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Abstract

We construct minimal Eisenstein integrals for a reductive symmetric space
G/H as matrix coefficients of the minimal principal series ofG. The Eisenstein
integrals thus obtained include those from theσ -minimal principal series. In
addition, we obtain related Eisenstein integrals, but withdifferent normalizations.
Specialized to the case of the group, this wider class includes Harish-Chandra’s
minimal Eisenstein integrals.
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Introduction

Eisenstein integrals play a fundamental role in harmonic analysis on reductive sym-
metric spaces of the formX = G/H; hereG is assumed to be a real reductive group
of the Harish-Chandra class, andH an (essentially connected) open subgroup of the
group Gσ of an involutionσ of G. The notion of Eisenstein integral goes back to
Harish-Chandra, who used it to describe the contribution ofgeneralized principal se-
ries to the Plancherel decomposition of a real reductive group 8G. In this setting an
Eisenstein integral is essentially a matrix coefficient of an induced representation of
the form Ind

8G
8P(

8ω), with 8P a proper parabolic subgroup of8G and8ω a suitable repre-
sentation of8P.

For general symmetric spacesG/H, the notion of Eisenstein integral was intro-
duced in [6] for minimalσ -parabolic subgroups ofG, i.e., minimal parabolic sub-
groups ofG with the property thatσ(P) = P̄. The notion was later generalized to
arbitraryσ -parabolic subgroups in [14], [15] and found application inthe Plancherel
theorem forG/H, see [16] and [12]. In this setting of reductive symmetric spaces, the
Eisenstein integrals appear essentially as matrix coefficients ofK-finite matrix coeffi-
cients withH-fixed distribution vectors.

A group 8G of the Harish-Chandra class may be viewed as a homogeneous space
for the left times right action ofG = 8G× 8G on 8G, and is thus realized as the sym-
metric spaceG/H with H the diagonal inG. The definition of Eisenstein integral for
the symmetric spaceG/H yields a matrix coefficient on8G which is closely related
to Harish-Chandra’s Eisenstein integral, but not equal to it. The two obtained types
of Eisenstein integrals differ by a normalization which canbe described in terms of
intertwining operators, see [8] for details. In the presentpaper we develop a notion
of minimal Eisenstein integrals for reductive symmetric spaces, which cover both the
existing notion for symmetric spaces and Harish-Chandra’snotion for the group.

An even stronger motivation for the present article lies in the application of its
results to a theory of cusp forms for symmetric spaces, initiated by M. Flensted-Jensen.
In [7] we use our results on Eisenstein integrals to generalize the results of [2] and [1]
to reductive symmetric spaces ofσ -split rank one (i.e., dimaq = 1).

We will now explain our results in more detail. Letθ be a Cartan involution ofG
commuting withσ and letK be the associated maximal compact subgroup ofG. Let

g= k⊕p= h⊕q

be the eigenspace decompositions into the±1-eigenspaces for the infinitesimal invo-
lutionsθ andσ , respectively. Furthermore, letaq be a maximal abelian subspace of
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p∩ q anda a maximal abelian subspace ofp containingaq. We putAq := expaq and
A := expa.

For the description of the minimalσ -principal series one needs the (finite) set of
minimal σ -parabolic subgroups ofG containingAq; this set is denoted byPσ (Aq).
In the case of the group8G one may takeA= 8A× 8A, with 8a maximal abelian in8p.
ThenPσ (A) consists of all parabolic subgroups of the form8P× 8P̄, with 8P a minimal
parabolic subgroup from8G containing8A. To obtain Harish-Chandra’s Eisenstein ite-
gral one would need to also consider minimal parabolic subgroups of the form8P× 8P.

Our goal is then to define Eisenstein integrals by means of suitableH-fixed distri-
bution vectors for all minimal parabolics ofG containingA. The (finite) set of these is
denoted byP(A). For the case of the group one hasPσ (Aq)(P(A), but for general
symmetric spacesG/H, the parabolic subgroups fromPσ (Aq) will in general not be
minimal.

A parabolic subgroupP∈P(A) is calledq-extreme if it is contained in a parabolic
subgroupP0 from Pσ (Aq), see Section 1 for details. For such a parabolic, each repre-
sentation IndGP0

(ξ ⊗λ ⊗1) of theσ -principal series can be embedded in the represen-
tation IndG

P(ξM⊗ (λ −ρPh)⊗1) of the minimal principal series, through induction in
stages. Hereξ is a finite dimensional unitary representation of the Langlands compo-
nentM0 := MP0, andξM denotes the restriction ofξ to M := MP. Furthermore,λ ∈ a∗qC
andρPh := ρP−ρP0. This is discussed in Section 4.

In Section 5 theH-fixed generalized vectors of the first of these induced represen-
tations are shown to allow a natural realization in the latter. To describe it, one needs to
parametrize the openH-orbits onG/P0. We will avoid this complication in the intro-
duction, and work under the simplifying assumption thatHP0 is the single open orbit.
This condition is always fulfilled in the case of the group; ingeneral the open orbits
are given byPvH, for v in a finite setW ≃W(aq)/WK∩H(aq)).

Let C−∞(P0 : ξ : λ ) denote the space of generalized vectors for the induced repre-
sentations IndGP0

(ξ ⊗λ ⊗1). TheH-fixed elements in this space needed for the defini-

tion of the Eisenstein integral are parametrized byV(ξ ) = H
M0∩H

ξ . Givenη ∈V(ξ ),
one has a family

j(P0 : ξ : λ : η) ∈C−∞(P0 : ξ : λ )H , (λ ∈ a∗qC),

defined in [5]. In a suitable sense it depends meromorphically onλ ∈ a∗qC. This family
has imagejH(P : ξM : λ : η) in C−∞(P : ξM : λ −ρPh)

H . By definition the latter de-
fines a continuous conjugate linear functional on the spaceC∞(P : ξM :−λ̄ +ρPh). In
(5.5) we show that forλ in a suitable regionΩP ⊆ a∗qC this functional is given by an
absolutely convergent integral

〈 jH(P : ξM : λ : η) , f 〉=
∫

HP\H
f̄η,ω , (I.1)

for f ∈C∞(P : ξM :−λ̄ +ρPh). HereHP := H ∩P, and f̄η,ω is a natural interpretation
of the function〈η , f 〉|H ∈C∞(H) as a density on the quotient manifoldHP\H.
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To extend formula (I.1) to the setting of a parabolic subgroup Q ∈P(A) which
is not q-extreme, two problems need to be solved. First of all a suitable domainΩQ

for the convergence needs to be determined. Next, the resulting family jH(Q : ξM : λ )
needs to be extended meromorphically in the parameterλ ∈ a∗qC.

In the present paper both these problems are solved by using asuitable partial
ordering� onP(A)whose maximal elements are theq-extremal parabolic subgroups,
see Section 2 for details. LetP∈Pσ (A) be such thatP�Q. Then the definition of the
ordering guarantees thatHP⊆HQ and that the fiberHP\HQ of the natural fiber bundle
HP\H→HQ\H is diffeomorphic toNQ∩ N̄P in a natural way, see Section 6. We use a
general Fubini type theorem for densities on fiber bundles, discussed in the appendix
of this paper, to decompose the integral (I.1) in terms of a fiber integral overNQ∩ N̄P

followed by an integral over the base manifoldHQ\H, see Thm. 6.7. The first of these
integrals turns out to be the integral for the standard intertwining operator

A(Q : P : ξM :−λ̄ +ρPh) : C∞(P : ξM :−λ̄ +ρPh)→C∞(Q : ξM :−λ̄ +ρPh),

whereas the second integral turns out to be (I.1) withQ in place ofP. According to
Theorem 7.1 this results in the formula

jH(P : ξM : λ : η) = jH(Q : ξM : λ : η) ◦A(Q : P : ξM :−λ̄ +ρPh), (I.2)

with convergent integrals forλ ∈ΩP. Convergence of the integral forjH(Q : ξM : λ : η)
is thus obtained through Fubini’s theorem, as a consequenceof the known convergence
of the other two integrals. Furthermore, since the appearing standard intertwining
operator has an inverse which is meromorphic inλ , formula (I.1) also allows us to
conclude in Theorem 7.8 that

λ 7→ jH(Q : ξM : λ : η) (I.3)

depends meromorphically onλ ∈ a∗qC.
Once the meromorphic extension of(I.3) has been established for generalQ ∈

P(A) we apply a recent convexity theorem [3, Thm. 10.1] to determine a large domain
on which (I.3) is holomorphic, see Corollary 7.6). The convexity theorem describes
the image ofH under the projectionHQ,q : G→ aq determined by the Iwasawa decom-
positionG= K(A∩H)exp(aq)NQ as a convex polyhedral cone described in terms of a
subset of the set of roots ofa in nQ. This description allows one to decide whether this
cone properly contains the origin or equals it. In the lattercase it is shown that (I.3) is
holomorphic on all ofa∗qC, see Remark 7.9.

The definition of the meromorphic family ofH-fixed generalized vectors (I.3) al-
lows us to define Eisenstein integralsE(Q : λ ) essentially as matrix coefficients with
K-finite vectors in the induced representation under consideration. In particular, the
Eisenstein integral depends meromorphically onλ . Holomorphy of (I.3) implies holo-
morphy of the corresponding Eisenstein integral, see Corollary 8.5.

The relation (I.2) leads to a relation between the Eisenstein integralE(Q : λ )
and the Eisenstein integralE(P0,λ ), earlier defined in [6] and [10]. This relation

4



amounts to a different normalization of the Eisenstein integral expressed in terms of a
C-function, see Corollary 8.14.

Finally, in Section 9, we discuss the case of the group, and express the obtained
Eisenstein integrals in terms of Harish-Chandra’s Eisenstein integrals, see Corollary
9.8. In this case, the Eisenstein integralE(Q : λ ) coincides with Harish-Chandra’s if
and only ifQ is a�-minimal element ofP(A). The latter means thatQ is of the form
8Q× 8Q, with 8Q∈P(8A); see Corollary 9.6. The result on holomorphy established
above, is consistent with the holomorphic dependence of Harish-Chandra’s Eisenstein
integral, see Remark 9.7.

Acknowledgements We would like to thank Henrik Schlichtkrull and Mogens
Flensted-Jensen for many fruitful discussions. Part of this research was made possi-
ble by the Max Planck Institute for Mathematics in Bonn, where both authors partici-
pated in the special activity ‘Harmonic Analysis on Lie groups’, organized by Bernhard
Krötz and Henrik Schlichtkrull, in the late summer of 2011.

1 Notation and preliminaries

In this section we collect some of the notation that will be used throughout this article.
We assume thatG is a reductive Lie group of the Harish-Chandra class. Letσ

be an involutive automorphism ofG and letθ be a Cartan involution that commutes
with σ , let K := Gθ be the associated maximal compact subgroup. LetH be an open
subgroup of the fixed point subgroupGσ . We assumeH to be essentially connected.
(See [4, p.24].) IfS is any closed subgroup ofG, we agree to write

HS := S∩H. (1.1)

A Lie group will in general be denoted by a Roman upper case letter; the associated
Lie algebra by the corresponding lower case gothic letter. We denote the infinitesimal
involutions associated withσ and θ by the same symbols, respectively. As usual,
the decompositions ofg into the+1 and−1 eigenspaces forθ andσ are denoted by
g = k⊕ p = h⊕ q respectively. As the involutionsσ and θ commute, we have the
following decomposition ofg also decomposes as a direct sum of vector spaces

g= (k∩h)⊕ (k∩q)⊕ (p∩h)⊕ (p∩q).

We fix a non-degenerateG-invariant bilinear formB on g, which coincides with the
Killing form on [g,g], is negative definite onk and positive definite onp, and for which
the above decomposition is orthogonal. Furthermore, we equip g with the positive
definite inner product given by

〈 · , · 〉 :=−B( · ,θ( ·)).

We fix a maximal abelian subspaceaq of p∩ q and a maximal abelian subspacea

of p containingaq. Thena decomposes as

a= ah⊕aq,
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whereah = a∩ h. This decomposition induces natural embeddings of the associated
dual spacesa∗h anda∗q into a∗. Let A := exp(a), Aq := exp(aq) andAh := exp(ah).

If P is a parabolic subgroup (not necessarily minimal), then we write NP for the
unipotent radical ofP. If P containsA andb is a subalgebra ofa, then we writeΣ(P,b)
for the set of weights ofb in nP. Furthermore, we writeΣ(P) for Σ(P,a), unless clarity
of exposition requires otherwise. Ifτ is an involution ofg preservinga, we agree to
write

Σ(P,τ) := Σ(P)∩ τΣ(P). (1.2)

For a rootα ∈ Σ(a)∩a∗q, we note thatσθα = α, so thatσθ leaves the root spacegα
invariant. Accordingly, we define the subsetΣ(P)− = Σ(P)σ ,− of Σ(P,σθ) by

Σ(P)− := {α ∈ Σ(P,σθ) : α ∈ a∗q⇒ σθ |gα 6= I}. (1.3)

Let M denote the centralizer ofA in K and letP(A) denote the set of minimal
parabolic subgroupsP⊆G with A⊆P. Then each subgroupP∈P(A) has a Langlands
decomposition of the formP= MANP.

Definition 1.1. A parabolic subgroupP∈P(A) is said to beq-extreme if

Σ(P,σθ) = Σ(P)\a∗h.

The set of these parabolic subgroups is denoted byPσ (A).

We will finish this section by comparingPσ (A) with the setPσ (Aq) of minimal
σθ -stable parabolic subgroups ofG containingAq. We recall from [5] that the latter set
is finite and in bijective correspondence with the set of positive systems forΣ(g,aq).
Indeed, ifΠ is such a positive system then the corresponding parabolic subgroupPΠ

from Pσ (Aq) equalsPΠ = ZG(aq)NΠ, wherenΠ := ⊕α∈Πgα andNΠ := exp(nΠ). The
Langlands decomposition ofPΠ is given by

PΠ = M0A0NΠ,

where A0 = exp(a0) and M0 = ZK(aq)exp(m0), with a0 = ∩α∈Σ(g,a)∩a∗h kerα, and

m0 := Zg(aq)∩a
⊥
0 .

Conversely, ifP0 ∈Pσ (Aq) then the associated positive system is given by

Σ(P0,aq) := {α ∈ Σ(g,aq) | gα ⊆ nP0}.

Lemma 1.2. Let P∈P(A). Then the following conditions are equivalent.

(a) P∈Pσ (A);

(b) there exists a P0 ∈Pσ (Aq) such that P⊆ P0.

6



Proof. First assume (a). ThenΣ(P) \ a∗h = Σ(P,σθ) and we see that the setΠ of
non-zero restrictionsα|aq, for α ∈ Σ(P) \ a∗h, is a positive system forΣ(g,aq). Now
NP = (NP∩M0)NΠ and we see thatP⊆ PΠ and (b) follows.

Next assume (b). We first note that

Σ(P0,aq) = {α|aq : α ∈ Σ(P0),α|aq 6= 0}.

The minimality ofP0 implies thatΣ(P0,aq) is a positive system for the root system
Σ(g,aq), hence

Σ(g,a)\a∗h = {α ∈ Σ(g,a) : α|aq ∈ Σ(g,aq)}= Σ(P0)∪−Σ(P0).

By assumptionP⊆ P0. This impliesΣ(P0)⊆ Σ(P) andΣ(P)∩−Σ(P0) = /0. Hence,

Σ(P)\a∗h = Σ(P0).

Moreover, sinceP0 is σθ -stable the above equality impliesΣ(P) \ a∗h ⊆ Σ(P,σθ). As
the converse inclusion is obvious, the parabolicP is q-extreme and (a) follows.

2 Minimal parabolic subgroups

Lemma 2.1. Let P∈P(A).The setΣ(P) is the disjoint union ofΣ(P,σ) andΣ(P,σθ).

Proof. Let α ∈ Σ(P). Then eitherσα ∈ Σ(P) or σθα =−σα ∈ Σ(P). The two cases
are exclusive, and in the first case we haveα ∈ Σ(P,σ), while in the secondα ∈
Σ(P,σθ).

We define the partial ordering� onP(A) by

P�Q ⇐⇒ Σ(Q,σθ)⊆ Σ(P,σθ) and Σ(P,σ)⊆ Σ(Q,σ). (2.1)

It is easy to see that this condition onP andQ implies thatHNP ⊆ HNQ. The latter
condition implies that we have a natural surjectiveH-mapH/HNP→ H/HNQ.

Lemma 2.2. Let P,Q∈P(A), and assume that P�Q. Then

(a) Σ(P)∩a∗q = Σ(Q)∩a∗q;

(b) Σ(P)∩a∗h = Σ(Q)∩a∗h.

Proof. Let α ∈ Σ(Q)∩a∗q. Thenσθα = α so thatα ∈ Σ(Q,σθ)⊆ Σ(P,σθ). We infer
that Σ(Q)∩ a∗q ⊆ Σ(P)∩ a∗q. Since both sets in this inclusion are positive systems for
the root systemΣ∩a∗q, the converse inclusion follows by a counting argument.

Assertion (b) is proved in a similar fashion, usingσ in place ofσθ and referring
to the second inclusion of (2.1) instead of the first.

7



Lemma 2.3. Let P,Q∈P(A). Then the following statements are equivalent.

(a) P�Q;

(b) Σ(P)∩Σ(Q̄)⊆ Σ(P,σθ) and Σ(P̄)∩Σ(Q)⊆ Σ(Q,σ);

(c) Σ(P)∩Σ(Q̄) = Σ(P,σθ)∩Σ(Q̄,σ).

Proof. First assume (a). Letα ∈ Σ(P)∩Σ(Q̄). Thenσα ∈ Σ(P) would lead toα ∈
Σ(Q), contradiction. Hence,α ∈ Σ(P,σθ). The second inclusion of (b) follows in a
similar fashion.

Next, (b) is equivalent toΣ(P)∩Σ(Q̄)⊆ Σ(P,σθ)∩Σ(Q̄,σ), which is readily seen
to be equivalent to (c).

Finally, assume (c) and letα ∈ Σ(P,σ). Thenα ∈Σ(P)\Σ(P,σθ), henceα /∈ Σ(Q̄)
by the equality of (c) and it follows thatα ∈ Σ(Q). Likewise, σα ∈ Σ(Q) and we
conclude thatα ∈ Σ(Q,σ). On the other hand, letα ∈ Σ(Q,σθ). Thenα ∈ Σ(Q) \
Σ(Q,σ). The equality in (c) is equivalent to

Σ(P̄)∩Σ(Q) = Σ(P̄,σθ)∩Σ(Q,σ),

which shows thatα ∈ Σ(P). Likewise, σθα ∈ Σ(P) and we see thatα ∈ Σ(P,σθ).
This proves (a).

Lemma 2.4. Let P,Q,R∈P(A) be such that P� R. Then the following assertions
are equivalent:

(a) P�Q� R;

(b) Σ(P)∩Σ(Q̄)⊆ Σ(P)∩Σ(R̄).

Proof. Assume (a). By Lemma 2.3, the first set in (b) equalsΣ(P,σθ)∩ Σ(Q̄,σ),
which by (2.1) is contained inΣ(P,σθ)∩Σ(R̄,σ). The latter set equals the second set
of (b), again by application of Lemma 2.3. Assertion (b) follows.

For the converse implication, assume (b). Then it is well known and easy to show
that

Σ(P)∩Σ(R̄) = (Σ(P)∩Σ(Q̄))∪ (Σ(Q)∩Σ(R̄)) (disjoint union) (2.2)

Indeed, it is obvious that the set on the left-hand side of (2.2) is contained in the union
on the right-side. For the converse inclusion, we first note that (b) impliesΣ(P̄)∩
Σ(Q)⊆ Σ(R). Now assume thatα ∈ Σ(Q)∩Σ(R̄). Thenα /∈ Σ(P̄) so thatα ∈ Σ(P)∩
Σ(R̄). Hence, the second inclusion of (2.2) follows as well.

Still assuming (b), we claim thatP� Q. To see this, letα ∈ Σ(P)∩Σ(Q̄). Then
α ∈ Σ(P)∩Σ(R̄) ⊆ Σ(P,σθ)∩Σ(R̄,σ) by Lemma 2.3. Assume now in additionα /∈
Σ(Q̄,σ). Thenσθα ∈ Σ(P)∩Σ(Q̄)⊆ Σ(P)∩Σ(R̄), henceα ∈ Σ(R̄,σθ), contradicting
the earlier conclusion thatα ∈ Σ(R̄,σ). Thus the assumption cannot hold, so thatα ∈
Σ(P,σθ)∩Σ(Q̄,σ). In view of Lemma 2.3 this establishes the claim.
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We will now infer (a) by establishing thatQ� R. For this, letα ∈ Σ(Q)∩Σ(R̄).
Thenα ∈ Σ(P)∩Σ(R̄) by (2.2), which implies thatα ∈ Σ(P,σθ)∩Σ(R̄,σ) by Lemma
2.3. Assume now thatα /∈ Σ(Q,σθ). Thenσα ∈ Σ(Q)∩Σ(R̄) ⊆ Σ(P), so thatα ∈
Σ(P,σ), contradicting the earlier conclusion thatα ∈ Σ(P,σθ). Thus, the assumption
cannot hold, so thatα ∈Σ(Q,σθ)∩Σ(R̄,σ).Applying Lemma 2.3 with(Q,R) in place
of (P,Q), we finally obtain thatQ� R.

Remark 2.5. Recall that two parabolic subgroupsP,Q∈P(A) are said to be adjacent
if Σ(P)∩Σ(Q̄) has a one dimensional span ina∗.

If P,Q ∈P(A) then there exists a sequenceP = P0,P1, . . . ,Pn = Q of parabolic
subgroups inP(A) such that for all 0≤ j < n we haveΣ(P)∩Σ(P̄j)⊆ Σ(P)∩Σ(P̄j+1)
and such thatPj andPj+1 are adjacent. If in additionP≻ Q, then it follows from
repeated application of the lemma above that

P= P0≻ P1≻ ·· · ≻ Pn = Q.

Our next objective in this section is to show that every parabolic subgroup from
P(A) is dominated by aq-extreme one, see Definition 1.1

GivenQ∈P(A), we denote the positive Weyl chamber forΣ(Q) in a by a+(Q).
Furthermore, we put

a+q (Q) = {H ∈ aq | α(H)> 0, ∀α ∈ Σ(Q,σθ)}. (2.3)

It is readily verified that this set contains the image ofa+(Q) under the projection
prq : a→ aq; in particular, it is non-empty.

Let areg
q be the set of regular elements inaq, relative to the root systemΣ(aq). The

connected components of this set are the chambers for the root systemΣ(aq). The
collection of these is denoted byΠ0(a

reg
q ). It is clear thatareg

q ∩ a
+
q (Q) is the disjoint

union of the chambers contained ina+q (Q).
We define

Pσ (A,Q) := {P∈Pσ (A) | P�Q }

Lemma 2.6. Let Q∈P(A). Then the assignment P7→ a+q (P) defines a bijection from
the setPσ (A,Q) onto the set{C∈Π0(a

reg
q ) |C⊆ a+q (Q)}.

Proof. We abbreviateC (Q) := {C∈Π0(a
reg
q ) |C⊆ a+q (Q)}. Let P∈Pσ (A,Q). Then

a rootα ∈ Σ(P) restricts to a non-zero root onaq if and only if α ∈ Σ(P)\a∗h. The latter
set equalsΣ(P) \Σ(P,σ) = Σ(P,σθ). Therefore,a+q (P) is a connected component of
a

reg
q . Furthermore, fromP � Q it follows that Σ(P,σθ) ⊃ Σ(Q,σθ), which in turn

implies thata+q (P) ⊆ a+q (Q). It follows that a+q (P) ∈ C (Q). It remains to be shown
that the map

P 7→ a+q (P), Pσ (A,Q)→ C (Q) (2.4)

is bijective. For injectivity, assume thatP1,P2 ∈Pσ (A,Q) and thata+q (P1) = a+q (P2).
Let α ∈ Σ(P1). If α ∈ a∗h, thenα ∈ Σ(Q)∩a∗h⊆ Σ(P2). If α /∈ a∗h, thenα ∈ a+q (P1,σθ)
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and it follows thatα > 0 ona+q (P1) = a+q (P2), which implies thatα ∈ Σ(P2). Thus, we
see thatΣ(P1)⊆ Σ(P2) which impliesP1 = P2.

For surjectivity, letC be a chamber inC (Q). Let ΠC denote the set of rootsα ∈
Σ(a) that are strictly positive onC. The setΠh := Σ(Q)∩ a∗h is a choice of positive
roots for the root systemΣ(a)∩a∗h. Hence, there exists an elementY ∈ a∗h such that

Πh = {α ∈ Σ(a)∩a∗h | α(Y)> 0}.

Fix X ∈C and putXt = X+ tY for t ∈ R. Then there existsε > 0 such that for|t|< ε
we haveα(Xt) > 0 for all α ∈ ΠC. Fix 0 < t < ε. Then it follows thatXt is regular
for Σ(a) and that the associated choice of positive rootsΠ := {α ∈ Σ(a) | α(Xt)> 0}
is the disjoint union ofΠC andΠh. Let P be the parabolic subgroup inP(A) with
Σ(P) = Π. ThenΣ(P)∩ a∗h = Πh = Σ(Q)∩ a∗h. Furthermore, ifα ∈ Σ(P) \ a∗h, then
α ∈ΠC. Hence,σθα(Xt) = α(−σ(Xt)) = α(X−t)> 0, and we see thatα ∈ Σ(P,σθ).
It readily follows thatP∈Pσ (A,Q).

We finish this section by investigating these structures in the setting whereH is
replaced by a conjugatevHv−1, with v∈ NK(a)∩Naq. Let such an elementv be fixed.
Thenv normalizesah as well. LetCv : G→G denote conjugation byv, and put

σv :=Cv◦σ ◦C−1
v . (2.5)

Thenσv is an involution ofG which commutes with the Cartan involutionθ ; more-
over, sincev normalizesZK(aq), the conjugate groupvHv−1 is readily seen to be an
essentially connected open subgroup ofGσv. The infinitesimal involution associated
with σv is given byσv = Ad(v) ◦σ ◦Ad(v)−1. Since Ad(v) normalizesaq andah, it
follows that

σv|a = σ |a (2.6)

and thataq is maximal abelian inp∩ker(σv+ I).
It follows from (1.2) and (2.6) that

Σ(Q,σv) = Σ(Q,σ) and Σ(Q,σvθ) = Σ(Q,σθ). (2.7)

From this we see that the ordering onP(A) defined by (2.1) withσv in place ofσ
coincides with the ordering� . It is also clear thatP 7→ v−1PvpreservesPσ (A).

Lemma 2.7. Let Q∈P(A) and v∈ NK(a)∩NK(aq). Then

Σ(Q)σv,− = vΣ(v−1Qv)− (2.8)

Let Sv := {α ∈ Σ(a)∩a∗q | σvθ |gα 6= I}. Then it is readily seen thatSv = vSe. From
(1.3) we now deduce that

Σ(Q)σv,−∩a
∗
q = Σ(Q)∩vSe= v(Σ(v−1Qv)∩Se) = vΣ(v−1Qv)−∩a

∗
q.

On the other hand,

Σ(Q)σv,− \a
∗
q = Σ(Q,σvθ)\a∗q = Σ(Q,σθ)\a∗q

= v(Σ(v−1Qv,σθ)\a∗q) = vΣ(v−1Qv)− \a
∗
q

and we deduce (2.8).
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3 Induced representations and densities

Let P = MPAPNP be a parabolic subgroup with the indicated Langlands decomposi-
tion and let(ξ ,Hξ ) be a unitary representation in a finite dimensional Hilbert space
Hξ . The assumption of finite dimensionality is natural for the purpose of this paper.
Moreover, the following definitions, though valid in general, will merely be needed for
the case thatP belongs to eitherP(A) or Pσ (Aq).

For µ ∈ a∗PC
ands∈ N∪{∞} we denote byCs(P : ξ : µ) the space ofCs-functions

f : G→Hξ transforming according to the rule

f (manx) = aµ+ρPξ (m) f (x),

for all x∈G and(m,a,n) ∈MP×AP×NP. The right regular representationR of G in
this space is theCs-version of the normalized induced representation IndG

P(ξ ⊗µ⊗1).
We putKMP := K ∩MP and denote byCs(K : ξ ) := Cs(K : KMP : ξ ) the space of

Cs-functions f : K→Hξ transforming according to the rule

f (mk) = ξ (m) f (k), (k∈ K, m∈ KMP).

All function spaces introduced so far are assumed to be equipped with the usual Fréchet
topologies (Banach whens< ∞). The restriction mapf 7→ f |K gives topological linear
isomorphisms

Cs(P : ξ : µ) ≃
−→ Cs(K : ξ ), (3.1)

intertwining theK-actions from the right. Through these, the right regular actions
of the groupG may be transferred to continuous representations ofG on Cs(K : ξ ),
denotedπP,ξ ,µ . This realisationπP,ξ ,µ is called the compact picture of theCs-version
of the parabolically induced representation IndG

P(ξ ⊗ µ ⊗1), see [23, p. 15]. Letdk
denote the normalized Haar measure onK, and let〈 · , · 〉ξ denote the inner product of
Hξ . Then it is well known, see e.g. [26, Lemma 8.3.11], that the sesquilinear pairing
C(K : ξ )×C(K : ξ )→ C given by

〈 f , g〉ξ :=
∫

K
〈 f (k) , g(k)〉ξ dk, (3.2)

is equivariant for the representationsπP,ξ ,µ andπP,ξ ,−µ̄ . Accordingly, the above for-
mula gives an equivariant sesquilinear pairing

C(P : ξ : µ)×C(P : ξ :−µ̄)→ C. (3.3)

We will usually omit the indexξ in the notation of the pairing (3.2).
We denote byC−s(P : ξ : µ) the continuous conjugate-linear dual of the Fréchet

spaceCs(P : ξ :−µ̄), equipped with the strong dual topology and with the natural dual
representation. Likewise, we denote byC−s(K : ξ ) the continuous conjugate-linear
dual ofCs(K : ξ ).
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By using the pairing (3.3) we obtain equivariant continuouslinear injections

C(P : ξ : µ) →֒C−s(P : ξ : µ),

for s∈ N∪{∞}. Likewise, by using the pairing (3.2) we obtainK-equivariant con-
tinuous linear injectionsC(K : ξ ) →֒ C−s(K : ξ ). Through the indicated pairings it
is readily seen that the isomorphism (3.1) fors= 0 extends to a topological linear
isomorphism

C−s(P : ξ : µ) ≃
−→ C−s(K : ξ ), (3.4)

for all s∈N∪{∞}. By transfer we obtain a continuous representationπ−s
P,ξ ,µ of G in the

second space in (3.4), such that the isomorphism becomesG-equivariant. It is readily
verified that this representation is dual to the representation πP,ξ ,−µ̄ onCs(K : ξ ). We
will usually omit the superscript−s in the notation of this dual representation.

Fors, t ∈N with s< t, the inclusion mapCt(K : ξ )→Cs(K : ξ ) is a compact linear
map of Banach spaces which has a dense image and therefore dualizes to a compact
linear injection

C−s(K : ξ )→C−t(K : ξ ).

In view of [24, Thm. 11], the locally convex spaceC−∞(K : ξ ), equipped with the
strong dual topology, coincides with the inductive limit ofthe Banach spacesC−s(K :
ξ ). Furthermore, by [24, Lemma 3] each bounded subset ofC−∞(K : ξ ) is a bounded
subset ofC−s(K : ξ ) for somes.

Let now Ω be a complex manifold. Then by the above mentioned property of
bounded subsets of the inductive limit, a functionϕ : Ω→C−∞(K : ξ ) is holomorphic
if for eachz0∈Ω there exists an open neighborhoodΩ0 of z0 in Ω and a natural number
s∈ N such thatϕ mapsΩ0 holomorphically into the Banach spaceC−s(K : ξ ). A
densely defined functionf from Ω toC−∞(K : ξ ) is said to be meromorphic if for each
z0 ∈Ω there exists an open neighborhoodΩ0 and a holomorphic functionq : Ω0→ C

such thatq f extends holomorphically from Dom( f )∩Ω0 to Ω0.
For later use, we record some observations involving the contragredientMP-re-

presentationξ∨, whose spaceHξ∨ is the linear dual ofHξ . The assignmentv 7→ 〈v, · 〉
defines anMP-equivariant conjugate-linear isomorphism fromHξ onto Hξ∨ . This
isomorphism induces aK-equivariant topological conjugate-linear isomorphism from
C∞(K : ξ ) ontoC∞(K : ξ∨). The latter isomorphism is equivariant for the representa-
tionsπP,ξ ,−µ̄ andπP,ξ∨,−µ , respectively, for everyµ ∈ a∗PC

. Through this isomorphism,
the pairing (3.2) is transferred to the bilinear pairing

C∞(K : ξ )×C∞(K : ξ∨)→ C (3.5)

given by

〈 f , g〉=
∫

K
〈 f (k) , g(k)〉 dk. (3.6)

Furthermore, this pairing is equivariant for the representationsπP,ξ ,µ and πP,ξ∨,−µ .
Through it, we see thatC−∞(K : ξ ) is naturally identified with the continuous linear
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dual ofC∞(K : ξ∨). Moreover, this identification realizes the representationπ−∞
P,ξ ,νµ as

the contragredient ofπ∞
P,ξ∨,−µ . Accordingly, we obtain theG-equivariant topological

linear isomorphism
C−∞(P : ξ : µ) ≃C∞(P : ξ∨ :−µ̄)′.

In the rest of this section we assume thatP ∈P(A) and that(ξ ,Hξ ) is a (not nec-
essarily irreducible) unitary representation ofM in a finite dimensional Hilbert space
Hξ .

One of the goals of this paper is to studyH-invariant distribution vectors of prin-
cipal series representations. A first step in the construction of these is the following.
We consider the homogeneous spaceHP\H, see (1.1) for notation, and denote the as-
sociated canonical projection byπ : H → HP\H. Given x ∈ H we write [x] = π(x).
Furthermore, forh∈H we use the following notation for the right multiplication map,

rh : HP\H→HP\H, [x] 7→ [x]h= [xh]

We refer to the appendix, the text preceding (A.4), for the notion of a density onHP\H
and the associated notion of the density bundleDHP\H . The notion of the pull-back
bundleπ∗DHP\H → H is defined in the same appendix, in the text before (A.5).

Let hP denote the Lie algebra ofHP = H ∩P, thendπ(e) induces a linear isomor-
phismh/hP≃ T[e](HP\H). We fix a positive densityω = ωHP\H ∈Dh/hP

.
If S⊆ Σ(P), we define the subspacenS⊆ g to be the direct sum of the root spaces

gα , for α ∈ S, and we defineρS∈ a∗ by

ρS(X) =
1
2

tr (ad(X)|nS) , (X ∈ a).

Furthermore, we agree to abbreviate

ρPh := ρΣ(P)∩a∗h.

In the following result we will describe certain densities associated with principal se-
ries representations.

Lemma 3.1. Let λ ∈ a∗qC, f ∈C(P : ξ :−λ̄ +ρPh) andη ∈H
HM

ξ . Then

f̄η,ω : h 7→ 〈η , f (h)〉ξ drh([e])
−1∗ω

defines a continuous density on the homogeneous space HP\H.

Proof. For eachh∈H, putϕ(h)= f̄η,ω(h). Thenϕ(h) defines a density on the tangent
spaceTHPh(HP\H) andϕ : H → π∗(DHP\H) defines continuous section of the pull-
back bundle. It suffices to show thatϕ(hPh) = ϕ(h) for all hP ∈ HP. We note that
HP = H ∩P= HMAhHNP. Accordingly, writehP = man, then

ϕ(hPh) = a−λ+ρPh+ρP
〈
ξ (m)−1η, f (h)

〉
drh([e]hP)

−1∗drhP([e])
−1∗ω

= aρPh+ρP∆(hP)ϕ(h), (3.7)
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where
∆(hp) = |detAd(hP)|h/hP

|= |detAd(hP)|hP|
−1.

SinceHNP is nilpotent, whereasHM is compact, it follows that

∆(hP) = ∆(a) = |detAd(a)|hP|
−1.

Using the decompositionhP = (h∩m)⊕ah⊕ (h∩nP) we finally see that

∆(hP) = |detAd(a)|h∩nP|
−1 = a−δ ,

whereδ = tr(ad( ·)|h∩nP) ∈ a∗h. We now use that

h∩nP =
⊕

α∈(Σ(P)∩a∗h)
gα ⊕

( ⊕

α∈Σ(P,σ)\a∗h

gα

)σ

For eachα ∈ Σ(P,σ) \ a∗h, we haveσα 6= α, and the direct sumgα ⊕ gσα is σ -
invariant, so that its intersection withh is given by

(gα ⊕gσα)
σ = {X+σ(X) | X ∈ gα}.

The action of an elementH ∈ ah on this space has trace dim(gα)α(H). We conclude
that

δ =
(
2ρPh+ρΣ(P,σ)\a∗h

)∣∣
ah
.

Using the decomposition

ρP = ρPh+ρΣ(P,σ)\a∗h
+ρΣ(P,σθ )

we see that (
ρP+ρPh

)∣∣
ah
−δ = ρΣ(P,σθ )

∣∣
ah

= 0.

Combining this with (3.7) we infer thatϕ is left HP-invariant.

Remark 3.2. Recall the definition ofΣ(P)− in (1.3). In Section 5 we will show that
for all λ ∈ a∗qC, for which there existsP0 ∈Pσ (Aq) with Σ(P,σθ)⊆ Σ(P0) such that

∀α ∈ Σ(P)− : 〈Reλ +ρP0 , α〉 ≤ 0,

the above densityfη,ω is integrable overHP\H.

4 Comparison of principal series representations

In this section we will compare the principal series representations with theσ -principal
series defined in [5]. The latter involve parabolic subgroupsP0 from Pσ (Aq). Each of
these has a Langlands decomposition of the formP0=M0A0NP0, see the end of Section
1 for details.

We will now investigate the structure of the groupM0 in more detail. Our starting
point is the following lemma.
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Lemma 4.1. Let α ∈ Σ(g,a)∩a∗h. Thengα ⊆ h.

Proof. Let α be as in the assertion. Thenσα = α so thatσ leaves the root spacegα
invariant. Thus, it suffices to show thatgα ∩ q = 0. Assume thatX ∈ gα ∩ q. Then
(X−θX) belongs top∩q and centralizesaq. As the latter space is maximal abelian in
p∩q, it follows thatX−θX ∈ aq∩ (gα +g−α) = 0.

Letm0n be the ideal inm0 generated bya∩m0. Sincea∩m0 has trivial intersection
with the center ofm0, the idealm0n equals the sum of the simple ideals of non-compact
type inm0. It has a unique complementary ideal; this is contained in thecentralizer of
a∩m0 in m0, hence inm.

Lemma 4.2. The idealm0n is contained inm0∩h.

Proof. The algebram0 admits the decomposition

m0 =m⊕ (a∩m0)⊕
⊕

α∈Σ(g,a)∩a∗h

gα . (4.1)

Each appearing root spacegα equals[a∩m0,gα ]. Hence,m0n contains the subspace

s := (a∩m0)⊕
⊕

α∈Σ(g,a)∩a∗h

gα .

It follows thatm0n contains the subalgebras̃ of m0 generated bys. On the other hand,
sincem0 = m+ s andm normalizess, the algebrãs is an ideal ofm0n. We conclude
thatm0n equals the algebrãs generated bys.

Now a∩m0 ⊆ h and each of the root spaces in (4.1) is contained inh by Lemma
4.1. Therefore,s⊆ h and we conclude thatm0n = s̃⊆ h.

Let M0n be the connected subgroup ofM0 with Lie algebram0n.

Lemma 4.3.

(a) M0n is a closed normal subgroup of M0.

(b) M0 = MM0n≃M×M∩M0n M0n.

(c) The inclusion map M→M0 induces a group isomorphism M/M∩M0n≃M0/M0n.

(d) HM0 = HMM0n

(e) The inclusion map M→M0 induces a diffeomorphism M/HM ≃M0/HM0.

(f) The group M0n acts trivially on M0/M0n and on M0/HM0.
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Proof. The normality ofM0n follows sincem0n is an ideal ofm0. Sincem0 is reduc-
tive, there exists an idealm0c complementary tom0n. The groupM0n is equal to the
connected component ofZM0(m0c) and thereforeM0n is closed. This proves assertion
(a). Fromm0 =m+m0n and (a) it follows thatMM0n is an open subgroup ofM0. Since
M0 is of the Harish-Chandra class, andM = ZK∩M0(a∩m0), it follows that M inter-
sects every connected component ofM0. Hence,M0 = MM0n and (b) readily follows.
Assertion (c) follows from (b) and (a). We now turn to assertion (d). From Lemma 4.2
it follows thatM0n⊆ H. In view of (b) we now see that

HM0 = [MM0n]∩H = HMM0n,

Hence (d). From (c) and (d) we obtain a natural fiber bundleM/M ∩M0n→ M/HM

which corresponds to factorization by the groupF := HM/(M ∩M0n). Likewise, we
obtain a natural fiber bundleM0/M0n→ M0/HM0 which corresponds to factorization
by groupF0 := HM0/M0n. The isomorphism of (c) mapsF ontoF0, hence (e) follows.

SinceM0n is normal inM0, it acts trivially on the quotientM0/M0n. The second
assertion of (f) follows from this asM0n⊆ HM0.

Given a continuous FréchetM0-moduleV, we denote its space of smooth vectors
by V∞. This comes equipped with the structure of a continuous Fréchet M0-module in
the usual way. The continuous linear dual is denoted byV∞′.

Corollary 4.4. Let (ξ ,V) be an irreducible continuous representation of M0 in a
Fréchet space V such that

(V∞′)HM0 6= 0. (4.2)

Thenξ |M0n is trivial and ξ |M is irreducible. In particular,ξ is finite dimensional and
unitarizable.

Proof. Let η be a non-zero element of the space in (4.2). Then there is a unique injec-
tive continuous linearM0-equivariant mapj : V∞→C∞(M0/HM0) such thatj∗(δ[e]) =
η, with δ[e] denoting the Dirac measure ofM0/HM0 at [e] := eHM0. SinceM0n acts triv-
ially on M0/HM0 it follows thatM0n acts trivially onV∞ hence onV. We conclude that
ξ |M0n is trivial. By application of Lemma 4.3 it follows thatξ |M is irreducible.

The above result provides motivation for considering only finite dimensional uni-
tary representations ofM0. We note that any such representation restricts to the triv-
ial representation onM0n, since the latter group is connected semisimple of the non-
compact type. SinceM0/M0n is a compact group, it follows that

M̂0fu≃ (M0/M0n)
∧, (4.3)

whereM̂0fu denote the set of equivalence classes of finite dimensional irreducible uni-
tary representations ofM0.
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Lemma 4.5. The restriction mapξ 7→ ξM := ξ |M induces an injection

M̂0fu →֒ M̂. (4.4)

The image of this injection equals(M/M∩M0n)
∧.

Proof. It follows from Lemma 4.3 (c) that the restriction map induces an isomorphism

(M0/M0n)
∧ ≃ (M/M∩M0n)

∧.

The latter set may be viewed as the subset ofM̂ consisting of equivalence classes of
irreducible unitary representations that are trivial onM∩M0n. Now use (4.3).

From now on we will use the map (4.4) to vieŵM0fu as a subset of̂M.

Lemma 4.6. Let (ξ ,Hξ ) be a finite dimensional unitary representation of M0 (not
necessarily irreducible). Then

H
HM0

ξ = H
HM

ξ . (4.5)

Proof. The space on the left-hand side of the equation is clearly contained in the space
on the right-hand side. For the converse inclusion, letη ∈Hξ be anHM-fixed vector.
Thenη is fixed under the groupHMM0n, which equalsHM0 by Lemma 4.3 (d).

Let W(aq) denote the Weyl group of the root systemΣ(g,aq). ThenW(aq) ≃
NK(aq)/ZK(aq), naturally. We denote byWK∩H(aq) the image ofNK∩H(aq) in W(aq).
Let W(a)≃ NK(a)/ZK(a) denote the Weyl group of the root systemΣ(g,a). Then re-
striction toaq induces an epimorphism from the normalizer ofaq in W(a) ontoW(aq).
We may therefore select a finite subsetW ⊆NK(a)∩NK(aq) such thate∈W and such
that the mapv 7→ Ad(v)|aq induces a bijection

W
1−1
−→ W(aq)/WK∩H(aq). (4.6)

Let ξ be a finite dimensional unitary representation ofM0 (not necessarily irreducible).
Then following [5] we define

V(ξ ,v) := H
M0∩vHv−1

ξ = H
M∩vHv−1

ξ . (4.7)

Here we note that the second equality is valid by Lemma 4.6 applied with vHv−1 in
place ofH. We equip the space in (4.7) with the restriction of the inner product onHξ .
Finally we define the formal direct sum of Hilbert spaces

V(ξ ) :=⊕v∈W V(ξ ,v). (4.8)

For v∈W , let iv : V(ξ ,v)→V(ξ ) and prv : V(ξ )→V(ξ ,v) denote the natural inclu-
sion and projection map, respectively.
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Our goal will be to studyH-fixed distribution vectors in representations induced
from minimal parabolic subgroupsP∈P(A). For this it will be convenient to compare
these representations to representations induced from minimal σθ -stable parabolic
subgroups, by using the method of induction in stages.

Let P∈Pσ (A), see Definition 1.1, and letP0 ∈Pσ (Aq) be such thatP⊆ P0. Let
(ξ ,Hξ ) be a finite dimensional unitary representation ofM0 and letC∞(P0 : ξ : λ ) be
defined as in the first part of Section 3 forP0 in place ofP. We agree to writeξM := ξ |M.
Observe thatP∩M0 is a minimal parabolic subgroup ofM0 with split component
A∩M0. Moreover, since the set of roots ofa∩m0 in NP∩M0 equalsΣ(P)∩ a∗h, it
follows that

ρP∩M0 = ρPh.

Hence, there is a naturalM0-equivariant embedding

i : ξ →֒ IndM0
M0∩P(ξM⊗−ρPh⊗1),

see [5, Lemma 4.4]. Concretely, the mapi from Hξ into the spaceC∞(M0∩P : ξM :
−ρPh) of smooth vectors for the principal series representation on the right-hand side
is given by

i(v)(m0) = ξ (m0)v, (v∈Hξ , m0 ∈M0). (4.9)

Induction now gives aG-equivariant embedding

IndG
P0
(ξ ⊗λ ⊗1) →֒ IndG

P0

(
IndM0

M0∩P(ξM⊗−ρPh⊗1)⊗λ ⊗1)
)
.

According to the principle of induction in stages, see [22, §7.2], the latter repre-
sentation is naturally isomorphic with IndG

P(ξM ⊗ (λ − ρPh)⊗ 1). The resultingG-
equivariant embedding

i#λ : C∞(P0 : ξ : λ )→C∞(P : ξM : λ −ρPh) (4.10)

is given by(i#λ f )(x) = ev1◦ i ◦ f (x) for f ∈C∞(P0 : ξ : λ ) andx∈G. Here,

ev1 : C∞(M0∩P : ξM :−ρPh)→Hξ

is given by evaluation at the identity ofM0. Comparing this with (4.9) we see thati#λ is
the inclusion map.

By C∞(K : K ∩M0 : ξ ) we denote the space of smooth functionsK →Hξ trans-
forming according to the rule

f (mk) = ξ (m) f (k) (m∈ K∩M0, k∈ K).

Likewise, we writeC∞(K : M : ξM) for the space of smooth functionsK→Hξ trans-
forming according to the rulef (mk) = ξM(m) f (k), for all m∈ M andk ∈ K. Note
that restriction toK induces topological linear isomorphismsC∞(P0 : ξ : λ )→C∞(K :
K∩M0 : ξ ) andC∞(P : ξM : λ −ρPh)→C∞(K : M : ξM).
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In these compact pictures of the induced representations,i#λ becomes the inclusion
map

i# : C∞(K : K∩M0 : ξ ) →֒C∞(K : M : ξM). (4.11)

We now see that we have the following commutative diagram

C∞(P0 : ξ : λ )
i#λ−→ C∞(P : ξM : λ −ρPh)

↓ ↓

C∞(K : K∩M0 : ξ ) i#
−→ C∞(K : M : ξM).

(4.12)

The vertical arrows in this diagram represent the topological linear isomorphisms in-
duced by restriction toK; see [5] for details.

Lemma 4.7. The spaceC∞(K : K∩M0 : ξ ) coincides with the subspace of left K∩M0n-
invariants in C∞(K : M : ξM).

Proof. Let f ∈C∞(K : K∩M0 : ξ ). Sinceξ is finite dimensional, it follows thatξ |M0n

is trivial. Hence, fork∈ K andm0 ∈M0n we have that

f (m0k) = ξ (m0) f (k) = f (k).

This establishes one inclusion. For the converse, assume that f ∈C∞(K : M : ξM) is
left K ∩M0n-invariant. Letm0 ∈ K ∩M0. Then we may writem0 = mmn with m∈M
andmn ∈ K∩M0n. Let k∈ K. Then

f (m0k) = f (mmnk) = ξ (m) f (mnk) = ξ (m) f (k)

= ξ (m)ξ (mn) f (k) = ξ (m0) f (k).

For the third equality we used thatξ |M0n is trivial. We thus conclude thatf belongs to
C∞(K : K∩M0 : ξ ).

SinceM normalizesK ∩M0n, we see that forf ∈ C∞(K : M : ξM) the function
p( f ) : K→Hξ defined by

p( f )(k) =
∫

K∩M0n

f (m0k) dm0, (k∈ K),

belongs toC∞(K : M : ξM) again. The associated operator

p : C∞(K : M : ξM)→C∞(K : M : ξM) (4.13)

is continuous linear andK-equivariant. SinceK ∩M0 = M(K ∩M0n), the image ofp
is contained in the subspace of leftK ∩M0n-invariants. Furthermore,p is obviously
the identity on this subspace, so thatp is a projection operator with image equal to the
image im(i#) of i#, see (4.11). It is readily seen thatp is symmetric with respect to
the pre-Hilbert structure〈 · , · 〉 onC∞(K : M : ξM) obtained by restriction of the inner
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product fromL2(K)⊗Hξ . Accordingly,C∞(K : M : ξM) is the direct sum of im(i#)
and its orthocomplement with respect to the give pre-Hilbert structure, andp is the
associated orthogonal projection onto im(i#). Let

p# : C∞(K : M : ξM)→C∞(K : K∩M0 : ξ ) (4.14)

be the unique linear map such thatp = i#◦ p#. For later use, we note that the maps
introduced are related by

p= i# ◦ p#, p#
◦ i# = I . (4.15)

The mapp# is K-equivariant and continuous linear, andi# and p# are adjoint with
respect to the pre-Hilbert structures〈 · , · 〉.

Lemma 4.8. For all λ ∈ a∗qC, the following holds.

(a) The map i# given in(4.11)intertwines the representationsπP0,ξ ,λ andπP,ξM,λ−ρPh
.

(b) The map p# intertwines the representationsπP,ξM,λ+ρPh
andπP0,ξ ,λ .

Proof. Since the top horizontal map in (4.12) is intertwining, (a) follows. Using (a)
we see that for eachx∈G,

i#◦πP0,ξ ,λ (x) = πP,ξM,λ−ρPh
(x) ◦ i#.

Taking adjoints and using equivariance of the pairings〈 · , · 〉 involved, we infer that

πP0,ξ ,−λ̄ (x
−1) ◦ p# = p#

◦πP,ξM,−λ̄+ρPh
(x−1)

for all λ ∈ a∗qC andx∈G. From this, (b) follows.

For eachλ ∈ a∗qC we denote the unique lift of the map (4.14) to a mapC∞(P : ξM :
λ +ρPh)→C∞(P0 : ξ : λ ) by p#

λ . Then it follows from Lemma 4.8 that the following
diagram commutes:

C∞(P : ξM : λ +ρPh)
p#

λ−→ C∞(P0 : ξ : λ )
↓ ↓

C∞(K : M : ξM)
p#

−→ C∞(K : K∩M0 : ξ ).

(4.16)

Remark 4.9. In view of (4.15) it follows from Lemma 4.8 thatp defined in (4.13)
intertwines the representationsπP:ξM:λ+ρPh

andπP:ξM:λ−ρPh
of G in C∞(K : M : ξM).

Thus, it has a unique lift to an equivariant mapC∞(P : ξM : λ +ρPh)→C∞(P : ξM :
λ −ρPh). However, we shall never use this lift.
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Proposition 4.10. Let P0 ∈Pσ (Aq) and P∈P(A) be such that P⊆ P0. Letξ ∈ M̂0fu
andλ ∈ a∗q. Then the embedding(4.10)has a unique extension to a continuous linear
map

i#λ : C−∞(P0 : ξ : λ )→C−∞(P : ξM : λ −ρPh). (4.17)

This extension is G-equivariant and maps homeomorphicallyonto a closed subspace.
As a map from C−∞(K : K∩M0 : ξ ) to C−∞(K : M : ξM) the extended map is the unique
continuous extension of (4.11). In particular, it is independent ofλ .

Proof. Let the map

i# : C−∞(K : K∩M0 : ξ )→C−∞(K : M : ξM)

be defined as the transposed ofp#. Then i# is a continuous linear extension of the
bottom horizontal map of (4.12). This continuous extensionis unique by density of
C∞(K : K ∩M0 : ξ ) in C−∞(K : K ∩M0 : ξ ). Likewise, the adjointi#T of the bottom
horizontal map in (4.12) is the continuous linear extensionof the projection mapp#

which we denote by

p# : C−∞(K : M : ξM)→C−∞(K : M0∩K : ξ )

as well. Finally, the transposepT is the unique continuous linear extension ofp to a
continuous linear map, denoted

p : C−∞(K : M : ξM)→C−∞(K : M : ξM).

By transposition we see that the relations (4.15) remain valid for the extensions of
these maps to the spaces of generalized functions involved.In particular, it follows
that the extended mapi# is a homeomorphism onto the kernel of the extended map
p− I . In particular, it has closed image.

By transfer under the vertical isomorphisms in the diagram (4.12) we see thati#λ
has a unique continuous linear extension (4.17) with closedimage. The extension is
G-equivariant because it is so on the dense subspace of smoothfunctions.

Remark 4.11. By a similar argument it follows that the mapp#
λ represented by the

top horizontal arrow in (4.16) has a unique continuous linear extension to a surjective
equivariant mapp#

λ : C−∞(P : ξM : λ +ρPh)→C−∞(P0 : ξ : λ ). However, we shall not
need this in the present paper.

5 H-fixed distribution vectors, the q-extreme case

We retain the notation of the previous section. In particular, we assume thatP∈Pσ (A)
and thatP0 ∈Pσ (Aq) containsP. We will now constructH-fixed distribution vectors
in P-induced representations, by comparison with theH-distribution vectors inP0-
representations as defined in [5].
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We assume thatξ is a finite dimensional unitary representation ofM0 and put
ξM = ξ |M. Furthermore, we assume thatη ∈V(ξ ,e), see (4.7).

Following [5, (5.4)] we define the functionε1(P0 : ξ : λ : η) for λ ∈ a∗qC by
{

ε1(P0 : ξ : λ : η) = 0 outside P0H
ε1(P0 : ξ : λ : η)(namh) = aλ+ρP0ξ (m)η,

for m∈M0,a∈ A0,n∈ N0 andh∈ H. Clearly, for everyλ ∈ a∗qC the functionε1(P0 :
ξ : λ : η) is continuous outside the set∂ (P0H) which has measure zero inG. By right-
P-equivariance, the restriction of this function toK is continuous outside∂ (K∩P0H),
which has measure zero inK.

Let Σ(P0,aq)− denote the space ofaq-roots innP0 such that ker(θσ + I)∩gα 6= 0.
In caseξ is irreducible, it follows from [5, Prop. 5.6] that the function ε1(P0 : ξ : λ : η)
is continuous onG for all λ ∈ a∗qC with 〈Reλ +ρP0 , α〉< 0 for all α ∈ Σ(P0,aq)−. By
decomposition into irreducibles one readily sees that thisresult is also valid for an
arbitrary finite dimensional unitary representation ofM0.

Lemma 5.1. Let ξ be a finite dimensional unitary representation of M0 and assume
that λ ∈ a∗qC satisfies

∀α ∈ Σ(P0,aq)− : 〈Reλ +ρP0 , α〉 ≤ 0. (5.1)

Then the functionε1(P0 : ξ : λ : η) is measurable and locally bounded on G, and its
restriction to K is measurable and bounded on K, uniformly for λ in the indicated
subset ofa∗qC. Finally, ε1(P0 : ξ : λ : η)|K depends continuously onλ as a function
with values in L1(K)⊗Hξ .

Proof. We may as well assume thatξ is irreducible. The assertions about measur-
ability have been settled above. For the assertions about boundedness, it suffices to
consider the restriction of the function toK. From the argument in the proof of [5,
Prop. 5.6], which in turn relies on the convexity theorem of [4], it follows that for all
λ in the indicated region we have

sup
K
‖ε1(P0 : ξ : λ : η)‖ξ ≤ ‖η‖ξ .

We obtain the final assertion by observing thatε1(P0 : ξ : λ : η) depends pointwise
continuously onλ and applying Lebesgue’s dominated convergence theorem.

Proposition 5.2. Let P∈Pσ (A) and P0 ∈Pσ (Aq) be such that P⊆ P0. Let ξ be a
finite dimensional unitary representation of M0 andη ∈V(ξ ,e). Let λ ∈ a∗qC be such
that

∀α ∈ Σ(P)− : 〈Reλ +ρP0 , α〉 ≤ 0.

Finally, let f ∈C∞(P : ξM : −λ̄ +ρPh). Then the densitȳfη,ω , defined in Lemma 3.1,
is integrable. Moreover,

∫

HP\H
f̄η,ω = cω〈i

#
λ
(
ε1(P0 : ξ : λ : η)

)
, f 〉, (5.2)

with cω > 0 a constant depending on the normalization of the positive densityω.
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Proof. By the assumption onλ , the functionε = i#λ
(
ε1(P0 : ξ : λ : η)

)
is locally in-

tegrable onK. It follows that the expression on the right-hand side of (5.2) equals the
integral ∫

K
〈ε(k) , f (k)〉ξ dk,

wheredk denotes normalized Haar measure onK. The integrand is leftM-invariant,
so that the integral may also be written as the integral overk∈M\K, with dk replaced
with the normalized invariant densitydk̄ on M\K. This density may be viewed as the
section of the density bundle overM\K given by

k 7→ drk([e])
−1∗ωM\K

with ωM\K a suitable positive density onk/m≃ T[e](M\K). We now obtain that

〈ε , f 〉=
∫

M\K
〈ε(k) , f (k)〉ξ drk([e])

−1∗ωM\K . (5.3)

Let φ : M\K → P\G be the diffeomorphism induced by the inclusionK → G. Then
we find that the pull-back underφ of the density in the integral in the right-hand side
of (5.3) equals

x 7→ 〈ε(x) , f (x)〉 drx([e])
−1∗dφ([e])−1∗ωM\K .

SinceP0H = PH, it follows that that the above density is supported byPH. Writing
ωP\G = dφ([e])−1∗ωM\K , we obtain that the integral in (5.3) equals

∫

P·H
〈ε(x) , f (x)〉drx([e])

−1∗ωP\G. (5.4)

Let ψ : HP\H→P\G be the natural open embedding induced by the inclusion map
H→ G. Then|dψ([e])∗ωP\G|= c−1

ω ωP\G for a positive constantcω . We now observe
that

ψ∗
(

Px 7→ 〈ε(x) , f (x)〉ξ drx([e])
−1∗ωP\G

)

= c−1
ω ·

(
HPh 7→ 〈ε(h) , f (h)〉ξ drh([e])

−1∗ω
)

= c−1
ω f̄η,ω .

By invariance of integration of densities under diffeomorphisms, we see that (5.4)
equals

c−1
ω

∫

HP\H
f̄η,ω .
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For λ ∈ a∗qC such that the conditions of the above theorem are fulfilled, and for
η ∈ V(ξ ,e), we define the conjugate-linear functionaljH(P : ξM : λ : η) on C∞(P :
ξM :−λ̄ +ρPh) by

〈 jH(P : ξM : λ : η) , f 〉= c−1
ω

∫

HP\H
f̄η,ω , (5.5)

for f ∈C∞(P : ξM :−λ̄ +ρPh).
We now recall the definition of theH-fixed distribution vectorj(P0,ξ ,λ ) from [5,

Section 5]. Forλ ∈ a∗qC such that

∀α ∈ Σ(P)− : 〈Reλ +ρP0 , α〉 ≤ 0

and forv∈W andη ∈V(ξ ,v) we defineεv(P0 : ξ : λ : η) : G→Hξ by
{

εv(P0 : ξ : λ : η) = 0 outside P0vH
εv(P0 : ξ : λ : η)(namvh) = aλ+ρP0ξ (m)η.

We further define

j(P0 : ξ : λ )(η) = ∑
v∈W

εv(P0 : ξ : λ : ηv),
(
η ∈V(ξ )

)
.

Then j(P0 : ξ : λ ) is a mapV(ξ )→ C−∞(P0 : ξ : λ )H , hence defines an element in
V(ξ )∗⊗C−∞(K : K ∩M0 : ξ ). The mapλ 7→ j(P0 : ξ : λ ) extends to a meromorphic
V(ξ )∗⊗C−∞(K : K ∩M0 : ξ )-valued function ona∗qC. See [5, Section 5] for details.
(Strictly speaking the definition in [5] is given forξ irreducible, but the definition
works equally well in general.)

Proposition 5.2 now has the following corollary.

Corollary 5.3. Let ξ be a finite dimensional unitary representation of M0. The map
λ 7→ jH(P : ξM : λ ) extends to a meromorphic V(ξ ,e)∗⊗C−∞(K : M : ξM)-valued
function. Moreover,

jH(P : ξM : λ ) = i# ◦ j(P0 : ξ : λ ) ◦ ie
as an identity of meromorphic V(ξ ,e)∗⊗C−∞(K : M : ξM)-valued functions. In par-
ticular,

jH(P : ξM : λ ) ∈V(ξ ,e)∗⊗C−∞(P : ξM : λ −ρPh)
H

for genericλ ∈ a∗qC.

Remark 5.4. In the above formulation we have used the notationi# rather thani#λ ,
to emphasize thatj(P0 : ξ : λ ) ◦ ie is viewed as aλ -dependent element of the space
V(ξ ,e)∗⊗C−∞(K : M : ξM).

Let v∈W . Motivated by the definition ofj(P0 : ξ : λ ) and the above identity, we
define the meromorphic Hom

(
V(ξ ),C−∞(K : M : ξM)

)
-valued mapj(P : ξM : ·) by

j(P : ξM : λ ) = ∑
v∈W

πP,ξM,λ−ρPh
(v−1) jvHv−1(P : ξM : λ ) ◦prv.
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Corollary 5.5. Let ξ be a finite dimensional unitary representation of M0. Then

j(P : ξM : λ ) = i# ◦ j(P0 : ξ : λ ) (5.6)

as an identity of meromorphic V(ξ )∗⊗C−∞(K : M : ξM)-valued functions ofλ ∈ a∗qC.
In particular, for η ∈V(ξ ) and genericλ ∈ a∗qC,

j(P : ξM : λ )(η) ∈C−∞(P : ξM : λ −ρPh)
H .

We recall that the mapp in the result below is exclusively used in the compact
picture of the induced representations, see Remark 4.9.

Corollary 5.6. Let ξ ∈ M̂0fu andη ∈V(ξ ). Then for every x∈G,

p◦πP,ξM,λ−ρPh
(x) j(P : ξM : λ )(η) = πP,ξM,λ−ρPh

(x) j(P : ξM : λ )(η)

as an identity of meromorphic C−∞(K : M : ξM)-valued functions ofλ ∈ a∗qC.

Proof. Use (5.6) and note thatπP,ξM,λ−ρPh
(x) ◦ i# = i#◦πP0,ξ ,λ (x) and p◦ i# = i#, see

(4.15).

6 An important fibration

In this section we will apply Fubini’s theorem, as formulated in the appendix, Theorem
A.8, to an important fibration. The main result will be neededfor the definition of dis-
tribution vectors for induced representations withP∈P(A) not necessarily contained
in a parabolic subgroup fromPσ (Aq).

We assume thatP,Q∈P(A) and thatP�Q. There existsX ∈ aq such that

(a) α(X) 6= 0 for all α ∈ Σ(P)\a∗h;

(b) α(X)> 0 for all α ∈ Σ(P,σθ).

SinceΣ(Q,σθ)⊆ Σ(P,σθ), it follows that (a) and (b) are also valid withQ in place of
P. We now put

nQ,X :=
⊕

α∈Σ(Q)
α(X)>0

gα , and NQ,X := exp(nQ,X).

Lemma 6.1. The multiplication map(n1,n2) 7→ n1n2 is a diffeomorphism

HNQ×NQ,X
≃
−→ NQ.

This result is contained and proven in [3, Prop. 2.16].
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Lemma 6.2. Let Q,P∈P(A) be such that P� Q. Let X∈ aq be such that (a) and
(b) are valid. Then

NQ,X ⊆ NP,X.

Proof. Let α ∈ Σ(Q) be such thatα(X) > 0. Then it suffices to show thatα ∈ Σ(P).
Assume this were not the case. Then either−α ∈ Σ(P,σ), or −α ∈ Σ(P,σθ). In
the first case it would follow that−α ∈ Σ(Q,σ), which contradicts the assumption
that α ∈ Σ(Q). In the second it would follow that−α(X) > 0 which contradicts the
assumption thatα(X)> 0.

Lemma 6.3. The inclusion map HNQ→ NQ induces a diffeomorphism

ϕ : HNP\HNQ

≃
−→ (NQ∩NP)\NQ.

Proof. It follows from Lemma 6.1 that the natural mapHNQ → NQ,X\NQ is a diffeo-
morphism onto. By application of Lemma 6.2 it now follows that the natural map

p : HNQ→ (NQ∩NP)\NQ

is a surjective submersion. The mapp intertwines the naturalHNQ-actions, and the
fiber of [e] equalsHNQ∩NP = HNP. Thus,ϕ is induced byp and is a diffeomorphism
onto.

Lemma 6.4. The inclusion map NQ∩ N̄P→ NQ induces a diffeomorphism

ψ : NQ∩ N̄P
≃
−→ (NQ∩NP)\NQ.

Proof. This is well known.

Lemma 6.5. Letφ andψ be as in Lemma 6.4 and Lemma 6.3. The mapΦ := ϕ−1 ◦ψ
is a diffeomorphism from NQ∩ N̄P onto HNP\HNQ. Moreover, letω be a positive HNQ-
invariant density on the image manifold. ThenΦ∗(ω) is a choice of Haar measure on
NQ∩ N̄P.

Proof. Being the composition of two diffeomorphisms,Φ is a diffeomorphism. We
note thatΦ∗(ω) = ψ∗ϕ−1∗(ω). Let dn be a choice of positiveNQ-invariant density
on (NQ∩NP)\NQ. Sinceϕ is HNQ intertwining, it follows thatϕ∗(dn) is a positive
HNQ-invariant density onHNP\HNQ. By uniqueness of positive invariant densities up to
positive scalars, it follows thatϕ∗(dn) = cω for somec> 0, so that alsoϕ−1∗(ω) =
c−1dn.By equivariance, it follows thatψ∗(dn) is a choice of Haar measure onNQ∩N̄P.
Thus,Φ∗(ω) = c−1ψ∗(dn) is as required.

In view of this lemma we may fix invariant measuresdn̄ on NQ∩ N̄P anddh on
HNP\HNQ such thatΦ∗(dh) = dn̄.

Lemma 6.6. Let f : G→ C be a left NP-invariant measurable function. Then the
following statements are equivalent.
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(a) f is absolutely integrable over HNP\HNQ.

(b) f is absolutely integrable over NQ∩ N̄P.

If any of these statements hold, then with invariant measures normalized as above,
∫

HNP\HNQ

f (h)dh=
∫

NQ∩N̄P

f (n̄)dn̄.

Proof. As Φ∗(dh) = dn̄ it suffices to show thatΦ∗( f |HNQ
) = f |NQ∩N̄P

. Since f is left

NP-invariant, this follows from the obvious fact that for ¯n ∈ NQ∩ N̄P the canonical
images of ¯n andΦ(n̄) in NP\G coincide.

Fix P,Q∈P(A) and assume thatP�Q. ThenHQ = H ∩Q containsHP = H ∩P.
We note thatHP≃ HMAhHNP and thatHQ admits a similar decomposition.

We shall now apply the results in the Appendix withH,HQ andHP in place ofG,H
andL, respectively.

Let ωHP\H ∈ Dh/hP
, ωHQ\H ∈ Dh/hQ

andωHP\HQ
∈ DhQ/hP

be such thatωHP\H =
ωHP\HQ

⊗ωHQ\H in accordance with the identificationDh/hP
= DhQ/hP

⊗Dh/hQ
in-

duced by the natural short exact sequence

0−→ hQ/hP−→ h/hP−→ h/hQ−→ 0.

See (A.2) and Lemma A.2 for details. We observe that

HP\HQ≃ HNP\HNQ

naturally. Using the associated natural isomorphism of thetangent spaces at the ori-
gins, we viewωHP\HQ

as a density on the quotient(h∩nQ)/(h∩nP). By unimodularity
of the groupsHNQ andHNP, it follows that

dn : n 7→ drn([e])
−1∗ωHP\HQ

defines a choice of rightHNQ-invariant density onHNP\HNQ. We define the character
∆HP\H of HP as in Appendix, Equation (A.9) withH andHP in place ofG andL, re-
spectively. Likewise, the spaceM (H : HP : ∆HP\H) is defined as in the text subsequent
to (A.9).

Theorem 6.7. Let f ∈M (H : HP : ∆HP\H) and let fP := fωHP\H
be the associated

measurable density on HP\H. Then the following assertions (a) and (b) are equivalent.

(a) The density fP is absolutely integrable.

(b) There exists a left HQ-invariant setZ of measure zero in H such that

(1) for every x∈ H \Z , the integral

Ax( f ) :=
∫

HNP\HNQ

f (nx)dn

is absolutely convergent;
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(2) the function A( f ) : x 7→ Ax( f ) belongs toM (H : HQ : ∆HQ\H).

(3) the density A( f )Q := A( f )ωHQ\H
is absolutely integrable.

If any of the conditions (a) and (b) is fulfilled, then
∫

HP\H
fP =

∫

HQ\H
A( f )Q.

Proof. We will use the notation introduced in the text before the theorem. The inclu-
sion mapHNQ→ HQ induces a diffeomorphism

φ : HNP\HNQ→ HP\HQ.

Fix x∈ H and let fP,x be the density onHP\HQ given by

fP,x(HPh) = ∆HQ\H(h)
−1 f (hx)drh([e])

−1∗ωHP\HQ
.

By nilpotence,∆HQ\H(n) = 1 for n∈ HNQ. It follows that

φ∗( fP,x)(HNP ·n) = f (n)drn([e])
−1∗ωHP\HQ

= f (n)dn.

In accordance with the notation of Theorem A.8 we denote the integral of fP,x over
HP\HQ by Ix( f ). Then it follows by invariance of integration that the integral for Ix( f )
converges absolutely if and only if the integralAx( f ) converges absolutely, while in
case of convergence,

Ix( f ) =
∫

HNP\HNQ

φ∗( fP,e) = Ax( f ).

All assertions now follow by application of Theorem A.8.

7 H-fixed distribution vectors, the general case

Recall the definition ofΣ(P)− in (1.3).

Theorem 7.1. Let P∈Pσ (A), let ξ be a finite dimensional unitary representation of
M0 andη ∈V(ξ ,e). Assume thatλ ∈ a∗qC satisfies

〈Reλ +ρP−ρPh , α〉 ≤ 0, for all α ∈ Σ(P)−. (7.1)

Furthermore, let f∈C∞(P : ξM :−λ̄ +ρPh). Then

jH(P : ξM : λ : η) f =
∫

HP\H
〈η , f (h)〉 drh([e])

−1∗ωHP\H ,

with absolutely convergent integral.
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Let Q∈P(A) be a second parabolic subgroup, with P�Q. Then for all x∈G,

A(Q : P : ξM :−λ̄ +ρPh) f (x) =
∫

NQ∩N̄P

f (nx) dn

with absolutely convergent integral. Finally,

jH(P : ξM : λ : η) f

=

∫

HQ\H
〈η , [A(Q : P :−λ̄ +ρPh) f ](h)〉 drh([e])

−1∗ωHQ\H , (7.2)

with absolutely convergent integral.

Proof. Observe that the functionf restricted toHP\H belongs toC∞(H : HP : ∆HP\H).
The first assertion now follows from Proposition 5.2 and Equation (5.5).

We will now apply Theorem 6.7. Forx∈ H the fiber integral takes the form

Ax( f |H) =
∫

HNP\HNQ

f (nx) dn,

which by Lemma 6.6 equals ∫

NQ∩N̄P

f (n̄x) dn̄.

The latter is just the integral for the standard intertwining operatorA(Q : P : ξM :−λ̄ +
ρPh) (up to suitable normalization). This integral is known to converge absolutely in
case

Re〈−λ +ρPh , α〉> 0, ∀α ∈ Σ(P)∩Σ(Q̄). (7.3)

If α ∈ Σ(P)∩Σ(Q̄), thenα ∈ Σ(P)\Σ(Q) so thatα /∈ a∗q andα /∈ Σ(P,σ) from which
we conclude thatλ ∈ Σ(P,σθ)\a∗q⊆ Σ(P)−. It then follows from (7.1) that

Re〈−λ +ρPh , α〉> Re〈−λ +ρPh−ρP , α〉 ≥ 0

and we see that (7.3) is satisfied. This implies the second assertion. The final assertion
now follows by application of Theorem 6.7.

In the following we will need to use theK-fixed function in the induced represen-
tation IndG

Q(1⊗µ⊗1), for Q∈P(A) andµ ∈ a∗C. More precisely, given suchQ and
µ we define the function1Q,µ : G→C by

1Q,µ(nak) := aµ+ρQ, (k∈ K, a∈ A, n∈ NQ).

Thus,1Q,µ is the unique function inC∞(Q : 1 : µ) satisfying1Q,µ |K = 1.

Corollary 7.2. Let Q∈P(A), P∈Pσ (A) and assume that P�Q. Then

h 7→ 1Q,ρP(h) drh([e])
−1∗ωHQ\H (7.4)

defines a density on HQ\H which is absolutely integrable.
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Proof. We apply Theorem 7.1 withξ = 1, Hξ = C andη = 1. Furthermore, we take
λ = −ρP+ρPh ∈ a∗q so that−λ̄ +ρPh = ρP, and we takef = 1P,ρP. It follows from
the mentioned theorem that the integral forA(Q : P : 1 : ρP) f converges absolutely. By
equivariance, it gives aK-fixed element ofC∞(Q : 1 : ρP), so that

A(Q : P : 1 : ρP) f = A(Q : P : 1 : ρP)1P,ρP = c(Q : P : ρP)1Q,ρP,

for some constantc(Q : P : ρP) ∈ C. Evaluating this identity in the unit element we
find

c(Q : P : ρP) =
∫

NQ∩N̄P

1P,ρP(n̄) dn̄,

which of course is the integral representation of a partialc-function. As the integrand
is everywhere positive, it follows thatc(Q : P : ρP) is a positive real number. It now
follows from the final assertion of Theorem 7.1 that

h 7→ c(Q : P : ρP) ·1Q,ρP(h) drh([e])
−1∗ωHQ\H

defines a density onHQ\H which is absolutely integrable. By positivity ofc(Q : P : ρP)
all assertions now follow.

Let Γ(Q) denote the cone inaq spanned by the elementsHα +σθHα , for α ∈
Σ(Q)−, where the latter set is defined as in (1.3). The (closed) dual cone ina∗q is
readily seen to be given by

Γ(Q)◦ := {λ ∈ a∗q | 〈λ , α〉 ≥ 0, ∀α ∈ Σ(Q)−}. (7.5)

Lemma 7.3. Let Q∈P(A). Let µ ∈ Γ(Q)◦. Then

0< 1Q,µ−ρQ(h)≤ 1, (h∈ H). (7.6)

Proof. It follows from [3, Thm 10.1] that ifh = nak with n ∈ NQ, a∈ A andk ∈ K,
then

prq loga∈ −Γ(Q),

where prq denotes the projectiona→ aq. Therefore

1Q,µ−ρQ(h) = aµ = eµ(prq loga) ≤ 1.

This establishes the upper bound. The lower bound is trivial.

The above result will play a crucial role in the proof of a domination expressed in
the following lemma.

Lemma 7.4. Let Q∈P(A) and let ξ be a finite dimensional unitary representa-
tion of M0. Let P∈Pσ (A) and assume that P� Q; thus, in particular,ρPh = ρQh.
Furthermore, assume thatλ ∈ a∗qC satisfies

Re〈λ +ρP−ρPh , α〉 ≤ 0 for all α ∈ Σ(Q)−. (7.7)
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Then for every f∈C∞(Q : ξM :−λ̄ +ρQh), we have

‖ f (h)‖ξ ≤ sup
k∈K
‖ f (k)‖ξ ·1Q,ρP(h), (h∈ H). (7.8)

Proof. SinceP�Q, we haveρPh = ρQh. Thus, ifk∈ K andu∈Q then

f (uk) = 1Q,−λ̄+ρPh
(uk) f (k).

It follows that

‖ f (x)‖ξ ≤ sup
k∈K
‖ f (k)‖ξ ·1Q,µ+ρP(x), (x∈G), (7.9)

whereµ =−Reλ −ρP+ρPh. Forx∈G we have

1Q,µ+ρP(x) = 1Q,µ−ρQ(x)1Q,ρP(x).

As µ ∈ Γ(Q)◦ by (7.7), it follows by application of Lemma 7.3 that

1Q,µ+ρP(h)≤ 1Q,ρP(h), (h∈ H). (7.10)

The required estimate (7.8) follows from combining (7.9) and (7.10).

For the formulation of the next result, we note that the set ofλ ∈ a∗qC satisfying
condition (7.7) is given by

ΩP,Q :=−(ρP−ρPh)−Γ(Q)◦+ ia∗qC. (7.11)

Corollary 7.5. Let Q∈P(A), ξ a finite dimensional unitary representation of M0 and
η ∈ V(ξ ,e). Let P∈Pσ (A) and assume that P� Q; thus, in particular,ρPh = ρQh.
Let λ ∈ΩP,Q. Then for every f∈C(Q : ξM :−λ̄ +ρQh), the integral

jH(Q : ξM : λ : η) f :=
∫

HQ\H
〈η , f (h)〉 drh([e])

−1∗ωHQ\H (7.12)

converges absolutely.

Proof. It follows by application of Lemma 7.4 that

|〈η , f (h)〉| ≤ ‖η‖ξ sup
k∈K
‖ f (k)‖ξ ·1Q,ρP(h), (h∈ H). (7.13)

The result now follows from Corollary 7.2.

Working in the setting of the above corollary, iff ∈C(K : M : ξM), then forµ ∈ a∗C
we definefµ ∈C(Q : ξM : µ) by fµ |K = f . Furthermore, we define

jH(Q : ξM : λ : η)( f ) := jH(Q : ξM : λ : η)( f−λ̄+ρQh
)
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for λ ∈ΩP,Q. Accordingly, jH(Q : ξM : λ : η) is viewed as an element ofC−0(K : M :
ξM), see the beginning of Section 3. Givenf ∈C(K : M : ξM), we agree to write

〈 jH(Q : ξM : λ : η) , f 〉= jH(Q : ξM : λ : η)( f )

and〈 f , jH(Q : ξM : λ : η)〉 for its conjugate. Then

〈 f , jH(Q : ξM : λ̄ : η)〉=
∫

HQ\H
〈 f−λ+ρQh

(h) , η〉 drh([e])
−1∗ωHQ\H .

Corollary 7.6. Let notation be as in Corollary 7.5. Then

λ 7→ jH(Q : ξM : λ : η) (7.14)

is a continuous C−0(K : M : ξM)-valued function on the closed subsetΩP,Q of a∗qC. Its
restriction to the interior ofΩP,Q is holomorphic as a C−0(K : M : ξM)-valued function.

Proof. It is clear thatλ 7→ f−λ̄+ρPh
|H is a holomorphicC(H)⊗Hξ -valued function

ona∗qC satisfying the uniform estimate

|〈η , f−λ̄+ρPh
〉 ≤ ‖η‖ξ sup

k∈K
‖ f (k)‖ξ ·1Q,ρP(h), (h∈ H),

for all λ ∈ ΩP,Q, by application of (7.13). In view of Corollary 7.2 the resultnow
follows by application of the dominated convergence theorem.

The following lemma will be useful for later use. IfQ ∈P(A), we have that
Σ(Q,σθ)|aq ⊆ Σ(aq). In accordance with (2.3) we define

a∗+q (Q) := {λ ∈ a∗q | 〈λ , α〉> 0, ∀α ∈ Σ(Q,σθ)}.

This set is a non-empty open subset ofa∗q, see the text below (2.3).

Lemma 7.7. Let Q∈P(A) and P∈Pσ (A,Q). Then

ΩP,Q⊃−(ρP−ρPh)−a∗+q (Q)+ ia∗q.

Proof. In view of (7.11) it suffices to show thatΓ(Q)◦ ⊃ a∗+q (Q). This is a straightfor-
ward consequence of the fact thatΣ(Q)− ⊆ Σ(Q,σθ), by (1.3) and (2.1).

Theorem 7.8. Let Q∈P(A), P∈Pσ (A) such that P� Q. Let ξ be a finite dimen-
sional unitary representation of M0 andη ∈V(ξ ,e). Then the C−∞(K : M : ξM)-valued
function

λ 7→ jH(Q : ξM : λ : η), (7.15)

defined by (7.12), extends to a meromorphic function ona∗qC with values in C−∞(K :
M : ξM). Furthermore, up to a positive factor, depending on the normalization of the
Haar measure on NP∩ N̄Q,

jH(P : ξM : λ : η) = A(P : Q : ξM : λ −ρQh) jH(Q : ξM : λ : η) (7.16)

as an identity of C−∞(K : M : ξM)-valued meromorphic functions inλ ∈ a∗qC. Finally,
the function (7.15) is continuous on the setΩP,Q defined in (7.11) and holomorphic on
its interior.
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Remark 7.9. In particular, ifΣ(Q)− = /0, it follows thatΓ(Q)◦ = a∗q so that jH(Q :
ξM : ·) is holomorphic everywhere.

Proof. Without loss of generality, we may assume thatξ is irreducible. Then it follows
from (7.2) combined with (7.12) that

〈 jH(P : ξM : λ : η) , f 〉= 〈 jH(Q : ξM : λ : η) , A(Q : P : ξM : −λ̄ +ρPh) f 〉 (7.17)

for all λ ∈ΩP,P and f ∈C∞(P : ξM :−λ̄ +ρPh).
The standard intertwining operatorA(Q : P : ξM : ν) from the induced represen-

tation IndG
P(ξM ⊗ ν ⊗ 1) to the representation IndG

Q(ξM ⊗ ν ⊗ 1) may be viewed as
a meromorphic function ofν ∈ a∗C, with values in the space End(C∞(K : M : ξM))
(equipped with the strong topology), see [25, Thm. 1.5] and [13, Thm. 1.5]. Its sin-
gular locus is contained in a locally finite union of hyperplanes of the formµ +kerα,
with µ ∈ a∗ andα ∈ Σ(P)∩Σ(Q̄), see [13, Rem. 1.6]. SinceΣ(P)∩Σ(Q̄)∩ a∗h = /0
in view of Lemma 2.2 (b), none of these singular hyperplanes containa∗qC, so that
A(Q : P : ξM : ·) restricts to a meromorphic function ona∗qC.

The operatorA(P : Q : ξM : ν) has a similar meromorphic behavior, and since the
induced representation IndG

Q(ξM⊗ν ⊗1) is irreducible for genericν ∈ a∗qC it follows
that

A(Q : P : ξM : ν) ◦A(P : Q : ξM : ν) = η(P : Q : ξM : ν) I (7.18)

as an identity of End(C∞(K : M : ξM))-valued functions ofν ∈ a∗C. Hereη = η(P : Q :
ξM : ·) is a meromorphicC-valued function ona∗C. By the usual product decomposition
of intertwining operators it follows thatη admits a decomposition of the form

η(ν) = ∏
α∈Σ(P)∩Σ(Q̄)

ηα(〈ν , α〉),

where theηα are meromorphic functions onC. We now fixg∈C∞(K : M : ξM). By
substitutingf = A(P : Q : ξM :−λ̄ +ρQh)g in (7.17) we infer that

〈 jH(P : ξM : λ : η) , A(P : Q : ξM : −λ̄ +ρQh)g〉=

= 〈 jH(Q : ξM : λ : η) , η(−λ̄ +ρQh)g〉.

By using thatA(Q : P : ξM : λ − ρQh) is the Hermitian conjugate ofA(P : Q : ξM :
−λ̄ +ρQh), see [23, Prop. 7.1 (iv)], and thatρQh = ρPh, it follows that

jH(Q : ξM : λ : η) = η(−λ̄ +ρPh)
−1

A(Q : P : ξM : λ−ρQh) jH(P : ξM : λ : η), (7.19)

for genericλ ∈ΩP,P.
Let Ω⊆ a∗q be a relatively compact open subset. Then there exists a constants∈N

such thatλ 7→ jH(P : ξM : λ : η) is meromorphic onΩ+ ia∗q, with values in the Banach
spaceC−s(K : M : ξM), see Section 3 and [6, Thm. 9.1] for details. Furthermore, there
exists a constantr ∈ N such thatA(Q : P : ξM : λ −ρPh) depends meromorphically on

33



λ ∈ Ω+ ia∗q, as a function with values in the Banach space of bounded linear maps
fromC−s(K : M : ξM) toC−s−r(K : M : ξM). Combining these observations with (7.19)
we see thatλ 7→ jH(Q : ξM : λ : η) is a meromorphic function ona∗qC with values in
C−∞(K : M : ξM), equipped with the strong dual topology. Its continuity onΩP,Q and
holomorphy on the interior of this set follows from Corollary 7.6. By meromorphic
continuation it now follows that (7.17) is valid as an identity of meromorphic functions.
SinceA(P : Q : ξM : λ −ρQh) is the Hermitian conjugate of the intertwining operator
appearing in that identity, whereas the identity holds for all f ∈ C∞(K : M : ξM), it
follows that (7.16) is valid as an identity of meromorphicC−∞(K : M : ξM)-valued
functions ofλ ∈ a∗qC.

Let Q∈P be fixed for the moment. Then the function (7.15) is independent of the
choice ofP�Q, whereas the description of the domain of holomorphy dependson it.
This motivates the definition of the following closed subsetof a∗qC,

ΩQ :=
⋃

P∈Pσ (A,Q)

ΩP,Q, (7.20)

where the union is taken over the finite non-empty setPσ (A,Q) of parabolic groups
P∈Pσ (A) with P�Q, see Lemma 2.6. The function (7.15) is continuous onΩQ and
holomorphic on the interior of this set. We can actually improve on this result.

In fact, let Γ(Q)◦ be as in (7.5). We denote byB : aq→ a∗q the linear isomor-
phism induced by the inner product onaq. Then forα ∈ Σ(aq) we haveB(Hα) = α∨.
Therefore,B(Γ(Q)) is the cone spanned by theaq-roots from prq(Σ(Q)−).

Let Ω̂Q denote the hull ina∗qC of the setΩQ with respect to the functions Re〈 · , α〉
with α ∈ Σ(aq)∩B(Γ(Q)), i.e.,

Ω̂Q := {λ ∈ a∗qC | Re〈λ , α〉 ≤ sup Re〈ΩQ , α〉, ∀α ∈ Σ(aq)∩B(Γ(Q))}. (7.21)

Since the roots fromΣ(aq)∩B(Γ(Q)) satisfy〈α , · 〉 ≤ 0 on−Γ(Q)◦ it follows that we
can describe the given hull by means of inequalities as follows:

Ω̂Q = {λ ∈ a∗qC | Re〈λ , α〉 ≤ max
P∈Pσ (A,Q)

〈−ρP , α〉, ∀α ∈ Σ(aq)∩B(Γ(Q))}. (7.22)

Corollary 7.10. Let Q∈P(A), ξ ∈ M̂0fu andη ∈V(ξ ,e). Then the C−∞(K : M : ξM)-
valued functionλ 7→ jH(Q : ξM : λ : η) is holomorphic on an open neighborhood of
Ω̂Q.

Proof. From (7.19) we infer that the singular locus ofλ 7→ jH(Q : ξM : λ : η) is the
union of a locally finite collectionH of hyperplanes of the form Hα,µ = µ +(α⊥)C
with α ∈ Σ(aq) andµ ∈ a∗q. Indeed, the singular loci of the meromorphic ingredients
on the right-hand side of that formula are all of this form, by[11, Lemma 3.2], [13,
Rem. 1.6] and (7.18).
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Let µ be a singular point ofjH(Q : ξM : · : η), i.e., a point in the union of the
singular hyperplanes. Then there exists a rootα ∈ Σ(aq) such that Hα,µ is a singular
hyperplane. By analytic continuation it follows that Hα,µ ∩ΩQ = /0. From the fact that
the coneΓ(Q)◦ has non-empty interior it follows that the setΩQ∩ a

∗
q is connected,

hence is contained in one connected component ofa∗q \Hα,µ . Replacingα by −α if
necessary, we may assume that

ΩQ∩a
∗
q⊆ {λ ∈ a∗q : 〈α,λ 〉 ≥ c}

for somec∈ R. This in turn implies that

Γ(Q)◦ ⊆ {λ ∈ a∗q : 〈α,λ 〉 ≥ 0}= {λ ∈ a∗q : λ (Hα)≥ 0}.

SinceΓ(Q)◦ has open interior,α does not vanish onΓ(Q)◦. Using thatΓ(Q)◦ is a
cone, we find

〈α,Γ(Q)◦〉= R≥0.

In particular this impliesHα ∈ Γ(Q)◦◦ = Γ(Q) and thus we conclude thatα ∈ Σ(aq)∩
B(Γ(Q)).

For anyP∈Pσ (A) with P� Q, the singular hyperplane Hα,µ does not intersect
−ρP+ρPh−Γ(Q)◦, hence

〈α,µ〉 /∈ −〈α,ρP〉−R≥0.

This implies that〈α , µ〉 >−〈α , ρP〉. We conclude that

〈α , µ〉 > max
P∈Pσ (A),P�Q

〈α ,−ρP〉

so thatµ /∈ Ω̂Q. Thus,Ω̂Q is disjoint from the singular locus.

Let Q∈P(A) andξ ∈ M̂0fu. We define the meromorphicV(ξ ,e)∗⊗C−∞(K : M :
ξM)-valued functionjH(Q : ξM : ·) ona∗qC by

jH(Q : ξM : λ )(η) = jH(Q : ξM : λ : η)

for genericλ ∈ a∗qC andη ∈V(ξ ,e). Furthermore, we define the meromorphicV(ξ )∗⊗
C−∞(K : M : ξM)-valued functionj(Q : ξM : ·) ona∗qC by

j(Q : ξM : λ ) = ∑
v∈W

πQ,ξM,λ−ρQh
(v−1) jvHv−1(Q : ξM : λ ) ◦prv. (7.23)

Here jvHv−1 is defined for the dataσv, vHv−1 in place ofσ ,H. This definition is al-
lowed sinceW ⊆ NK(a)∩NK(aq) (see text preceding (4.6)), so thatA, Aq, M0 and
P(A) are invariant under conjugation byv andaq is maximal abelian inp∩Ad(v)q.
See also the discussion at the end of Section 2.

In order to formulate our next result, we define, forv∈W , the setΩv,Q asΩQ in
(7.20), withvHv−1 in place ofH. Likewise, we definêΩv,Q to be the set̂ΩQ defined
as in (7.21), withvHv−1 in place ofH.

35



Lemma 7.11. Let Q∈P(A). Then for each v∈W , we have

Ωv,Q = vΩv−1Qv and Ω̂v,Q = vΩ̂v−1Qv.

Proof. In view of Lemma 2.7 the coneΓ(v,Q), defined asΓ(Q) with σv in place ofσ ,
is given byΓ(v,Q) = vΓ(v−1Qv). Likewise, its dual, defined as in (7.5) is given by

Γ(v,Q)◦ = vΓ(v−1Qv)◦.

From (7.11) and (7.20), withσv in place ofσ , we now find, with obvious notation,
Ωv,P,Q = vΩv−1Pv,v−1Qv, for P∈Pσ (A) with P�Q. Taking the union over suchP, we
obtain the first asserted equality.

The second equality follows from the first, by taking the hullof the setsΩv,Q and
vΩv−1Qv with respect to the functions Re〈 · , α〉 with α ∈ Σ(aq)∩B(Γ(v,Q)). The first

hull equalsΩ̂v,Q by definition. Using that

Σ(aq)∩B(Γ(v,Q)) = Σ(aq)∩B(vΓ(v−1Qv)) = v(Σ(aq)∩B(Γ(v−1Qv)),

we see that the second hull equalsvΩ̂v−1Qv.

We define the following closed subsets ofa∗qC,

ϒQ =
⋂

v∈W

vΩv−1Qv, ϒ̂Q =
⋂

v∈W

vΩ̂v−1Qv. (7.24)

The following lemma guarantees in particular that the setϒQ, and hence also the
bigger set̂ϒQ, have non-empty interior.

Lemma 7.12. Let Q∈P(A). Then for every P∈Pσ (A,Q), we have

ϒQ ⊃ −(ρP−ρPh)−a∗+q (Q)+ ia∗q.

Proof. Fix v∈W . Thenv−1Pvbelongs toPσ (A,v−1Qv), hence it follows from (7.20)
and Lemma 7.7

Ωv−1Qv⊃−(ρv−1Pv−ρv−1Pvh)−a∗+q (v−1Qv)+ ia∗q.

Applying v we obtainvΩv−1Qv⊃−(ρP−ρPh)−a∗+q (Q)+ ia∗q. As this is true for each
v∈W , the asserted inclusion follows.

Lemma 7.13. Let Q∈P(A) andξ ∈ M̂0fu. Let η ∈V(ξ ).

(a) For each v∈ W the defining integral for the corresponding term in (7.23) is
absolutely convergent for everyλ ∈ ϒQ.

(b) The meromorphic C−∞(K : M : ξM)-valued functionλ 7→ j(Q : ξM : λ : η) is
holomorphic on an open neighborhood of the setϒ̂Q.
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Proof. It follows from (7.23) and Corollary 7.5 that the integral for jvHv−1(Q : ξM : λ :
ηv) is convergent forλ ∈Ωv,Q. This set containsϒQ, by (7.24) and Lemma 7.11, and
we see that (a) follows.

It follows from Corollary 7.6 applied withσv in place ofσ that the mentioned
function is holomorphic on an open neighborhood ofΩ̂v,Q. From this we deduce that
j(Q : ξM · : η) is holomorphic on an open neighborhood of the intersection of the sets
Ω̂v,Q, for v∈W . This intersection equalŝϒQ, by (7.24) and Lemma 7.11.

We finish this section relating the constructed functionsj(Q : ξM : ·), for different
Q, by intertwining operators.

Theorem 7.14. Let Q∈P(A) andξ ∈ M̂0fu. Then the following assertions are valid.

(a) For everyη ∈ V(ξ ) and genericλ ∈ a∗qC, the element j(Q : ξM : λ )(η) of the
space C−∞(K : M : ξM) is πQ,ξM,λ−ρQh

(H)-invariant.

(b) If Q,Q′ ∈P(A) and Q′ �Q, then (up to normalization),

j(Q′ : ξM : λ ) = A(Q′ : Q : ξM : λ −ρQh) ◦ j(Q : ξM : λ ), (7.25)

as an identity of meromorphic V(ξ )∗⊗C−∞(K : M : ξM)-valued functions in the
variableλ ∈ a∗qC.

Proof. We start with (b). LetP∈Pσ (A) be such thatP�Q′. Then by application of
Lemma 2.4 it follows thatΣ(P)∩Σ(Q̄′)⊆ Σ(P)∩Σ(Q̄) so

A(P : Q : ξM : λ ) = A(P : Q′ : ξM : λ ) ◦A(Q′ : Q : ξM : λ ) (7.26)

as a meromorphic identity inλ ∈ a∗qC. See [23, Cor. 7.7] for details. Using (7.16) both
with Q and withQ′ in place ofQ we find

A(P : Q′ : ξM : λ ) ◦ jH(Q
′ : ξM : λ ) = A(P : Q : ξM : λ ) ◦ jH(Q : ξM : λ )

combining this with (7.26) and using thatA(P : Q′ : ξM : λ ) is injective for genericλ ,
we obtain that

jH(Q
′ : ξM : λ ) = A(Q′ : Q : ξM : λ −ρQh) jH(Q : ξM : λ )

for genericλ ∈ a∗qC. Since the expressions on both sides of the equation are meromor-
phicV(ξ ,e)∗⊗C−∞(K : M : ξM)-valued functions, the identity holds as an identity of
meromorphic functions. The identity also holds withH replaced byvHv−1, as an iden-
tity of V(ξ ,v)∗⊗C−∞(K : M : ξM)-valued meromorphic functions ofλ ∈ a∗qC. If we
apply this to each of the terms of the sum in (7.23) we obtain (7.25). This establishes
(b).

We now turn to (a). FixP ∈Pσ (A) such thatP� Q. Then assertion (a) holds
with P in place ofQ, in view of Corollary 5.5. To establish assertion (a) forj(Q : ξM :
λ )(η) as well, we use (b) withQ′ = P. Then assertion (a) follows from the fact that
A(P : Q : ξM : λ −ρQh) is intertwining and injective for genericλ ∈ a∗qC.
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8 Eisenstein integrals

In this section we will extend the definition of Eisenstein integrals for minimalσθ -
stable parabolic subgroups fromPσ (Aq) to similar integrals for minimal parabolic
subgroups fromP(A).

First we need to carefully discuss the parameter space for the Eisenstein integral.
In view of Lemma 4.3, it follows that the inclusion mapM→M0 induces a diffeomor-
phismM/HM ≃ M0/HM0. This diffeomorphism induces a topological linear isomor-
phismC∞(M/HM) ≃ C∞(M0/HM0) via which we will identify the elements of these
spaces.

Let (τ,Vτ) be a finite dimensional unitary representation ofK. Then we defineτM0

to be the restriction ofτ to M0. Likewise, we defineτM to be the restriction ofτ to M.
ThenτM0 andτM have the same representation space.

We defineC∞(M0/HM0 : τM0) to be the space of smooth functionsψ : M0/HM0→Vτ
satisfying the transformation rule

ψ(kx) = τ(k)ψ(x)
(
k∈ K∩M0, x∈M0/HM0

)
.

Similarly, we defineC∞(M/HM : τM) to be the space of smooth functionsψ : M/HM→
Vτ satisfying the transformation rule

ψ(mx) = τ(m)ψ(x)
(
m∈M, x∈M/HM

)
.

We then have the obvious inclusion

C∞(M0/HM0 : τM0) ⊆ C∞(M/HM : τM).

In general, the first of these spaces will be strictly contained in the second. The first
of these spaces enters the definition of the Eisenstein integral for minimalσθ -stable
parabolic subgroup fromPσ (Aq), whereas the second is convenient in the context of
induction from a minimal parabolic subgroup fromP(A). The relation between the
spaces can be clarified as follows. SinceM normalizesM0n∩K it follows that the
spaceV0

τ of M0n∩K-invariants inVτ is invariant underτ(M), so that we may define
the following representationτ0

M of M by restriction:

τ0
M := τM|V0

τ
, where V0

τ := (Vτ)
M0n∩K, (8.1)

Observe that for everyv∈W we have

VM0∩K∩vHv−1

τ = (V0
τ )

M∩vHv−1
.

Indeed, this follows from the fact thatM0∩K = M(M0n∩K) and thatτ(M0n∩K) = 1
onV0

τ .

Lemma 8.1. Let (τ,Vτ) be a finite dimensional unitary representation of K. Then

C∞(M0/HM0 : τM0) = C∞(M/HM : τ0
M), (8.2)
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Proof. We observe thatM0n acts trivially onM0/HM0 by Lemma 4.3 (f). Therefore,
every function in the space on the left-hand side of (8.2) hasvalues inV0

τ and we see
that the space on the left is indeed contained in the space on the right. For the converse
inclusion, let f : M/HM →V0

τ be a function in the space on the right. Ifk0 ∈M0∩K
we may writek0 = kMkn with kM ∈M andkn ∈M0n∩K. Let m0 ∈M0, thenm0 = mh
for a suitablem∈M andh∈ HM0. SinceM0n⊆ H, it follows that

f (k0m0) = f (kMknmh) = τ(kM) f (m(m−1knm)h)

= τ(kM) f (m) = τ(kM)τ(kn) f (m0)

= τ(k0) f (m0).

It follows that f belongs to the space on the left.

We are now prepared for the definition of the Eisenstein integral related to a fixed
parabolic subgroupP ∈P(A). Given ψ ∈ C∞(M/HM : τ0

M) we define the function
ψP,λ : G→Vτ by

ψP,λ (kman) = aλ−ρP−ρPh τ(k)ψ(m).

We denote byC∞(G/H : τ) the space of smooth functionsφ : G/H→Vτ satisfying the
rule

φ(kx) = τ(k)φ(x) (k∈ K, x∈G/H).

Recall the definition ofΩP from (7.20) withP in place ofQ.

Proposition 8.2. Let ω ∈ Dh/hP
. Let ψ ∈C∞(M/HM : τ0

M) and letλ ∈ΩP. Then the
following assertions are valid.

(a) For each x∈G the function

h 7→ ψP,λ (xh) dlh(e)
−1∗ω

defines a Vτ -valued density on H/HP.

(b) For each x∈G the density in (a) is integrable.

(c) The function EH(P : ψ : λ ) : G→Vτ defined by

EH(P : ψ : λ )(x) :=
∫

H/HP

ψP,λ (xh)dlh(e)
−1∗ω, (x∈G),

in accordance with (a) and (b), belongs to C∞(G/H : τ).

Proof. Before we start with the actual proof, we note that the condition onλ implies
the existence of parabolic subgroupP′ ∈Pσ (A,P) such thatλ ∈ ΩP′,P, in view of
(7.20).

Let Fτ ⊆ M̂ denote the finite set ofM-types inτ∨ and letHτ denote the subspace
of C∞(M/HM) consisting of the leftM-finite functions of isotype contained inFτ .
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Let L be the left regular representation ofM in C∞(M/HM) and letξτ := L|Hτ be its
restriction to the subspaceHτ .

SinceC∞(M/HM : τM) consists of theM-fixed functions inC∞(M/HM)⊗Vτ , it
follows that

C∞(M/HM : τM)⊆Hτ ⊗Vτ .

We define the functioñψP,λ : G→Hτ⊗Vτ by ψ̃P,λ (x)(m) :=ψP,λ (xm). Then it readily
follows that

ψ̃P,λ (xman) = aλ−ρP−ρPh(ξτ(m)−1⊗1)ψ̃P,λ (x).

We defineψ∨P,λ (x) := ψ̃P,λ (x
−1). Then

ψ∨P,λ ∈C∞(P : ξτ : −λ +ρPh)⊗Vτ . (8.3)

Let ϕ : H/HP→HP\H be the diffeomorphism induced byh 7→ h−1. Thendϕ(e)∗ω =
ω and forx∈G we see that

ϕ∗[h 7→ ψP,λ (xh) dlh(e)
−1∗ω]

= [h 7→ ψ∨P,λ (hx−1)(e) drh(e)
−1∗ω]. (8.4)

Let ε denote the element ofH HM
τ such that〈g, ε〉= g(e) for all g∈Hτ . We may now

apply Corollary 7.5 to the first tensor component of the spacein (8.3) with (P′,P) in
place of(P,Q),with (ξτ ,Hτ) in place of(ξ ,Hξ ), with Rx−1(ψ∨P,λ ) in place off (where
Rdenotes the right regular representation) and withε in place ofη. From applying the
corollary in this fashion, it follows that the expression onthe right-hand side of (8.4)
is aVτ -valued density onHP\H which is integrable. This implies (a) and (b).

Using thatx 7→ Rx(ψ∨P,λ ) is smooth as a function with values in the Fréchet space
C∞(P : ξτ : −λ +ρPh)⊗Vτ , we find thatEH(P : ψ : λ ) ∈C∞(G,Vτ).

The rightH-invariance and theτ-spherical behavior are readily checked.

Remark 8.3. The above procedure would also work more generally for functions
ψ ∈ C∞(M/HM : τM). However, for genericλ ∈ a∗qC the mapψ 7→ EH(P : ψ : λ )ψ
would then have a (possiblyλ -dependent) kernel complementary toC∞(M/HM : τ0

M).

For v ∈ W the above procedure applies to the dataK,vHv−1,A,Aq in place of
K,H,A,Aq. We thus obtain Eisenstein integralsEvHv−1(P : ψ : λ : x) for ψ in the
parameter spaceC∞(M/M ∩ vHv−1 : τ0

M). The general Eisenstein integral is defined
as follows. Forv ∈ W we equipL2(M/M ∩ vHv−1) with the L2-inner product for
the normalized invariant measure, andL2(M/M∩vHv−1)⊗Vτ with the tensor product
inner product. The latter restricts to an inner product on the finite dimensional subspace
C∞(M/M∩vHv−1 : τ0

M). We define

AM,2 :=⊕v∈W C∞(M/M∩vHv−1 : τ0
M). (8.5)

Equipped with the direct sum of the given inner products on the summands, this space
becomes a finite dimensional Hilbert space.
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For ψ ∈AM,2 andλ ∈ΩP we define the functionE(P : ψ : λ ) : G→Vτ by

E(P : ψ : λ )(x) = ∑
v∈W

EvHv−1(P : prvψ : λ )(xv−1) (x∈G). (8.6)

It is readily verified that this function belongs toC∞(G/H : τ). We will occasionally
write E(P : ψ : λ : x) for E(P : ψ : λ )(x).

We will now relate the Eisenstein integral thus defined to matrix coefficients with
H-fixed distribution vectors. For this we will use a suitable realization of the space
AM,2. In analogy with (8.5) we define

AM0,2 :=⊕v∈W C∞(M0/M0∩vHv−1 : τM0).

In view of Lemma 8.1 applied withvHv−1 in place ofH, for v∈W , we see that

AM0,2 = AM,2.

Forξ ∈ M̂0fu andv∈W , we denote byC∞
ξ (M0/M0∩vHv−1) the space of leftM0-finite

functions inC∞(M0/M0∩vHv−1) of isotopy typeξ . Furthermore, we denote by

C∞
ξ (M0/M0∩vHv−1 : τM0) (8.7)

the intersection ofC∞(M0/M0∩ vHv−1 : τM0) with C∞
ξ (M0/M0∩ vHv−1)⊗Vτ . The

direct sum of the spaces (8.7) forv∈W is denoted byAM0,2,ξ . Then it follows that

AM0,2 =⊕ξ∈M̂0fu
AM0,2,ξ , (8.8)

as an orthogonal direct sum with finitely many non-zero terms.
Similar definitions, withM in place ofM0, lead to spaces

C∞
ξ (M/M∩vHv−1 : τ0

M), (8.9)

equal to (8.7) in view of (8.2), forv ∈ W . The orthogonal direct sum of (8.9) over
v∈W is denoted byAM,2,ξ . Then obviously

AM0,2,ξ = AM,2,ξ . (8.10)

For ξ ∈ M̂0fu we defineC(K : ξ : τ) to be the space of functionsf : K→Hξ ⊗Vτ
transforming according to the rule:

f (mk0k) = [ξ (m)⊗ τ(k)−1] f (k0), (k,k0 ∈ K,m∈M0∩K).

We recall from [10, Lemma 3, p. 528] that there exists a natural linear isomorphism

T 7→ ψT , C(K : ξ : τ)⊗V̄(ξ ) ≃
−→ AM0,2,ξ = AM,2,ξ , (8.11)
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given by
(ψT)v(m) = 〈 f (e) , ξ (m)prv(η)〉, (v∈W ), (8.12)

for T = f ⊗η ∈C(K : ξ : τ)⊗ V̄(ξ ) andm∈ M. Moreover,T 7→
√

dimξ ψT is an
isometry.

The mapi# introduced in (4.11) is an isometric embeddingC(K : K ∩M0 : ξ )→
C(K : M : ξM). Through tensoring with the identity map onVτ it induces an isometric
embeddingC(K : ξ : τ)→C(K : ξM : τM) which we denote byi# again.

Theorem 8.4. Letξ ∈ M̂0fu and let T= f ⊗η ∈C(K : ξ : τ)⊗V̄(ξ ). Then for x∈G
andλ ∈ ϒP,

E(P : ψT : λ : x) = 〈i#f , πP,ξM,λ̄−ρPh
(x) j(P : ξM : λ̄ )(η)〉,

where j(P : ξM : λ̄ )(η) should be viewed as an element of C−∞(K : M : ξM). Moreover,
the indicated sesquilinear pairing is taken on the first tensor components of i#f .

Proof. The setϒP is the intersection of the setsΩv,P, for v∈W , by (7.24) and Lemma
7.11. In view of (8.6) and (7.23) it therefore suffices to restrict to the case thatη ∈
V(ξ ,e) and prove the result under the (weaker) assumption thatλ ∈ΩP.

Write ψ = preψT . Then it follows from the proof of Proposition 8.2 that, forx and
λ as specified,

EH(P : ψT : λ : x) =
∫

HP\H
ϕ∗[h 7→ ψP,λ (xh) dlh(e)

−1∗ω]

=
∫

HP\H
ψ∨P,λ (hx−1)(e) drh(e)

−1∗ω.

We now calculate the functionψ∨P,λ in this particular case. As it belongs toC∞(P :
ξM : −λ +ρPh)⊗Vτ it is sufficient to calculate its restriction toK. Sinceψ = ψT , it
follows from (8.12) thatψ(m) = ψT(m) = 〈 f (e) , ξ (m)η〉. This implies that

ψP,λ (k) = τ(k)〈 f (e) , ξ (e)η〉= 〈 f (k−1) , η〉.

In turn, this implies that
ψ∨P,λ (k)(e) = 〈 f (k) , η〉.

We write [i#f ]P,−λ+ρPh
for the extension of the functioni#f ∈ C(K : ξM : τM) to a

function inC∞(P : ξM :−λ +ρPh)⊗Vτ . Then

ψ∨P,λ (x)(e) = 〈[i
#f ]P,−λ+ρPh

(x) , η〉.

Thus, in view of (7.12) we find that

EH(P : ψT : λ : x) =
∫

HP\H

〈
[R(x−1)[i#f ]P,−λ+ρPh

(h),η
〉

drh(e)
−1∗ ω

=
〈
[R(x−1)[i#f ]P,−λ+ρPh

, jH(P : ξM : λ̄)(η)
〉

=
〈
πP,ξM,−λ+ρPh

(x−1)i#f , jH(P : ξM : λ̄ )(η)
〉

=
〈
i#f ,πP,ξM,λ̄−ρPh

(x) jH(P : ξM : λ̄ )(η)
〉
.

The proof is complete.
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Corollary 8.5. Let P∈P(A) and letψ ∈ AM,2. Then the Eisenstein integral E(P :
ψ : λ ) depends meromorphically onλ ∈ a∗qC as a function with values in C∞(G/H : τ).
As such, it is holomorphic on an open neighborhood of the setϒ̂P.

Proof. The assertion about meromorphy follows from the previous result in view of
(8.8) and the linear dependence of the Eisenstein integral on ψ. The statement about
holomorphy now follows from Lemma 7.13 (b).

It will sometimes be convenient to writeE(P : λ : x)ψ = E(P : ψ : λ : x) and to
adopt the viewpoint thatE(P : λ ) is a meromorphic Hom(AM,2,C∞(G : τ))-valued
function ofλ ∈ a∗qC.

We proceed by relating the Eisenstein integrals defined above to the Eisenstein
integrals introduced earlier in [6] and [10] for minimalσθ -stable parabolic subgroups.

Corollary 8.6. Let P∈Pσ (A) and let P0 be the unique parabolic subgroup from
Pσ (Aq) containing P. Then

E(P : λ ) = E(P0 : λ ) (8.13)

asHom
(
AM0,2,C

∞(G/H : τ)
)
-valued meromorphic functions ofλ ∈ a∗qC.

Proof. Let ξ ∈ M̂0fu. Then it follows from Corollary 5.5 that

j(P : ξM : λ ) = i#◦ j(P0 : ξ : λ ).

Let T = f ⊗η ∈C(K : ξ : τ)⊗V̄(ξ ). Then it follows by [6, Lemma 4.2] and (4.11)
that

E(P0 : λ : x)ψT = 〈 f , πP0,ξ ,λ̄ (x) j(P0 : ξ : λ̄ )(η)〉

= 〈i#f , i#πP0,ξ ,λ̄ (x) j(P0 : ξ : λ̄ )(η)〉

= 〈i#f , πP,ξM,λ̄−ρPh
(x) j(P : ξM : λ̄ )(η)〉

= E(P : λ : x)ψT .

The Eisenstein integrals for parabolic subgroups fromP(A) can be related to each
other as follows.

Proposition 8.7. Let Q∈P(A), P∈Pσ (A) and P� Q. Then for allξ ∈ M̂0fu, all
T ∈C(K : ξ : τ)⊗V̄(ξ ) and genericλ ∈ a∗qC, we have

E(Q : λ )ψT = E(P : λ )ψ[p#◦A(Q:P:ξM:−λ+ρPh)−1◦ i#⊗I ]T . (8.14)

Here, p# is shorthand for the restriction of p#⊗ IVτ to the subspace C(K : ξM : τM) of
C∞(K : M : ξM)⊗Vτ , see also (4.14). Likewise, the intertwining operator acts on the
first tensor component in C(K : M : ξM)⊗Vτ .
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Proof. By linearity it suffices to prove this forT = f ⊗η, with f ∈C(K : ξ : τ) and
η ∈ V̄(ξ ). It follows from Theorem 8.4 and (7.25) that for genericλ ∈ a∗qC we have

j(Q : ξM : λ̄ )(η) = A(P : Q : ξM : λ̄ −ρPh)
−1 j(P : ξM : λ̄ )(η).

Forx∈G we now obtain (with the pairing taken on first tensor components)

E(Q : λ : x)ψT =

= 〈i# f , πQ,ξM,λ̄−ρQh
(x) j(Q : ξM : λ̄ )(η)〉

= 〈i# f , A(P : Q : ξM : λ̄ −ρPh)
−1πP,ξM,λ̄−ρPh

(x) j(P : ξM : λ̄ )(η)〉

= 〈A(Q : P : ξM :−λ +ρPh)
−1i# f , πP,ξM,λ̄−ρPh

(x) j(P : ξM : λ̄ )(η)〉

= 〈p◦A(Q : P : ξM :−λ +ρPh)
−1i# f , πP,ξM,λ̄−ρPh

(x) j(P : ξM : λ̄ )(η)〉(8.15)

The last identity follows by application of Corollary 5.6. Finally, sincep= i#◦ p#, the
expression in (8.15) equals the expression on the right-hand side of (8.14), in view of
Theorem 8.4.

Let Q,P∈P(A) be as in Proposition 8.7. Then motivated by the proposition,we
define theC-functionC(Q : P : λ ) to be the unique End(AM,2)-valued meromorphic
function ofλ ∈ a∗qC such that

C(Q : P : λ )ψT = ψ[p#◦A(Q:P:ξM:−λ+ρPh)−1◦ i#⊗I ]T

for all ξ ∈ M̂0fu, all T ∈C(K : ξ : τ)⊗V̄(ξ ) and genericλ ∈ a∗qC. Then (8.14) may be
abbreviated as

E(Q : λ ) = E(P : λ )C(P : Q : λ ). (8.16)

The following result is a variation of a result of Harish-Chandra, see [19, Lemma
3, p. 47]. The proof given below follows a different strategy, which also works in the
setting of [19].

Proposition 8.8. Let Q∈P(A) and P∈Pσ (A) such that P�Q. Then the meromor-
phic functiona∗qC ∋ λ 7→ detC(Q : P : λ ) is not identically zero.

Before proceeding with the proof of this proposition, we first list a corollary.

Corollary 8.9. Let Q∈P(A) and P∈Pσ (A) such that P� Q. Then the endomor-
phism C(Q : P : λ ) ∈ End(AM,2) is invertible for genericλ ∈ a∗qC andλ 7→C(Q : P :
λ )−1 is a meromorphicEnd(AM,2)-valued meromorphic function onaq.

Proof. This follows from Proposition 8.8 by application of Cramer’s rule for the in-
version of a matrix.

The following lemma will play an important role in the proof of Proposition 8.8.
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Lemma 8.10. Let P∈Pσ (A) and let P0 be the unique parabolic subgroup from
Pσ (Aq) containing P. Then the following diagram commutes:

C(K : K∩M0 : ξ )
A(P̄0:P0:ξ :λ )
−→ C(K : K∩M0 : ξ )

p#↑ ↑p#

C(K : M : ξM)
A(σ(P):P:ξM:λ+ρPh)−→ C(K : M : ξM)

for genericλ ∈ a∗qC.

Proof. Let PM0 = P∩M0. Then it follows thatP = PM0NP andσP = PM0NσP. Fur-
thermore, by the assertion at the end of the proof of Theorem 4.2 in [5, p. 373], with
P1 = P̄0, P2 = P0, (P1)p = σ(P) and(P2)p = P, it follows that the following diagram
commutes for genericλ ∈ a∗qC,

C(K : K∩M0 : ξ )
A(P0:P̄0:ξ :−λ̄ )
←− C(K : K∩M0 : ξ )

i#↓ ↓i#

C(K : M : ξM)
A(P:σ(P):ξM:−λ̄−ρPh)←− C(K : M : ξM).

The desired result now follows by taking adjoints with respect to the given equivariant
sesquilinear pairings on the spaces involved.

Proof of Proposition 8.8.Let ξ ∈ M̂0fu and letϑ ⊆ K̂ be a finite set ofK-types. Then
it suffices to show that the restricted operator

p#
◦A(Q : P : ξM :−λ +ρPh)

−1
◦ i#|C(K:K∩M0:ξ )ϑ (8.17)

has determinant not identically zero. For this it suffices toshow that the composition
of A(P̄0 : P0 : ξ :−λ ) with (8.17) has determinant not-identically zero. By Lemma8.10
this composition may be rewritten as

p#
◦A(σ(P) : P : ξ :−λ +ρPh) ◦A(Q : P : ξM :−λ +ρPh)

−1
◦ i#|C(K:K∩M0:ξ )ϑ . (8.18)

SinceΣ(σ(P)∩Σ(P) = Σ(P)∩a∗h⊆ Σ(Q)∩Σ(P), it follows by the usual product de-
composition of the standard intertwining operators, see [23, Cor. 7.7], that (8.18)
equals

p#
◦A(σP : Q : ξM :−λ +ρPh) ◦ i

#|C(K:K∩M0:ξ )ϑ . (8.19)

Thus it suffices to show that the determinant of the linear endomorphism ofC(K :
K ∩M0 : ξ )ϑ given in (8.19) is not identically zero as a meromorphic function of λ .
Now this is an immediate consequence of the following result.

Lemma 8.11. Let Q,R∈P(A) be such thatΣ(R̄)∩Σ(Q) ⊆ Σ(Q,σθ). Then there
exists an elementη ∈ a∗q such that〈η , α〉> 0 for all α ∈ Σ(R̄)∩Σ(Q). Let η be such
an element and d:= dim(NR∩ N̄Q). Then there exists a constant c> 0 such that for
everyµ ∈ a∗C and all f ∈C(K : M : ξM)

lim
t→∞

td/2A(R : Q : ξM : µ + tη) f = c f.

in C(K : M : ξM).
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Proof. SinceΣ(Q) is a positive system forΣ(g,a), there existsξ ∈ a∗ such that〈ξ , α〉>
0 for α ∈ Σ(Q). Let η = ξ +σθξ , then〈η , α〉> 0 for α ∈Σ(Q,αθ). Thus,η satisfies
the requirements. Letη be any such element.

Replacingµ by µ + t0η for a suitablet0 > 0 we see that we may as well assume
that Re〈µ , α〉 > 0 for all α ∈ Σ(R̄)∩Σ(Q). In this case, we see that for allt ≥ 0 the
intertwining operator is given by the absolutely convergent integral

[A(R : Q : ξM : µ + tη) f ](k) =

∫

NR∩N̄Q

ft(n̄
−1k)dn̄

=

∫

NR∩N̄Q

e−tηHQ(n̄)e(−µ−ρQ)HQ(n̄) f (κQ(n̄)
−1k) dn̄.

Here ft denotes the extension off to an element ofC∞(Q : ξM : µ + tη). Moreover,
the analytic mapsHQ : G→ a andκQ : G→ K are defined by

x∈ κQ(x)expHQ(x)NQ, (x∈G),

in accordance with the Iwasawa decompositionG= KANQ.
By using the properties of the functionh = ηHQ|NR∩N̄Q

stated in Lemma 8.12
below we will be able to determine the asymptotic behavior for t → ∞ by using the
real version of the method of stationary phase.

It follows from Lemma 8.12 (a) thath≥ 0. Hence, the intertwining operator is a
continuous linear endomorphism ofC(K : M : ξM), with operator norm bounded by

‖A(R : Q : ξM : µ + tη)‖ ≤
∫

NR∩N̄Q

e(−Reµ−ρQ)HQ(n̄) dn̄.

It follows from Lemma 8.12 (b) that there exists an open neighborhoodV of 0 in
Rd and an open embeddingϕ : Rd→ NR∩ N̄Q, sending 0 toesuch that

h(ϕ(x)) = 〈Sx, x〉

with Sa positive definite matrix. LetU be an open neighborhood ofe in NR∩ N̄Q with
closure contained inϕ(V), and letr > 0 be as in condition (c) of the mentioned lemma.
Fix χ ∈C∞

c (ϕ(V)) such thatχ = 1 on a neighborhood of the closure ofU. Then

A(R : Q : ξM : µ + tη) f = It( f )+Rt( f )

with
It( f ) =

∫

NR∩N̄Q

e−th(n̄)e(−µ−ρQ)HQ(n̄) f (κ(n̄)−1k)χ(n̄) dn̄.

The remainder termRt( f ) is given by the same integral but withχ(n̄) replaced by
1−χ(n̄). As the latter function is zero onU , it follows from the estimate in (b) that

‖Rt( f )‖ ≤C1e−tr‖ f‖,
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with C1 a positive constant independent off andt. Accordingly, we may ignore this
term and concentrate onIt( f ). By substitutingϕ(x) for n̄ we obtain

It( f ) =
∫

Rn
e−t〈Sx,x〉e(−µ−ρQ)HQ(ϕ(x)) f (κ(ϕ(x))−1k)χ(ϕ(x))J(x) dx,

whereJ(x) is a Jacobian. Substitutingt−1/2x for x and taking the limit fort→ ∞, we
see that

td/2It( f )→
∫

Rd
e−〈Sx,x〉 f (k)J(0) dx,

uniformly in k. This establishes the result with

c= J(0)
∫

Rd
e−〈Sx,x〉 dx.

Lemma 8.12. Let Q,R∈P(A) and letη ∈ a∗ be such that〈η , α〉 > 0 for all α ∈
Σ(R̄)∩Σ(Q). LetHQ : G→ a be the Iwasawa map determined by x∈K expHQ(x)NQ,
for x∈G. Then the function h= ηHQ|NR∩N̄Q

has the following properties,

(a) h≥ 0;

(b) h has an isolated critical point at e with positive definite Hessian;

(c) for each open neighborhood U of e in NR∩ N̄Q there exists a constant r> 0 such
that

n̄∈ (NR∩ N̄Q)\U =⇒ h(n̄)> r.

Proof. For each indivisible rootα ∈ Σ(g,a) we writenα = gα +g2α , Nα = exp(nα),
n̄α = θnα and N̄α := exp(n̄α). Furthermore, we writeg(α) for the split rank one
subalgebra generated bynα + n̄α andG(α) for the associated analytic subgroup ofG.
Let Hα : G(α)→ a∩g(α) = (kerα)⊥ be the Iwasawa projection associated with the
Iwasawa decompositionG(α) = K∩G(α))(A∩G(α))Nα . ThenHα = HQ|G(α).

Let α1, . . . ,αk be the indivisible positive roots inΣ(R̄)∩Σ(Q). Then by the method
of S.G. Gindikin and F.I. Karpelevic [17] (see [23, Thm. 7.6]for the version for
intertwining operators), there exists a diffeomorphismψ : N̄α1 × ·· ·N̄αk → NR∩ N̄Q

such that

h(ψ(n̄1, . . . , n̄k)) =
k

∑
j=1

ηHα j (n̄ j).

To show thath has properties (a), (b) and (c), it suffices to show that each of the
functionsh j = η ◦Hα j |N̄α j

has these properties, with̄Nα j in place ofNR∩ N̄Q.

Let α ∈ Σ(g,a) be any indivisible root such that〈η , α〉 > 0. Then it suffices to
show thathα : N̄α → R, n̄ 7→ ηHα(n̄) has properties (a) and (b) with̄Nα in place of
NR∩ N̄Q. The functionhα can be explicitly computed through SU(2,1)-reduction, see
[21, Thm. IX.3.8]. From the explicit expression given in [21], properties (a), (b) and
(c) are readily verified.
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We will now describe the asymptotic behavior of the various Eisenstein integrals,
using the established relations (8.13) and (8.16) between them.

For a parabolic subgroupR∈Pσ (Aq) and forv∈W we define the functions

ΦR,v(λ : ·) : A+
q (R)→ End(VM0∩K∩vHv−1

τ )

as in [9, Lemma 10.3]. These functions are smooth on the chamberA+
q (R) and as such

depend meromorphically on the parameterλ ∈ a∗qC. Moreover, for genericλ ∈ a∗qC they
have an absolutely converging series expansion of the form

ΦR,v(λ : a) = a−ρR ∑
µ∈NΣ+(R)

a−µΓR,µ(λ ),

where theΓR,µ are meromorphic End(VM0∩K∩vHv−1

τ )-valued functions andΓR,0 = I .
Let P0∈Pσ (Aq) then by [9, Thm. 11.1] and (8.10), there exist unique End(AM,2)-

valued meromorphic functionsCR|P0
(s : ·) on a∗qC such that for allψ ∈AM,2 and each

v∈W and genericλ ∈ a∗qC we have

E(P0 : λ : av)ψ = ∑
s∈W(aq)

ΦR,v(sλ : a)[CR|P0
(s : λ )ψ]v(e), (a∈ A+

q (R)).

HereW(aq) denotes the Weyl group of the root systemΣ(g,aq).

Theorem 8.13. Let Q∈P(A) and R∈Pσ (Aq). Then there exist unique meromorphic
End(AM,2)-valued meromorphic functions CR|Q(s : ·) ona∗qC, for s∈W(aq), such that
for all ψ ∈AM,2, each v∈W and genericλ ∈ a∗qC we have

E(Q : λ : av)ψ = ∑
s∈W(aq)

ΦR,v(sλ : a)[CR|Q(s : λ )ψ]v(e), (a∈ A+
q (R)).

These meromorphic C-functions are generically pointwise invertible, with meromor-
phic inverses.

Proof. Uniqueness follows by uniqueness of asymptotics, see, e.g., [18, p. 305, Cor.]
for details.

For the remaining statements on existence and invertibility, we first consider the
case thatQ is q-extreme, i.e.,Q∈Pσ (A). Then there exists a uniqueQ0 ∈Pσ (Aq)
containingQ. By applying Corollary 8.6 and the preceding discussion we find that

CR|Q(s : λ ) =CR|Q0
(s : λ )

satisfies the asymptotic requirements. Invertibility follows from [6, Cor. 15.11].
We now assume thatQ∈P(A) is general. Then there exists aP∈Pσ (A) such

thatP�Q.
By Proposition 8.7 and (8.14) we have

E(P : λ : x) = E(Q : λ : x) ◦C(Q : P : λ ).
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In view of Proposition 8.8 we see that

CR|Q(s : λ ) =CR|P(s : λ ) ◦C(Q : P : λ )−1

satisfies the asymptotic requirements. The invertibility requirements now follow from
the invertibility ofCR|P(s : λ ), established earlier in this proof.

Corollary 8.14. Let P,Q∈P(A).Then there exists a unique meromorphicEnd(AM,2)-
valued function C(P : Q : ·) ona∗qC such that

E(P : λ : x) = E(Q : λ : x) ◦C(Q : P : λ ) (8.20)

for all x ∈ G/H and genericλ ∈ a∗qC. Furthermore, the following identities are valid
as identities of meromorphicEnd(AM,2)-valued functions inλ ∈ a∗qC.

(a) C(Q : P : λ ) =CR|Q(s : λ )−1CR|P(s : λ ), (s∈W(aq), R∈Pσ (Aq));

(b) C(P1 : P2 : λ )C(P2 : P3 : λ ) =C(P1 : P3 : λ ), (P1,P2,P3 ∈P(A));

(c) C(P : Q : λ )C(Q : P : λ ) =C(Q : P : λ )C(P : Q : λ ) = I .

Proof. Uniqueness follows from Theorem 8.13 combined with uniqueness of asymp-
totics. We will first establish the existence forP,Q∈Pσ (A). Let P0,Q0 be the unique
minimalσθ -stable parabolic subgroups inPσ (Aq) with P0⊃ P andQ0⊃Q. Then by
[10, (42) & (70)] there exists a meromorphic functiona : a∗qC→ End(AM,2) such that
E(P0 : λ ) = E(Q0 : λ )a(λ ). In view of Corollary 8.6 it follows that (8.20) is valid with
C(Q : P : λ ) = a(λ ).

By using Proposition 8.7, (8.14) and Corollary 8.9 the existence ofC(Q : P : λ )
can now be inferred for arbitraryP,Q∈P(A).

Now that the existence has been established, (a) follows from Theorem 8.13 com-
bined with uniqueness of asymptotics. Finally, (b) and (c) follow from the established
uniqueness of theC-functions involved.

9 The case of the group

In this section we will consider the case of the group, viewedas a symmetric space,
and compare our definition of the Eisenstein integral for a minimal parabolic subgroup
with the one given by Harish-Chandra [20].

Let 8G be a group of the Harish-Chandra class, and letG = 8G× 8G andH the
diagonal inG. ThenH equals the fix point group of the involutionσ : G→ G given
by σ(x,y) = (y,x). The mapm : (x,y) 7→ xy−1 induces a diffeomorphismG/H → 8G
which is equivariant for the action ofG on G/H by left translation and the action on
8G by left times right translation. Accordingly, pull-back bym induces aG-equivariant
topological linear isomorphismm∗ : C∞(8G)→C∞(G/H).

We fix a Cartan involution8θ for 8G. Let 8g= 8k⊕ 8p be the associated infinitesimal
Cartan decomposition and let8a be a fixed choice of a maximal abelian subspace of
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8p. Thenθ = 8θ × 8θ is a Cartan involution forG which commutes withσ . The asso-
ciated Cartan decomposition is given byg = k⊕ p, wherek = 8k× 8k andp = 8p× 8p.
Furthermore,a= 8a× 8a is a maximal abelian subspace ofp.

The infinitesimal involutionσ on g = 8g× 8g is given by(X,Y) 7→ (Y,X), so that
its+1 eigenspaceh equals the diagonal ofg, whereas the−1-eigenspaceq consists of
the elements(X,−X), X ∈ 8g. It follows thatp∩q = {(X,−X) | X ∈ 8p}, and that the
subspace

aq := {(X,−X) | X ∈ 8a}

is maximal abelian inp∩q. Furthermore,a= ah⊕aq, whereah = {(X,X) | X ∈ 8a}=
a∩ h. At the level of groups we accordingly haveA = AhAq, whereAh = A∩H =
{(a,a) | a ∈ 8A} and Aq = {(a,a−1) | a ∈ 8A}. The root systemΣ of a in g equals
(8Σ×{0})∪ ({0}× 8Σ), where8Σ denotes the root system of8a in 8g. The associated
root spaces are given by

g(α,0) = gα ×{0}, and g(0,β ) = {0}×gβ , (α,β ∈ 8Σ).

The positive systems forΣ are the sets of the form(Π1×{0})∪ ({0}×Π2 where
Π1,Π2 are positive systems for8Σ. Accordingly,

P(A) = {8P× 8Q | 8P, 8Q∈P(8A)}.

Let 8M denote the centralizer of8A in 8K. Then the centralizer ofA in K is given by
M = 8M× 8M and we see that theθ -stable Levi component of any parabolic inP(A)
is equal toMA.

Our first objective is to give a suitable description of theH-fixed distribution vector
j(R: ξ : λ )(η), for R= 8P× 8Q a minimal parabolic subgroup fromP(A), for λ ∈ a∗qC,
and forξ ∈ M̂ such that the spaceV(ξ ), defined as in (4.8), is non-trivial.

We observe thatNK(aq) andNK∩H(aq) have the same image in GL(aq), so that
W , defined as in (4.6), consists of the identity elemente = (8e, 8e). It follows that
V(ξ ) =V(ξ ,e) as in (4.8), so that

V(ξ ) = H
HM

ξ . (9.1)

Thus,V(ξ ) 6= 0 if and only if ξ has a non-trivialHM-fixed vector. The set of such
(classes of) irreducible representations ofM is denoted byM̂HM .

If ξ ∈ M̂HM , then
ξ ≃ 8ξ ⊗̂8ξ∨, (9.2)

for an irreducible unitary representation8ξ of 8M in a finite dimensional Hilbert space
H8ξ . Using the canonical identification

H8ξ ⊗H
∗
8ξ ≃ End(H8ξ ) (9.3)

we shall modelξ as the representation inHξ := End(H8ξ ) given by

ξ (m1,m2)T = 8ξ (m1) ◦T ◦
8ξ (m2)

−1,
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for T ∈ End(H8ξ ) andm1,m2 ∈
8M. In particular, we see that with this convention,

V(ξ ) = CI8ξ .

The spacea∗qC is identified with the subspace ofa∗C consisting of linear functionals on
a∗C of the form(8λ ,−8λ ) : (X,Y) 7→ 8λ (X)− 8λ (Y). We agree to write

λ = (8λ ,−8λ ), (8λ ∈ 8a∗C).

As in Section 3, we writeC±∞(K : ξ ) for C±∞(K : M : ξ ) andC±∞(8K : 8ξ ) for C±∞(8K :
8M : 8ξ ). Then as indicated in Section 3, we have topological linear isomorphisms

C−∞(K : ξ )≃C∞(K : ξ )′ and C−∞(8K : 8ξ )≃C∞(8K : 8ξ )′,

which restricted to the subspaces of smooth functions are induced by the pairings (3.6)
for (K,ξ ) and(8K, 8ξ ).

We now consider the topological linear isomorphism

Φ : C−∞(K : ξ ) ≃
−→ Hom(C∞(8K : 8ξ ),C−∞(8K : 8ξ ))

determined by the Schwartz kernel theorem. It is given by

〈Φ(h)( f ) , g〉= 〈h, g⊗ f 〉,

for h ∈ C−∞(K : ξ ), f ∈C∞(8K : 8ξ ) andg∈ C∞(8K : 8ξ∨), with g⊗ f viewed as an
element ofC∞(K : ξ∨).

According to the compact picture explained in Section 3, we may identifyΦ with
a uniquely determined topological linear isomorphism

Φλ : C−∞(R : ξ : λ ) ≃
−→ Hom(C∞(8Q, 8ξ , 8λ ),C−∞(8P, 8ξ , 8λ )).

The isomorphismΦλ is readily seen to beG-equivariant, byG-equivariance of the pair-
ings involved in the definition ofΦ, for the appropriate principal series representations.
It maps theH-invariants in the space on the left to the subspace of8G-intertwining op-
erators on the right.

We write 〈 · , · 〉ξ for the K-equivariant pre-Hilbert structure onC∞(K : ξ ) given
by (3.2) and〈 · , · 〉8ξ for the similar8K-equivariant pre-Hilbert structure onC∞(8K :
8ξ ). The latter structure extends to continuous sesquilinear pairings C±∞(8K : 8ξ )×
C∓∞(8K : 8ξ )→ C, also denoted by〈 · , · 〉8ξ . As C∞(8K : 8ξ ) is a Montel space, it is
reflexive, and we may take adjoints with respect to these pairings. Accordingly, given
a continuous linear operatorT : C∞(8K : 8ξ )→C−∞(8K : 8ξ ) we define the continuous
linear operatorT∗ : C∞(8K : 8ξ )→C−∞(8K : 8ξ ) by

〈T∗ f , g〉8ξ = 〈 f , Tg〉8ξ , ( f ,g∈C∞(8K : 8ξ )).
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Lemma 9.1. Let F∈C∞(K : ξ ) and let T: C∞(8K : 8ξ )→C∞(8K : 8ξ ) be a continuous
linear operator. Then

〈F , Φ−1(T∗)〉ξ =

∫

8K
tr 8ξ [(T⊗ I)F(8k, 8k)] d8k. (9.4)

Proof. We first consider the isomorphismϕ :C−∞(K)→Hom(C∞(8K),C−∞(8K)) given
by the Schwartz kernel isomorphism. Letf j denote anL2(8K)-orthonormal basis
subordinate to the decomposition into the finite dimensional 8K-isotypical compo-
nents with respect to the left regular representation. Thenfor each smooth function
f ∈C∞(8K)we havef =∑ j〈 f , f j〉2 f j =∑ j〈 f , f̄ j〉 f j with convergence inL2(8K). Here
index 2 indicates that the pairing corresponds to the sesquilinearL2-inner product. It
follows that for eachK-finite functionF ∈C∞(K) we have

〈F , ϕ−1(I)〉2 = 〈F , ∑
j

f j ⊗ f̄ j〉2.

For F = fk⊗ fl this gives〈F , ϕ−1(I)〉2 = 〈 fl , fk〉 =
∫

K fk(k) fl(k) dk. By continuous
linearity and density this implies that

〈F , ϕ−1(I)〉2 =
∫

K
F(k,k) dk, (F ∈C∞(8K× 8K)).

We next consider the natural isomorphismψ from Hξ = H8ξ ⊗H ∨
8ξ onto End(H8ξ ).

Then it is readily verified that

〈U , ψ−1(I8ξ )〉ξ = trξ (ψ(U)) (U ∈Hξ ).

Here the indexξ indicates that the natural sesquilinear inner product induced by the
inner product onHξ is taken. We now consider the Schwartz kernel isomorphismΦ̃
from C−∞(K,Hξ ) onto Hom(C∞(8K,H8ξ ),C

−∞(8K,H8ξ )). ThenΦ̃ is identified with
ϕ⊗ψ in a natural way. Thus, forF ∈C∞(K,Hξ )) we have

〈F , Φ̃−1(I)〉ξ =
∫

8K
trξ (ψ(F(8k, 8k)) d8k. (9.5)

IdentifyingHξ with End(H8ξ ) via ψ we agree to rewrite the above expression without
the ψ. We view C∞(K : ξ ) as the space ofM = 8M× 8M-invariants inC∞(K,Hξ ).
Likewise we viewC±∞(8K : 8ξ ) as the space of8M-invariants inC±∞(8K,H8ξ ) (for the
right action of 8M on C±∞(8K)). The 8M-equivariant inclusion maps and projection
maps will be denoted by i andP respectively. ThenΦ = Φ̃ ◦ i = P◦ Φ̃◦ i, and we find
that forF ∈C∞(K : ξ )

〈F , Φ−1(I)〉2 = 〈F , Φ̃−1(I)〉. (9.6)

This implies (9.4) withT = I . To obtain the general formula, we note that for a con-
tinuous linear operatorT ∈ End(C∞(8K : 8ξ )) the Hermitian adjointT∗ is a continuous
linear operator in End(C−∞(8K : 8ξ )) and

Φ
(
(T∗⊗ I)u

)
= T∗ ◦Φ(u)

(
u∈C−∞(K : ξ )

)
.
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Foru= Φ−1(I) this yields

(T∗⊗ I)Φ−1(I) = Φ(T∗).

It follows that

〈F , Φ−1(T∗)〉= 〈F , (T∗⊗ I)Φ−1(I)〉= 〈(T⊗ I)(F) , Φ−1(I)〉.

Hence, (9.4) follows by application of (9.5) and (9.6).

Lemma 9.2. Let 8P, 8Q∈P(8A). Then for generic8λ ∈ 8a∗C,

j(8P× 8Q : ξ : λ )(I8ξ ) = Φ−1
λ (A(8P : 8Q : 8ξ : 8λ )). (9.7)

Proof. PutR= 8P× 8Q as before. Then in the present case of the group,ρRh= 0, so
that the distribution vector on the left-hand side of (9.7) belongs toC−∞(R : ξ : λ ).

It follows from (7.25) applied withQ′ = 8P× 8P̄ andQ= 8P× 8Q that

j(8P× 8P̄ : ξ : λ ) = [I ⊗A(8P̄ : 8Q : 8ξ∨ :−8λ )] ◦ j(8P× 8Q : ξ : λ ).

SinceA(8P̄ : 8Q : 8ξ∨ : −8λ ) has transposeA(8Q : 8P̄ : 8ξ : 8λ ) relative to the bilinear
pairingC∞(8K : 8ξ )⊗C∞(8K : 8ξ∨)→ C, it follows that

Φλ
(

j(8P× 8P̄ : ξ : λ )(I8ξ )
)
= Φλ

(
j(8P× 8Q : ξ : λ )(I8ξ )

)
◦A(8Q : 8P̄ : 8ξ : 8λ ) (9.8)

For 8Q= 8P̄ the equality (9.7) has been established in [8, Lemma 1]. Combining this
with (9.8) we find that

A(8P : 8P̄ : 8ξ : 8λ ) = Φλ ( j(8P× 8Q : ξ : λ )(I8ξ )) ◦A(8Q : 8P̄ : 8ξ : 8λ ). (9.9)

The intertwining operator on the left-hand side of (9.9) decomposes as the composition

A(8P : 8Q : 8ξ : 8λ )◦A(8Q : 8P̄ : 8ξ : 8λ ),

as an End(C∞(K : ξ ))-valued meromorphic function of8λ ∈ 8a∗C. Using the invertibility
of the second intertwining operator for genericλ ∈ 8a∗C we obtain (9.7).

Corollary 9.3. Let f ∈C∞(K : ξ ). Then for generic8λ ∈ 8a∗C,

〈 f , j(8P× 8Q : ξ :−λ̄ )(I8ξ )〉=
∫

8K
tr 8ξ

(
[A(8Q : 8P : 8ξ : 8λ )⊗ I) f ](8k, 8k)

)
d 8k. (9.10)

Proof. For generic8λ ∈ 8a∗C, the continuous linear endomorphismT := A(8Q : 8P : 8ξ :
8λ ) of C∞(8K : 8ξ ) has Hermitian adjointT∗ = A(8P : 8Q : 8ξ : −8λ̄ ). The result now
follows by combining Lemma 9.2, with−8λ̄ in place of8λ , and Lemma 9.1.
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The expression on the left-hand side of (9.10) is very closely related to an Eisen-
stein integral for the parabolic subgroupR= 8P× 8Q, defined as in Definition 8.4. This
will allow us to express the Eisenstein integral in terms of the group structure of8G.

To be more precise, letξ be as in (9.2) and let(τ,Vτ) be a finite dimensional unitary
representation ofK. We recall the definition of the spaceC(K : ξ : τ) and the definition
of the linear isomorphismT 7→ ψT from C(K : ξ : τ)⊗V(ξ ) ontoA2,M,ξ from (8.11)
and the surrounding text (note thatM0 = M).

SinceW = {e}, we have

A2,M,ξ =C∞
ξ (M/HM : τM).

SinceV(ξ ) = CI8ξ , it follows that the following map is a linear isomorphism;

f 7→ ψ f⊗I8ξ , C(K : ξ : τ) ≃
−→ C∞

ξ (M/HM : τM). (9.11)

It follows from (8.12) that

ψ f⊗I8ξ (m
−1) = 〈 f (m) , I8ξ 〉HS = tr 8ξ ( f (m)) (m∈M),

where the subscriptHSmeans that the Hilbert-Schmidt inner product is taken.

Corollary 9.4. With notation as in Corollary 9.3, let f∈C∞(K : ξ : τ). Then

E(8P× 8Q : ψ f⊗I8ξ : λ )(8x,e) = (9.12)

=
∫

8K
tr 8ξ

([(
A(8Q : 8P : 8ξ :−8λ )⊗π8Q,8ξ∨,8λ (

8x)
)

f
]
(8k, 8k)

)
d8k,

for 8x∈ 8G and genericλ ∈ a∗qC.

Proof. We note thatM0 = M, so thatK ∩M0 = M, ξM = ξ and the mapi# introduced
in (4.11) is just the identity map in the present setting. By application of Theorem 8.4
with R= 8P× 8Q in place ofP, we now find, taking into account thatρRh= 0, that the
Eisenstein integral on the left-hand side of (9.12) equals

〈 f , πR,ξ ,λ̄ (
8x,e) j(R : ξ : λ̄ )(I8ξ )〉= 〈 f , πR,ξ ,λ̄ (e,

8x−1) j(R : ξ : λ̄ )(I8ξ )〉, (9.13)

by H-invariance of j. Here 〈 · , · 〉 stands for the sesquilinear mapC∞(K : ξ : τ)×
C−∞(K : ξ )→ Vτ induced by the sesquilinear pairingC∞(K : ξ )×C−∞(K : ξ )→ C.
By equivariance of the pairing, (9.13) equals

〈πR,ξ ,−λ (e,
8x) f , j(R : ξ : λ̄ )(I8ξ )〉= 〈[I ⊗π8Q,8ξ∨,8λ (

8x)] f , j(R : ξ : λ̄ )(I8ξ )〉

By application of (9.10) we infer that the last displayed expression equals the integral
on the right-hand side of (9.12).
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We shall now relate the Eisenstein integral in (9.12) to Harish-Chandra’s Eisenstein
integral for the group. We agree to write

τ1(k)v= τ(k,e)v, and vτ2(k) := τ(e,k−1)v, (v∈Vτ ,k∈
8K).

Then(τ1, τ2) is a unitary bi-representation of8K in Vτ in the sense thatτ1 is a unitary
left representation andτ2 a unitary right representation of8K in Vτ and these two rep-
resentations commute. Clearly any such bi-representation(τ1,τ2) of 8K comes from
a unique unitary representationτ as above, andτ(k1,k2)v= τ(k1)vτ(k−1

2 ), for v∈Vτ
and(k1,k2) ∈ K. Givenτ as above, we agree to writeτM for the restriction ofτ to M.
Furthermore, we agree to writeτ j 8M for the restriction ofτ j to 8M, for j = 1,2. Then
τM corresponds to the bi-representation(τ18M,τ28M) of 8M.

LetC∞(8M : τM) denote the space of smooth functionsϕ := 8M→Vτ transforming
according to the rule

ϕ(m1mm2) = τ1(m1)ϕ(m)τ2(m2), (m,m1,m2 ∈
8M).

Then it is readily verified that pull-back under the mapm : (x,y) 7→ xy−1 induces a
linear isomorphism

m∗ : C∞(8M : τM)
≃
−→ C∞(M/HM : τM). (9.14)

The inverse of this isomorphism will be denoted by

ψ 7→ 8ψ, C∞(M/HM : τM)
≃
−→ C∞(8M : τM). (9.15)

By 8M× 8M-equivariance, it follows that the isomorphism (9.15) restricts to an isomor-
phism

C∞
ξ (M/HM : τM)≃C∞

ξ (
8M : τM). (9.16)

Here the space on the right-hand side is defined as the intersection ofC∞(8M : τM) with
the spaceCξ (

8M)⊗Vτ , whereCξ (
8M) denotes the isotypical component of typeξ for

the representationL×R of M in C(8M). Furthermore, the space on the left-hand side
of (9.16) is defined similarly.

Since (9.11) is an isomorphism, it now follows that the following map is a linear
isomorphism as well,

f 7→ 8ψ f⊗I8ξ , C(K : ξ : τ) ≃
−→ C∞

ξ (
8M : τM).

We now recall the definition of Harish-Chandra’s Eisensteinintegral associated with a
parabolic subgroup8Q∈P(8A). Given 8ψ ∈C∞(8M : τ8M) and8λ ∈ 8a∗C, we define the
function 8ψ8λ : 8M→Vτ by

8ψ8λ (
8n8a8m8k) = 8a

8λ+ρ8Q8ψ(8m)τ2(
8k), (9.17)
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for 8k∈ 8K, 8m∈ 8M, 8a∈ 8A and8n∈ N8Q. The Harish-Chandra Eisenstein integral for
the group8G is now defined by

EHC(
8Q : 8ψ : 8λ )(8x) =

∫

8K
τ1(

8k)−18ψ8λ (
8k8x) d8k, (9.18)

for 8λ ∈ 8a∗C and 8x ∈ 8G. We will derive a formula for the present type of Eisenstein
integral, which will allow comparison with (9.12). In the formulation of the following
lemma, we will use the natural identifications (9.3) and

C(K : ξ : τ) = (C∞(K : ξ )⊗Vτ)
K ≃

(
C∞(8K : 8ξ )⊗C∞(8K : 8ξ∨)⊗Vτ

)K
.

Furthermore, we will write tr8ξ as shorthand for the map

tr 8ξ ⊗ IVτ : End(H8ξ )⊗Vτ →Vτ .

Lemma 9.5. Let 8ξ ∈ 8M̂ and putξ = 8ξ ⊗ 8ξ∨. Furthermore, let f∈C∞(K : ξ : τ)
and put8ψ = 8ψ f⊗I8ξ . Then for all8λ ∈ 8a∗C,

EHC(
8Q : 8ψ f⊗I8ξ : 8λ )(8x) =

∫

8K
tr 8ξ

(
[ (I ⊗π8Q,8ξ∨,8λ (

8x)) f ](8k, 8k)
)

d 8k. (9.19)

Proof. We agree to writefλ for the unique function inC∞(G : 8Q× 8Q : ξ : λ )⊗Vτ
whose restriction toK equalsf .

The function8ψ := 8ψ f⊗I8ξ ∈C∞
ξ (

8M : τ0
M) is completely determined by

8ψ(e) = 〈 f (e,e) , I8ξ 〉HS= tr 8ξ [ f (e,e)].

In the second expression, we have used the bilinear map(Hξ⊗Vτ)×H̄ξ →Vτ induced
by the Hilbert-Schmidt inner product onHξ = End(H8ξ ).

We now observe that the function8ψλ defined by (9.17) can be expressed in terms
of f−λ in the following fashion;

8ψλ (
8x) = tr 8ξ [ f−λ (e,

8x)], (8x∈ 8G). (9.20)

It follows from the sphericality off that

tr 8ξ [ f−λ (
8x8k1,

8y8k2)] = τ1(
8k1)
−1tr 8ξ [ f−λ (

8x, 8y)]τ2(
8k2),

for 8x, 8y∈ 8G and8k1,
8k2 ∈

8K. We thus obtain from (9.20) that

τ1(
8k)−18ψ8λ (

8k8x) = tr 8ξ [ f−λ (
8k, 8k8x)] = tr 8ξ

([
(I ⊗π8Q,8ξ∨,8λ (

8x)) f
]
(8k, 8k)

)
.

Equation (9.19) now follows from (9.18).

The h-extreme parabolic subgroups inP(A) are the parabolic subgroups of the
form 8P× 8P with 8P∈P(8A). For these parabolic subgroups our Eisenstein integrals
essentially coincide with the unnormalized Eisenstein integrals of Harish-Chandra.
More precisely, the following result is valid.
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Corollary 9.6. Let 8P∈P(8A) andψ ∈C∞(M/HM : τ0
M). Then for all8x, 8y∈ 8G we

have
E(8P× 8P : ψ : λ )(8x, 8y) = EHC(

8P : 8ψ : 8λ )(8x8y−1), (9.21)

with λ = (8λ ,−8λ ), as an identity of meromorphic Vτ -valued functions of8λ ∈ 8a∗C.

Proof. The spaceC∞(M/HM : τ0
M) is spanned by the functions of the formψ f⊗I8ξ ,

where8ξ ∈ 8M∧, ξ = 8ξ ⊗ 8ξ∨ and f ∈C(K : ξ : τ). By linearity it therefore suffices
to establish (9.21) forψ = ψ f⊗I8ξ , with 8ξ and f as mentioned. Moreover, by right
H-invariance of the Eisenstein integral on the left-hand side, it suffices to prove the
result for8y= e. The claim now follows by comparison of (9.12) and (9.19).

Remark 9.7. In particular, we see that the Eisenstein integral on the left is holo-
morphic as a function ofλ ∈ a∗qC. As Σ(8P× 8P)− = /0, this can also be derived by
combining Theorem 8.4 with Remark 7.9.

Corollary 9.8. With notation as in Corollary 9.3, let f∈C∞(K : ξ : τ). Let ψ f⊗I8ξ ∈

C∞
ξ (M/HM;τM) be defined as in (9.11). Then

E(8P× 8Q : ψ f⊗I8ξ : λ )(8x, 8y) = (9.22)

= EHC(
8Q : 8ψ[(A(8Q:8P:8ξ :−8λ )⊗I) f ]⊗I8ξ

: 8λ )(8x8y−1),

for generic8λ ∈ 8a∗C, λ = (8λ ,−8λ ) and all 8x, 8y∈ 8G.

Proof. By right H-invariance of the Eisenstein integral on the left-hand side, it suffices
to prove the result for8y= e. It follows from (9.12) that

E(8P× 8Q : ψ f⊗I8ξ : λ )(8x,e) = E(8Q× 8Q : ψ[(A(8Q:8P:8ξ :−8λ )⊗I) f ]⊗I8ξ
: λ )(8x,e).

The identity now follows from (9.21).

Appendix: Fubini’s theorem for densities

In this appendix our purpose is to establish a Fubini type theorem for repeated inte-
gration in the setting of a Lie groupG with two closed subgroupsH andL such that
H ⊆ L. The Fubini theorem concerns repeated integration for densities on the total
space of the natural fiber bundle

π : L\G→ H\G, (A.1)

with fibers diffeomorphic toH\L. It expresses the integral over the total space as an
iterated integration, first over the fibers and then over the base space. In case of uni-
modular groups there is a well known version of such a Fubini theorem involving
invariant densities on the quotient spaces. In the case of non-unimodular groups such
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densities do not exist. Nevertheless, in this setting an appropriate formulation of iter-
ated integration can be given as well.

To describe it, we will first formulate and establish a Fubinitheorem for general
fiber bundles, and then specialize to the above situation.

If V is real linear space of finite dimensionn, then byDV we denote the space
of complex-valued densities onV, i.e., the (complex linear) space of functionsλ :
∧n(V) → C transforming according to the ruleλ (tξ ) = |t|λ (ξ ), for all t ∈ R and
ξ ∈ ∧nV. A densityλ is said to be positive ifλ (ξ ) > 0 for all non-zeroξ ∈ ∧nV.
By pull-back under the natural mapVn→ ∧nV we see that a density may also be
viewed as a mapVn→ C transforming according to the ruleλ ◦Tn = |detT|λ , for all
T ∈ End(V). This will be our viewpoint from now on. Note thatDV has dimension 1
overC. If W is a second real linear space of the same dimensionn andA : V →W a
linear map, then pull-back underA is the mapA∗ : DW→DV defined by

A∗µ = µ ◦An, (µ ∈DW).

Lemma A.1. Let E,F be finite dimensional real linear spaces. ThenDE⊕F ≃ DE⊗
DF naturally.

Proof. Let p and q be the dimensions ofE and F respectively and putn = p+ q.
We consider the natural isomorphismµ : ∧pE⊗∧qF → ∧n(E⊕F). Given α ∈ DE

andβ ∈ DF , we defineα ⊠β : ∧pE⊗∧qF → C by α ⊠β (ξ ×η) = λ (ξ )µ(η). We
note that this definition is unambiguous, and that(α ⊠β ) ◦ (t ·) = |t|(α ⊠β ), so that
(α,β ) 7→ α ⊠ β ◦µ−1 defines a bilinear map fromDE×DF to DE⊕F . The induced
mapDE⊗DF → DE⊕F is a non-trivial linear map between one dimensional complex
linear spaces, hence a linear isomorphism.

From now on we shall identifyDE⊕F with DE⊗DF via the isomorphism given in
the proof of the above lemma.

The lemma can be generalized to the setting of short exact sequences as follows.
Let

0→ E′
i
−→ E

p
−→ E′′→ 0 (A.2)

be a short exact sequence of finite dimensional real linear spaces of dimensionsk,n
andn−k. We recall that a linear mapf : E′′→ E is said to be splitting ifp◦ f = idE′′.
Associated withf is an isomorphismi⊕ f : E⊕E′′→ E, which by pull-back induces
a natural isomorphism

(i⊕ f )∗ : DE′⊗DE′′ = DE′⊕E′′
≃
−→DE. (A.3)

Lemma A.2. The isomorphism (A.3) is independent of the splitting map f.

Proof. Let g be a second splitting map. Then(i⊕ f )∗−(i⊕g)∗ = (i⊕( f −g))∗. Now
f −g mapsE′′ into kerp = i(E′) so thati⊕ ( f −g) mapsE′⊕E′′ into the subspace
i(E′) of E. It follows that(i⊕ ( f −g))∗ = 0 so that(i⊕ f )∗ = (i⊕g)∗.
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From now on, given a short exact sequence of the form (A.2) we shall identify
elements of the spacesDE′ ⊗DE′′ and DE via the isomorphism(i ⊕ f )∗, which is
independent of the choice off .

We now turn to manifolds. LetM,N be smooth manifolds andϕ : M→N a smooth
map. Then byTϕ : TM→ TN we denote the induced map between the tangent bun-
dles. For a givenx ∈ M, this map restricts to the tangent mapTxϕ : TxM → Tϕ(x)N,
which will also be denoted bydϕ(x).

By DM we denote the complex line bundle of densities onM. The fiber of this
bundle at a pointx∈M is equal toDTxM. The space of continuous densities is denoted
by Γ(DM). If dim M = dimN then the smooth mapϕ : M → N induces a pull-back
mapϕ∗ : Γ(DN)→ Γ(DM), given by

ϕ∗(µ)x = dϕ(x)∗µϕ(x), (µ ∈ Γ(DN), x∈M).

There is notion of integration of compactly supported continuous densities on man-
ifolds for which the substitution of variables theorem is valid. More precisely, if
ϕ : M→ N is a diffeomorphism of smooth manifolds, then

∫

N
µ =

∫

M
ϕ∗(µ), (µ ∈ Γ(N)). (A.4)

Let π : F → B be a smooth fiber bundle. LetDF denote the density bundle onF.
We may introduce a bundle of fiber densities onF as follows. The mapπ induces
the homomorphismTπ : TF→ TB of vector bundles. The kernelK = kerTπ of this
bundle is a subbundle ofTF. Obviously, the fiber ofK at p∈ F may be viewed as the
tangent space of the fiberFπ(p) at the pointp. The associated bundlep 7→ DKp is a
smooth complex line bundle onF, which we shall call the bundle of fiber densities on
F. We shall denote this bundle byDB

F .
On the other hand, the fiber product or pull-back bundleπ∗(DB) := F×π DB of DB

underπ is a complex line bundle onF. We shall denote the associated canonical line
bundle homomorphismπ∗(DB)→DB by π̃ .

The short exact sequence 0→ K → TF→ π∗(TB)→ 0 of vector bundles onF
naturally induces a line bundle isomorphism

D
B
F ⊗π∗(DB)≃DF , (A.5)

via which we shall identify elements of these spaces. Here naturality means that for
a fiber bundle morphismϕ from π to a bundleπ ′ : F ′→ B′ with dimF ′ = dimF and
dimB′ = dimB the following diagram commutes:

DB
F ⊗π∗(DB)

≃
−→ DF

(Tϕ)∗⊗(Tϕ)∗ ↓ ↓ (Tϕ)∗

DB′
F ′ ⊗ (π ′)∗(DB′)

≃
−→ DF ′

(A.6)

Let nowb∈Band letFb the fiberπ−1(b) of F aboveb. Obviously, the restriction ofDB
F

to this fiber is naturally isomorphic toDFb, the density bundle of the fiber. On the other
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hand, viaπ̃ the restriction of the bundleπ∗(DB) to Fb may be identified with the trivial
bundleFb×DTbB. Accordingly, we obtain natural isomorphismsDFb⊗DTbB≃DF |Fb,
and

Γ(DF |Fb)≃ Γ(DFb)⊗CDTbB.

Integration over the fiber gives a natural linear map

Ib : Γc(DFb)→ C, µ 7→
∫

Fb

µ.

By transfer we obtain a natural mapIb⊗ id : Γc(DF |Fb)→ DTbB. We now define the
push-forward mapπ∗ : Γc(DF)→ sect(DB), by

π∗(µ)(b) := (Ib⊗ id)(µ|Fb). (A.7)

Here sect(DB) denotes the space of all (not-necessarily continuous) sections ofDB.
By the naturality of the constructions and the invariance ofintegration as formu-

lated in (A.4), one readily checks that the notion of push-ward of compactly supported
densities is invariant under isomorphisms of bundles.

Lemma A.3. Let ϕ be an isomorphism from the fiber bundleπ : F → B to a second
fiber bundleπ ′ : F ′→ B′ and letϕ◦ denote the induced diffeomorphism B→ B′. Then
the following diagram commutes:

Γc(DF ′)
ϕ∗
−→ Γc(DF)

π ′∗ ↓ ↓ π∗
Γc(DB′)

ϕ∗◦−→ Γc(DB)

We can now establish the following Fubini type theorem for the integration of
densities over fiber bundles.

Lemma A.4. The mapπ∗ mapsΓc(DF) (respectivelyΓ∞
c (DF)) continuous linearly to

Γc(DB) (respectivelyΓ∞
c (DB)). Moreover, for allµ ∈ Γc(DF),

∫

F
µ =

∫

B
π∗(µ). (A.8)

Proof. By using partitions of unity, and invoking invariance of integration, cf. (A.4),
and Lemma A.3, we may reduce the proof to the case thatB is open inRn and that
F = B×V, with V an open subset of Euclidean spaceRk. In that case the result comes
to down to continuous and smooth parameter dependence and Fubini’s theorem for
Riemann integrals of continuous functions.

Corollary A.5. Let µ be a measurable section ofDF . Then the following statements
are equivalent.

(a) The densityµ is absolutely integrable.
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(b) For almost every b∈ B the integral forπ∗(µ)b is absolutely convergent and the
resulting densityπ∗(µ) is absolutely integrable over B.

If any of these conditions is fulfilled, then (A.8) is valid.

Proof. This follows by reduction to Fubini’s theorem through the use of partitions of
unity, as in the proof of Lemma A.4

We will now apply the above result to the particular setting of a Lie groupG with
closed subgroupsH andL such thatH ⊆ L. As said at the start of this appendix, this
setting gives rise to the natural fiber bundle (A.1) with fiberdiffeomorphic toL\H.

Let ∆L\G : L→ R+ be the positive character given by

∆L\G(l) = |detAdG(l)g/l|
−1, (l ∈ L), (A.9)

where AdG(l)g/l ∈ GL(g/l) denotes the map induced by the adjoint map AdG(l) ∈
GL(g). Given a characterξ of L we denote byC(G : L : ξ ) the space of continuous
functions f : G→ C transforming according to the rule

f (lx) = ξ (l) f (x),

for x∈ G and l ∈ L. We denote byM (G) the space of measurable functionsG→ C

and byM (G : L : ξ ) the space off ∈M (G) transforming according to the same rule.
Given f ∈M (G) andω ∈Dg/l, we denote byfω the functionG→DL\G defined

by
fω(x) = f (x)drx(e)

−1∗ω.

Lemma A.6. Let ω ∈ Dg/l \ {0}. Then the map f7→ fω defines a continuous linear
isomorphism from C(G : L : ∆L\G) ontoΓ(DL\G).

Proof. Write ∆ = ∆L\G. In the proof we will use the notation[e] for the image ofe in
L\G. Moreover, we will use the canonical identificationT[e](L\G) ≃ g/l. Let ω be as
stated, and letf ∈C(G : L : ∆). Then forx∈ G we havefω(x) ∈DT[x](L\G). Let l ∈ L,
then

fω(lx) = ∆(l) f (x)drlx([e])
−1∗ω

= ∆(l) f (x)drx([e])
−1∗drl ([e])

−1∗ω
= ∆(l) f (x)drx([e])

−1∗Ad(l)∗ω
= fω(x)

It follows that fω factors through a smooth mapL\G→ DL\G, with fω(x) a density
on T[x](L\G). Accordingly, fω defines a section ofDL\G, which clearly is continuous.
The bijectivity of the mapf 7→ fω from C(G : L : ∆) ontoΓ(DL\G) is obvious.
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Our next goal is to calculate the push-forwardπ∗( fω), for ω ∈Dg/l and f ∈C(G :
L : ∆L\G), andπ : L\G→H\G the canonical projection.

We note thatπ is a fiber bundle with total spaceF = L\G, base spaceB = H\G
and fiber diffeomorphic toL\H. Thus, we have the natural isomorphism (A.5).

If x ∈ G, then the diffeomorphismrF
x : F → F,z 7→ zxdefines an isomorphism of

fiber bundles over the diffeomorphismrB
x defined by right multiplication onB, i.e., the

following diagram commutes,

F
rF
x−→ F

↓ ↓

B
rB
x−→ B.

In the sequel we shall use the commutativity of the diagram (A.6) with F = F ′, B= B′

andϕ = rF
x .

In particular, it follows that(drF
x )
∗⊗ (drF

x )
∗ ∈ End(DB

F ⊗ π∗DB) corresponds to
the naturally induced automorphism(drF

x )
∗ of DF .

We fix non-zero elementsωL\G ∈Dg/l, ωL\H ∈Dh/l andωH\G ∈Dg/h such that

ωL\H⊗ωH\G = ωL\G (A.10)

with respect to the identification determined by the short exact sequence 0→ h/l→
g/l→ g/h→ 0. This short exact sequence may be identified with the short exact se-
quence of tangent spaces

0→ T[e](L\H)
di([e])
−→ T[e](L\G)

dπ([e])
−→ T[e](H\G)→ 0,

wherei : L\H →֒ L\G denotes the natural embedding ofL\H onto the fiberπ−1([e]).
Accordingly, formula (A.10) may be viewed as an identity of elements associated with
the decomposition

(DB
F )[e]⊗ (DB)[e] = (DF)[e].

Lemma A.7. Let ωL\H ,ωH\G andωL\H satisfy (A.10). Then for all h∈ H and x∈G,

drhx([e])
−1∗ωL\H = ∆H\G(h)

−1(drhx([e])
−1∗ωL\H⊗drx([e])

−1∗ωH\G

)
, (A.11)

in accordance with the decomposition(DB
F )[hx]⊗(DB)[x] = (DF)[hx], corresponding to

(A.5).

Proof. Let h∈ H, thendrh(e)−1∗(ωH\G) = Ad(h)∗ωH\G = ∆H\G(h)−1ωH\G and we see
that

drh([e])
−1∗ωL\G = ∆H\G(h)

−1(drh([e])
−1∗ωL\H⊗ωH\G

)
. (A.12)

Let nowx∈G, then in view of theG-equivariance of the fiber bundleF → B formula
(A.11) follows by application ofdrx([h])−1∗ to both sides of the identity (A.12).
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Theorem A.8. Let ωL\G,ωH\G andωL\H satisfy (A.10). Letϕ ∈M (G : L : ∆L\G) and
let ϕωL\G

be the associated measurable density on L\G. Then the following assertions
(a) and (b) are equivalent

(a) The densityϕωL\G
is absolutely integrable.

(b) There exists a left H-invariant subsetZ of measure zero in G such that

(1) for every x∈G\Z , the integral

Ix(ϕ) =
∫

L\H∋[h]
∆H\G(h)

−1ϕ(hx)drh([e])
−1∗ωL\H , (A.13)

is absolutely convergent;

(2) the function I(ϕ) : x 7→ Ix(ϕ) belongs toM (G : H : ∆H\G);

(3) the associated density I(ϕ)ωH\G
is absolutely integrable.

Furthermore, if any of the conditions (a) and (b) are fulfilled, then
∫

L\G
ϕωL\G

=

∫

H\G
I(ϕ)ωH\G

. (A.14)

Proof. We retain the notation introduced before the statement of the theorem. Then
for x∈G andh∈ H the associated density atLhx is given by

ϕωL\G
(hx) = ∆L\H(h)

−1ϕ(hx)
(
drhx([e])

−1∗ωL\H⊗drx([e])
−1∗ωH\G

)
, (A.15)

in accordance with the decomposition corresponding to (A.5).
We will deduce the result from applying Corollary A.5 to the fibre bundle given

by the canonical projectionπ : F := L\G→ B := H\G and to the measurable density
µ := ϕωL\G

onF.
The crucial step is to prove the claim that forx ∈ G, the integral for the push-

forwardπ∗(ϕωL\G
)(Hx) converges absolutely if and only if the integral forIx(ϕ) con-

verges absolutely. We will first establish this claim.
It follows from (A.7) that the push-forward ofϕωL\G

underπ is the density onH\G
given by the following fiber integral

π∗(ϕωL\G
)(Hx) =

(∫

π−1(Hx)
νx

)
⊗drx([e])

−1∗ωH\G, (A.16)

whereπ−1(Hx) = rx(L\H), and whereνx is the density onrx(L\H) given by

νx(Lhx) = ∆L\H(h)
−1ϕ(hx)drhx([e])

−1∗ωL\H .

The convergence and value of this integral depends onx through its classHx. We
now observe thatrx defines a diffeomorphism from the fiberπ−1(He) onto the fiber
π−1(Hx). Moreover,

[r∗xνx](Lh) = drx([h])
−1∗νx(Lhx) = ∆L\H(h)

−1ϕ(hx)drh([e])
−1∗ωL\H .
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Thus,Ix(ϕ) equals the integral ofr∗xνx overL\H, and by invariance of integration we
see that it converges absolutely if and only if the integral for π∗(ϕωL\G

)(Hx) converges
absolutely. Moreover, in case of convergence we have

Ix(ϕ) =
∫

L\H
r∗x(νx) =

∫

π−1(Hx)
νx,

so that
π∗(ϕωL\G

)(Hx) = Ix(ϕ)drx([e])
−1∗ωH\G = I(ϕ)ωH\G

(Hx). (A.17)

This establishes the claim.
The equivalence of (a) and (b) now readily follows from the similar equivalence in

Corollary A.5. Finally, if any of these conditions is fulifilled, both are, and in view of
(A.17), the identity (A.14) follows from the final assertionof Corollary A.5.
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