the behaviour of homotopy groups with the basic constructions (subspaces,
product spaces and quotient spaces), the second is the only one that behaves as expected in
general, as quotient spaces can also lead to unexpected results.

As an example of quotients not behaving as one might expect, with what we have already
seen, both the interval I and a two point space {0, 1} (choosing either of the points as the
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base-point) have trivial fundamental groups, but the quotient space of I by collapsing {0, 1}
to a point, I

{0,1} , is homeomorphic to S1, which has non-trivial fundamental group (in fact,

we know it is isomorphic to Z).

6 The computation of homotopy groups

The computation of higher homotopy groups is very hard in general, and it has sparked
over the years many subfields of study within Homotopy Theory. Many notions and results,
devised to compute homotopy groups in particular cases, ended up leading to interesting
theory worth studying on its own.

We will use the excuse of showing some ways higher homotopy groups are computed, to
both display the difficulty of calculations in the field, and give insight into how some subfields
of Homotopy Theory are studied, which can be sought after by an interested reader who want
to deepen their understanding of the theory lying beyond this essay.

In this section we will show some interesting relationships between homotopy groups,
which allow to translate information from known groups into unknown ones; we will show
Seifert-van Kampen’s theorem and how it’s used to compute fundamental groups; we will
generalise the properties of the map p : R → S1 employed in the computation of the fun-
damental group of the circle to the notion of covering spaces, whose classification is an
interesting subject of study; we will give some notions into the importance of the homo-
topy of CW-complexes for the field; and we will show some glimpses of the problem of the
homotopy groups of spheres, the Freudenthal suspension theorem, and the field of Stable
Homotopy Theory.

Some parts of this section will deal heavily with CW-complexes, and so we will give a
refresher into their definition, and some interesting properties of their topology in the context
of Homotopy Theory.

6.1 The topology and homotopy of CW-complexes

Definition 6.1 (n−cells. CW-complexes). A 0−cell is a one-point space. An n−cell in a
topological space X is the image of an n−ball Bn through a continuous map Φ: Dn → X,
where Bn corresponds to the interior of the disk Dn.

A CW-complex is a topological space X, together with a sequence of subspaces, X0 ⊆
X1 ⊆ · · · ⊆ ∪nX

n = X, constructed from cells through the following process:

1. X0 is a discrete space, with points regarded as 0−cells.

2. We construct the space Xn from Xn−1 by attaching n−cells, {enα}α∈An , to Xn−1,
through maps φα : S

n−1 → Xn−1. For this, we regard Sn−1 as the border of a disk Dn,
and φα as describing how the disk is attached. We take the disjoint sum Xn−1⊔Dn and
then the quotient that identifies x ∼ φα(x) for each x ∈ ∂Dn = Sn−1. Xn is defined
by reproducing this process simultaneously for each enα (α is understood to uniquely
determine the cell, but the superscript n is included for clearly conveying the size of
the cell).

3. If X ̸= Xn for any finite n ∈ N ∪ {0}, then it is taken to be the limit case X =
∪nX

n. In this case, the topology used on X is usually called the weak topology in
the literature, which corresponds to the strong topology with respect to the family of
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canonical inclusions {Xn ↪→ X}∞n=0. Equivalently, a set A ⊆ X is open (closed) if and
only if A ∩Xn is open (closed) in Xn for each n ∈ N ∪ {0}.

For a given enα of a CW-complex, the map Φα given by the composition Dn ↪→ Xn−1 ⊔
Dn → Xn ↪→ X is called the characteristic map of enα.

The spaces Xn involved in the construction of a CW-complex are called its n−skeleton.

Definition 6.2 (CW-subcomplex. CW-pair). If A ⊆ X is a closed union of cells of X, we
say A is a subcomplex of X. In particular, Xn is the biggest subcomplex with cells of size
at most n. A pair (X,A) of a CW-complex and a subcomplex A ⊆ X is called a CW-pair.

Proposition 6.3. Let A ⊆ X be a subset of a CW-complex X. Then, A is open (closed) in
X if and only if Φ−1

α (A) is open (closed) in Dn, ∀α ∈ A, ∀n ∈ N.

Proof. We prove the result for open sets, as it is equivalent for closed sets. One implication
is obvious due to the continuity of characteristic maps.

Assume that Φ−1
α (A) is open for each α ∈ A, and that A ∩ X i is open ∀i < n. Then,

as Φ−1
α (A) is open in Dn

α, A ∩ Xn is open in Xn by definition of the quotient topology, as
A∩Xn = (A∩Xn−1)∪Φα (Φ

−1
α (A)). This implies A is open in Xn for all n ∈ N by induction,

and so we are done.

CW-complexes are topological spaces with some nice properties. We will now proceed to
prove some of them.

Proposition 6.4. Let X be a CW-complex. Then, X is a T4 space.

Proof. Points are closed in X, as their pre-images through the characteristic maps are always
closed, by applying proposition 6.3, implying it is a T1 space.

Let A ⊆ X be a subset of X. We define an open neighbourhood Nϵ(A) of A for each map
ϵ : A → R+ by the following process. We define N0

ϵ (A) = A ∩ X0. Assume N i
ϵ defined for

i < n. Then, we will define Nn
ϵ (A) by giving two open sets Aα, Bα ∀α ∈ An, and defining

Nn
ϵ (A) = Nn−1

ϵ (A) ∪
⋃

α∈An

(
Aα ∪Bα

)
Here, Aα will be an open set in the interior of the disk, Dn \ ∂Dn, and Bα will be another
open set “along the border” that is contained in Dn \ {0}, where 0 denotes the centre of
the disk. Aα will be a neighbourhood of the points of A inside the disk, and Bα will be a
neighbourhood of the points of the border that are mapped to Nn−1

ϵ (A).
Aα will be given by

Aα = {x ∈ Dn \ ∂Dn | d
(
Φ−1

α (A) \ ∂Dn, x
)
< ϵ(α)}

an ϵ(α)−neighbourhood of Φ−1
α (A) \ ∂Dn in Dn \ ∂Dn−1.

To define Bα, we first consider the homeomorphism r : (0, 1] × ∂Dn → Dn \ {0}, where
0 denotes the centre of the disk, given by r(t, s) = ts. Observe that ϕ−1

α

(
Nn−1

ϵ (A)
)
⊆ ∂Dn.

Then,

Bα = r
(
(1− ϵ(α), 1]× ϕ−1

α

(
Nn−1

ϵ (A)
))

suffices. It is clear that Nϵ(A) = ∪nN
n
ϵ (A) is an open neighbourhood of A in X.
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To prove the normality ofX, we prove that for small enough values of ϵ, Nϵ(A)∩Nϵ(B) = ∅
for disjoint closed sets A,B. Assume N i

ϵ(A) ∩N i
ϵ(B) = ∅ for all i ≤ n, after observing that

the base case n = 0 is trivial due to the definition of N0
ϵ and the fact that A,B are disjoint.

For any given Φα : D
n+1 → X, we observe that

d
(
Φ−1

α (Nn
ϵ (A)) ,Φ

−1
α (B)

)
> 0

as otherwise we would be able to find a sequence in Φ−1
α (B) of points arbitrarily close to

Φ−1
α (Nn

ϵ (A)), which by compactness of Φ−1
α (B) contains a converging subsequence to a point

with 0 such distance in Φ−1
α (B), contradiction with the existence of Nn

α (B), as Φ−1
α (Nn

α (B))
is a neighbourhood of Φ−1

α (B)\∂Dn, disjoint with Φ−1
α (Nn

ϵ (A)) by hypothesis. By symmetry,

d
(
Φ−1

α (Nn
ϵ (B)) ,Φ−1

α (A)
)
> 0

implying d (Φ−1
α (A),Φ−1

α (B)) > 0, and so there exists some ϵ(α) for which the thesis follows.

In the last results we have developed inductions on the dimension of the cells of CW-
complexes, which can be regarded as inductions on the dimension of their n−skeleta, relying
on the inductive definition of the complexes themselves. This inductive nature is one of the
reasons they are well-behaved with respect to general topological spaces, as it helps prove
many interesting results on them.

For example, this kind of argument allows for inductive proofs of the continuity of maps:

Proposition 6.5. Let F : X → Y be a map, with X a CW-complex, and Y an arbitrary
topological space. Then, F is continuous if and only if Fn = F |Xn is continuous for each n.

As homotopies are, in the end, continuous maps, these inductive proofs of continuity allow
for inductive constructions of homotopies, which is one of the advantages of CW-complexes
over general topological spaces for Homotopy Theory. One such homotopy is inductively
described in the proof of next proposition:

Proposition 6.6. Let X be a CW-complex, and x ∈ X a point. Then, the family of the sets of
the form Nϵ({x}) as described in the proof of proposition 6.4, contains an open neighbourhood
basis for x, such that every such neighbourhood is contractible.

Proof. Let U be a neighbourhood of x in X. As U is a neighbourhood, ∃B open set with
x ∈ B ⊆ U . Considering BC the complementary of B in X, which is closed, and the fact
{x} is closed because X is T2, we have proven in the proof of proposition 6.4 that ∃ϵ such
that Nϵ({x}) and Nϵ(B

C) are disjoint. This implies Nϵ({x}) ⊆ B, and so the family of these
Nϵ({x}) is a neighbourhood basis. We will prove that this family suffices.

We denote N i = N i
ϵ({x}), ∀i ∈ N ∪ {0}. To prove contractibility, we will prove that

Nϵ({x}) ≃ {x}. For this, we construct a deformation retract of Nϵ({x}) into {x}.
Assume x ∈ Xm\Xm−1, and we construct a deformation retract of Nn into Nn−1 ∀n > m.

Let Φα be the characteristic map of a cell enα. Observe that due to the assumption that
x ∈ Xm \Xm−1, no point in the interior of the cell is mapped to x. Then, Φα doesn’t map
0 ∈ Dn to x. This means that we can assume 0 ̸∈ Φ−1

α (Nϵ({x})), and it is contained in
Dn \ {0}, which admits a deformation retract ∂Dn by example 3.13. Composing with this
retract for the characteristic maps of all n−cells, yields by the definition of Nn a deformation
retract of it into Nn−1.
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In the case n = m, Nm is by definition an open ball around x, and so Nm ≃ {x}. Then,
it suffices to show Nm ≃ Nϵ({x}).

Now, define the homotopy ft such that the homotopy from Nm+i to Nm+i−1 happens
during the interval

[
1
2i
, 1
2i−1

]
. This can be defined inductively, leaving the parts of the interval

for which the homotopy is still undefined constant. We note that, for each N j, at some point
the image on its skeleton will be stationary, and so the resulting F associated map of ft
is continuous when restricted to every N j, which implies it is continuous. Then, ft is a
homotopy from Nϵ({x}) to Nm, completing the proof.

Corollary 6.7. CW-complexes are locally path-connected. This implies that a CW-complex
X is path-connected if and only if it is connected.

6.2 Relations between homotopy groups

This subsection mainly deals with two ways that we can define relations between the different
homotopy groups of a given based topological space: the long exact sequences of homotopy
groups for pairs, and that higher homotopy groups possess a structure of Z[π1]−module.

Definition 6.8 (Exact sequence). When we have a collection of objects of Grp, Gi, and
morphisms between them, connecting them in the following way

· · · φi+2−−→ Xi+2
φi+1−−→ Xi+1

φi−→ Xi
φi−1−−→ · · ·

and such that im φi+1 = ker φi for all i ∈ N, we say they conform an exact sequence.

We introduce a useful lemma, which helps characterise when a given continuous map
g : In → X represents the trivial class in πn(X,A, x0).

Lemma 6.9 (Compression criterion). Let X be a topological space, and x0 ∈ A ⊆ X. Then,
an element [f ] ∈ πn(X,A, x0) is the trivial element of the group if and only if f is homotopic
relative to ∂In to a map g : (In, Jn−1) → (A, x0).

Proof. The first implication comes from the fact that, if f ≃∂In g for some such g, [f ] = [g],
and we just have to prove [g] is trivial. For this, we consider the homotopy H : In × I → X
as given by

H(x, t) = g (x1, x2, · · · , (1− t)xn + t)

We have that H(x, 0) = g(x) and H(x, 1) = g
(
(x1, x2, · · · , xn−1, 1)

)
= x0, as we have

that (x1, x2, · · · , xn−1, 1) ∈ ∂In, so g is homotopic to the constant map, and H respect the
requirements so that [g] = [ex0 ] in πn(X,A, x0), as H(Jn−1 × I) = {x0}, H(In−1 × I) ⊆ A.

Now, assume that [f ] is the trivial element. Then, H : ex0 ≃(∂In,Jn−1) f .
If we consider rt : I

n×I → In×I to be a family of retracts as the one in the proof of lemma
5.10, but such that the intersection point of the rays is taken at (In × {t}) ∪ (∂In × [t, 1])
instead of (In × {0}) ∪ (∂In × I), we have that this can be proven to be a homotopy by
arguments similar to the ones sketched in the proof of the lemma, and ht : I

n × I → X given
by ht(x) = (H ◦ rt)(x, 1) is a homotopy which suffices.

Proposition 6.10 (Long exact sequence of relative homotopy). Let X be a topological space,
and x0 ∈ B ⊆ A ⊆ X. Then, there exists an exact sequence

· · · → πn+1(X,A, x0) → πn(A,B, x0)
i∗−→ πn(X,B, x0)

j∗−→ πn(X,A, x0)
∂−→ πn−1(A,B, x0) → · · ·
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where i∗ and j∗ are the homomorphisms induced by the inclusions i : (A, x0) ↪→ (X, x0) and
j : (X, {x0}, x0) ↪→ (X,A, x0), and ∂ : πn(X,A, x0) → πn−1(A, x0) is obtained by ∂([f ]) =
[∂f ], where ∂f is the restriction of f to In−1.

In particular, taking B = {x0}, there is an exact sequence

· · · → πn+1(X,A, x0) → πn(A, x0)
i∗−→ πn(X, x0)

j∗−→ πn(X,A, x0)
∂−→ πn−1(A, x0) → · · ·

Proof. First, we observe that near the end of the sequence, objects like π0(X, x0) do not have
group structure. Nevertheless, exactness still makes sense if they are defined to be trivial
when they consist of a single element.

We first observe that j∗ ◦ i∗ ≡ 0, as maps (In, ∂In, Jn−1) → (A,B, x0) represent zero
elements in πn(X,A, x0), due to lemma 6.9.

To prove ker j∗ ⊆ im i∗, we assume some f : (In, ∂In, Jn−1) → (X,B, x0) to represent the
zero element in πn(X,A, x0), and then again by lemma 6.9, f is homotopic rel ∂In to a map
with image in A, and [f ] lies in the image of i∗.

The exactness between j∗ and ∂ is analogous. To prove i∗ ◦ ∂ ≡ 0, we observe that the
restriction of some map f : (In+1, ∂In+1, Jn) → (X,A, x0) is homotopic rel ∂In to a map
representing the zero element through f itself, as it is a homotopy by definition.

As we are only interested in the case where B = {x0}, we will prove the converse for just
this case. Assume a homotopy ft : (I

n, ∂In) → (X, x0) from f : (In, ∂In) → (A, x0) to the
constant map ex0 . Here, f represents the zero element of πn(X, x0). Then, if we consider
F : (In × I, ∂(In × I), Jn) → (X,A, x0) given by F (x, t) = ft(x), we have [f ] = ∂([F ]), and
so we are done.

It can be seen that the definitions given for the sets π1(X,A, x0), π0(X,A, x0), π0(X, x0)
can be made to fit nicely in the sequence, even though the maps are no longer group homo-
morphisms and are just maps between sets. There, the kernel of a map is considered to be
the preimage of the base-point, and a based set is considered to be trivial when it has only
one element. If we define the sets for values of n ∈ Z, such that they are one point sets for
all negative values of n, the sequence can be extended while remaining exact.

This result allows us to see interesting relationships between homotopy groups. Imag-
ine, for example, that we know the homotopy groups of some subspace A, and the relative
homotopy groups of the n−connected pair (X,A). Then,

πn(X) ∼= πn(A)
/
ker i∗

∼= πn(A)
/
∂
(
πn+1(X,A)

)
These kind of relationships allow us to convert information about homotopy groups we

know, into information about those we don’t, sometimes even allowing us to compute those
unknown groups.

This has many effects, like allowing us to relate the homotopy groups of a space and
general subspaces of it, by mediating with relative homotopy groups.

Another important consequence is that this result allows us to work with relative homo-
topy groups, for which we haven’t done any real calculations, by using absolute homotopy
groups. Observe the following result.

Corollary 6.11. Let X be a path-connected space, and A ⊆ X be a subspace, such that
π1(X) = 1, π2(X) = 0. Then, π2(X,A) ∼= π1(A)
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Proof. If π2(X) = π1(X) = 1, we have an exact subsequence of the long exact sequence of
homotopy of the pair (X,A) given by

1 −→ π2(X,A) −→ π1(A) −→ 1

The fact that the image of the first arrow is trivial, proves the second one is monomorphism,
and the fact that the third arrow has kernel equal to π1(A) shows the second is surjective,
so the second arrow is an isomorphism in between π2(X,A) and π1(A).

In particular, if π1(A) is not abelian, we have found our example of a non-abelian second
relative homotopy group, finally proving that the condition n ≥ 3 for relative homotopy
groups to be abelian in general is optimal. In proposition 6.61 we will give a concrete
example of this.

We will now show another interesting relationship between homotopy groups.

Definition 6.12 (R−modules. G−modules). Let G be a group. A (left) G−module consists
of an abelian group M , together with a group action of G on M given by Φ: G×M → M ,
such that Φ(g, a+ b) = Φ(g, a) + Φ(g, b) for all a, b ∈ M .

If R is a ring with multiplicative identity, a (left) R−module consists of an abelian group
M , and an operation given by Φ: R×M → M , such that, ∀r, s ∈ R ∀a, b ∈ M , we have:

1. Φ(r, a+ b) = Φ(r, a) + Φ(r, b).

2. Φ(r + s, a) = Φ(r, a) + Φ(s, a).

3. Φ (r,Φ(s, a)) = Φ(rs, a).

4. Φ(1, a) = a.

Analogous definitions can be given for right modules, and even modules that are both
left and right modules. We will however just use left modules and call them modules.

The fact πn(X) are abelian for n ≥ 2 implies that they naturally have a structure of
Z−modules, given by Φ(n, a) = a+ a+ · · ·+ a︸ ︷︷ ︸

n times

. This structure can be strengthened through

the fundamental group.

Definition 6.13 (Group ring). Let G be a group. Z[G], the group ring of G over Z, is
the ring given by Z−linear combinations of elements of G, with the product induced by the
product in G.

Lemma 6.14. Let G be a group, and M be an abelian group, such that M has a structure
of G−module. Then, the action of G on M can be extended linearly to an operation of Z[G]
on M , and M can be given structure of Z[G]−module.

Proof. Let M be a G−module and denote Φ(g, a) by g · a for g ∈ G, a ∈ M .
As M is an abelian group, it has a canonical structure of Z−module. We will also denote

the action of Z on M induced by this structure by n · a for n ∈ Z, a ∈ M .
We then define the action of Z[G] on M by(∑

i

ni · gi

)
·m =

∑
i

ni · (gi ·m)
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We must prove it is indeed a ring action. We prove the items in definition 6.12.(∑
i

ni · gi

)
· (a+ b) =

∑
i

ni · (gi · (a+ b))) =
∑
i

ni · (gi · a+ gi · b) =

∑
i

ni · (gi · a) +
∑
i

ni · (gi · b) =

(∑
i

ni · gi

)
· a+

(∑
i

ni · gi

)
· b

and so the first item is proved.
The second item is trivial, due to the definition of the sum in Z[G] and the action of G

on M .
For the third one,(∑

i

ni · gi

)
·

(∑
j

n′
j · g′j

)
·m =

(∑
i

ni · gi

)
·

(∑
j

n′
j · (g′j ·m)

)
=

=
∑
j

∑
i

ni · gi ·
(
n′
j · (g′j ·m))

)
=
∑
j

∑
i

nin
′
j · (gig′j ·m) =

=

(∑
i

∑
j

nin
′
j · (gig′j)

)
·m

and the last term is equivalent to the definition of the product in Z[G], acting on m, which
implies the third item. Lastly

(1 · e) · a = 1 · (e · a) = 1 · a = a

and so the action of the trivial element is trivial, and we are done. With this, we have proven
the structure of Z[G]−module on M . If we are given a Z[G]−module on M , we can recover
the action of G on M by considering g ·m = (1 · g) ·m for each g ∈ G, m ∈ M

Corollary 6.15. Let X be a path-connected topological space. Then, πn(X) has a structure
of Z[π1(X)]−module, ∀n ≥ 2.

Proof. It follows from the last result by considering the action given by the homomorphism
βn : π1(X) → Aut

(
πn(X)

)
described in observation 5.14.

The action of π1 can be extended to act on itself by inner automorphisms, but it doesn’t
always have a module structure, as it is not abelian in general.

This structure is interesting in general, as the action of the fundamental group is not
a mere curiosity, and plays a role in the theory distinguished from other actions π1 might
possess. A theorem due to Serre included in [1], for example, states that for topological spaces
such that the action of π1 on all πn is trivial, their homotopy groups are finitely generated
if and only if their homology groups are finitely generated, which is a result that doesn’t
follow in general. We will nevertheless not develop this further, as it lies beyond the scope
of this essay.
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6.3 Seifert-van Kampen’s theorem

Seifert-van Kampen’s theorem helps compute the fundamental group of some path-connected
spaces, by decomposing them into simpler subspaces of them whose fundamental groups are
already known.

Definition 6.16 (Free product of groups). Let {Gα}α∈A be an indexed family of groups.
Consider the set ∗αGα of words of finite length g1g2 · · · gn such that the empty word is
allowed, and each gi belongs to some Gαi

for some αi ∈ A.
If in this set, we identify words in which two consecutive elements belong to the same Gαi

with the word that replaces them with their product in Gαi
, it is a group, with the operation

given by concatenation and identity given by the empty word. This group is called the free
product of the family {Gα}α∈A.

Lemma 6.17. Let {ϕα : Gα → H}α∈A be a family of group homomorphisms. Then, they
extend uniquely to a homomorphism

ϕ : ∗α Gα −→H

g1g2 · · · gn 7−→φα1(g1)φα2(g2) · · ·φαn(gn)

Observe that, while on the left g1g2 · · · gn represents a word, on the right each φαi
(gi) is an

element of H, and the result is the product in H of the images.

Theorem 6.18 (Seifert-van Kampen). Let (X, x0) be a based topological space, such that X
is the union of path-connected open sets Aα such that x0 ∈ Aα, ∀α ∈ A, and each intersection
Aα ∩ Aβ is path-connected. Let

jα : π1(Aα) → π1(X)

be the group homomorphism induced by the inclusion Aα ↪→ X. The family {jα}α∈A extends
by lemma 6.17 to a group homomorphism

Φ: ∗α π1(Aα) → π1(X)

This homomorphism is surjective. Moreover, if each intersection Aα ∩ Aβ ∩ Aγ is path-
connected, then, if iαβ : π1(Aα∩Aβ) → π1(Aα) is the homomorphism induced by the inclusion
Aα ∩Aβ ↪→ Aα, the kernel of Φ is N , the normal subgroup generated by elements of the form
iαβ(w)iβα(w)

−1 for each w ∈ π1(Aα ∩ Aβ), and we have

π1(X) ∼= ∗απ1(Aα) /N

Proof. Let f : I → X be a loop based at x0. We claim that there exists a partition 0 =
s0 < s1 < · · · < sn = 1 of I such that for all si in the partition, f ([si, si+1]) ⊆ Aαi

for some
αi ∈ A.

We have that, as f is continuous, f−1(Aα) is open in I for all α ∈ A because each Aα is
open in X. This means that each s ∈ I must have a neighbourhood mapped to the same Aα,
which implies that, ∀s ∈ I, ∃a > 0 such that f ([s− a, s+ a]) ⊆ Aα for some α ∈ A. The
family of the interiors of these intervals forms an open cover of I, and by compactness of I,
we have that it is covered with a finite subcover of this family, and so it is also covered by a
finite amount of the closed intervals. The existence of the partition follows from taking the
endpoints of these intervals.
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Let fi be the restriction of f to [si, si+1]. We have f ≃ f1 ∗ f2 ∗ · · · ∗ fn product of paths,
each of them lying in some Aαi

. We have that f is homotopic to f1∗g1∗g1∗f2∗g2∗g2∗· · ·∗fn,
where gi is a path in Aαi

∩ Aαi+1
from fi(1) to x0, which exists because the intersection is

path-connected and contains x0. From this,

[f ] = [f1 ∗ g1] ∗ [g1 ∗ f2 ∗ g2] ∗ · · · ∗ [gn−1 ∗ fn]

where f1 ∗ g1, g1 ∗ f2 ∗ g2, · · · are loops based at x0 lying in Aαi
, which shows that [f ] ∈

Φ (∗απ1(Aα)), and so Φ is surjective.
To prove the second assertion, we notice that we have proven [f ] can be factored into

a product [f1][f2] · · · [fn], with each fi lying in some Aα, and the ∗ symbol for the product
omitted for simplicity. We can see this, not as a product in π1(X), but as a word in ∗απ1(Aα),
mapped to the product by Φ.

We will say two such factorisations are equivalent if they are related by a sequence of
these two operations:

• We combine [fi][fi+1] into their product if they belong to the same group π1(Aα).

• Regard some [fi] as an element of π1(Aβ) instead of π1(Aα) if fi lies in Aα ∩ Aβ.

We observe that the first operation doesn’t change the element of ∗απ1(Xα) we are consid-
ering, according to the definition of the operation in the free product, and, by definition of
N , the second doesn’t change the element of ∗απ1(Xα) /N we consider, and so equivalent
elements give the same element of the quotient.

If we can show that any two given factorisations of some [f ] are equivalent, we would
deduce that the map from the quotient to π1(X) induced by Φ is injective, and so we have
the isomorphism desired.

Let [f1][f2] · · · [fn] and [f ′
1][f

′
2] · · · [f ′

m] be two factorisations of [f ]. Then, there exists a
homotopy F : f1 ∗ f2 ∗ · · · ∗ fn ≃∂I f

′
1 ∗ f ′

2 ∗ · · · ∗ f ′
m.

Now, the open sets of the form (a, b)×(c, d) form a neighbourhood basis for I×I. As each
Aα is open, F−1(Aα) is open, and so ∀(x, y) ∈ I× I, ∃(a, b)× (c, d) ⊆ I× I neighbourhood of
(x, y) such that F ((a, b)× (c, d)) ⊆ Aα(x,y)

for some α(x,y). This means that there is an open
cover for I× I made of open rectangles, with each one mapped by F to a single Aα. As I× I
is compact, we will have a finite cover, and noting that the sets such a cover must overlap,
one can take a cover made of smaller rectangles [a, b] × [c, d]. Moreover, we can refine this
cover, making two partitions 0 = s0 < · · · < sn = 1 and 0 = t0 < t2 < · · · < tn = 1 fine
enough that the rectangles [si × si+1]× [tj, tj+1] cover I × I and is each mapped to a single
Aαi,j

. We may even assume, by adding more points to these partitions, that these rectangles
subdivide the rectangles induced by the fi and f ′

i maps.
As F maps an open neighbourhood of these closed rectangles to a given Aα, the “hori-

zontal” lengths can be perturbed, shrinking some rectangles and enlarging some, as to leave
the property that each be mapped to a single Aα, and at each vertex of the partition only
three rectangles meet, as in figure 3.

We may assume that there are at least three rows, as in figure 3, and only the intermediate
rows are perturbed, the top and bottom rows still induced by refining the factorisations of the
fi and f ′

i maps. We then number them row by row as in figure 4, the numbering increasing
one by one as it runs from left to right in the same row.

Observe that a path γ lying in I × I from the left edge to the right edge, after composed
with F , yields a loop based at x0, as the left and right edges are mapped to x0 by the relative
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Figure 3: “Perturbed” partition of I × I

1 2 3 4

5 6 7 8

9 10 11 12

Figure 4: Numbered rectangles

homotopy hypothesis. We define a sequence {γr} of paths in the following way: for a given
r, γr is the path that leaves the first r rectangles “below” and the rest “above”. Observe
that γ0 corresponds to one of the original factorisations, the last one to the other, and γr+1

is computed by “pushing through the r−eth rectangle”. If we are able to prove that γr and
γr+1 induce factorisations, and that they are equivalent for any r, we are done.

Let gv be a path from x0 to F (v) for each vertex of the rectangles such that F (v) ̸= x0.
As by the assumptions of the theorem, Aα ∩ Aβ ∩ Aγ is path-connected for all α, β, γ and
contains x0, we can assume gv to lie in the intersection of the Aαi

corresponding to the three
rectangles that meet at v.

If we introduce gv ∗gv in F ◦γ at these points as in the proof of surjectivity, we can induce
a factorisation of [F ◦ γ], thinking of the segments and vertices of the rectangles as lying in
either of the Aα the rectangles meeting at them map to. We observe that changes in the
criteria for which rectangle a given edge belongs to, induces an equivalent factorisation by
the second operation of the definition of the equivalence. Furthermore, “pushing through” a
given rectangle corresponds to a homotopy contained inside the same Aα, and so the factor
affected induces the same class as before in π1(Aα), and the factorisations before and after
the push remain equivalent.

Thus, there is a sequence of equivalent factorisations for [f ] from one given to any other,
and the thesis follows.

There exist cases when van Kampen’s theorem can hugely simplify the computing of
certain fundamental groups. For example, when we can find the Aα such that each set is
good enough on its own and the intersection is exactly {x0}.

Definition 6.19. Let (X, x0), (Y, y0) be based topological spaces. We define (X, x0)∨ (Y, y0)
the wedge sum or one-point sum of (X, x0) and (Y, y0) to be the space given from the disjoint
union X ⊔ Y , by identifying x0 ∼ y0.
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This can be extended to arbitrary families {(Xα, xα)}α∈A, by taking the disjoint union⊔
αXα, and taking quotient by identifying xα ∼ xα′ ∀α, α′ ∈ A.

Example 6.20. Let X =
∨

α(Aα, xα) with each Aα path connected, and such that, for all α,
∃Uα ⊆ Aα open neighbourhood of xα such that Uα ≃ {xα}. Then, X is path-connected, and
π1(X) ∼= ∗απ1(Aα).

If we take each Aα to be some more concrete spaces, we can find some interesting results.

Example 6.21.

π1

(∨
α∈A

S1

)
∼= ∗α∈AZ

Proof. We observe that for any point x ∈ S1, it has a neighbourhood consisting of an open
arc. This arc is homeomorphic to R, and by proposition 3.12, R ≃ {x}, so we can apply
what we have seen in example 6.20 and conclude the proof using theorem 4.17.

Example 6.22.
π1(S

n) = 1, ∀n ≥ 2

Proof. Consider some point p ∈ Sn, and some base-point x0 ∈ Sn \ {p,−p}. If we consider
U = Sn \{p} and V = Sn \{−p}, we have x0 ∈ U ∩V and X = U ∪V . Moreover, U, V, U ∩V
are path-connected, and so we can apply Seifert-van Kampen’s theorem. We have that there
is a surjective homomorphism Φ: π1(U) ∗ π1(V ) → π1(S

n), but π1(U) = π1(V ) = 1 because
Sn \ {p} ∼= Rn as given by the stereographic projection, and so Φ: 0 → π1(S

n) is surjective,
implying π1(S

n) = 1.

There’s another way to understand Seifert-van Kampen’s theorem through the use of
presentations, as quotients of free groups have a natural structure of presentation.

Definition 6.23. We say a group G has a presentation ⟨S|R⟩ if S is a set of elements, R is
a set of words of the free group with the elements of S as generators, Free(S) := ∗s∈SZ, and

G ∼= Free(S)
/
NFree(S)(R)

where NFree(S)(R) is the normal closure of R in Free(S) (the smallest normal subgroup of
Free(S) containing R).

Seifert-van Kampen’s theorem can sometimes be naturally stated as yielding a presen-
tation for π1(X), by “combining” presentations from each π1(Aα). For this, S is induced
by the set of generators of these presentations, and R is determined by the Rα from each
presentation, together with the words of the group N from the statement of the theorem,
which relate to how the combination is arranged.

However, this also shows the limitations of the techniques it induces on the computation
of fundamental groups, as the problem of proving that a presentation corresponds to a given
group, called the word problem for groups, has been proven to be undecidable (for more on
this topic, see [18]). This means that Seifert-van Kampen’s theorem can give a presentation
for a group, that we cannot prove corresponds to said group.

Again, the computation of fundamental groups is hard in general, even in well-behaved
cases, such as these, where we can apply Seifert-van Kampen’s theorem.
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Lemma 6.24. Every group G has a presentation.

Corollary 6.25. For each group G, there exists a 2−dimensional connected CW-complex X
such that π1(X) ∼= G

Proof. Let ⟨S|R⟩ be a presentation of G. Then, if we let X0 = {x0}, and X1 =
∨

s∈S S
1,

where x0 is the base-point of each copy of S1, π1(X
1) ∼= Free(S). Let N = NFree(S)(R), and

denote Ss the copy of S1 associated to each s ∈ S.
Each element of N is a finite word s1s2 · · · sn. Technically, si ∈ Z for some copy of Z, but

we expand the word so that either si or s
−1
i is in S, by representing the value n by n copies

of the generator. If we understand s as a loop in the counter-clockwise direction around Ss,
and −s as a loop in the clockwise direction, each of these words represents a loop in X1.
If we attach a 2−cell by identifying ∂D2 to a parametrisation of this loop, the fundamental
group of the resulting space is exactly the quotient of the fundamental group before by the
group generated by the word, as this loop becomes homotopy equivalent to the constant map
through the interior of the 2−cell.

Doing this for each word in N results in a connected CW-complex with only one 0−cell,
as many 1−cells as |S|, as many 2−cells as |R|, and the desired fundamental group.

This result is, in fact, a particular case for n = 1 of a more general result. There exist
path-connected topological spaces such that any group appears as πn(X) (respecting the
restriction that those of order higher than 1 be abelian).

Definition 6.26 (Eilenberg-MacLane spaces). Let G be a group, and n ∈ N. An Eilenberg-
MacLane space K(G, n) is a path-connected topological space such that πi(K(G, n)) =
0, ∀i ̸= n and πn(K(G, n)) ∼= G.

Theorem 6.27. K(G, 1) exist for all G group, and K(G, n) exist for all n ≥ 2, and for all
abelian groups G.

The existence of Eilenberg-MacLane spaces is of great interest for the theory of Algebraic
Topology, although we will not see instances of their application in this essay.

Although we will not give a proof of their existence here, it is a particular case of the
constructions we will sketch in the context of CW-approximation for theorem 6.52. For the
moment, we can observe that, for a choice of a group G1 and a sequence {Gi}∞i=2 of abelian
groups, the space Πi∈NK(Gi, i) is a path-connected topological space that has the desired
sequence as its homotopy groups. This can help us visualise the true size of the category
of homotopy types, π(Top), as it has a class of objects at least as big as the class of these
sequences. In fact, the class of homotopy types is bigger than this, as homotopy groups
alone are not enough to characterise the homotopy type of a given topological space. We will
discuss this in more detail in 6.5

6.4 Covering spaces

Another tactic for studying the fundamental group is generalising the map p : R → S1 we
employed in the proof of theorem 4.17, through the notion of covering spaces.

Definition 6.28 (Covering space). Let X be a topological space. A covering space is a pair
(X̃, p), where X̃ is a topological space and p : X̃ → X satisfies the condition that ∃{Uα}α∈A
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open cover of X, such that for all α ∈ A, p−1(Uα) is a disjoint union of open sets of X̃, and
if V is any such open set, p|V : V → Uα is homeomorphism.

Usually, we just say p : X̃ → X is a covering space of X.
A covering space p : X̃ → X is a continuous map. We observe, though, that the condition

p−1(Uα) be a disjoint union of open sets allows it to be empty, and so p may not be surjective.
All results exposed here are nevertheless also true if p is required to be surjective, as some
texts do also assume surjectivity in their definitions of covering maps, but we will stick to
the one given by Hatcher, who gives a non-surjective definition in [1].

Example 6.29. p : R → S1 with p(t) =
(
cos(2πt), sin(2πt)

)
is a covering space of S1.

Example 6.30. p : S1 → S1 with p(z) = zn (considering z as a complex number) is a
covering space of S1, ∀n ∈ N.

Definition 6.31. The real projective plane RP 2 is the quotient space on S2, S2

∼ , that iden-
tifies together antipodal points, x ∼ −x, ∀x ∈ S2. Observe that the classes [x] ∈ RP 2 are
given by sets {x,−x}.

Example 6.32. The quotient map p : S2 → RP 2 given by p(x) = [x] is a covering space of
RP 2.

Proof. We observe that, for any open set U ⊆ S2 such that ∀x ∈ U we have −x ̸∈ U (equiva-
lently, any open set contained in just one hemisphere), p maps U to p(U) homeomorphically.
Trivially, we can find a cover for RP 2 as desired by constructing an open cover {Ũα}α∈A of
S2 such that each Ũα is contained in just one hemisphere, and taking {p(Ũα)}α∈A open cover
of RP 2.

Note that, through the first two examples, we have shown that covering spaces are not
unique. Their classification is an interesting enough problem, and we will later indulge in
showing some of its aspects.

Definition 6.33. Let p : X̃ → X be a covering space, and f : Y → X be a continuous map.
We say a continuous map f̃ : Y → X̃ is a lift of f if f = p ◦ f̃ .

We will now prove a proposition that generalises lemma 4.16.

Proposition 6.34 (Homotopy lifting property). Let p : X̃ → X be a covering space, a
homotopy ft : Y → X, and a map f̃0 : Y → X̃ lifting f0. Then, f̃0 extends to a unique
homotopy f̃t : Y → X̃ such that f̃t lifts ft for all t ∈ I.

Proof. We will first prove that, for any fixed y ∈ Y , ∃N ⊆ Y open neighbourhood of y such
that ∃f̃t : N → X̃ lift of ft|N , and such that it agrees with f̃0|N for t = 0.
As p : X̃ → X is a covering space, we have an associated open cover {Uα}α∈A of X. As it
covers X, it means that, ∀t ∈ I, ∃αt ∈ A with ft(y) ∈ Uαt . Because F : Y × I → X, the
associated map of ft, is continuous, we have that, for all t ∈ I, F−1(Uαt) is open in Y and
contains (y, t). This means that there is some open neighbourhood of (y, t) in Y , B, with
F (B) ⊆ Uαt . In particular, as Y × I has a basis which is formed by products of open sets,
we can take a neighbourhood of the form Nt×At, for some basic open set At ⊆ I, which can
be assumed to be of the form [0, a), (a, b) or (a, 1] for a, b ∈ I.

Now, as {y0} × I is compact, and {Nt × At}t∈I covers it, {y0} × I can be covered with
a finite amount of such neighbourhoods, for 0 = t0 < t1 < · · · < tn = 1. We will denote
Ai, Ui, Ni for simplicity.
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Taking the non-empty intersection of the Ni, which is open due to the intersection being
of finitely many open sets, we have an open neighbourhood N of y in Y such that there exist
a finite family of open sets {N × Ai}ni=0 that cover N × I, and such that F

(
N × Ai

)
⊆ Ui

for some Ui ∈ {Uα}α∈A.
Moreover, {Ai}ni=1 cover I, which means that, because I is connected, and remembering

each Ai is an interval, every such interval must intersect at least one other. This means we
can take a partition 0 = t′0 < t′1 < · · · < tm = 1 using points in the intersection of those
intervals, such that, for each [ti, ti+1], it is contained in at least one of the original intervals.
This means we can take {N × [ti, ti+1]}m−1

i=0 to be the cover, and we still have that, for all i,
F
(
N × [ti, ti+1]

)
⊆ Ui for some Ui ∈ {Uα}α∈A.

Assume inductively that we have the desired lift in [0, ti], with associated map F̃ : N ×
[0, ti] → X̃. The base case is trivial, as t0 = 0, and so the lifting corresponds to f̃t : N → X̃
for t ∈ {0}, that is, the original f̃0.

Consider now N × [ti, ti+1]. Remember that we have F (N × [ti, ti+1]) ⊆ Ui for some Ui.
By definition of covering space, there exists a family of open sets {Ũα

i }α with each Ũα
i ⊆ X̃

such that, for each α, p|Ũα
i
: Ũα

i → Ui is a homeomorphism. We know p−1(Ui) is non-empty,

because by the inductive step we have already defined f̃ti(y), which must be in this set, and
by the same argument, we must have a unique Ũα

i , we will denote Ũi, which contains f̃ti(y),
as the sets in {Ũα

i }α are disjoint by definition.
This means that we can replaceN with a new neighbourhood of y given by the intersection

of N and (F |N×{ti})
−1(Ũi). This is not a problem, as we will only repeat this process a finite

number of times, and guarantees that F̃ (N × {ti}) ⊆ Ũi. Now, we can define F̃ : N ×
[ti, ti+1] → X̃ as (p−1

i ◦ F )|N×[ti,ti+1], where pi = p|Ũi
. Then, F̃ is defined for N × [0, ti+1],

because [0, ti], [ti, ti+1] are closed sets that cover [0, ti+1] and such that, by construction, our
maps F̃ agree in N ×{ti}, so by the lemma 3.2 the resulting map is continuous. This means
that, for all y ∈ Y , we can find Ny ⊆ Y open neighbourhood of y such that we can define
the lift in the neighbourhood, f̃t : Ny → X̃.

To complete the proof, we will first assume Y = {y}, and prove the uniqueness of the
lift. Assume there are two lifts of the given homotopy, f̃t, g̃t : {y} × I → X̃. We choose
a partition 0 = t0 < t1 < · · · < tn = 1 as before such that F ({y} × [ti, ti+1]) ⊆ Ui for
some Ui ∈ {Uα}α∈A. Assume inductively that f̃t = g̃t, ∀t ∈ [0, ti]. The base case is trivial
again, as t0 = 0, and both coincide with the f̃0 already given to us. As [ti, ti+1] is connected,
F̃ ({y} × [ti, ti+1]) ⊆ Ũi for F̃ the associated map of f̃t, because the sets that map to Ui are
disjoint by definition of covering space, and the continuous image of a connected space is
connected. By the same argument, G̃({y} × [ti, ti+1]) ⊆ Ũ ′

i . But, as ti ∈ [ti, ti+1], and we
have assumed in the inductive step that f̃ti = g̃ti , both images must lie in some Ũi, which
we have already shown before is unique, and so both images must lie in the same set. Now,
p ◦ F̃ = F = p ◦ G̃ by definition of the lift, and as p is injective because p|Ũi

: Ũi → Ui is

homeomorphism, we have f̃t = g̃t for all t ∈ [ti, ti+1].
Now, as we have shown that the lift is unique for each point, and restrictions of continuous

maps are continuous, we must have that any lift F̃ : Ny×I → X̃ must coincide at every point
with any other lift with the same domain, meaning the lift we found is unique for each y ∈ Y .
As {Ny}y∈Y is trivially an open cover of Y , and we have that the map F̃ : Ny×I → X̃ is unique
for each y, including points in the intersection of two of these neighbourhoods. Trivially, by
applying lemma 3.2, we can uniquely extend F̃ to the whole space, and we are done.

We have already seen how this property can be used for our purposes in computing
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fundamental groups. If one were to observe it, they are to appreciate the sophistication
in even the most basic computations of fundamental groups, as we remember we used a
particular case of this result for theorem 4.17. Once again, we observe that the computations
of fundamental groups are a hard affair in general.

A useful corollary of this theorem is the case when Y is a one-point space, which yields
a path-lifting property.

Corollary 6.35. Let p : X̃ → X be a covering space, and α : I → X be a continuous path.
Then, ∀x̃ ∈ X̃ such that p(x̃) = α(0), ∃!α̃ : I → X̃ continuous path such that α = p ◦ α̃ and
α̃(0) = x̃.

Proof. It follows from proposition 6.34, by taking Y = {y} a one-point space, ft : Y → X
given by ft(y) = α(t) and α̃0(y) = x̃, as the homotopy lift guaranteed by the proposition,
f̃t : Y → X̃, yields the path lift α̃ : I → X̃ given by α̃(t) = f̃t(y).

We can give other properties that relate the fundamental group and covering spaces.

Proposition 6.36. Let p : (X̃, x̃0) → (X, x0) be a covering space. Then, p∗ : π1(X̃, x̃0) →
π1(X, x0) is a monomorphism. The image p∗

(
π1(X̃, x̃0)

)
in π1(X, x0) consists of the homo-

topy classes of loops in X based at x0 such that their lifts to X̃ starting at x̃0 are also loops.

Proof. An element of ker p∗ is a loop f̃0 : I → X̃ such that [p ◦ f̃0] = [ex0 ] in π1(X, x0). This
means that there is a homotopy ft : I → X from p ◦ f̃0 to ex0 , relative to ∂I. Now, by the
homotopy lifting property, this means there is a lift of this homotopy to X̃, f̃t : I → X̃, such
that f̃1(s) = x̃0 for all s ∈ I. This is a homotopy from f̃0 to ex̃0 . We can see that, as ft is
relative to ∂I, ft(0) and ft(1) are constant for all t ∈ I, and so when lifting as in the proof
of proposition 6.34, the lift will be constant at f̃t(0) and f̃t(1) for each t ∈ I, implying that
it is relative to ∂I as a homotopy, and so the kernel of p∗ is trivial.

To check the second assertion, it is obvious that loops in (X, x0) lifting to loops based at
x̃0, are representatives of the class we get from applying p∗ to their lift by the definition of p.
We get the other implication by just noting that an element of p∗

(
π1(X̃, x̃0)

)
is represented by

a loop such that it is the result of applying p to a loop in (X̃, x̃0), which is the desired lift.

The relationship between these two fundamental groups can also encode other geometric
aspects of the relationship between a space and a covering space of it. For example, in
connected spaces, it can measure the “relative size” of both spaces, in the sense of the
cardinality of p−1(x) for all x ∈ X.

Definition 6.37. Let p : X̃ → X be a covering space, with X, X̃ path-connected spaces.
Then, we define |p−1(x)| the number of sheets of the covering (the reason why we attribute
this number to the covering, and not the particular choice of x, will become apparent shortly).

Proposition 6.38. Let p : X̃ → X be a covering space, with X, X̃ path-connected spaces.

Then, the number of sheets of the covering is equal to the index
[
π1(X) : p∗

(
π1(X̃)

)]
. In

particular, it is constant as x ranges over X.

Proof. Let α be a loop based at x0 in X. Consider its lift to the covering space, α̃, based at
x̃0 in X̃, as given by corollary 6.35. We observe that, although the lift starts at x̃0, it is not
guaranteed to be a loop, as the endpoint might be another point x̃ ∈ X̃ with p(x̃) = x0. If we
take some [h] ∈ p∗

(
π1(X̃, x̃0)

)
= H, we can consider a representative h of this class. Observe
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that the fact that [h] is in the image of p∗ implies that we can choose this representative so
that it has a lift h̃ : I → X̃ which is a loop.

We can now consider h ∗α. We know that, by corollary 6.35, there exists a path lift of α,
α̃, such that α̃(0) = x̃0, which is also the endpoint of h̃, as it is a loop, and so h̃ ∗ α̃ suffices
as the unique lift of h ∗ α with starting point x̃0.

This means that α̃ and h̃ ∗ α̃ have the same end point. If we now consider the map

Φ: π1(X, x0) /H −→p−1(x0)

H[g] 7−→g̃(1)

where g̃ is the unique path lifting g with starting point x̃0, we have that it is well defined, as
Φ([α]) = Φ([h] ∗ [α]) for all [h] ∈ H.

As X̃ is path-connected, there will be a path g̃ such that g̃(0) = x̃0 and g̃(1) = y for all
y ∈ p−1(x0), which means there is some g = p ◦ g̃ loop in X based at x0 with Φ(H[g]) = y,
and so Φ is surjective. To show injectivity, we observe that Φ(H[g1]) = Φ(H[g2]) implies
g̃2(1) = g̃1(1). Taking g̃1 ∗ g̃2, it is a loop in X̃, and so g1 ∗ g2 lifts to a loop, which means
[g1] ∗ [g2]−1 ∈ H and H[g1] = H[g2].

Example 6.39.
π1(RP 2) ∼= Z2

Proof. Let p : S2 → RP 2 be a covering space of RP 2, given by the quotient map in example
6.32. We observe that, for some [x] ∈ RP 2, p−1([x]) = {x,−x}. This means |p−1 ({x,−x})| =
2, ∀[x] ∈ RP 2.

Then, the cover has 2 sheets, which means that [π1(RP 2) : p∗ (π1(S
2))] = 2. Now, π1(S

2)
is trivial by example 6.22, which means p∗ (π1(S

2)) is also trivial, and so |π1(RP 2)| = 2. But
there is only one group of cardinal 2, Z2, completing the proof.

The fact that the number of sheets of a covering space is related to the index of a subgroup
of π1, could induce us to raise some questions about the nature of the relationship between

covering spaces p : X̃ → X, and subgroups of π1(X) of the form p∗

(
π1(X̃)

)
. For example,

is every subgroup of π1(X) of this form?
As it turns out, there is a rich theory on the classification of covering spaces that gives a

positive answer to this question for certain sufficiently nice spaces.

Definition 6.40. We say that a topological space X is semilocally simply-connected if,
∀x ∈ X, ∃U ⊆ X neighbourhood of x, such that the map i∗ : π1(U, x) → π1(X, x) induced
by the inclusion U ↪→ X is trivial.

Lemma 6.41 (Lifting criterion). Let p : (X̃, x̃0) → (X, x0) be a covering space, and a map
f : (Y, y0) → (X, x0) with Y a path-connected and locally path-connected topological space.

Then, ∃f̃ : (Y, y0) → (X̃, x̃0) that lifts f if and only if f∗

(
π1(Y, y0)

)
⊆ p∗

(
π1(X̃, x̃0)

)
.

Proof. Considering that f = p ◦ f̃ , it is trivial that, if such a lift exists,

f∗

(
π1(Y, y0)

)
= (p∗ ◦ f̃∗)

(
π1(Y, y0)

)
⊆ p∗

(
π1(X̃, x̃0)

)
⊆ π1(X, x0)

To prove the other implication, for each y ∈ Y , let α : I → Y be a path between y0 and

y. Then, f ◦ α : I → X is a path in X. By corollary 6.35, there exists a unique lift f̃ ◦ α
such that f̃ ◦ α(0) = x̃0. We define the map f̃ : (Y, y0) → (X̃, x̃0) by f̃(y) = f̃ ◦ α(1).
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We have to prove that this assignment is independent of the choice of α. Let α′ be another
path between y0 and y. Then, h0 = f ◦ (α ∗α′) is a loop in (X, x0). As [h0] ∈ f∗ (π1(Y, y0)) ⊆
p∗

(
π1(X̃, x̃0)

)
, ∃h̃1 : (I, ∂I) → (X̃, x̃0) a loop on X̃ such that p∗([h̃1]) = [h0] in π1(X, x0).

This implies that, taking h1 = p ◦ h̃1, there exists a relative homotopy H : h0 ≃∂I h1. By
the homotopy lifting property, we have a homotopy lift of H, H̃, and since h̃1 is a loop in X̃
based at x̃0, and the homotopy H̃ preserves endpoints, h̃0 : I → X̃ given by h̃0(0) = H̃(x, 0)
is also a loop, which is a lift of h0. As the lifts of f ◦ α, f ◦ α′ are unique, this implies h̃0 is
the unique lift of f ◦ (α ∗ α), and in particular, the end-points of the lifts of f ◦ α, f ◦ α′ are
equal to the midpoint of h̃0, so f̃ is well defined.

To prove the continuity, let y ∈ Y be a point, and take a neighbourhood U ⊆ X of f(y).
As p : X̃ → X is a covering space, can take it such that there is an open set Ũ ⊆ X̃ such
that p|Ũ : Ũ → U is homeomorphism, and f̃(y) ∈ Ũ . As Y is locally path-connected, we can
take an open path-connected neighbourhood of y, V ⊆ Y , such that f(V ) ⊆ U .

We fix α a path between y0 and y, and for each y′ ∈ V , with a path α′ from y0 to y′, we
find a path γ from y to y′. As γ is contained in V , f ◦ γ, which is a path from f(y) to f(y′),
is contained in f(V ) ⊆ U . If we consider the fact that p|Ũ : Ũ → U is a homeomorphism, it
admits a continuous inverse, p−1

U : U → Ũ . This allows us to consider p−1
U ◦ f ◦ γ : I → Ũ ,

which is trivially a path lift of f ◦ γ. As by corollary 6.35 we have uniqueness of the lift, this
implies that f̃(y′) ∈ Ũ , and so f̃(V ) ⊆ Ũ , as the choice of point y′ was arbitrary. This means
that f̃ |V = p−1

U ◦ f , which is continuous.
If we consider each choice of y ∈ Y , this means that for each one there is an open

neighbourhood Vy such that f̃y = f̃ |Vy is continuous. Observe that this family of open sets

covers Y , and so, by lemma 3.2, we have that f̃ is continuous.

Proposition 6.42. Let X be a path-connected, locally path-connected and semilocally simply-
connected topological space. Then, ∃p : (X̃, x̃0) → (X, x0) covering space such that X̃ is simple
connected.

Proof. Before we begin to construct this covering space, assume that it exists to study its
form, let p : (X̃, x̃0) → (X, x0) be a covering space with X̃ simple connected. Observe that,
for any x̃ ∈ X̃, if we take two paths α, α′ : I → X̃ from x̃0 to x̃, α ∗ α′ is a loop, which
is homotopy equivalent to ex̃0 relative to ∂I by the condition that X̃ is simple connected.
This means that α ∗ α′ ≃∂I ex̃0 =⇒ α ∗ α′ ∗ α′ ≃∂I ex̃0 ∗ α′ =⇒ α ≃∂I α′, and so it is
clear that there is a single class in [I, X̃]∂I for the paths between x̃0 and some given point x̃.
This means that the points in X̃ are in correspondence with the classes in [I, X̃]∂I of paths
starting at x̃0, and X̃ can be purely described by these classes.

Now, if this covering space exists, we expect by corollary 6.35 that each path on X from
x0 to some point x be lifted to a path on X̃ from x̃0 to some point x̃, and we now know that
this point x̃ can be described solely by the homotopy class of this path. Consider

X̃ = {[γ]∂I | γ : I → X path with γ(0) = x0}

Consider also the map p : X̃ → X given by p([γ]∂I) = γ(1). This map is clearly well defined.
We will give a topology on X̃ that makes p a covering space and X̃ simple connected. We
will from now on write [γ] instead of [γ]∂I for the sake of simplicity.

Let U be the collection of path-connected open sets U ⊆ X such that i∗ : π1(U) → π1(X)
induced by the inclusion is trivial. We see that any path-connected open subset of U , V ⊆ U ,
is also in U , as i∗ : π1(V ) → π1(X) factors as i∗ : π1(V ) → π1(U) → π1(X). This means that,
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if X is locally path-connected and semilocally simple connected, U is a basis for the topology
on X. We will use it to define a basis on X̃.

Let U ∈ U , and γ : I → X be a path from x0 to some point in U . We define U[γ] =
{[γ ∗ η] | η : I → U a path such that η(0) = γ(1)}. We see that p|U[γ]

: U[γ] → U is surjective,
as U is path-connected, and injective, as i∗ : π1(U) → π1(X) is trivial, implying all paths
η, η′ : I → U joining γ(1) and η(1) are homotopy equivalent relative to ∂I in X.

We also observe that, if [γ′] ∈ U[γ], then U[γ′] = U[γ], as if γ
′ = γ ∗ η, with η lying in U ,

then the elements of U[γ′] are of the form [γ ∗ η ∗ ν] = [γ ∗ (η ∗ ν)], implying U[γ′] ⊆ U[γ], and
elements of U[γ] are of the form [γ ∗ ν] = [γ ∗ η ∗ η ∗ ν] = [γ′ ∗ (η ∗ ν)], and so U[γ] ⊆ U[γ′].

Finally, we are able to describe the topology, after we see that, if we consider

U ′ = {U[γ] | U ∈ U , [γ] ∈ [I,X] with γ(0) = x0}

we have that U ′ is a basis for a topology on X̃. Indeed, it covers X̃, and if we consider two
U[γ], V[γ′] ∈ U ′, and an element [γ′′] ∈ U[γ] ∩ V[γ′], we have U[γ] = U[γ′′] and V[γ′] = V[γ′′] by
what we have already seen, and so if W ∈ U is contained in U ∩ V and contains γ′′(1), then
W[γ′′] ⊆ U[γ′′] ∩ V[γ′′] = U[γ] ∩ V[γ′] and [γ′′] ∈ W[γ′′].

We can see that p is continuous under the topology given by U ′ as a basis. Indeed, we
just have to prove that p|U[γ]

: U[γ] → U is a continuous map and apply lemma 3.2. But
we can see that p|U[γ]

is a homeomorphism, as it induces a bijection between the subsets
V[γ′] ⊆ U[γ] and the sets V ∈ U with V ⊆ U . Indeed, p(V[γ′]) = V , and in the other direction,
p−1(V ) ∩ U[γ] = V[γ′] for any [γ′] ∈ U[γ] with endpoint in V .

We can also verify that p is a covering space, as the sets U[γ] for varying γ partition
p−1(U), and if they are not disjoint, they are equal, as previously seen, so it only remains to
see that X̃ is simple connected.

We first show that X̃ is path-connected. Let [α] ∈ X̃ be any point in X̃. We must show
there is a path between [ex0 ] and [α].

For this, consider the following map F : I × I → X, as given by

F (s, t) =

{
α(s) if s ∈ [0, t]

α(t) if s ∈ [t, 1]

We have that, for a fixed t, ft : I → X, given by ft(s) = F (s, t) is a path on X starting
at x0, and so [ft] is a point in X̃. We have that f0 = ex0 and f1 = α, and so the map
g : I → X̃ given by g(t) = [ft] is the desired path on X̃, as it can be shown to be continuous,
so it suffices.

To prove that π1(X̃) = 1, we just show that p∗(π1(X̃)) = 1, as p∗ is injective because p
is a covering space. Elements in p∗(π1(X̃)) are loops γ on X that lift to loops in X̃. If we
substitute α with γ in the definition of the path g used before, this path lifts γ, and it is a
loop if and only if [γ] = g(1) = g(0) = [ex0 ], which implies [γ] = [ex0 ], and so p∗ is trivial.

Theorem 6.43. Let (X, x0) be a path-connected, locally path-connected and semilocally simply-
connected based topological space. Then, there is a bijective correspondence between path-
connected based covering spaces p : (X̃, x̃0) → (X, x0) up to pointed homeomorphism of cov-
ering spaces (that is, homeomorphisms f : (X̃, x̃0) → (X̃ ′, x̃′

0) such that p = p′ ◦ f) and

subgroups of π1(X), given by (X̃, p) → p∗

(
π1(X̃)

)
.

Moreover, if we consider a topological space X with the same conditions, and a point
x0 ∈ X, although not necessarily a based topological space, there is a correspondence between
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covering spaces p : X̃ → X (up to homeomorphisms such f : X̃ → X̃ ′ such that p = p′ ◦ f)
and the conjugacy classes of subgroups of π1(X, x0).

We will not give a full proof, but we will at least sketch how these covering spaces are. If
we define [γ] ∼ [γ′] if γ(1) = γ′(1) and [γ ∗ γ′] ∈ H for some H ⊆ π1(X), we see that this is
an equivalence relation, as H is a group. It can be seen that X̃H the quotient of X̃ given by
this equivalence relation, and p : X̃H → X given by p([γ]) = γ(1), is a covering space, and
p∗(π1(X̃)) = H, by an argument similar to that showing the simple-connection of X̃, but
now noting that the loops that admit a lift to a loop are those for which [γ] ∼ [ex0 ], that is,
those for which [γ] ∈ H.

We can observe some distinguished covering spaces with respect to this result. For example,
normal subgroups H of a given group G have only one conjugacy class. The covering spaces
associated with these classes are denoted normal covering spaces. These covering spaces
are interesting because, if we consider their deck transformations, that is, homeomorphisms
f : X̃ → X̃ such that p = p ◦ f , these are precisely the spaces such that for any two lifts x̃, x̃′

of a point x ∈ X, there is a deck transformation with f(x̃) = x̃′.
Ommiting the map p for brevity, the deck transformations of a covering space X̃ form a

group, G(X̃), which, although we will not prove this here, is isomorphic to N(H) /H , where
H is the subgroup of π1(X, x0) associated to the covering space, and N(H) is the normaliser
of H in π1(X, x0). If we understand G(X̃) as a group of symmetries of X̃, we see that for
normal covering spaces, G(X̃) ∼= π1(X, x0) /H , and so the study of the symmetries of these
covering spaces is interesting for the study of the fundamental group.

It is also of interest to observe the simple connected covering spaces. By the previous
results, for a sufficiently nice topological space X, a simple connected covering space exists,
and is unique up to deck transformations. It is called the universal covering space of X, and
is universal in the sense that it is a covering space of every other path-connected covering
space of X. It is also closely related to the fundamental group of X. Observe that its group
of deck transformations is isomorphic to the fundamental group of X. This implies that the
computation of π1(X) is equivalent to the study of the symmetries of the universal covering
space of X.

Although we will not fully prove this theorem, or develop the classification of covering
spaces any further (see [1] for more detail on these results), we can observe how reminiscent
this is of the Galois connection between subextensions of a Galois extension, and subgroups of
its Galois group. We can even observe the connection between the notion of normal covering
spaces, and normal field extensions. This relationship stems from the fact that both theories
can be generalised through the concept of Galois categories, and in the context of Algebraic
Geometry and schemes, the Galois group becomes a nice analogue for the fundamental group
(see [2] for more on this).

Applying what we have seen on classification of covering spaces to the examples we know,
for S1, R is its universal covering space, as is S2 for RP 2.

Moreover, as the subgroups of Z are the trivial subgroups and nZ for n ≥ 2, we know that
the path-connected covering spaces of S1 are those we have already shown, being p : R → S1

the one corresponding to the trivial subgroup, the identity id : S1 → S1 the one corresponding
to Z, and corresponding to nZ the covering spaces pn : S

1 → S1 given by pn(z) = zn.
As for RP 2, as Z2 only has the trivial subgroups, there are only two path-connected cov-

ering spaces up to homeomorphism: S2 and itself.
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If we ask ourselves how covering spaces relate to higher homotopy groups, they work nicely
with them.

Proposition 6.44. Let p : (X̃, x̃0) → (X, x0) be a covering space. It induces isomorphisms
p∗ : πn(X̃, x̃0) → πn(X, x0), ∀n ≥ 2.

Proof. Surjectivity follows from the lifts guaranteed by lemma 6.41, as by the universal
property of the quotient space each continuous map f : (In, ∂In) → (X, x0) factors through
Sn, which is the quotient obtained from In by identifying together the points of ∂In. This
means that, if k : (In, ∂In) → (Sn, ∗) is the quotient map, each such continuous map f factors

as (In, ∂In)
k−→ (Sn, ∗) f ′

−→ (X, x0) for some continuous map f ′ : (Sn, ∗) → (X, x0).
As π1(S

n) = 1, ∀n ≥ 2 as seen in example 6.22, for all f ′ : (Sn, ∗) → (X, x0), we have that
f ′
∗(π1(S

n)) = f ′
∗(1) = 1 ⊆ p∗(π1(X̃, x̃0)), which implies that f ′ admits a lift f̃ ′ : (Sn, ∗) →

(X̃, x̃0), and so [f ] = p∗([f̃ ◦ k]), proving surjectivity.
Injectivity of p∗ is proven in a way analogous to the injectivity in the case n = 1.

6.5 Whitehead’s theorem and CW approximation

Computing higher homotopy groups is a hard problem in general, as is computing funda-
mental groups. But, while there are results that are analogous to those used for computing
fundamental groups, these turn out to be weaker in general than their n = 1 counterparts.
One example is the excision theorem for homotopy groups.

The excision theorem references the namesake excision property, which is a general result
in the case of homology groups. In the case of homotopy groups, the excision theorem is a
partial analogue for CW-complexes.

Theorem 6.45 (Excision theorem for homotopy groups). Let X be a CW-complex, decom-
posed as the union of A,B subcomplexes, such that C = A∩B ̸= ∅. If (A,C) is m−connected,
and (X,B) is n−connected, m,n ≥ 0, then the map πi(A,C) → πi(X,B) is an isomorphism
for i < m+ n, and an epimorphism for i = m+ n.

Theorem 6.45 will be left unproven, as the proof found in Hatcher’s Algebraic Topology,
together with the proof of some of the lemmas employed in it, results too technical for the
use we will give it. (For the interested reader, see theorem 4.23 in [1]).

This result can be thought of as an analogue for a Seifert-van Kampen’s theorem for
n > 1, but is weaker in a number of ways. For example, it only applies to CW-complexes,
allows for only finite indexing in the components in which you decompose the space, and the
relative homotopy groups you compute are determined by the decomposition you make.

However, the fact that results like theorem 6.45 only work for CW-complexes doesn’t
mean they are not of interest, as CW-complexes are important spaces in the context of
Homotopy Theory. This is not only due to the many interesting topological spaces (like
spheres, tori and projective planes) that admit a CW-complex structure, and due to the
fact we have previously stated that they have some good properties over general topological
spaces, but also because of some interesting results involving their homotopy types and their
homotopy equivalences.

Definition 6.46. Let f : (X, x0) → (Y, y0) be a pointed map. We say f is a weak homotopy
equivalence if f∗ : πn(X, x0) → πn(Y, y0) are isomorphisms for all n ∈ N.
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Lemma 6.47 (Compression lemma). Let (X,A), (Y,B) be CW-pairs with B ̸= ∅. Assume
that ∀n ∈ N such that X \ A has cells of size n, we have πn(Y,B, y0) = 0 ∀y0 ∈ B. Then,
∀f : (X,A) → (Y,B) continuous map, f ≃A g for some continuous map g : X → B.

Proof. We will do a proof by induction by proving that if we have some continuous map
fn : (X,A) → (Y,B) such that fn(X

n) ⊆ B, then, fn ≃A∪Xn fn+1 for some fn+1(X,A) →
(Y,B) such that fn+1(X

n+1) ⊆ B. Then, we would be done, as a global homotopy can be
constructed inductively as the one in the proof of proposition 6.6, and the base case is trivial.

Assume that fn : (X,A) → (Y,B) is such that fn(X
n) ⊆ B. For some cell en+1

α of X \A, if
Φα : (D

n+1, ∂Dn+1) → (Xn+1, Xn) is its characteristic map, we can consider the composition
f ◦ Φα : (D

n+1, ∂Dn+1) → (Y,B).
As there is a homeomorphism p : (In+1, ∂In+1) → (Dn+1, ∂Dn+1), we have a continuous

map f ◦ Φα ◦ p : (In+1, ∂In+1) → (Y,B). As πn+1(Y,B, y0) = 0 by hypothesis for all y0,
[f ◦ Φα ◦ p] = 0, and by lemma 6.9, this means H : f ◦ Φα ◦ p ≃∂In+1 g with g : (In+1, Jn) →
(B, y0), and in particular g(In+1) ⊆ B. We then have H ◦ p−1 : f ◦ Φα ≃∂Dn+1 g′ with
g′(Dn+1) ⊆ B.

Now, the map G : (Xn ⊔Dn+1)× I → Y given by

G(x, t) =

{
fn(x) if x ∈ Xn

(H ◦ p−1)(x, t) if x ∈ Dn+1

is a homotopy, as it is continuous on two disjoint open sets that cover the space and applying
lemma 3.2 in its version for open sets, and induces a homotopy on the quotient Xn ∪ en+1

α

as the homotopy was relative to the borders, and so it is constant with respect to t on every
pair of points identified. Doing this for each n+ 1−cell of X \A simultaneously, and taking
the constant homotopy on those in A, we have that fn ≃A∪Xn g with g(Xn+1) ⊆ B, and by
taking fn+1 = g we are done.

Theorem 6.48 (Whitehead’s theorem). If X, Y are CW-complexes, and f : X → Y is a
weak homotopy equivalence, then f is a homotopy equivalence. Moreover, if f : X ↪→ Y is
the inclusion map of a subcomplex and it is a weak homotopy equivalence, X is a deformation
retract of Y .

Proof. In the special case when f : X ↪→ Y is the inclusion of a subcomplex, by applying
proposition 6.10, we have an exact sequence

· · · → πn+1(X,A, x0) → πn(A, x0)
i∗−→ πn(X, x0)

j∗−→ πn(X,A, x0)
∂−→ πn−1(A, x0) → · · ·

We observe that i∗ is the map induced by the inclusion, which we know is isomorphism, and
so im i∗ = πn(A, x0), which implies ker j∗ = πn(A, x0) ∼= πn(X, x0), and so j∗ ≡ 0. This
means that ker ∂ = im j∗ = 0, and so ∂ is monomorphism, but im ∂ = ker i∗ = 0, and so
πn(X,A, x0) = 0 for all n ∈ N. Applying lemma 6.47 to idY : (Y,X) → (Y,X), we have the
deformation retract.

For the general case, we use spaces called mapping cylinders. For a given continuous map
f : X → Y , the mapping cylinder Mf is defined as the quotient of the space (X × I) ⊔ Y
by identifying (x, 1) ∼ f(x), for all x ∈ X. Mf deformation retracts into Y in the natural
way, and so as f = r ◦ i with i : X ∼= X × {0} ↪→ Mf the inclusion, it suffices to show Mf

deformation retracts into X.
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First, we show that πn(Mf , X, x0) = 0 for all n ∈ N and all x0 ∈ X. Observe that for
[f ] ∈ πn(Mf , X, x0), the map H : In+1 × I → Mf given by

H(x, t) = ((x1, x2, · · · , xn), txn+1)

is a homotopy relative to ∂In+1 such that H(In+1, 1) ⊆ X, and so by lemma 6.9, [f ] = 0.
Now, if we consider X ∪ Y ⊆ Mf by taking (X × {0}) ∪ (Y × {1}), applying lemma

6.47 to the inclusion i : (X ∪ Y,X) ↪→ (Mf , X), we have a homotopy G : i ≃X g for some
g : X ∪ Y → Mf such that g(X ∪ Y ) ⊆ X. Now, if we prove that the pair (Mf , X ∪ Y )
has the homotopy extension property, we are done, as if we take g̃0 : Mf → Mf to be equal
to the identity, and gt : X ∪ Y → Mf given by gt(x) = G(x, t), there would be a homotopy
extension g̃t : Mf → Mf with g̃0 = idMf

and g̃1(Mf ) ⊆ X, which would render the required
deformation retract from Mf into X.

The homotopy extension property, by lemma 5.9, is equivalent to ((X∪Y )×I)∪(Mf×{0})
being a retract of Mf × I. We have that

Mf × I = ((X × I) ∪ (Y × {1}))× I = (X × I2) ∪ (Y × {1} × I)

(Mf ×{0})∪ (X ∪Y )×I = (X×I×{0})∪ (Y ×{1}×{0})∪ (X×{0}×I)∪ (Y ×{1}×I) =

=
(
X × ((I × {0}) ∪ ({0} × I))

)
∪
(
Y × {1} × I

)
after the required identifications of points. Trivially, we just have to prove (I×{0})∪({0}×I)
is a retract of I2. By lemma 5.10, (I × {0}) ∪ ({0, 1} × I) is a retract of I2, and trivially a
second retract from it into the subspace (I × {0}) ∪ ({0} × I) can be found.

Observe that theorem 6.48 does not imply that two CW-complexes are homotopy equiva-
lent if their homotopy groups are equivalent. The condition that there exists a map f : X → Y
that induces the isomorphisms cannot be dropped in general.

Example 6.49. Both S3×RP 2 and S2×RP 3 (the construction of RP 3 is analogous to that
of RP 2, by identifying antipodes in S3) have isomorphic homotopy groups. However, they are
not homotopy equivalent, as the isomorphisms between the homotopy groups are not induced
by a single continuous map.

Proof. This can be shown by showing π1(RP 3) = Z2 by an argument equal to that of the
proof of example 6.39, as S3 is a simply-connected covering space of RP 3 as given by the
quotient map, and seeing that both products have covering space S2×S3, which implies that
all higher homotopy groups are isomorphic by proposition 6.44.

Through homology groups, one could build an argument that these spaces are not homo-
topy equivalent. We will not do so in this essay, as homology groups fall out of its scope.

Whitehead’s theorem can be related to an interesting property of CW-complexes called
CW approximation.

Definition 6.50 (n−connected CW-pair). We say a CW-pair is n−connected if it is n−connected
as a pair of topological spaces.

Definition 6.51 (CW model). Let (X,A) be a pair of topological spaces, with the subspace
∅ ̸= A ⊆ X being a CW-complex. An n−connected CW model for (X,A) is a continuous
map f : (Z,A) → (X,A) with (Z,A) an n−connected CW-pair such that f : Z → X follows
that f |A = idA and induces isomorphisms f∗ : πi(Z) → πi(X), ∀i > n, and a monomorphism
f∗ : πn(Z) → πn(X).
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Theorem 6.52 (CW approximation). n−connected CW-models exist for every pair (X,A)
of a topological space and a non-empty CW-complex, and every n ≥ 0. Furthermore, it can
be assumed that Z is obtained from A by attaching cells of dimension greater that n.

The term CW approximation comes from the fact that, if n = 0 and A is chosen to
be a set composed of a single point for each path-component of X, an n−connected CW
model becomes a CW-complex together with a weak homotopy equivalence from Z to X.
Paired with Whitehead’s theorem, we observe that a CW approximation of a CW-complex
is a CW-complex of the same homotopy type.

Corollary 6.53. Let (X,A) be an n−connected CW-pair. Then, ∃ (Z,A) n−connected
CW-pair with Z ≃A X and Z \ A having only cells of size greater than n.

Although we will not prove the CW approximation theorem, a sketch of the proof is
interesting in its own right, as it includes interesting ideas about how Homotopy Theory is
done on CW-complexes. It relies heavily on cellular maps and cellular approximations, and
the main idea is that, for CW-complexes, adding cells of enough dimension doesn’t affect the
homotopy groups for low values of n.

Definition 6.54 (Cellular map). Let f : X → Y be a continuous map between CW-complexes.
We say f is cellular if f(Xn) ⊆ Y n, ∀n ∈ N.

Theorem 6.55 (Cellular approximation). Every continuous map f : X → Y between CW-
complexes is homotopic to a cellular map. Moreover, if A ⊆ X is a subcomplex such that f |A
is cellular, the homotopy can be assumed to be relative to A.

The observation of cellular approximation is that, when considering classes of maps up to
homotopy between CW-complexes, large cells can be ignored. Indeed, when considering maps
like those used in the construction of homotopy groups f : (In, ∂In) → (X, x0), we observe
that, if X is a CW-complex, these maps are homotopic to maps f : (In, ∂In) → (Xn, x0)
relative to ∂In. This means that adding cells of size n to a CW-complex won’t make the
groups πi(X) any bigger for i < n.

Moreover, CW-complexes allow for a “fine tuning” of their homotopy groups. The last
observation implies that (X,Xn) is an n−connected CW-pair, by applying lemma 6.9. If we
consider the long exact sequence of the pair (X,Xn),

· · · → πi+1(X,Xn, x0) → πi(X
n, x0)

i∗−→ πi(X, x0)
j∗−→ πi(X,Xn, x0)

∂−→ πi−1(X
n, x0) → · · ·

We observe that im ∂ = 0 for small enough i, and so ker i∗ = 0, implying it is a monomor-
phism. Moreover, as im j∗ = 0, ker j∗ = im i∗ = πi(X, x0), and so i∗ is isomorphism.

In fact, πi(X, x0) ∼= πi(X
n, x0), ∀i < n, and i∗ : πn(X

n, x0) → πn(X, x0) is an epimor-
phism.

All of these observations together imply that adding cells of size n+ 1 to a CW-complex
leaves the homotopy groups πi(X, x0) constant for i < n, and can only make πn(X, x0) smaller
than it already is.

CW approximation consists of inductively fixing the homotopy groups, by assuming that
for n ∈ N we have a map fn : Z

n → X such that f∗ is isomorphism on each πi for i < n
and epimorphism for πn, adding cells that correspond to the elements of the kernel of f∗ for
i = n as in the proof of proposition 6.25, and guaranteeing surjectivity for the next step while
keeping πn constant. The map f can be extended in a natural way using the characteristic
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maps of the CW-complex, and an inductive proof of its continuity follows in a natural way,
as its restriction to each n−skeleton is clearly continuous.

CW approximation shows in an indirect way that the condition of X, Y being CW-
complexes in Whitehead’s theorem cannot be dropped. Indeed, if it was so, any topological
space would be homotopy equivalent to a CW-complex, but there are topological spaces that
are not. For example, the Alexandroff line, sometimes called the long line (topological space
given by the product R × [0, 1), together with the order topology given by lexicographic
order), has trivial homotopy groups, and would need to be contractible, as the inclusion
i : ∗ ↪→ R × [0, 1) is a weak homotopy equivalence, but its non-contractibility is a classical
example in the literature.

Proposition 6.56. Let X,X ′ be topological spaces, and A ⊆ X,A′ ⊆ X ′ CW-complexes.
Assume we are given the following:

• An n−connected CW-model f : (Z,A) → (X,A).

• An n′−connected CW-model f ′ : (Z ′, A′) → (X ′, A′).

• A continuous map g : (X,A) → (X ′, A′).

Then, if n ≥ n′, there exists a continuous map h : Z → Z ′ such that h|A = g|A and such that
g ◦ f ≃A f ′ ◦ h. Furthermore, h is unique up to homotopy relative to A.

This proposition implies that, when n = n′, there exists a unique n−connected CW-model
for a pair (X,A) up to homotopy type.

This means, in particular, that the homotopy types of CW-complexes model the classes
of topological spaces up to weak homotopy equivalence through CW-approximation. In
fact, many authors prefer to use the category Ho(Top∗) instead of π(Top∗), usually also
called homotopy category, which is analogous to our category in that, while the projection
η : Top∗ → π(Top∗) sends homotopy equivalences to isomorphisms, weak homotopy equiva-
lences correspond to isomorphisms in Ho(Top∗). This category is obtained through what’s
called a process of localisation, by selectively adding morphisms so that a morphism has in-
verse if it is a weak homotopy equivalence. In this category, the classes modulo isomorphism
correspond to the classes modulo homotopy equivalence of CW-complexes, as expected in
light of Whitehead’s theorem.

This is, for example, the motivation behind Grothendieck’s Homotopy Hypothesis, which
asserted that the definition of the category ∞−Grpd of ∞−groupoids, which hadn’t been
formally defined up to that moment, needed to account for it being equivalent to this homo-
topy category as an (∞, 1)−category, in the context of Higher Category Theory (see [7]).

6.6 Freudenthal suspension theorem. Stable Homotopy Theory

An interesting topic to study is how certain operations on topological spaces affect their
homotopy groups. We have seen that the homotopy groups “respond well” to products of
spaces, but have unpredictable behaviours when presented with subspaces and quotients in
general. There are, however, particular quotients that have interesting properties.

Definition 6.57. LetX be a topological space. Its suspension, SX, is defined as the quotient
of X × I obtained by collapsing X × {0} and X × {1} each to one point.
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If X is a CW-complex, we have the following result.

Theorem 6.58 (Freudenthal suspension theorem). If X is an (n − 1)−connected CW-
complex, then πi(X) ∼= πi+1(SX) for all i < 2n−1, and there exists a surjection π2n−1(X) →
π2n(SX). These maps are called suspension maps.

Proof. We observe that SX ∼= C+X ∪ C−X, where C+X is the quotient of X × [1
2
, 1] by

collapsing the points (x, 1), and C−X is analogous by collapsing the points (x, 0) in X× [0, 1
2
].

These spaces are called cones over X.
Then, the map is given by

πi(X) ∼= πi+1(C+X,X) → πi+1(SX,C−X) ∼= πi+1(SX)

where the two isomorphisms come from the long exact sequence of homotopy groups (ob-
serve that i∗ (πi(X)) = 0, as a homotopy from any continuous map f : Y → X ↪→ C+X
(analogously for C−X) to a constant map can be built by “sliding” the image towards a
vertex). The proof is completed by showing the middle map is isomorphism for i + 1 < 2n
and epimorphism for i + 1 = 2n by applying theorem 6.45 to the decomposition in C+X
and C−X.

Freudenthal suspension theorem has an interesting consequence, which follows from this
lemma.

Lemma 6.59. If X is a path-connected topological space, π1(SX) = 0

Proof. If we consider C−X,C+X path-connected open sets, and x0 ∈ C−X ∩ C+X, we
have that Seifert-van Kampen’s theorem guarantees an epimorphism π1(C−X) ∗π1(C+X) →
π1(SX). As C−X ∼= C+X, we just have to prove π1(C−X) = 0.

Let f : I → C−X be a path. Then, it factors through a map f̃ : I → X × [0, 1
2
]. Let f1, f2

be such that f̃(x) = (f1(x), f2(x)). Then, the homotopy H : I × I → X × [0, 1
2
] given by

H(x, t) = (f1(x), (1− t)f2(x))

is such that H(x, 0) = f̃(x), ∀x ∈ X, and H(x, 1) = (f1(x), 0), which is then mapped by the
quotient map to the vertex for all x ∈ X, and so the thesis follows.

This will have, together with Freudenthal suspension theorem, the consequence that if X
is an (n − 1)−connected CW-complex, SX is an n−connected CW-complex. Indeed, if X
is at least 0−connected, by the previous lemma, SX will be 1−connected, and Freudenthal
suspension theorem guarantees that all homotopy groups up to n of SX will be 0, as were
the homotopy groups up to n− 1 of X.

Now, this leads to an interesting concept known as stable homotopy. We have that each
successive suspension of a topological space X will be more connected, and the suspension
theorem guarantees isomorphisms of homotopy groups up to 2n − 1. As the second grows
faster than the first, this implies that, at some point, iterative applications of the suspension
map stabilise.

This means that
lim

k→+∞
πi+k(S

kX) = πS
i (X)

is well-defined, and reached in a finite number of steps, after which the sequence becomes
constant. These groups πS

i are called the stable homotopy groups of X, and their study
induces the field of Stable Homotopy Theory, an interesting subfield of Homotopy Theory.
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Lemma 6.60.
SSn ∼= Sn+1, ∀n ≥ 0

As we have hinted through this essay, the homotopy groups of spheres are, contrary to
what could be expected, not trivial in general. Their computation is a difficult task in general,
and one of the first results of Homotopy Theory proper was, as stated in the introduction,
Hopf’s proof that π3(S

2) was infinite, which was an unexpected result at the time.

π1 π2 π3 π4 π5 π6 π7 π8 π9 · · ·
S0 0 0 0 0 0 0 0 0 0
S1 Z 0 0 0 0 0 0 0 0
S2 0 Z Z Z2 Z2 Z12 Z2 Z2 Z3

S3 0 0 Z Z2 Z2 Z12 Z2 Z2 Z3

S4 0 0 0 Z Z2 Z2 Z× Z12 Z× Z Z2 × Z2

S5 0 0 0 0 Z Z2 Z2 Z24 Z2

S6 0 0 0 0 0 Z Z2 Z2 Z24

S7 0 0 0 0 0 0 Z Z2 Z2

S8 0 0 0 0 0 0 0 Z Z2

· · ·

Figure 5: Some homotopy groups for spheres of small dimension. Coloured, those groups
that are isomorphic with those in the same diagonal due to Freudenthal suspension theorem.

However, Freudenthal suspension theorem can simplify the task somewhat, as spheres of
dimension n + 1 are obtained as suspensions of spheres of dimension n. This means that,
when put in a table like in figure 5, Freudenthal suspension theorem guarantees the existence
of diagonals composed of isomorphic groups, as coloured in the chart.

With Freudenthal suspension theorem at hand, we are finally able to prove one last
proposition we have carried since we first introduced the relative homotopy groups.

Proposition 6.61. There exist x0 ∈ A ⊆ X such that π2(X,A, x0) is not abelian.

Proof. By example 6.21, we know π1(S
1 ∨ S1) ∼= Z ∗ Z. This group is not abelian, as

ab ̸= ba by the definition of the free product. Consider X = S3 and A any subspace of X
homeomorphic to S1 ∨S1. If we prove π1(X) = π2(X) = 0, by corollary 6.11, we would have
π2(X,A) ∼= π1(A), which is not abelian.

We have that, by theorem 6.58 and example 6.3, π2(S
3) ∼= π1(S

2) = 0 and π1(S
3) = 0, so

we are done.
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7 Conclusion

As we hope to have shown, Homotopy Theory is a rich field, with a variety of applications to
more general Topology, and various other fields of Mathematics. In this essay, however, we
have been limited to giving only a superficial approach to the subject, more specially when
referring to specific subfields of it, like the classification of covering spaces, or the field of
stable homotopy.

If the interested reader would want to read more on the subject, multiple avenues are
available to them. For example, basic results in Algebraic Topology, like Hurewicz theorem,
have been left out, as they would have required to also develop the field of Singular Homology
along that of Homotopy. The relationships between Homotopy, Singular Homology and
Singular Cohomology are an interesting topic on their own, and some of the sources cited for
this essay (in particular [10] and [1]) develop to some extent this theory. It is also interesting
to cite some works that, although have not been used for this essay, are classical references
when studying the topic (see [12] and [13]).

Another more abstract road for expanding the topic of Algebraic Topology, is the study
of more general theories, as Algebraic Topology has been widely generalised. For example,
the study of general theories of homology was firstly axiomatised by Eilenberg and Steenrod
(see [3]) and it is now common to find analogous theories for more general categories (see [6],
[5], [19]). If one wanted to lean on the abstraction even harder, Homotopy Type Theory is
a field that studies the internal logic of higher categories through homotopical notions, and
offers an intuitionistic alternative to usual Set Theory and Propositional Logic as foundations
for Mathematics, in a way that is very comfortable to implement programmatically and has
been widely used as a setting to implement programming languages for automatic formal
verification, like Agda (see [15]).

Again in more abstract terms, the correspondence between the subgroups of the funda-
mental group and covering spaces develops a connection which can be studied through a lens
analogous to that of the study of Galois Theory, inducing very general categorical approaches
to both theories (see [4], [2]).

Other path one could take, is a further study of the homotopy of CW-complexes. The the-
ory of Postnikov towers and Whitehead towers is developed in Hatcher’s Algebraic Topology
([1]) to some extent. CW-complexes are also crucial for more general Algebraic Topology,
as their homology, for example, is also of great interest, and they are important for our
understanding of weaker definitions of homotopy types, like that given by weak homotopy
equivalences, that have shaped the theory of categories with weak equivalences (see [16]).

In conclusion, Homotopy Theory, though based in some very simple definitions and no-
tions, is a massive field of study, with many approaches, applications and really hard and
technical arguments and computations. Algebraic Topology, and Homotopy Theory in partic-
ular, are without a doubt some of the most interesting fields of contemporary Mathematics.
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