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Abstract
Semantic segmentation is a computer vision field that has been applied for tumour location or object
recognition in traffic control systems (in autonomous cars). Nowadays, there are several libraries that
allow anyone to build semantic segmentation models; nevertheless, since those libraries have been
developed by different people, the way to construct, train and compare those models differs among
them. During this project, we have researched how those libraries can be grouped together into a
common facade, having no difference in the way of using them. For this purpose, some libraries
implemented in a common base library have been selected. Since the previous steps had some
drawbacks in its implementation, we decided to increase the working scope and, instead of giving a
common interface for those libraries, we decided to automate semantic segmentation steps: from
the dataset creation to the models evaluation, including also the data augmentation management
and the models construction and training.

Resumen
La segmentación semántica es uno de los campos de la visión computador. Con ella, pueden
realizarse algunas tareas, como la localización de tumores o el reconocimiento de objetos en los
sistemas de control de tráfico (coches autónomos). Actualmente, existen varias librerías que
permiten trabajar con modelos de segmentación semántica; sin embargo, al ser desarrolladas por
distintos desarrolladores, las formas de construir, entrenar y comparar estos modelos difieren de una
a otra. Durante este proyecto, se ha investigado sobre cómo se podrían agrupar todas estas librerías
bajo una fachada común, de forma que no hubiera diferencia en usar una u otra. Para ello, se han
seleccionado algunas librerías implementadas desde una base común. Dado que el paso anterior
tuvo algunos problemas a la hora de implementarse, decidimos aumentar el alcance del proyecto y,
en vez de dar una interfaz común para estas librerías, decidimos automatizar las tareas de
segmentación semántica: desde la creación del conjunto de datos hasta la evaluación de los distintos
modelos, pasando por la gestión del aumento de datos y la creación y el entrenamiento de los
modelos.
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1. Introduction
In this section, we provide a brief overview about semantic segmentation, the state-of-the-art
methods to tackle this computer vision task, and the current challenges to apply those methods.
Subsequently, we explain the aim of this project and its context.

Image segmentation is a computer vision task that is based on splitting a digital image into several
segments [1]. Those segments are sets of pixels belonging to the same class, see Figure 1.1.

Figure 1.1. An example of image segmentation.

We can distinguish two types of image segmentation problems: semantic segmentation and instance
segmentation. In semantic segmentation, the segments of the same class do not differentiate among
instances of the same class. On the contrary, if the segmentation is able to distinguish each one of
the entities in the segments like different instances, it is denominated instance segmentation. This is
illustrated in Figure 1.2. Image segmentation methods can be applied to locate tumours and other
pathologies [2], surgery planning in medicine [3], object recognition in traffic control systems [4] or
video surveillance in airports [5].

Figure 1.2. Semantic segmentation and Instance segmentation (respectively) example from the
article Improving Learning Effectiveness For Object Detection and Classification in Cluttered

Backgrounds [6].

Nowadays, image segmentation methods are mainly based on deep learning techniques (specifically,
convolutional neural networks [6]). There are several image segmentation algorithms, such as
Deeplabv3+ [7], UNet [8] or Mask RCNN [9]. Several libraries allow users to construct image
segmentation models using such architectures. Since those libraries have been developed by
different developers, their use varies: models are defined differently, input and output formats differ,
errors are handled in different ways, and so on. All these issues are drawbacks to easily construct
image segmentation models and compare the results obtained with them. In addition, users of those
libraries, both experts and novices, have to learn how to use each specific library every time they
need it; and reading, studying and understanding exactly how a library works might be a challenging
task.
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Therefore, in this project we aim to create a library that facilitates the construction and comparison
of image segmentation models, deleting all the particular using details and giving an interface that
groups all the functionality and the way to work with them under a common usage.

In the next sections, we will demonstrate: how to build an image segmentation model using the
library FastAI [10], why the models that can be built using FastAI are not enough to cover all the
state-of-the-art problems, what can we do to build other models using other libraries, how can we
use all of them in a generalistic and easy way, and how can we compare the results of training a
neural network constructed with one or another library.
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2. A brief introduction to the process of image
segmentation
In this section, we will define the concepts presented in the introduction, focusing on what steps are
taken in the image segmentation process. Until the end of this section, we need to keep in mind that
image segmentation is a computer vision task and, therefore, some steps are shared with other
computer vision tasks such as image classification or object detection. Currently, most techniques to
solve image segmentation tasks are based on neural networks, and more specifically, on
convolutional neural networks [6].

The concepts that we are going to describe belong to the basic image segmentation model
construction process. In Figure 2.1 we show a workflow diagram to exemplify the process.

Figure 2.1. Image segmentation workflow diagram.

2.1. Background

The first task that needs to be tackled to create a model, in any supervised machine learning
solution, is the definition of the dataset. The dataset is the data that will be used to train, validate
and test the convolutional neural network. In the semantic segmentation scenario, the dataset is a
set of images and their related masks; in other words, a bunch of tuples (image, mask).

The masks, which are the labels in image segmentation, are also images. Those images group
together pixels with the same semantic information (for example, every pixel that belongs to a
person will have the same identifier). Masks are defined with colour codes such grey scale values or
RGB tuples, but the common indexing annotation starts at zero and goes through the natural
numbers. Because of this fact, it is needed to make a bijection between the codes and the identifiers,
using the codes for visualisation and the identifiers for training the models. An example of those
tuples (image, mask) is shown in Figure 2.2.
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Figure 2.2. An example of (image-mask) tuple used for semantic segmentation.

Once the dataset is defined, we have to split it into two subsets: train and test. The train set is
splitted again into two subsets: train and validation. While the train set is used to learn the
parameters in the convolutional neural network (the weights), the validation set is used to tune its
hyperparameters.

Unlike general neural networks (generally used to refer to fully connected networks), convolutional
neural networks use filters (or kernels) along the layers (from the input to the output) to, finally,
provide a feature matrix. Those neural networks are more resistant to overfitting since they are not
fully connected (except in their, commonly, three last layers; called the fully-connected layers).

The filters are matrices that are convolved through the input image (or the output that results from
processing the input by the previous layers), giving another representation to those images, as we
show in Figure 2.3.

Figure 2.3. An example of a bunch of filters used in convolutional neural networks [11].

The idea behind filters is that the first filters of a convolutional neural network will recognize simple
patterns, like contours; meanwhile, latest filters of the network will be capable of recognizing more
complex forms, like human eyes. All those filters applied sequentially give to the network the
regularisation it needs and another point of view to understand the images. The values of the filters,
in the convolutional neural networks, are denominated weights, and they are learned during the
training process.

In addition to filters, convolutional neural networks also include activation functions that are the key
point that distinguish a network from a composed linear regression. Those activation functions bring
some non-linearity to the convolutional neural network, making it capable of detecting more
complex objects in each layer.
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If we group filters together into layers, we will define a convolutional neural network. Those neural
networks, in the context of semantic segmentation, have the singular structure shown in Figure 2.4,
where blue and green layers, defined on the left side, represent the encoder and red, blue and
yellow layers, defined on the right side, represent the decoder.

The encoder of the convolutional neural network, also called the backbone, is a bunch of layers that
are used to encode the input image into a feature matrix. That feature matrix encodes all the
important information seen in the image and it will be the input for the decoder.

The decoder will decode that matrix and will generate the output of the convolutional neural
network (a mask in this case).

Figure 2.4. General semantic segmentation convolutional neural network structure [7].

The weights values of the encoder (that can be seen as an image compressor) are valuable
information that will be used to retrain some models in a task called fine tuning [12]. Those encoders
are usually available in the cloud and several libraries allow their users to employ them, defining new
convolutional neural networks with those encoders and new decoders, making the process of
training shorter and getting better results. So, indeed, backbones are modular components that can
be replaced in the models.

To train a model, the data in the train set will be shown in epochs. Given the fact that those datasets
may have thousands of images, they need to be packaged into small groups called batches. A batch is
the amount of images that are parallely processed by the convolutional neural network. Since those
images are generally processed by the GPU, the batch size is almost always a power of two. The
predictions of those batches are used to update the weights in the training phase. Several epochs can
be needed to get the expected results.

Fine tuning is the task of retraining (also called refine) a model with an encoder pretrained in a,
generally, larger dataset. The model will learn the basic configuration with the data contained in that
dataset and it will be refined with the custom dataset (the train set of the data), specialising the
model into a specific task. In this process, the weights of the encoder are freezed (they will not
change) for a couple of epochs while the decoder weights are trained. Then, the full model is trained
as usual.

The model is trained using the train set and validated using the validation set. Once it is fitted
(trained), we will have a model and the test set is used to evaluate it. This set is saved apart from the
process of training to avoid data leakage [13]. This problem appears when some data from outside
the training set is used to train the model. Doing so, it will learn some information that it otherwise
would not know. Generally, data leakage is produced when training and testing or training and
validating sets are mixed. The model evaluation process is based on getting the prediction of the
model to the images in the test set and comparing the predicted masks with the real masks. Several
kinds of comparisons can be used and they are called metrics. In semantic segmentation, the most
used metric in binary class tasks (where there are only two classes) is IoU, known also as Jaccard
Index [14].

8

https://paperpile.com/c/mZPlAE/hkPi
https://paperpile.com/c/mZPlAE/5V8v
https://paperpile.com/c/mZPlAE/g5sy


The IoU metric compares the amount of pixels that really belong to the class with the amount of
pixels of the class (predicted and real). In other words, it is the coefficient between the intersection
of the masks and their union. This concept is shown in Figure 2.5. In this metric, predicting the
correct identifier of the pixels is important (intersection), but it is also predicting just the identifier of
the pixels (union). Those metrics formulas are shown in Figure 2.6.

;𝐷𝑆𝐶(𝑋, 𝑌) =  2 | 𝑋 ∩ 𝑌 |
| 𝑋 | +  | 𝑌 | 𝐽(𝑋, 𝑌) = | 𝑋 ∩ 𝑌 |

| 𝑋 ∪ 𝑌 |  

Figure 2.6. Difference between Dice and IoU metrics.

In Figures 2.7 and 2.8, we show a visual explanation of this concept. The real and predicted masks
can be seen in Figure 2.7, whereas their intersection and union are represented in Figure 2.8.

Figure 2.7. An example of real and predicted masks [15].

Figure 2.8. The intersection and union between the previous masks [15].

Another metric used in multiclass tasks is the DiceMulti coefficient. This metric is the averaged
version of the Dice metric, that is also used in binary class tasks. Those metrics get the coefficient
between two times the intersection and the sum of the elements in both classes.

Finally, with the model and a new image, inference can be done. Inference is the process of
predicting a new mask for an image that has never been seen by the model.
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2.2. An example of building an image segmentation model

We have mentioned all the concepts related to image segmentation models, but we have not built
any model yet. Now, we will explain how to build an image segmentation model using the FastAI
library, a library whose goal is “to make deep learning as accessible as possible” [16].

2.2.1. Getting and preprocessing the dataset

Firstly, we need to get a dataset. In this case, because of the implementation of FastAI, the dataset
will be stored in a directory tree. The tuples of (image, mask) will be splitted into train and test
subdirectories and, then, splitted again into images and masks subdirectories. We will use a
grapevine dataset with the task of segmenting the grapes, the pole, the wood and the leaves of the
grapevines [17]. An example of an image and a mask in this dataset was shown in Figure 2.2.

Additionally, we need to define a file that defines the codes and identifiers bijection. This file is a json
file (a dictionary of key-value pairs) which has the name of the label and the biyection associated
with the label: its natural number, its real value and its RGB tuple. An example of this file can be
shown in Figure 2.9.

Figure 2.9. An example of codes.json file.

We also need to create the directories structure that will fit with the structure shown in Figure 2.10.

Figure 2.10. Structure of directories after the preprocessing of the dataset.

10

https://paperpile.com/c/mZPlAE/s5Dy
https://paperpile.com/c/mZPlAE/mg8M


2.2.2. Defining the DataBlock and the DataLoader

Once the dataset is built, we need to define the way to load the data into memory, so that the
convolutional neural network can learn from it. FastAI implements an API that helps the users to
define this “data loading pipeline”. The principal unit of this API is the DataBlock.

Given some blocks (how to load a single type of element inside the images subdirectory – there are
several ways to load an image, but it can also load text or other types using different blocks), a list of
image-paths, a function that can find the mask related to the loaded image-path, a splitter and some
transformations, we can define a DataBlock that will be able to load all the images, their
annotations, make a validation split, and do some augmentations (transformations applied to the
images and masks, like flips, crops or dropouts) to improve the training results. An example of this
DataBlock is shown in Figure 2.11.

Figure 2.11. The DataBlock is defined to load the grapevine dataset.

In the DataBlock of Figure 2.11, we can see the following components:

● The blocks that we need are the ImageBlock to load the images and the MaskBlock
to load the masks (using the codes defined in the codes file).

● We will use the function get_image_files defined in FastAI to get all the images in a
group of directories recursively (train subdirectory in this case). We need to define a partial
function because get_items hyperparam is expecting a function with only one parameter.
The function partial returns a new function fixing a bunch of hyperparams (like
folders in this case).

● The map between images and masks is defined by the function get_y_fn, defined by us.
Given an image-path, it replaces the parts of the path as needed to get the related
mask-path. In our scenario, and given the directory structure defined in Figure 2.10, these
replacements are: “images” to “masks”, “img” to “mask” and “jpg” to “png”.

● The splitter hyperparameter is the way to split our data into train and validation
datasets. The validation dataset is used to evaluate the neural network through the epochs.
In this case, it will take twenty percent of the input training data and use it as validation.

● The item_tfms and batch_tfms are the transformations applied to the data. In this
case, we use a Resize of the image, a mask conversion (from the grey-scale image into a
identifier map matrix – using the bijection defined in the codes file) and several
Albumentations [18] composed in the variable transformPipeline.

Given the DataBlock, we can easily get the DataLoader using the function dataloaders as
is shown in Figure 2.12. The relevant hyperparameters of this function are, in this case, the path to
the directory and the batch size.

Figure 2.12. Defining the DataLoader.
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2.2.3. Training the Learner

Finally, with the DataLoader, the backbone and some metrics (that depend on the problem – only
DiceMulti in this case –), we can define our network as shown in Figure 2.13.

Figure 2.13. Defining the Learner.

We are defining a neural network with the UNet architecture and the ResNet18 pretrained backbone,
but we could also have used the possible architectures that can be consulted in the github repository
of FastAI [19].

We can modify the hyperparameter of the backbone and use one of the several backbones
availables. It is important to know that not all the backbones can be used with one architecture.
Those incompatibilities must be known to correctly define the neural network. If we try to construct
it with an incompatible architecture and backbone pair, an error will be raised in the construction or
training phases.

Finally, once the convolutional neural network is defined, it is time to train it. There are several ways
to do it by using FastAI, but the most well known are the methods: fit, fit_one_cycle and
fine_tune from the Learner object.

The fit method is the most basic training loop: it uses the input data to get the prediction and
updates the weights of the network using the forward function and the static learning rate value.
The fit_one_cycle method uses the 1cycle policy [20]: this technique uses discriminative
learning rates (modify the learning rates from high values to small values through the epochs) to
improve the common training loop. Finally, the fine_tune method uses the technique of fine
tuning explained before.

An example of training using the fit function is shown in Figure 2.14.

Figure 2.14. The training of the Learner.
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Currently, FastAI only supports the UNet architecture, but there are other architectures that may get
better results. Those architectures are provided in other libraries, but their use is not as
straightforward as with the FastAI library.

Given this fact, we need to search which are the libraries that implement the state-of-the-art
architectures and backbones for semantic segmentation, and put them together in a common library.
Doing so, it will be possible to use all the architectures and backbones defined in those libraries with
a common endpoint and a way to use them.
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3. Creating a library to build image segmentation models
In this section, we propose the creation of a library to build image segmentation models based on
the FastAI features. The aim is to take advantage of all the functionalities provided by the FastAI
library to train different architectures provided by several libraries. As we have indicated previously,
there are several libraries that implement image segmentation models (like SemTorch [21] or
segmentation models for PyTorch [22] – henceforth, smp). Nevertheless, the way to build and use
those models depends on the library. The aim for this section is to create an abstraction of all those
libraries that will allow us to generalise and simplify the way to use them as much as possible.

3.1. Analysis of existing libraries

Image segmentation models are defined by means of an architecture and a backbone; therefore, we
can suppose that the most important choice taken to create them (regardless how they are trained)
is the choice of those components. There are various architectures scattered on the libraries (even
repeated) that use several backbones, the first step to create our abstraction is to analyse and collect
all those libraries, and the architectures and backabones available in them.

3.1.1. An exhaustive search for image segmentation libraries

To train image segmentation models, we need an implementation that covers their definition and
training. That functionality is collected and provided by several libraries and we need to search for
the one that best fits with our task. In this case, we need to take one step further and think about
what libraries can better help the users of our library. For this purpose, we need to look for all the
libraries that we can find.

In Table 2.1, we show the name, the underlying library, the number of provided architectures, the
number of provided backbones, and the last update for each found library in an exhaustive search
[23–30]. We use the word several to refer to a number greater than fifty. In the table, the libraries
that will be used in the future to build the abstraction are highlighted.

Name Base library Architectures Backbones Last update

FastAI PyTorch 2 Several Some days

MIScnn  TensorFlow, Keras 1 * Unlimited 4 months

SegmenTron PyTorch 28 Several 2 years

SMP PyTorch 9 18 3 months

PaddlePaddle 45 9 Some days

SM TensorFlow, Keras 4 10 2 years

SemTorch PyTorch, FastAI 5 34 1 year

MMSegmentation PyTorch 33 Several Some days

Table 2.1. Libraries found and library selection to the abstraction.

(*) MIScnn backbones are created using the Keras API, so they are custom (unlimited).
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To make the first implementation easier, we decided to select a subset of libraries that are based on
the same library. In this case, we have taken all the libraries that are implemented using PyTorch.
Since such a library is also the underlying library for FastAI, we can build FastAI objects and use its
methods, so they will have a common part in their use (they will build and train the models in a
similar way). Those libraries have been also selected because of their amount of available backbones
and last update.

Since there exist incompatibilities between some architectures and backbones, we need to check the
relation between them in our selected libraries.

We show in Table 2.2 the possible combinations for SemTorch. This table is extracted from its
documentation, where it can be found with more information [21].

Architecture Backbones

UNet resnet18 resnet34 resnet50 resnet101 resnet152 xresnet18
xresnet34 xresnet50 xresnet101 xresnet152 squeezenet1_0
squeezenet1_1 densenet121 densenet169 densenet201
densenet161 vgg11_bn vgg13_bn vgg16_bn vgg19_bn alexnet

DeepLabV3+ Resnet18 resnet34 resnet50 resnet101 resnet152 resnet50c
resnet101c resnet152c exception65 mobilenet_v2

HRNet Hrnet_w18_small_model_v1 henet_w18_small_model_v2
hrnet_v18 hrnet_w30 hrnet_w32 hrnet_w48

MaskRCNN resnet50

U2Net Small, normal

Table 2.2. Architectures and backbones used in SemTorch.

The documentation of Segmentron [31] does not have a table of those relations, so we tried all the
possible combinations of architectures and backbones supplied by this library. The majority of the
architectures use specified backbones, but there are other architectures that have a different
construction (they build their own network instead of using a backbone); those libraries are marked
with a hyphen. We group together the usable combinations in Table 2.3 and 2.4.

Architecture Backbones

BiSeNet resnet18 resnet34

CGNet -

ContexNet -

DABNet -

DeepLabv3+ mobilenet_v2 resnet18 resnet34 resnet50 resnet101 resnet152
resnet50c resnet101c resnet152c xception65

Table 2.3. Architectures and backbones used in SegmenTron.
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Architecture Backbones

DenseASPP mobilenet_v2 resnet18 resnet34 resnet50 resnet101 resnet152
resnet50c resnet101c resnet152c

DFANet resnet34

FCN resnet50 resnet101 resnet152 resnet50c resnet101c resnet152c
xception65

FPNet -

HRNet hrnet_w18_small_v1

LEDNet -

OCNet resnet50 resnet101 resnet152 resnet50c resnet101c resnet152c
xception65

PSPNet resnet50 resnet101 resnet152 resnet50c resnet101c resnet152c
xception65

UNet -

Table 2.4. Architectures and backbones used in SegmenTron (continuation).

The architectures [32] and backbones [33] of smp can be found in its documentation (we do not
include a table of them because it would extend for several pages). Unlike the previous libraries, smp
allows us to select, in addition to the architecture and the backbone, the dataset that was used to
pretrain the backbone that we are going to use (like ImageNet [34] or Instagram [35]). This
parameter could have relevance, so our library should include it.

Finally, the last library that we will include is MMSegmentation [36], from OpenMMLab [37]. This
library is the largest by far. It has several architectures and pretrained backbones, using different
datasets to train its backbones. Given this fact, we do not include the table either. Unfortunately,
MMSegmentation is very different from the other libraries, so we will need to take some different
steps to train its models.

Now, with all the collected information, we can finally start to create the library.

3.2. Library design

Given the fact that the aim for this section is the creation of a library that will simplify the process of
creating models with the selected libraries, the facade design pattern [38] fits perfectly with the final
product we want to produce. This design pattern is based on creating a simple interface for a group
of complex components in a system, implementing just the functionality that the user will employ.

In our library, the library itself is the interface, the other libraries are the “complex components” and
the functionality needed by the user is the construction of the model (regardless of the library used
to do it).

In a completely arbitrary choice, we will name our interface (our library) SegmentationManager.
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We need to select which parameters are the most important ones to build our library. As we have
explained in the analysis of libraries, we need to provide: the architecture, the backbone and the
name of the dataset used to train the backbone.

We know that MMSegmentation uses two files (to build the convolutional neural networks) where
the backbone and the weights are defined. So, to work with this library, we will need to know where
these files are stored. Generally, the user will know the name of the architecture, but not the name
of the files used by MMSegmentation, so we will need an auxiliary function that will search the files
that defines the architecture and its backbone (using the known name, find the path to the files).

Additionally, we should note that there are some architectures that are replicated in those libraries
(for instance, UNet, DeepLabV3+ or HRNet). For those cases, we need to choose which library will be
used to build the requested model. Taking this decision manually for all the duplicated
implementations of architectures or backbones in the libraries can be a complex task for the final
user of our library. To avoid this issue, we will look up for the libraries that can be used to build the
requested model and, if there is more than one, one library will be taken randomly to build it.

Finally, we need to implement the function that builds the model. This function should return a
Learner object in order to take advantage of all the implemented FastAI functionality, but we need
to remember that MMSegmentation does not work with this object, but with another object named
EncoderDecoder. Because of that, we need to group together all the functionality to use them
likewise. Hence, we need to make a decision: create an object that groups together the Learner
and the EncoderDecoder or look up for a way to transform the EncoderDecoder object into
a Learner object.

In order to simplify the use of our library, we consider that the returned object must be a Learner
from FastAI, which has a lot of functionality already implemented and explained.

When the library is built, we will be able to use it to request the construction of a model. The way to
use it would be an endpoint (a simple function) that receives an architecture, a backbone and name
of a dataset and returns a Learner from FastAI. This object could be trained using the functions
explained in Section 2.

3.3. Library implementation

The first step is the installation of all the packages needed to build our library, like libraries or github
repositories. We have installed SemTorch and smp libraries from pypi [39], the Python package index;
and downloaded SegmenTron and MMSegmentation repositories.

In this first step, we found three issues:

● The repository of SegmenTron is not updated and we need an non-existent configuration file
to use it.

● MMSegmentation library is in the developing phase and it is changing continuously. We need
to define the way this library is used, updating the local files, getting the updates dynamically
or downloading the files of the last stable version.

● Some of the libraries that we want to abstract use distinct versions of other basic libraries
(like torch or torchvision). Those versions are, generally, incompatible.

To solve the first issue, we modified the repository of SegmenTron to build the models without the
configuration file. This work was already done since there exists a forked version of SegmenTron that
changes the code as we need. Another option would have been to create the configuration file on
our own. Although this solution is the cleanest (we do not need to change the code of the original
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repository), it would have taken much more time (there is not a documentation that specifies how to
create this file and it would have been an inverse engineering process from the existing code). To use
the modified version, we forked the original repository and added the necessary modifications1.

To solve the second issue, and keeping in mind that we want a robust abstraction, we chose to use
the last stable version of MMSegmentation. The initial idea was to manage the download of
MMSegmentation automatically if it was detected that the files do not exist. Nevertheless, if we
want to make this process completely transparent to our users, we need to also detect if the files
have changed (it will mean that there is an updated version). If so, the files should be updated
(delete the old ones and download again “the new version”, which now is another version).

Solving the third issue, which is related to the incompatibility of the libraries, was a patience test. If
we check which are exactly the versions that allow or reject the libraries we are going to use, we note
that there is an installation order that allows us to use all of them without incompatibilities. This
order is:

1. smp (library).
2. SemTorch (library).
3. GitPython (auxiliary library).
4. PrettyTable (auxiliary library).
5. SegmenTron (library).
6. mmcv-full (library).
7. torch (1.6.0 + cuda101) (auxiliary library).
8. torchvision (0.7.0 + cuda101) (auxiliary library).

Once all the libraries are installed, the second step is to create the facade that will allow us to use the
selected libraries in a general way. For that, we need to implement the functions described in the
design phase.

3.3.1. Selecting the library

When someone uses our abstraction, they will request a specific configuration (for example, a
convolutional neural network with UNet architecture and Resnet18 backbone). In order to determine
which is the most appropriate, we define a function named _choose_library_. We can use the
known particularities to do this task. For example, we know that the names of the backbones from
MMSegmentation library ends with “.py”, so we will use this library if the last three characters of the
backbone name are “.py”. In the case of MMSegmentation, we need to take the names of the
architectures directly from the files, so we will look up for the available architectures in the
configs directory.

This function will return the name of the library that is available and can build the model. If there is
no library to build it, the function will raise an exception.

3.3.2. Searching the architecture and backbone files

When MMSegmentation is used to build a model, two parameters are needed: the config and the
checkpoint file (the backbone and its weights). These files can be found in the downloaded
repository. Indeed, each config file has a checkpoint file related, so we only need to know about the
first one to look up for the other. In other words, the users only need to know what architecture they
want to use.

1 The github repository can be visited in https://github.com/ruescog/SegmenTron
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The function _search_files_ will use the config file of the requested model to search what file
of weights may be used and, then, it will return the paths of this configuration and the related
backbone file (that probably needs to be downloaded).

3.3.3. Creating the model

Finally, we create the function that returns the model to the user. For SemTorch, regardless of the
requested architecture, we only need to call one function. For smp, SegmenTron and
MMSegmentation we need to use the specific constructors. However, as we have mentioned before,
the result of calling the constructor of the library MMSegmentation is an EncoderDecoder
object, which does not have the same methods as a Learner object.

3.3.3.1. Trying to convert the EncoderDecoder into a Learner

As we have mentioned in the design phase, one of the options to combine the Learner and the
EncoderDecoder was to create a new object that defines all the methods for both types of
objects. This is a partial solucion: in the future, there may be other kinds of objects defining a
convolutional neural network that will not be covered in our library due to this design, so we propose
to transform the EncoderDecoder into a Learner. Moreover, creating a new object adds
another layer in our abstraction, making the facade less transparent to the users (they will need to
know what the new object is and how it works). For all these reasons, we decided to implement the
second idea: the create_model function will return a Learner from FastAI.

At this point, we have an EncoderDecoder that we want to transform into a Learner. The first
questions we ask ourselves are: Can we really do this transformation? Is the EncoderDecoder
similar to the structure used to build a Learner? To solve them, we can build both objects and look
up their differences. See Figure 3.1.

Figure 3.1. Differences between an EncoderDecoder and the structure used to build a
Learner.

As we have shown in Figure 3.1, the model used to build the Learner object has the same
structure (in this case, the structure of the backbone) as the EncoderDecoder object. Given this
fact, we can suppose that an EncoderDecoder object can be used to build a Learner. To try it,
we will need a DataLoader (used in Section 2.2.2) and a convolutional neural network (the
structure, their weights…). Supriselly, given the DataLoader, we can build a Learner using the
EncoderDecoder. Nevertheless, if we try to train the built Learner, we get the exception
shown in Figure 3.2.
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So we ask ourselves, again: Is this conversion possible? Have we built our DataLoader correctly?
The answer to these questions will guide the solution to this problem.

If we try to solve the first question, the solution might be to build a dummy Learner, in other
words, a kind of an empty skeleton, and add the configuration of the requested architecture and
backbone to this skeleton. From both objects (EncoderDecoder and Learner) we have access
to the structure itself, so we can modify it. The key point is that we need to know, exactly, what we
need to modify. The layers of those models handle the information sequentially, like a conveyor, so
the input from the second layer is the output from the first one. Given this fact, it is needed to be
extremely careful modifying those layers or it will contain shape incompatibilities.

Since modifying the existing model is not a recommended task, we propose to investigate another
solution for this issue. For example, there could exist some default functionality that can help us to
do the transformation. Indeed, we found an existing function in the library MMDetection [40] (from
the same group OpenMMLab) that converts EncoderDecoders into Learners. However, this
function works with specific architectures: for example, it converts RetinaNet [41] models into
Learners. Although these functions are useful, our issue persists: the libraries we are handling
have dozens of models and there is not a function for each model. Furthermore, they are not general
functions that can handle any kind of architecture, but only the ones they are related to.

Figure 3.2. Exception obtained trying to train the “Frankenstein” Learner.

At this point, we ran out of ideas to follow this line of research, so we reconsider the task we are
working on. We have been trying to create new Learners from existing ones, but perhaps the
problem is not in the creation of the model, but in the associated DataLoader. In fact, if we go
back to the exception shown in Figure 3.2, we can see a line that reads as follows: “Caught
AttributeError in DataLoader worker process 0”. In other words, the DataLoader creation is not
complete. This issue is caused by using the DataBlock wrongly, because we are using an outdated
version from FastAI.
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To update it, we found a library that manages all the installation process automatically, solving all
dependencies issues (instead of doing it manually, as we have solved the third issue in the first part
of this section). This library is openmim [42]. We update all the libraries using it and build again the
DataBlock, but we still get an exception when we try to fit the Learner. See Figure 3.3.

As we can see in Figure 3.3, the forward function takes one additional parameter that we are not
supplying. To solve this, we need to modify our DataBlock to indicate that there exists one more
input: the img_metas (a dictionary with information about the image: its shape, scale and flip ratio).
This modification can be handled with several options, we consider to modify the amount of
parameters this function takes or to create a pipeline that will produce two outputs (the image and
its metainformation).

Figure 3.3. Exception in the forward function: one parameter is missing.

We tried to create a pipeline, but we fastly noted that is not a possible solution to our problem since
those pipelines are used to transform the input data, not to create new parameters, so we still have
the exception shown in Figure 3.3.

Given this fact, we only have one option left that consists in modifying the input parameters to the
forward function (what it seems to be trivial: modify one building parameter in the DataBlock),
but we got a new exception shown in Figure 3.4.

Figure 3.4. Exception in the forward function: one parameter is missing (again).

As we can see in Figure 3.4, the forward function takes all what it needs, but the DataBlock
does not know where the information of the masks (gt_semantic_seg) is. This is caused because we
have two inputs and one output parameters (input image, img_metas and mask), whereas the
DataBlock only loads two of them (input image and mask). To solve this issue we need to create a
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new Block, allowing the DataBlock to take all the input data it needs. This Block will be a new
personalised Block, it will not load an image, but a dictionary, as is shown in Figure 3.5.

Figure 3.5. DataBlock with three Blocks and two inputs.

Again, we find an exception: since the DataBlock has multiple inputs, the way to group together
all the input elements (get_items and get_y) must be defined in a list of functions. Nevertheless,
even defining the get_items parameter correctly, we get the same error shown in Figure 3.5.

At this point, we ran out of ideas (again), so we need to step back again and look up for other
solutions.

If we go back to the beginning of this section, we can retry an idea discarded before: build an
encapsulating object. To do so, we need to create the convolutional neural network and box it inside
an object that has more information. To create an EncoderDecoder object, we need to use
several methods of this library and then modify the default configuration to specify the
characteristics of the data and the model (input classes, training pipeline…). Then, a personalised
EncoderDecoder will be built and saved into the encapsulating object.

Keeping in mind the key idea followed in this section (there may exist a relationship between
EncoderDecoder and the Learners), we are going to build a DataSet that will define the
way the data is accessed and, using this DataSet, we will build the DataLoader (without using
the DataBlock). Then, with the DataLoader, we will be able to build the Learner and train it.

Since it is a new point of view to solve the principal issue of this section, we have new drawbacks
too: DataSets from FastAI and datasets from MMSegmentations are different objects, they
have different information. Given this fact, we can not use the FastAI methods to access the
information of the datasets from MMSegmentation.

And this is as far as we have come. We need to find another way to finally move forward.
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4. A library that covers the training process for image
segmentation models
In this section, we are going to tackle the initial idea (make the process of training a semantic
segmentation model as simple as possible) from another point of view. Instead of managing just the
constructed model, we are going to facilitate the whole process: from the dataset construction to the
model evaluation.

Obviously, all the work done before was not wasted time: we are going to use all that we have
learned from the libraries and from the process of constructing models with them to build a new
facade. This new facade will cover more functionality that the previous one: we are not only
providing an endpoint to build the models, but to facilitate the whole process.

As we have seen before, FastAI and MMSegmentation workflows differ and they need to take
different steps to construct and build their models successfully. In our scenario, three of the libraries
abstracted use the FastAI way to work with the models (SemTorch, Segmentron and smp), meanwhile
MMSegmentation has its own way. Given this fact, and knowing that they will be our first selected
libraries to the first implementation of the facade, we need to face the difficulties of those libraries,
especially the MMSegmentation ones. We have previously seen how to build a FastAI model in
Section 2.2 and, now, we are going to construct a MMSegmentation model (that is something that
we have not explained before) to show the differences with FastAI.

4.1. Building a MMSegmentation model

In order to show how to build a MMSegmentation model, we are going to use the library tutorial [43]
and the dataset with grapevine images previously presented. The aim is the same as before: build a
model that knows how to segment a grapevine image identifying the classes “background”, “leaves”,
“wood”, “pole” and “grape”.

4.1.1. The MMSegmentation particularities

Before explaining the grapevine example, we are going to face the MMSegmentation particularities.

First of all, an image and its associated mask must have the same name. MMSegmentation calls
name to the first common part in the name of the dataset files. Additionally (and to avoid the
operating system name restrictions), the files will have a suffix. This suffix is, generally, the format of
the file (such as png or jpg), but in some cases it can be a code and the format (for instance,
mask.png or image.jpg). In both cases, the file name will be the concatenation of the common part
and the specific suffix.

Another issue is that at the time to create the training and testing splits, it is necessary to create two
text files having the base name2 of the images that belong to the training set and the name of those
that belong to the test set respectively. In this case, the validation set is managed by
MMSegmentation in an automated way, so we do not need to care about it.

Finally, we need to modify the base MMSegmentation model configuration in which we are going to
base our training, indicating: the number of classes of the dataset, the data augmentation processes
we are going to use and the training and testing configuration. Even if we need to construct and train

2 The base name of a file is the name itself with the file format. Usually, when we use the term file name, we
refer to the concatenation of its directory structure and its base name. For instance, image.jpg is a file base
name while dataset/image.jpg is a file name.
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a model from scratch, it is also recommended to use a defined configuration file and indicate that the
backbone is not pre-trained (so its weights will be initialised randomly).

4.1.2. A MMSegmentation model construction example

Once all the MMSegmentation particularities are exposed, we can construct a model in order to get
an example of its construction and training phases.

First of all, the grapevine dataset is divided into two directories (images and masks). Every image has
the prefix color_ and the masks have the prefix gt_, meanwhile they share a suffix with a number
and the format. This number (o code) tracks the relation between an image and its mask. In other
words, given an image and its mask, they will have the same code (but not the same format). So, to
work with MMSegmentation, it is needed to delete those prefixes having a common base name.

Subsequently, it is needed to modify the mask format. This format modification is not a
MMSegmentation particularity (indeed, we have also done it in the FastAI example, implementing a
class that could transform a RGB image into a bidimensional matrix of identifiers). In this example,
we need to do the same but, instead of using a pipeline, we are going to modify the saved files in the
disk (not only in memory). This mapping must be known by the user, so it is an issue that we will take
into account when developing our library.

Then, as we want to train a model, it is needed to split the dataset into training and testing sets. To
this aim, we have to create two new files and save inside of them the names of the files
corresponding to each set. The code to conduct this process is shown in Figure 4.1.

Figure 4.1. Making the splits for MMSegmentation.

Finally, we need to modify the base model configuration file (from the model that we are going to
use to do fine tuning – in our case, we use as architecture PSPNet and ResNet50 as backbone –, see
Figure 4.2) indicating that: we have five classes, we are going to use the default data augmentation
process (the one defined in the base model) and the path to the training and testing sets. Some of
those modifications are highlighted in Figure 4.3.

Figure 4.2. Base model configuration loading.

Then, we can train our model, which result is shown in Figure 4.4. To this aim, we have to:

1. Load the dataset.
2. Construct the model from the modified configuration file.
3. Create a temporal file to save the training results.
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4. Train the model.

Figure 4.3. An example of the base model configuration modification.

Figure 4.4. Training result for the grapevine dataset using MMSegmentation.
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Each one of the aforementioned steps is conducted with one line of code as shown in Figure 4.4.

Once we have faced all the MMSegmentation construction and training process, we can start to
design our facade taking in consideration all its restrictions, and those seen when using the FastAI
library.

4.2. Library design

Designing a library that covers all the training steps for building a semantic segmentation model is an
ambitious project that needs the definition of several components. For example: How is the data
collected? Which transforms are applied? Which models are used? How is the validation made? All
these questions must be answered separately, as they are independent. Hence, the answers to those
questions give rise to new modular components.

Having some modular and independent components may hinder the implementation of our library,
because we are going to work with “something like” instead of “something that really is”. However,
overcoming this abstraction, we will be able to easily replace the library components if needed. So, if
a new library appears, the adaptability of this facade will be as simple as extending our code (never
change it).

To this aim, we have to implement several components:

● Utils. This component will define some generic methods that will be used in the rest of
the components, such as the logging system or the custom exceptions.

● DatasetManager. This component will manage the input data. This includes checking
whether the input data is correct and usable, creating new mapping functions between the
images and the masks, and creating colour maps that can be used to visualise the masks and
defining the necessary objects for the data treatment that will be used by the other
components.

● TransformManager. This component will manage all the data transformations that take
part for image processing (for example, resizing all the images) or for data augmentation
(such as rotating the twenty-five percent of the images ninety degrees). This component
must provide enough functionality to perform all the needed transformations to the images
and their masks.

● ValidationManager. This component will manage the set up of the validation rules for
the models. In other words, solving the next questions:

○ How do we optimise the hyperparameters?
○ Do we use two fixed sets for training and validating or a kfold strategy [44]?

This component must manage the use of the chosen strategy.
● ModelManager. This component will manage the construction and training of those

defined models.
● SegmentationManager. This component will manage the determination of which

library is going to be used to build the specified model, and the presentation of the training
results.

In Figure 4.5 we show the class diagram that corresponds to the design of our library. In such a
diagram, we can see not only the described components, but also their implementations (for
instance: for the component ModelManager, we will have two implementations:
ModelManagerFastai and ModelManagerMMSegmentation).

Furthermore, we can see a class named DataLoaderManager used by the
SegmentationManager component. This class is going to be used to load the data in the FastAI
form (we are going to describe it in further sections).
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Finally, as we have described before, the Utils class is going to be transversal to our code and used
by all the other components (we do not link it in the class diagram for the sake of clarity).

In the next subsections, we present the design of all those components with more detail.

Figura 4.5. The class diagram of the library.

4.2.1. Utils (error management)

The first functionality we need to implement is the one that covers error management. This
behaviour is going to be crucial because of our target users, who might not have too much
experience on programming, machine learning or using one of the available libraries. Hence, error
management must be verbose enough to guide those users when problems arise.

This management, even more, is transversal to all the components of the developed library and fits
perfectly with the idea of the Aspect Oriented Programming paradigm (henceforth, POA) [45]. The
key idea of this paradigm is that there exist some functionality, or components, that are used along
the code (for example, a logging component). This implies that all the other components have some
code, inside their functions, that needs something defined in this transversal component. The POA
paradigm splits those functionalities (transversal and specific components), getting a non mixed
code.

In our library, the log messages will be preceded by the text “[LOGGER]”, making it clear that they are
informative messages about the process that is being executed. Likewise, exception management will
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be also transparent to the user, who will be able to see which errors are happening. Those messages
will be preceded by the text “[WARNING]” if the exception is not disruptive (it does not end the
execution of the program) or “[ERROR]” if it is. Furthermore, the exception manager will show which
function is raising the warning or error.

4.2.2. DatasetManager

The DatasetManager will be the component that manages the input data. The input dataset will
be saved in a local directory which will be referred as the “root directory”. This directory will have all
the files needed to train our models.

This directory will be a directory tree that contains, at least, two folders and a json file. Those folders
will contain respectively the images and masks of the dataset; and the json file (named codes) will
define the colour codes used by the masks to identify the different categories of the images.

The DatasetManager aims to check structure issues: whether the structure provided is correct,
whether the relationship between images and mask is bijective (each image has one -and only one-
mask and vice versa) and whether the masks have the correct format.

Additionally, it will define useful methods to get the data information: for instance, a list of all the
images included in the dataset, or the way to build a Dataset object that will be mandatory to
build the MMSegmentation models. Since the behaviour of the DatasetManager depends on the
concrete library that will be used for building a model, DatasetManager will be an abstract class
inherited by its specific implementations.

In particular, the common part for each class that inherits DatasetManager will be the
constructor, that will get the following parameters:

● Root path: the directory where all the structure exists.
● Prefixes and suffixes for the images and masks.
● If it is needed to remove those prefixes and suffixes.
● The maps between the images and masks.
● If it is needed to check the bijective relationship between images and masks.
● What to do if an image or mask does not meet this relationship (used only if the check is

needed).
● If it is needed to transform all the masks to a correct format.
● The default class used to map the identifiers without an assigned class after the

transformation (used only if the transform is needed).

Therefore, the DatasetManager constructor will follow the next steps:

1. Check whether the required directories (images and masks) and the file (codes) exist in the
root directory. This process will raise an exception if any of them does not exist.

2. Allocate the suffixes for the files (the images and the masks) if they are not supplied. This
allocation will use the mode. For instance, let us suppose that we have a hundred files:
twenty of them are png and eighty of them are jpg; if we do not provide the suffix, then the
facade will suppose that the suffix is the mode between all those file formats, in this case
jpg.

3. Define the mapping function between images and masks. We should note that those
functions are two: one for the image to mask relation and the other for the mask to the
image relation; those functions are needed to check the bijectionallity between images and
masks. Additionally, image to mask relation will be used further in the process of data
loading. If the mapping is not supplied, it will be calculated by default using the prefixes and

28



suffixes information: as all the images and masks have a prefix, a code and a suffix; the
mapping between them is the function that replaces the prefixes and suffixes of the images
with the prefixes and suffixes of the masks, and vice versa, and keeps the same code.

4. Rename all the files by deleting their prefixes if the prefix elimination is requested.
5. Check that the mapping functions are bijective, if the checking is requested. In other words:

it will check that every image has one (and only one) mask associated and every mask has
one (and only one) image associated. In this scenario, it will not need to check the “and only
one” requisite, since there can not exist two files with the same name and format in the
same directory. If this relationship is not bijective, it will apply the functions supplied by the
user (one for the images and the other for the masks). If those functions are not supplied, it
will apply the default function that will move the wrong files into a new directory named
map_fails.

6. Check the state of the masks. If they need to be converted, it will convert all the masks to
new masks that will really be an identifier map. If a new identifier is found on this
conversion, it will be mapped into the background class (the first one by default: 0). If the
conversion is not requested, it will check if the masks have the correct format to use them,
showing an error message if they do not.

Once all the previous steps are completed, a new DatasetManager object will be defined with a
correct structure. This correct structure is shown in Figure 4.6.

Nevertheless, for some libraries it will be necessary to define new subcomponents that inherit this
base component and define the way to build a Dataset. In our scenario, FastAI does not need it,
but MMSegmentation does, so we will implement the DatasetManagerMMSegmentation
class.

Figure 4.6. The correct structure that is checked by the DatasetManager.

4.2.3. TransformManager

One of the main drawbacks for building Deep Learning models is that they need a lot of data to be
properly trained. In other words, if we want to train a model to segment the cats in an image, we will
need a lot of cat images (and their masks too) to teach the model to segment each one of those cats.

Nevertheless, for a computer, those images are nothing more than n-dimensional arrays of real
numbers. Hence, modification of those images (such as a rotation, or changes in colour) will
completely change its representation. Behind this idea lies data augmentation [46].
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Data augmentation is based on the application of several transformations (such as flips, smudges,
cuts, resizes…) to an image in such a way that the resulting image must be different enough to be
considered as a new image to train the model. In the context of semantic segmentation, this new
image will be already labelled (its mask can be constructed by applying the same transformations to
the mask).

In general, those image transformations are randomly applied on the fly to the images while training
the model; however, those transformations can also be applied to normalise or resize the images to
all the images of the dataset.

Both kinds of transformations will be implemented in our library by means of a
TransformManager component that will store the transformations that will be applied to the
images.

There exist several ways to implement those transformations, but we are going to use the
albumentations library [15]. Using such a library, we will be able to define the transformations,
including composition between them (for instance, appling a crop and then a padding). Furthermore,
each one of those defined transformations will happen with a certain probability.

4.2.4. ValidationManager

The model validation is the process in which the model is tested and the model results are compared
with the expected ones. The performance of the model is completely related to the problem that is
tackled and it can be measured with several metrics. The available metrics in our library will be
explained in the explanation about the evaluation process.

In order to validate our models, we are going to split the data into some groups (training, validation
and testing). Then, we will apply some validation strategies such as train-val-test validation3 or k fold
validation4.

The strategy will be implemented and applied using the ValidationManager.

4.2.5. DataLoaderManager

As we have mentioned before, some libraries will return a Learner object from FastAI. This object
is common between all of these libraries, so its use can be generalised.

In order to use those Learner objects while training the models, we will need to load the data
from the disk and provide it to the model. That work is going to be covered by this component, that
is going to be used by the SegmentationManager if the library needed to build the requested
model is one of those that use FastAI. In the case of MMSegmentation, the data will be loaded
directly, so additional components are needed.

4.2.6. ModelManager

Once the data is loaded and splitted, we will need to define how to build, train and save the models.
This behaviour is provided by this component.

As we have mentioned in Section 1, image segmentation models are mainly defined by an
architecture and a backbone that may also have an associated weights file.

4 K sets are created. Then, the model is trained with K - 1 sets and validated using the last one. The test set is
also used to test the model at the end of the training of all the folds.

3 Three sets. Training is used to train the model, validation to validate it and test to test it.
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In this scenario, we are going to put together all this information (that we will denote as the
metamodel) inside a new component called ModelManager. This component will define several
functions needed to train the model (such as fit, lr_find…), that will be abstract and it will be
implemented by all the subclasses that will inherit from it (each of them will represent a different
library that will be included in our facade).

Doing so, our facade will not be associated with one library, but it will be extensible to new ways to
train the models (using inheritance).

4.2.7. SegmentationManager

The ModelManager components (itself and its subclasses) are able to build a model knowing its
structure (that is, knowing the metamodel). Nevertheless, the aim of the facade is to train several
models in a simple and centralised way. For instance, we might want to compare the results of
several models trained using the UNet architecture with different ResNet backbones (18, 34, 50, 101
and 152).

This means that we have to train several models defined using different ModelManager objects.
Additionally, if we are using a kfold strategy with k equals to five, we will be training six models for
each backbone (the five folds and the final model); knowing that there exist five ResNet backbones
(in their simplest version), we have a total of thirty models to train. Since dealing with such an
amount of objects might be cumbersome, our task here is to simplify this process into a single
component that can manage the training process of all those models. This component will be the
SegmentationManager.

This component will determine what ModelManager component must be used to train each
model requested by the user. In other words, what library is necessary to build the defined
metamodel. Such a component will be very verbose, indicating what is happening in each training
step to the user with messages like: “training the fold k of the model m”.

After training all the models, one of the most important steps is the study of the results. Given this
fact, this component will be capable of managing the training log to show it to the user in a friendly
way.

4.3. Library implementation

Once all the components are designed, it is time to implement them. To do so, and for testing the
code, we are going to use Python with Jupyter notebooks in a server with a GPU with 10GB RAM5.

All the code mentioned during this section can be found in the following github repository:
https://github.com/ruescog/SegmentationManager.

4.3.1. Logging information, alerts and errors

As we have mentioned before, the logging management is going to be tackled using the AOP
paradigm. Idyllically, AOP paradigm allows us to uncouple the transversal methods to the other
methods. This is, in real life, another file where the AOP methods are implemented. Nevertheless, to

5 Random-access Memory [47]
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achieve this, we would need to use another library similar to JAspect [48] for Java, but there does
not exist anything similar in Python6.

Given this fact, we need to use a custom implementation. This approximation will not be purely AOP,
but will separe (as much as possible) the transversal code (the logging) from the other components.
To do so, we are going to use Python decorators [51].

A decorator is a function that has another function as input parameter and adds to it some new
functionality.

Let us suppose that we have several functions that do the basic mathematical operations (such as
additions, subtraction…). We want to show a message every time that one of those functions is
called, showing “I am doing this operation with those elements”. This message, in the AOP paradigm,
should not be added to the function implementation, because it is not necessary to its correct
execution. Instead, this functionality must be added using a decorator as it is shown in Figure 4.7.

Figure 4.7. Defining the decorator.

Without explaining it in detail, we have defined a decorator to add the logging behaviour to some
functions. As we can see, the last two lines of the inner function call the original called function
and return its result. The other lines are used for logging. In this scenario, we want a message like:
“[addition]: I will work with the elements 1, 2”. The name of the function, addition, is going to be
obtained with the __qualname__ attribute.

Once this decorator is defined, we must call it with those functions that we want to decorate, like we
show in Figure 4.8.

Figure 4.8. Using the decorator.

Doing this with all the functions that we want to decorate with the new decorator can make our code
dirty (and we need to remember that if we are doing this is just for the opposite goal), so we will use
the syntactic sugar provided by Python, adding the key symbol @ and the name of the decorator
over the function that we are going to decorate, as it is shown in Figure 4.9.

6 When we say that “there does not exist anything similar in Python” we mean that those libraries are not
developed enough or they are out-of-date and can bring more issues than solutions. Those libraries are
springpython [49] and lemonframework [50].
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Figure 4.9. Using the decorator using the syntactic sugar of Python.

Finally, if we call the addition function, we will get the output shown in Figure 4.10.

Figure 4.10. Output for addition function.

Additionally, we can also apply this decorator to other functions as shown in Figure 4.11.

Figure 4.11. Using the decorator to manage the logging of the operations.

As we have suggested, this AOP solution is not pure (it is partially mixed with the code), but its code
is not inside the function either. It is a trade-off that we consider enough for our scenario.

For our real decorators (the ones used for the facade components) we will include some additional
functionality. For instance, it will be possible to determine when the message is going to be logged
(before or after the function call). Furthermore, the message may have the names of the parameters
used to call the function in capital letters, and their values will be logged replacing those positions in
the log message.

To manage the exceptions, another decorator will be defined. This new decorator will capture the
exceptions and show a message of WARNING or ERROR depending on the exception severity. When a
message has the category of ERROR, the exception will be thrown again and, potentially, the program
execution could be stopped.

An example of one of those decorators is shown in Figure 4.12. In this example, we can observe that
three decorators are going to be used sequentially. First of all, the decorator that is next to the
function (the one with the message “The best lr value is VALUE”) is going to add that functionality to
the lr_find function. We should note that the VALUE text (in capital letters) is going to be
replaced with the value returned by that function after the execution (with the when = after default
behaviour). Subsequently, the decorator that is just above will encapsulate the previous one and the
function, adding a message logged before the execution of the function. Finally, if this function
throws a FileNotFound, it is going to be catched by the excepter decorator showing an ERROR
message and stopping the execution.
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Figure 4.12. An example of a decorator.

4.3.2. DatasetManager

The implementation for this component has followed the steps presented in the design, but we
should point out some details considered in the implementation.

First of all, we note that the masks conversion method is a bottleneck at the time to build the
dataset. We were forced to improve its efficiency using numpy [52] and its boolean mask indexing
methods, as shown partially in Figure 4.13, improving the transformations time to one mask each
eight milliseconds. We do not discard that this method will need to be improved again.

Figure 4.13. A fragment of the implementation of the method __convert_masks__.

Additionally to the functionality described in the design phase, we have defined another function
called get_codes_template. This function will be useful to obtain a template of the codes file,
which will be a custom file written by the user and it needs to follow some structural rules (it must
be a json with the class names as keys, and the id of the class, its mapped id and it colour map as
values). This template is shown in Figure 4.14.
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Figure 4.14. Template returned by the get_codes_template function.

On a separate topic, we will need a name to define and register the MMSegmentration dataset in the
loaded datasets, which is a list with all the classes that inherits from the CustomDataset abstract
class in MMSegmentation. Those classes define new datasets and how to work with them, but they
need to be registered in the datasets list. This name must be unique, so if it is not supplied, or the
name supplied is not unique, the dataset will be registered with a unique identifier obtained using
the actual time (and it will return that name to use it).

It will not be necessary to build a DatasetManagerFastai object because FastAI models can be
built in many ways and, the one that we will use, does not use those objects.

We show an example of a dataset construction in Figure 4.15.

Figure 4.15. An instance of a dataset construction

As we can observe in Figure 4.15, the dataset structure is correct, all the prefixes have been deleted
(we have requested it), no error has been found between images and their masks and there exists at
least one mask with an incorrect format. This message is shown since we have requested to not
convert the labels and, when this happens, it checks if all the masks have the correct format.

4.3.3. TransformManager

In order to define the transformations, we are going to use the albumentations library which can be
used directly with the models that use Learners from FastAI. Nevertheless, it cannot be used for
the models of MMSegmentation, since this library uses another language for its transformations.

However, there exists the possibility to define new transformations in MMSegmentation, so the way
to apply albumentation transforms to a MMSegmentation model is to define a new transformation
that will apply the composition of all the transformations that have been defined with
albumentations. We clarify this tongue twister in Figure 4.16.

35



Figura 4.16. Using albumentation in MMSegmentation.

Additionally, we should note that the data augmentation process is managed in memory. Given this
fact, all the sintetic images created in this way are not saved anywhere and they can differ from one
execution to another.

As we have described, the management of the transformations will depend on the library which have
been used to construct the model, so it has sense to define two subclasses and implement the
abstract method get_pipeline defined in TransformationManager, those two classes are
TransformManagerFastai and TransformManagerMMSegmentation.

Whereas in TransformManagerFastai the method get_pipeline will just compose the
selected transformations, in TransformManagerMMSegmentation, additionally to the
composition, the result will be encapsulated into a MMSegmentation class that will be registered in
the transformation module (likewise done with the DatasetManager).

In both implementations, all the transformations must be applied to both the images and their
masks. Additionally, it will be also needed to implement another method that can build a specific
class object (for FastAI or MMSegmentation) providing the generic TransformManager.

In order to simplify their use, we have defined a couple of default transformations that will be
applied if the user requests it by using the keyword default. Those default transformations are a blur
transformation, a flip, and a change of brightness contrast, using the objects Blur, Flip and
RandomBrightnessContrast from the albumentations library respectively. All of them are
applied with a probability of fifty percent.

If the user wants to use those default transformations and some additional ones, they will be able to
use the default keyword to define the TransformManager object. For instance, if the user uses
the following list of transformations to build a TransformManager object, it will get the result of
Figure 4.17.

Figura 4.17. An instance of TransformManager construction.
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4.3.4. ValidationManager

As suggested in the design phase, the available strategies defined inheriting the
ValidationManager abstract component will be TrainTest and KFold. Such strategies are going
to be implemented using the splits abstract method from the ValidationManager class.

This approach allows us to inherit the ValidationManager abstract class in other particular
classes like ValidationManagerTrainTest or ValidationManagerKFold to
implement these strategies. Furthermore, nothing prevents us from defining more specific classes in
the future to implement other splitting strategies such as one-out or repeatedKFold.

The splits method will create a new folder inside the root directory called splits that will have a
new folder to define each of the training sets and, finally, a file with the names of the testing images.

Each of those folders will have two files: one with the names of the training images and another with
the names of the validation images. Those names will be the basename (the file name without the
pathing nor the format) of those images. Such a method will create the training, validation and
testing structure and it will return a dictionary object where the built structure will be represented.

In Figure 4.18 we show an example of the dataset structure after applying one of those validation
techniques (we should note that the result of applying TrainTest strategy is just one folder of training
– since the model will be trained just once –, whereas the KFold strategy will create K folders).

Figure 4.18. Dataset structure after applying the KFold validation strategy.

Additionally, we have noticed that there are some common parts in the implementation of those
strategies. For instance, in both of them it is checked that the relative size of each set is one and it is
normalised, the sets indexes are calculated from the total size of the dataset, the slices are created
using those sets indexes, and the structure is generated. In order to avoid code duplication, all this
functionality has been implemented as auxiliary functions in the ValidationManager
superclass.

In Figure 4.19 and 4.20 we show the result of applying those strategies.
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Figure 4.19. An instance of applying the traintest strategy.

Figure 4.20. An instance of applying the kfold strategy with a k value of five.

4.3.5. DataLoaderManager

This component, which manages how the data is loaded to train the models, will use the result of the
previous component (ValidationManager) in order to define the objects needed to build the
models.

As splits method returns a dictionary with the structure that defines the path to each set in the
splits folder, picking up those images to build the DataBlocks objects is trivial. We just need to:

1. Get the classes names defined in the DatasetManager.
2. Get the training and validating images defined inside the splits folder.
3. Get the masks associated with the previous images using the bijective function defined in the

DatasetManager.
4. Load the training and validation sets.
5. Define the way to apply the requested transformations to the images.

Additionally, another set will be created exclusively with the testing data to evaluate the model. The
construction of the DataBlock used to test the model is very similar to the previous ones. The
only difference is that all the data will be loaded indicating that the whole dataset will be used for
validation. In other words, this set will not have any images for training, but all of them will be used
for testing.

Once all the DataBlocks are defined, their transformation into DataLoaders is conducted by
using the dataloaders method: it is only needed to indicate how many images are going to be
used at the same time during the process7.

7 Since the GPU is being used in the training phase, matricial operations can be done in a more efficient way.
Additionally, due to the physical architecture of the GPUs, this process is absurdly parallelable, so the model
can be trained with multiple images at the same time. The amount of images that are parallel shown by the
model defines the batch size.
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As we have mentioned, this component uses the results from the previous three components, so an
instance of them is needed to define this new one (this component boxes the previous ones). In
other words: a DatasetManager, a TransformsManagerFastai (from FastAI, because is
the library that uses DataBlocks and DataLoaders) and a ValidationManager are going
to be used to define the DataLoaderManager.

During this component implementation, we have noticed that it will be interesting to create an
additional set to retrain the model when using the kfold strategy. In other words, the dataset is
divided into several folds, each of them is trained and tested and, finally, the model is trained using
all the folds mixed (this one is the new set, called validation) and it is tested with the testing set. This
final model is the one that is going to be compared with the others in order to determine which
model obtains the best results.

Defining this new set is simple, we just load all training, validation and testing data and we do a
traintest split training.

Since the previous component returns a path dictionary to each set location, this component will
return a dictionary with each of the DataLoaders defined, as shown in Figure 4.21.

Figure 4.21. An instance of using the DataLoaderManager component.

Each dictionary value is a DataLoader that is going to be used to train a model.

Finally, it is important to note that this component is the first one that is going to use the GPU if it
exists, because the DataLoader objects are built there.

4.3.6. ModelManager

We have defined this component in order to implement how to build, train and save a model.

Given the fact that some libraries (such as SegmenTron, smp and SemTorch) use the FastAI training
procedure, we believe that is convenient to group them in a single component that will define
several of the abstract methods (not all of them, but the ones related with the training phase). This
component will be called ModelManagerFastai.

Subsequently, three subcomponents will be defined (inherit from ModelManagerFastai) and
will contain the way to build their objects and the valid configuration that gives a model using their
constructors: ModelManagerSemtorch, ModelManagerSegmentron and
ModelManagerSMP.
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We must not forget about ModelManagerMMSegmentation, that will also define their
methods to build and train the models from MMSegmentation, and it will inherit directly from
ModelManager.

Each one of those previous libraries is capable of constructing a model for some defined
architectures and backbones. Those combinations are generally shown in the documentation of each
library (or in our Section 3), but sometimes they are not. Since checking manually which libraries can
build which combinations (of architecture, backbone and weights) can be a tiresome task, we will
provide three enumeration classes that will group together all the possibilities. Each
ModelManager subclass will define a dictionary named valid_config (accessible using the method
get_valid_config) that will save the possible combinations for that library using those
enumeration values. So, seeing what combinations are available for a library is as simple as calling
the get_valid_config method from its ModelManager component implementation.

Those enumeration classes will be useful at the time to construct a model: the architecture,
backbone and weights will be provided and it will be only needed to check if that combination is in
the valid_config dictionary. Furthermore, the enumeration class can be used itself to specify an
architecture, backbone or weight. For instance, we can provide a string to define an UNet with a
ResNet18 metamodel or we can provide their enumeration values, using ARCHITECTURE.UNET
architecture with BACKBONE.RESNET18 backbone and WEIGHT.NONE weights.

For using those enumeration types as their values, we need to change the default behaviour of the
Python enumeration class, inheriting it as a metaclass8 and changing what happens when those
values are accessed. By default, the returned value is an enumeration object (not a string), so we
need to change that enumeration object and unbox the string that it saves inside. We show, in Figure
4.22, the implementation of that custom enumeration class.

Figure 4.22. An enumeration class that returns strings when called.

In particular, the distinct component that inherits from ModelManager will allow us to:

● Know if an architecture, backbone and weights can be used to build a model using that
library.

● Build the model.
● Search for the best learning rate to use in the training phase.
● Train the model using different strategies (such as fit, fit_one_cycle or

fine_tune).
● Save the state of the model.
● Load the state of the model.

We need to be careful defining the enumeration classes: such classes that list all the architectures,
backbones and weights may contain duplicates because different libraries may call the same
architecture, backbone or weight in a different way. Since enumeration classes can not contain

8 Using metaclasses, the default behaviour of the classes that use them can be changed dynamically.
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duplicated enumeration values, we need to solve it in a different way. Namely, we will define a list of
synonyms. When a user employs our enumeration class, the value used will contain all the possible
values defined for all the libraries (it will be a tuple), so detecting which name is really used is a
task that must be done by the library itself, with the function is_buildable.

This function will desglose recursively all the possible combinations between the 3-tuple
(architecture, backbone, weights) and it will choose the first result that is not None. For that goal,
Utils class will define a function called coalesce that will return the first not None value in a
list.

4.3.7. SegmentationManager

Finally, we will implement the component that will manage the library selection and model
construction, training and evaluation for each defined metamodel.

To request the training, the method multiple_train will be used, indicating the metamodels:

● An unique identifier for the model.
● The architecture.
● Optionally: the backbone, the weights, the learning rate and the library.

This metamodel will be supplied in a tuple form (for instance: [(“model1”, ARCHITECTURES.UNET,
BACKBONES.RESNET18])). The default values are: for the backbone parameter, BACKBONE.NONE; for
the learning rate parameter, best and, for the library, None. Additionally, if the learning rate is best, it
will be automatically calculated before training and, if the library parameter is not None, the facade
will be forced to use the supplied library. Hence, the tuple elements define a metamodel, meanwhile
the list of metamodels defines the models that are going to be trained.

On another topic, defining multiple models (as we do) has a clear drawback since all those models
will be defined using the GPU memory. To avoid the overload of this memory, we will manage
manually the Python garbage collector and the reserved memory in the GPU. After training each
model, we will delete the object that represents it, freeing the GPU. This process is done by the
__clear_memory__ method inside the SegmentationManager component, as shown in
Figure 4.23. We are forced to do this in this way because otherwise the facade would train models
until the GPU collapses.

Figure 4.23. Memory management.

In order to log the results of the training, the method summary will return a DataFrame of the
results as we show in Figure 4.24 and plot_train_valid will show them in a box plot,
comparing all the trained models, as can be shown in Figure 4.25. It is very important to design some
filters to those functions, so the user can choose what models (even what folds, epochs or metrics)
they want to show the results.

In any case, the result of the summary method is a DataFrame, so it will be used to create more
graphics if the returned by the plot_train_valid method is not enough.
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Figure 4.24. Using the function summary.

Figure 4.25. Using the function plot_train_valid.

4.4. A running example

We have defined how we have implemented our library. Now, we are going to demonstrate how to
use the facade in order to train multiple models using just one endpoint and the well-known dataset
of grapevines. This demonstration can be also consulted in the repository.

First of all, we need to define the main components in order to define a
SegmentationManager. Those components, as it was said before, are the DatasetManager,
the TransformManager and the ValidationManager. In order to simplify their use,
SegmentationManager has three methods to build those components by default
(build_default_dataset, build_default_transformation and
build_default_validation).

In this example, we are going to use them. We will construct our dataset from a dataset directory
with some images and their masks. We know that, in this dataset, there is a mask with an incorrect
format, but our facade will detect it automatically. See Figure 4.26.
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Figure 4.26. Building the DatasetManager.

Subsequently, we can define the TranformManager. At this point, we should note that all the
components that we are defining are the abstract ones. It is not the user, but the facade, who is
going to particularise and construct the subclasses needed for the libraries in order to train the
requested models. In this example, we are going to use the default transformations. See Figure 4.27.

Figure 4.27. Building the TransformManager.

Finally, we need to define the strategy used to validate our models (all of them will share it). In this
case, we are going to use a kfold validation with a k-value of five, which is not the default value (by
default, the strategy used is the traintest split). See Figure 4.28.

Figure 4.28. Building the ValidationManager.

Once all the components are defined, we can assemble them and construct the
SegmentationManager, as shown in Figure 4.29.

Figure 4.29. Building the SegmentationManager.

As we can show, the ModelManager and the DataLoaderManager component are not used
directly by the user. Again, it is the facade which will use them to do the process.

Finally, we will use the defined SegmentationManager to train some models, for this example
(see the code in Figure 4.30):

● An UNet architecture with a ResNet18 backbone, using SemTorch.
● An UNet architecture with a ResNet34 backbone.
● A DeepLabv3+ architecture using a Mobilenet_v2 backbone.
● A VIT architecture.

The last one does not correspond to any possible combinations in any libraries, so it should be
skipped, as is shown in Figure 4.31.
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Figure 4.30. Training request.

When the previous cell is executed, the process begins and the models are defined, trained and
saved. The log is also saved in the summary file and it will be consultable using the summary and
plot_train_valid methods. An example of the screen log is shown in Figure 4.31.

Figure 4.31. An extraction of the log of the multiple_train method execution.

After training, we can see the results, see Figures 4.32 and 4.33.

Figure 4.32. Using the plot_train_valid method with filters (plotting the dice_multi metric).
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Figure 4.33. Using the summary method with filters (all the folds and epochs).

4.5. Future work

Although we have implemented the functionality needed to work with our facade, we know that
there are some details that remain as future work. We detail them in the following list:

● Future work for the logging management component:
○ Add more messages to manage more exceptions and improve the transparency of

the facade.
○ Allow the log messages to be saved in a log file instead of being shown in the

execution cell.
○ Allow to deactivate the log.

● Future work for the DatasetManager component:
○ Allow to use multiple datasets from the same DatasetManager.
○ Parallelise the process of mask transformation.
○ Allow the masks multiple mapping. In other words, allowing multiple colour codes

could be assigned to the same class.
● Future work for the TransformManager component:

○ Allow to save the transformed images in the disk.
● Future work for the ValidationManager component:

○ Implement the one-out strategy or others.
● Future work for the DataLoaderManager component:

○ Calculates the batch_size automatically.
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○ Abstract this component into a PreprocessingManager that will group
together all the preprocessing steps (such as DataLoaders building for FastAI) into
a new generic class. In this scenario, the MMSegmentation version of this
component PreprocessingManagerMMSegmentation will not do nothing,
but the SegmentationManager will not be needed to access directly to either
the DatasetManager, TransformManager nor ValidationManager.

● Future work for the ModelManager component:
○ Make the valid_config dictionary dynamically, instead of defining it statically and

manually, as is done at this moment.
○ Keep finding the way to transform an EncoderDecoder from MMSegmentation into a

Learner from FastAI, in order to simplify and reduce the facade components.
● Future work for the SegmentationManager component:

○ Allow the facade to add libraries dynamically using a module registration system.
This kind of system allows us to modify the libraries of the facade dynamically,
adding new libraries without updating the facade code. In other words: the users will
be able to customise the facade as they need.
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5. Conclusions
During this project, we have researched how some libraries that cover semantic segmentation (such
SegmenTron or MMSegmentation) can be grouped together into a common facade, having no
difference in the way of using them.

Since all those libraries use custom Python objects to define a model (with custom methods to train
and validate them), our first aim was to convert all those objects into a common one. Given the fact
that three of the four implemented libraries use FastAI behind the scenes, our goal was to convert
the EncoderDecoder objects from MMSegmentation into Learner objects from FastAI.

Since the previous step had some drawbacks in its implementation, we decided to increase the
working scope and, instead of giving a common interface for those libraries, we decided to automate
the whole process of semantic segmentation: from the dataset creation to the models evaluation,
including also the data augmentation management and the models construction and training.

In order to do that, we have needed to divide the process into different components that are
replaceable. Indeed, those abstract components can be used by everyone to define new particular
components that complete the work that can be not implemented in our library yet.

As a result, we have a completely modular facade that manages the whole process of image
segmentation and can be extended and used anytime by anyone.
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