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The notion of cusp forms for a class of reductive
symmetric spaces of split rank one

Erik P. van den Ban, Job J. Kuit∗ and Henrik Schlichtkrull

Abstract

We study a notion of cusp forms for the symmetric spacesG/H with G =
SL(n,R) andH = S

(
GL(n−1,R)×GL(1,R)

)
. We classify all minimal parabolic

subgroups ofG for which the associated cuspidal integrals are convergentand dis-
cuss the possible definitions of cusp forms. Finally, we showthat the closure of the
direct sum of the discrete series of representations ofG/H coincides with the space
of cusp forms.

Introduction

In this article we investigate the convergence of certain integrals that can be used to give
a notion of cusp forms on the symmetric spaceSL(n,R)/S

(
GL(n− 1,R)×GL(1,R)

)
,

which we here denote byXn. Furthermore, we determine the relation between the dis-
crete series representations and the space of cusp forms forthese spaces.

Harish-Chandra defined a notion of cusp forms for reductive Lie groups and proved
that the space of cusp forms coincides with the closed span intheL2-Schwartz space of
the discrete series of representations. This fact plays an important role in his work on the
Plancherel decomposition. In [1] a notion of cusp forms for real hyperbolic spaces was
introduced, following a more general suggestion by M. Flensted-Jensen. Subsequently, in
[4], the first and second author gave a definition of cusp formsfor split rank1 reductive
symmetric spaces. However, the notion of [4] deviates from the general suggestion of
Flensted–Jensen at an important point. The main purpose of the present article is to
explore the necessity of this deviation.

In order to give a precise description of the purpose of the present article we first
recall some background. LetG be semisimple and letG/H be a symmetric space of split
rank1; hereH is an open subgroup of the group of fixed points of an involution σ of G.
Every minimal parabolic subgroupP of G contains aσ-stable maximal split connected
abelian subgroupAP ofG. The set of minimal parabolic subgroups decomposes into two
disjoint sets: the setP of P such thatAP/(AP ∩H) is 1 dimensional and the setQ of P
such thatAP/(AP ∩H) is 0 dimensional, i.e.,AP ⊆ H.

∗Supported by the Danish National Research Foundation through the Centre for Symmetry and Defor-
mation (DNRF92).
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The main goal is now to identify a suitable class of minimal parabolic subgroupsP
with the property that for everyφ in the Harish-Chandra Schwartz spaceC(G/H) the
integral ∫

NP /(NP∩H)

φ(n) dn (I.1)

is absolutely convergent. HereNP denotes the unipotent radical ofP anddn is anNP -
invariant Radon measure onNP/(NP ∩H). A cusp form is then defined to be a function
φ ∈ C(G/H) such that ∫

NP /(NP∩H)

φ(gn) dn = 0 (I.2)

for every such parabolic subgroupP and everyg ∈ G.
Flensted-Jensen has suggested to use the set of parabolic subgroups that can be char-

acterized as follows,

P∗ := {P ∈ P : dim(NP ∩H) = max
Q∈P

dim(NQ ∩H)}.

These parabolic subgroups are said to beh-extreme, see [4, Def. 1.1] for an equivalent
characterization.

In [1] it was confirmed for real hyperbolic spaces that the integral is absolutely con-
vergent forP ∈ P∗ and for everyφ ∈ C(G/H).

In [4] a notion calledh-compatibility was introduced for parabolic subgroupsP ∈ P
by imposing a condition on the roots that are positive forP . For the spacesXn this
condition is recalled in Definition 2.5. It was proved in [4] that forh-compatible parabolic
subgroupsP ∈ P the integrals (I.1) are absolutely convergent. Let

Ph := {P ∈ P : P is h-compatible}.

For real hyperbolic spaces this set equalsP∗, but in general this need not be the case.
The difference occurs for example for the symmetric spacesXn. If n ≥ 4 thenP∗ is
not contained inPh, and ifn ≥ 3 is odd thenPh is not contained inP∗. Therefore, the
family Xn is a good test-case for determining whether or not the need for h-compatible
parabolic subgroups in [4] is an artefact of the proof, and whether or not the dimension
of NP ∩H is relevant for the convergence of the integrals.

In Section 1 we describe some generalities concerning parabolic subgroups. The
results in this section hold for any reductive symmetric space. In Section 2 we describe
the polar decomposition ofXn and the Harish-Chandra Schwartz spaceC(Xn) of Xn.
Our main results are formulated in Section 3 and proved in theremaining sections.

The first main result (Theorem 3.1) is a classification of all minimal parabolic sub-
groupsP such that the integral (I.1) is absolutely convergent for all φ ∈ C(Xn). We
extend the notion ofh-compatibility to all minimal parabolic subgroupsP (not just those
in P, but also the ones inQ). We then show that (I.1) is absolutely convergent for all
φ ∈ C(Xn) if and only if P is h-compatible.

The second main result (Theorem 3.2) describes the behaviorat infinity of the func-
tion

HPφ : AP → C; a 7→ aρP
∫

NP /(NP∩H)

φ(an) dn, (I.3)
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for P ∈ Ph ∩ P∗ andφ ∈ C(Xn). In particular it is shown that ifn is even, thenHPφ
is rapidly decreasing; ifn is odd, thenHPφ is rapidly decreasing in one direction, while
it converges to a possibly non-zero limit in the other direction. Moreover, for everyh-
compatibleP ∈ Q there exists aP ′ ∈ Ph ∩ P∗ and ag ∈ G such that the integral (I.1)
equals a limit ofHP ′

(
φ(g · )

)
.

As a consequence of Theorem 3.2, we will show in Proposition 3.3 that if (I.2) holds
for all P ∈ Ph ∩ P∗, then (I.2) holds for allh-compatible parabolic subgroups. This and
Theorem 3.1 justifies the use ofPh ∩ P∗ in the definition of cusp forms for reductive
symmetric space of split rank1.

In [1] it was shown that there exist discrete series representations for certain real
hyperbolic spaces for which the generating functions are not cusp forms. These discrete
series representations are called non-cuspidal. Using theresults of [4] and the estimates
from Theorem 3.2 for the behavior at infinity of (I.3), we showthat forXn there are no
non-cuspidal discrete series representations. Our final main result (Theorem 3.6) is thus
that the space of cusp forms onXn coincides with the closed span of the discrete series
of representations forXn.

For other papers concerning the particular symmetric spaceXn, see for example [12],
[11], [6], [7] and [16].

We would like to thank Mogens Flensted-Jensen for many fruitful discussions related
to the present work.

1 Parabolic subgroups and split components

In this preliminary chapter we collect some properties which are valid for general reduc-
tive symmetric spacesG/H. HereG is a reductive Lie group of the Harish-Chandra class
andH is an open subgroup of the group of fixed points for an involutionσ of G. We are
concerned with properties ofσ-stable connected split abelian subgroups and parabolic
subgroups ofG. The main result is that every parabolic subgroupP of G contains aσ-
stable maximal split abelian subgroupA of G, which is unique up to conjugation by an
element ofNP ∩H.

1.1 Split abelian subalgebras

We writeg = h⊕ q for the eigenspace decomposition for the infinitesimal involution σ.
Hereh is the Lie algebra ofH andq is the−1 eigenspace. Recall that an abelian subspace
a of g is called split ifg decomposes as a sum of jointa-weight spaces.

Lemma 1.1. Leta be aσ-stable maximal split abelian subalgebra ofg. Then there exists
a σ-stable Cartan decompositiong = k⊕ p with a ⊆ p.

Proof. From the construction in [10, Thms. 6.10, 6.11] it follows that there exists a Cartan
involution θ0 such thatθ0(X) = −X for X ∈ a. Sincea is σ-stable, the construction in
the proof of [8, Thm. III.7.1], applied toθ0 andσ, gives a Cartan involutionθ which in
addition commutes withσ.
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Definition 1.2. We defineAq to be the set of all maximal split abelian subspacesb of q,
andA to be the set of all maximal split abelian subalgebrasa of g for whicha ∩ q ∈ Aq.
Thesplit rankof G/H is the dimension of anyb ∈ Aq (it will follow from Corollary 1.5
below that this is well defined).

Note thatH acts onAq andA by conjugation.

Lemma 1.3. If a ∈ A, thena is σ-stable.

Proof. Let Y ∈ a. ThenY andσY both commute witha ∩ q and henceY − σY ∈ a ∩ q

by maximality. Hence,σY ∈ a.

Proposition 1.4. A subspacea ⊆ g belongs toA if and only if there exists aσ-stable
Cartan decompositiong = k⊕p such thata is maximal abelian inp anda∩q is maximal
abelian inp ∩ q. The action ofH onA by conjugation is transitive.

Proof. Let A′ denote the set of subspacesa ⊆ g for which there exists aσ-stable Cartan
decompositiong = k⊕p such thata is maximal abelian inp anda∩q is maximal abelian
in p ∩ q. It follows from [14, Lemmas 4,7] thatH acts transitively onA′.

It follows from Lemma 1.1 and Lemma 1.3 thatA ⊆ A′. Hence,A = A′.

Corollary 1.5. A subspaceb ⊆ q belongs toAq if and only if there exists aσ-stable
Cartan decompositiong = k⊕ p such thatb is a maximal abelian subspace ofp∩ q. The
action ofH onAq by conjugation is transitive.

Proof. Let b ∈ Aq and leta ∈ A with b = a ∩ q. The asserted Cartan decomposition
exists according to Proposition 1.4.

Conversely, letb ⊆ q and assume thatb is maximal abelian inp∩q for someσ-stable
Cartan decompositiong = k ⊕ p. Let a ⊆ p be a maximal abelian subspace witha ⊃ b.
Thena ∩ q = b by maximality. It follows from Proposition 1.4 thata ∈ A and hence
b ∈ Aq.

The transitivity of the action follows from the corresponding statement in Proposition
1.4.

1.2 Parabolic subgroups

We recall that ifP andQ are parabolic subgroups, thenQ is called opposite toP if P ∩Q
is a common Levi subgroup ofP andQ. If P is a parabolic subgroup we writeNP for
its unipotent radical. Recall also that asplit componentof P is a maximal connected split
subgroup of the center of a Levi subgroup ofP .

Note that a parabolic subgroupP is minimal if and only if the Lie algebras of its split
components are maximal split ing. Note also that ifa is a maximal split abelian subalge-
bra ofg andA = exp(a), then the normalizerNG(A) of A in G acts by conjugation on
the set of minimal parabolic subgroups containingA. This action is transitive.

Lemma 1.6. Let P be a minimal parabolic subgroup. IfA andB are two split compo-
nents ofP , then there exists a uniquen ∈ NP such thatB = nAn−1.
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Proof. There existsg ∈ G such thatB = gAg−1. ThenP andg−1Pg both containA and
henceg−1Pg = wPw−1 for somew ∈ NG(A). The productgw normalizesP and thus
belongs toP . The existence ofn now follows by decomposing this element according to
the Levi decompositionP = ZG(A)NP .

Now assume thatn1, n2 ∈ NP satisfyB = n1,2An
−1
1,2. Thenn−1

1 n2 centralizesA and
thusn−1

1 n2 ∈ ZG(A) ∩NP = {e}. This proves uniqueness.

Lemma 1.7. LetP andQ be minimal parabolic subgroups. Assume thatP andQ have
common split componentsA andB. Then there exists a uniquen ∈ NP ∩ NQ such that
B = nAn−1.

Proof. By Lemma 1.6 there exists a uniquen ∈ NP such thatB = nAn−1. It suffices to
show thatn ∈ NQ. Let a ∈ A be dominant with respect toP . Then for everyk ∈ N we
havea−knakn−1 ∈ a−kB ⊆ Q. SinceQ is a closed subgroup anda−knakn−1 converges
ton−1 for k → ∞, it follows thatn ∈ Q. Furthermore, sincen ∈ NP , the elementlog(n)
is a sum ofa-weight vectors with non-zero weights. This implies thatn ∈ NQ.

Theorem 1.8.LetP be a minimal parabolic subgroup.

(i) There exists aσ-stable split componentA of P .

(ii) If A andB are twoσ-stable split components ofP , then there exists a uniquen ∈
NP ∩H such thatB = nAn−1.

Proof. See [17, Lemma 12] for a proof that uses [15] and only applies to algebraic groups.
An alternative proof is given in [9, Lemma 2.4], also under the assumption of algebraic
groups. The statement(i) is proved without this assumption in [14, Lemma 2], and hence
we only need to prove(ii) .

If A andB are twoσ-stable split components ofP , then by Lemma 1.7 there exists a
uniquen ∈ NP ∩ σ(NP ) such thatB = nAn−1. Observe that

B = σ(B) = σ(n)σ(A)σ(n)−1 = σ(n)Aσ(n)−1.

From the uniqueness ofn we conclude thatσ(n) = n, or equivalently,n ∈ NP ∩H.

The preceding theorem allows for the following definition.

Definition 1.9. Let P be a minimal parabolic subgroup and letA be aσ-stable split
component ofP . We define theσ-parabolic rank ofP to be the dimension ofA/(A∩H).

We writeP for the set of minimal parabolic subgroups of maximalσ-parabolic rank.
(Note thatP ∈ P if and only if P admits a split componentA = exp a with a ∈
A.) Furthermore, we writeQ for the set of all minimal parabolic subgroups of mini-
mal σ-parabolic rank. Ifa ∈ A, then we writeP(a) for the set of minimal parabolic
subgroups containingexp a. Note thatP(a) ⊆ P. If b is a σ-stable maximal split
abelian subalgebra ofg such thatb ∩ h has maximal dimension, then we writeQ(b)
for the set of minimal parabolic subgroups containingexp b. Note thatQ(b) ⊆ Q.

5



Corollary 1.10.

(i) Let a ∈ A and letP ∈ P. Then there exists an elementh ∈ H such thathPh−1 ∈
P(a).

(ii) Let b be aσ-stable maximal split abelian subalgebra ofg such thatb∩h has maximal
dimension. Then for everyQ ∈ Q there exists an elementh ∈ H such thathQh−1 ∈
Q(b).

Proof. Ad (i): There exists ab ∈ A such thatexp b ⊆ P . By Proposition 1.4 there exists
anh ∈ H such thatA = hBh−1. This implies thatA is contained inhPh−1.

Ad (ii): The claim follows from the fact that all such subalgebras areH-conjugate.
See Lemma 1.1 and [14, Lemmas 4,7].

1.3 Positive systems ofh-roots

Let A be aσ-stable connected maximal split abelian subgroup ofG and leta be its Lie
algebra. We writeΣ(a) for the root system ofa in g. Given a rootα ∈ Σ(a), we writegα
for the associated root space.

Definition 1.11. By anh-root inΣ(a) we mean a rootα ∈ Σ(a) such thatgα ∩ h 6= {0}.
The set of such roots is denoted byΣh(a).

Proposition 1.12.

(i) If α ∈ Σh(a), thenα
∣∣
a∩q = 0.

(ii) Zh(a ∩ q) is a reductive Lie algebra of whicha ∩ h is a maximal split abelian
subalgebra. The root system ofa ∩ h in Zh(a ∩ q) equalsΣh(a), viewed as a subset
of (a ∩ h)∗.

(iii) Assume thata ∈ A. ThenΣh(a) = Σ(a) ∩ (a ∩ h)∗. Furthermore, ifα ∈ Σh(a),
thengα ⊆ h.

Proof. Ad (i): If gα∩h 6= {0}, thengσα∩gα = σ(gα)∩gα 6= {0}. This impliesσα = α.
Ad (ii): Let θ be a Cartan involution giving rise to a Cartan decompositionas in

Lemma 1.1. SinceZh(a ∩ q) is θ-stable, it follows from [10, Cor. 6.29] thatZh(a ∩ q) is
reductive. The maximality ofa implies thata ∩ h is a maximal split abelian subalgebra
of Zh(a ∩ q). Let Φ be the root system ofa ∩ h in Zh(a ∩ q). It follows from (i) that
α|a∩h ∈ Φ for everyα ∈ Σh(a). Now letβ ∈ Φ and letα ∈ a∗ be given byα|a∩h = β and
α|a∩q = 0. Thengα ∩ h contains the root space ofβ, henceα ∈ Σh(a). We conclude that
Φ = Σh(a).

Ad (iii): It suffices to prove that under the given assumption,gα ⊆ h for everyα ∈
Σ(a) that vanishes ona ∩ q. Let α be such a root and letX ∈ gα ∩ q. We writeθ for a
Cartan involution giving rise to a Cartan decomposition as in Lemma 1.1. SinceX is in
the centralizer ofa ∩ q, it follows from the maximality ofa ∩ q thatX − θ(X) ∈ a ∩ q.
SinceX − θ(X) ∈ gα ⊕ g−α, it follows thatX − θ(X) = 0 and thereforeX = 0.
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If P ∈ P(a), then we writeΣ(a;P ) for the positive system ofΣ(a) consisting of
roots that are positive with respect toP . In other words, a rootα ∈ Σ(a) is an element of
Σ(a;P ) if and only if the root spacegα is contained innP .

We fix a positive systemΣ+
h (a) of Σh(a).

Corollary 1.13. Let Q be a minimal parabolic subgroup and letA be aσ-stable split
component ofQ. ThenQ is NH(a ∩ h) ∩ ZH(a ∩ q)-conjugate to a minimal parabolic
subgroupP such that

Σ+
h (a) ⊆ Σ(a;P ).

Proof. The setΣh(a)∩Σ(a;Q) is a positive system for the root systemΣh(a). It follows
from Proposition 1.12(ii) that each such positive system is conjugate toΣ+

h (a) by an
element of the normalizer ofa ∩ h in ZH(a ∩ q).

2 The symmetric space under consideration

2.1 The spaceXn

For the remainder of this articlen will be a natural number withn ≥ 3 andG will be the
real Lie groupSL(n,R). Let σ be the involution onG given by

σ(g) = SgS−1,

where

S = S−1 =




−1

In−2

−1



 .

The fixed point subgroupH of σ is obtained from the subgroupS
(
GL(n − 1,R) ×

GL(1,R)
)

of G (embedded in the usual manner) by conjugation with the orthogonal
matrix

κ =




1√
2

1√
2

In−2
−1√
2

1√
2



 . (2.1)

We denote the2n− 2 dimensional reductive symmetric spaceG/H byXn.
Let θ be the Cartan involution given by

θ(g) = (g−1)t,

and letK be the fixed point subgroup ofθ, i.e.,K is the maximal compact subgroup
SO(n). SinceS is orthogonal, the involutionsσ andθ commute. The Lie algebrag of G
admits the decompositiong = h⊕ q into the eigenspaces forσ. Here

h =
{



−trx
2

vt y
w x −w
y −vt −trx

2


 : x ∈ Mat(n− 2,R), y ∈ R, v ∈ R

n−2, w ∈ R
n−2

}
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is the Lie algebra ofH and

q =
{



z vt y
w w
−y vt −z



 : y ∈ R, z ∈ R, v ∈ R
n−2, w ∈ R

n−2
}
.

Similarly, we have the Cartan decompositiong = k⊕ p; herek equalsso(n) andp equals
the space of traceless symmetricn× n matrices. We note that

aq := R diag(1, 0, . . . , 0,−1)

is a maximal abelian subspace ofp ∩ q. Hence, the split rank ofXn is equal to1. We put
Aq := exp(aq) and fort ∈ R we defineat ∈ Aq by

at := exp
(
t diag(1, 0, . . . , 0,−1)

)
. (2.2)

2.2 Polar decomposition

The spaceXn admits a polar decomposition: the map

K × Aq → Xn; (k, a) 7→ ka ·H

is surjective. Ifa · H ∈ Ka′ · H for a,a′ ∈ Aq, then there exists ak in NK∩H(aq), the
normalizer ofaq in K ∩H, such thata = ka′k−1. In fact, since the action ofNK∩H(aq)
onaq is length-preserving (with respect to the Killing form) and

k0 =




0 0 1
0 −1 0

In−3

1 0 0


 (2.3)

is an element inK∩H such thatk0ak
−1
0 = a−1 for everya ∈ Aq, we havea·H ∈ Ka′ ·H

if and only if a′ ∈ {a, a−1}.

Lemma 2.1. Let g ∈ G andt ∈ R. If g ∈ Kat ·H, then

‖gσ(g)−1‖2HS = n− 2 + 2 cosh(4t),

where‖ · ‖HS denotes the Hilbert-Schmidt norm onMat(n,R).

Proof. A straightforward computation shows that

‖gσ(g)−1‖2HS = tr
(
gσ(g)−1

(
gσ(g)−1

)t)
= tr (a4t ).

The result now follows from the fact thata4t equals the matrixdiag(e4t, 1, . . . , 1, e−4t).
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2.3 Schwartz functions

In this section we give a definition of the space of Schwartz function onXn. This def-
inition differs from the one in [3, Sect. 17], but it is easilyseen from [3, Thm. 17.1,
Prop. 17.2] combined with Remark 4.5 of the present paper, that the definitions are equiv-
alent.

Definition 2.2. A Schwartz function onXn is a smooth functionφ : Xn → C, such that
for everyu ∈ U(g) andm ≥ 0 the seminorm

sup
k∈K,t∈R

coshn−1(t)
(
1 + |t|)m

∣∣(uφ)(kat ·H)
∣∣

is finite. Hereuφ is obtained with the regular action ofU(g) from the left. The vector
space of Schwartz functions onXn, equipped with the locally convex topology induced
by these seminorms, is denoted byC(Xn).

Remark 2.3. To simplify computational expressions later on, it will be useful to work
with the following seminorms instead, foru ∈ U(g) andm ∈ N,

µu,m(φ) := sup
k∈K,t∈R

(2 cosh 4t)
n−1

4

(
1 + log(2 cosh(4t))

)m∣∣(uφ)(kat ·H)
∣∣. (2.4)

Obviously, a smooth functionφ : Xn → C belongs toC(Xn) if and only if these semi-
norms are finite. Moreover, the seminormsµu,m detemine the Fréchet topology onC(Xn).

For future reference we shall now construct some specific Schwartz functions onXn.

Lemma 2.4. Let ν < 1−n
4

. The functionφν : Xn → R, defined by

φν(kat ·H) = coshν(4t),

is Schwartz.

Proof. We will show thatC(Xn) contains every functionφ ∈ C∞(Xn) such that

K × (1,∞) → C; (k, t) 7→ φ(kat ·H)

is a linear combination of functions of the form

K × (1,∞) → C; (k, t) 7→ ϕ(k) coshλ(t) sinhµ(t), (2.5)

with ϕ ∈ C∞(K) and real numbersλ, µ with sumλ + µ = 4ν < 1 − n. Clearly our
functionφν has this property. It is easily seen thatµ1,m(φ) <∞ for such a function, and
hence it suffices to show that this class of functions is invariant under the left action by
U(g). For this it suffices to consider the action byg. LetX ∈ g, then we can writeX
as a linear combination of elements of the formAd(k)Y with some fixed basis elements
Y ∈ g and with coefficients which are smooth functions ofk ∈ K. We shall use a basis
of weight vectorsY for the adjoint action ofaq on g. If Y belongs toaq or Zh(aq), then
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it is easily seen that(k, t) 7→ [Ad(k)(Y )φ](kat ·H) will again be of the form (2.5) with
λ+ ν = 4ν. It remains to consider the case whereY is a root vector for a rootα of aq.

Sinceaq is σθ-invariant, the associated root space ing is σθ-invariant as well, hence
we may assume thatσθY = ±Y . If σθY = Y , a simple computation shows that

Y =
−a−α

aα − a−α
(Y + θY ) +

1

aα − a−α
Ad(a)(Y + σY )

for all a ∈ Aq, and ifσθY = −Y, the corresponding formula reads

Y =
a−α

aα + a−α
(Y + θY ) +

1

aα + a−α
Ad(a)(Y + σY ).

Note that fora = at, in both cases the coefficient ofY + θY is a linear combination of
functionscoshp t sinhq t with p + q = 0. Hence, when we applyAd(k)Y to φ as above,
the term withY + θY will produce a new function of the same kind, whereas the term
with Ad(at)(Y + σY ) will be annihilated because of theH-invariance from the right.
This proves the claim.

2.4 h-compatible parabolic subgroups

Let P be a minimal parabolic subgroup. By Theorem 1.8 there existsa σ-stable split
componentA of P , which is unique up to conjugation byP ∩ H. We fix such a split
componentA and writea for its Lie algebra. We recall the definition of the root sys-
temΣh(a) of h-roots from Definition 1.11. We writeΣh(a;P ) for the positive system
Σ(a;P ) ∩ Σh(a) of Σh(a) and define

ρP,h =
1

2

∑

α∈Σh(a;P )

α.

Definition 2.5. The parabolic subgroupP is said to beh-compatible if one of the follow-
ing conditions are fulfilled:

(a) P is of σ-parabolic rank1 and〈α, ρP,h〉 ≥ 0 for all α ∈ Σ(a;P );

(b) P is of σ-parabolic rank0 and〈α, ρP,h〉 > 0 for all α ∈ Σ(a;P ).

Remark 2.6. We note that this notion is independent of the choice ofa, since any other
choice would beP ∩ H-conjugate toa. Furthermore, it is now readily seen that the
property ofh-compatibility is preserved under conjugation byH.

SinceXn is of split rank1, every minimal parabolic subgroup is either ofσ-parabolic
rank 1 or of σ-parabolic rank0. We recall thatP denotes the set of minimal parabolic
subgroups ofσ-parabolic rank1 andQ denotes the set of minimal parabolic subgroups of
σ-parabolic rank0. We writePh andQh for the sets ofh-compatible parabolic subgroups
in P andQ, respectively. Recall thatP∗ denotes the set ofP ∈ P such that the dimension
ofNP/(NP ∩H) is minimal, i.e.,dim

(
NP/(NP ∩H)

)
= n−1; see Proposition 4.4 and

Equation (4.10).
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For everyn ≥ 3 the setPh is non-empty. Ifn is even, thenH acts transitively onPh

andPh ⊆ P∗. If n is odd, then theH-action admits three orbits, see Proposition 4.4. One
orbit is equal toPh \ (P∗ ∩ Ph); the other two orbits are contained inP∗ ∩ Ph.

If n is even, thenQh = ∅. If n is odd, thenQh is non-empty andH acts transitively
on it, see Proposition 5.3.

3 Main theorems

3.1 Convergence

LetP be a minimal parabolic subgroup ofG and letdx be a non-zeroNP -invariant Radon
measure onNP/(NP ∩H).

Theorem 3.1.The integral
∫

NP /(NP∩H)

φ(x ·H) dx

is absolutely convergent for everyφ ∈ C(Xn) if and only ifP is h-compatible.

The proof of this theorem will be given in Sections 4 and 5.

3.2 Limit behavior

Assume thatP ∈ Ph ∩ P∗. LetA be aσ-stable split component ofP and letL be the
centralizer ofA in G. ThenL = MA, whereM is the (unique) maximal compact sub-
group ofL. NowP = LNP andP =MANP are a Levi and a Langlands decomposition
respectively. Note thata = Lie(A) ∈ A. We define

δP : L → R>0; l 7→
∣∣∣∣∣

detAd(l)
∣∣
nP

det Ad(l)
∣∣
nP∩Zg(a∩q)

∣∣∣∣∣

1

2

.

Let

ρP =
1

2

∑

α∈Σ(a;P )

α.

Then form ∈M anda ∈ A

δP (ma) = aρP−ρP,h.

Forφ ∈ C(Xn) we define its Harish-Chandra transformHPφ to be the function onL/(L∩
H) given by

HPφ(l) = δP (l)

∫

NP /(NP∩H)

φ(ln) dn (l ∈ L).

Note that the integrals are absolutely convergent by Theorem 3.1 and define a right(L ∩
H)-invariant function onL.
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Theorem 3.2.LetP ∈ Ph ∩ P∗ be as above and letv ∈ a ∩ q be such thatρP (v) > 0.

(i) Assumen is even. Then for everyφ ∈ C(Xn) and everyN ∈ N,

sup
m∈M,t∈R

∣∣tNHPφ
(
m exp(tv)

)∣∣ <∞.

(ii) Assumen is odd. Then for everyφ ∈ C(Xn), everyr ∈ R and everyN ∈ N,

sup
m∈M,t<r

∣∣tNHPφ
(
m exp(tv)

)∣∣ <∞.

Moreover, the limit
µP (φ) := lim

t→∞
HPφ

(
exp(tv)

)

exists, and there exists anh-compatibleQ ∈ Q and an elementg ∈ G such that for
everyφ ∈ C(Xn),

µP (φ) =

∫

NQ/(NQ∩H)

φ(gn) dn.

Vice versa, ifQ ∈ Q, then there exists aP ′ ∈ Ph ∩ P∗ and an elementg ∈ G such
that for everyφ ∈ C(Xn),

∫

NQ/(NQ∩H)

φ(gn) dn = µP ′(φ).

The proof of the theorem will be given in Section 6.

3.3 Cusp forms

As explained in the introduction, the aim of the article is toexplore which parabolic
subgroups should be used in the definition of cusp forms for reductive symmetric spaces
of split rank1. In [4] it was proved that for such a symmetric spaceX the integral

∫

NP /(NP∩H)

φ(n) dn

is absolutely convergent for allφ ∈ C(X) and everyP ∈ Ph.
It follows from Theorem 3.1 that for the spacesXn only theh-compatible parabolic

subgroups provide integrals that are convergent for all Schwartz functions. We conclude
from this that the condition thatP is h-compatible, which was needed in [4], is not an
artefact of the proof.

Forn odd the setQh is non-empty. In [4] only the minimal parabolic subgroups from
Ph were used. The remaining question that needs to be answered is whether the class
of parabolic subgroups that is used for the definition of cuspforms should include any
minimal parabolic subgroup fromQh.
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Proposition 3.3. Letφ ∈ C(Xn). The following four conditions are equivalent.

(i) For everyg ∈ G and everyh-compatible parabolic subgroupP,
∫

NP /(NP∩H)

φ(gn) dn = 0. (3.1)

(ii) For everyg ∈ G and everyP ∈ Ph equation (3.1) holds.

(iii) For everyg ∈ G and everyP ∈ Ph ∩ P∗ equation (3.1) holds.

(iv) There exists aP in eachH-conjugacy class inPh ∩ P∗ such that for everyg ∈ G
equation (3.1) holds.

Proof. The implications(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) are trivial.
Conversely, if (3.1) holds for a givenh-compatible parabolic subgroupP and every

g ∈ G, then it also holds for everyH-conjugate ofP . This proves(iv) ⇒ (iii) . The
implication(iii) ⇒ (ii) is proven in [4, Lemma 8.14].

Now assumeQ ∈ Qh. By Theorem 3.2 the integrals overNQ/(NQ ∩ H) can be
obtained as limits of integrals overNP/(NP ∩H) for someP ∈ Ph∩P∗. This establishes
the implication(ii) ⇒ (i).

Definition 3.4. A functionφ ∈ C(Xn) is said to be a cusp form if one of the equivalent
conditions in Proposition 3.3 is satisfied.

We write Ccusp(Xn) for the space of cusp forms onXn andCds(Xn) for the closed
span of the discrete series representations ofXn. Giveng ∈ G andφ ∈ C(Xn), we write
Lgφ for the function given byLgφ(x) = φ(g−1x), for x ∈ Xn. In [4] the following
theorem, which we here only state forXn, is proved for general reductive symmetric
spaces of split rank1.

Theorem 3.5.

(i) Ccusp(Xn) ⊆ Cds(Xn).

(ii) If Cds(Xn)
K ⊆ Ccusp(Xn)

K , thenCds(Xn) = Ccusp(Xn).

(iii) Fix a ∈ A with aq ⊆ a. Letφ ∈ C(Xn) beK-finite. Thenφ ∈ Cds(Xn) if and only if
for everyh-compatible minimal parabolicP ∈ P(a) and everyk ∈ K the function

HP

(
Lkφ

)∣∣∣
Aq

is a finite linear combination of exponential functions withnon-zero exponents.

Theorem 3.5 and the estimates in Theorem 3.2 have the following corollary.

Theorem 3.6.Cds(Xn) = Ccusp(Xn).
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Proof. By (i) and(ii) in Theorem 3.5 it suffices to prove thatCds(Xn)
K ⊆ Ccusp(Xn)

K .
Let φ ∈ Cds(Xn)

K . We need to show thatφ is a cusp form. For this we will prove that
condition(iv) in Proposition 3.3 is satisfied.

By (iii) in Theorem 3.5 the restriction ofHPφ toAq is of exponential type with non-
zero exponents. From Theorem 3.2 it follows that this function is bounded. The only
function onAq that satisfies both conditions is the0-function. This proves that

∫

NP /(NP∩H)

φ(an) dn = 0

for everya ∈ Aq. Now, letg ∈ G. By the Iwasawa decomposition there existk ∈ K,
a ∈ Aq andaH ∈ A ∩H such thatg ∈ kaaHNP . Using thatφ isK-invariant, we find

a
ρP−ρP,h

H

∫

NP /(NP∩H)

φ(gn) dn =

∫

NP /(NP∩H)

φ(an) dn = 0.

This proves the claim.

4 Proof of Theorem 3.1 forσ-parabolic rank 1

In this section we deal with the proof for Theorem 3.1 under the assumption thatP is of
σ-parabolic rank1. In 4.1 – 4.4 we first reduce the statement to a (seemingly) less general
statement, which we then prove in 4.5 – 4.7.

4.1 Root systems.

We recall the definition ofaq, Aq andat from Section 2.1, and define

ah :=
{
diag(x1, x2, . . . , xn−1, x1) : xi ∈ R, 2x1 +

n−1∑

i=2

xi = 0
}
.

Note thataq is a maximal abelian subspace ofp ∩ q andah is a subspace ofp ∩ h such
thata = ah ⊕ aq is a maximal abelian subspace ofp. We writeA for exp(a)

In the remainder of this section we shall describe the root system ofa in g. For 1 ≤
k ≤ n we define the functional

ek : a → R; diag(x1, . . . , xn) 7→ xk.

The root system ofa in g then equals

Σ := Σ(g, a) =
{
ei − ej : 1 ≤ i, j ≤ n, i 6= j

}
.

The root spaces aregei−ej = REi,j, whereEi,j is the matrix whose entry on theith row
andj th column equals1, whereas all remaining entries equal zero.

Note that
Σh := Σh(a) =

{
ei − ej : 2 ≤ i, j ≤ n− 1, i 6= j

}
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is the root system inah for Zh(aq); see Proposition 1.12(ii) . We set

Σ+
h = Σ+

h (a) = {ei − ej : 2 ≤ i < j ≤ n− 1
}

(4.1)

and define

ρh =
1

2

∑

α∈Σ+

h

α.

The set
Σq = Σ ∩ a∗q = {±(e1 − en)}

forms a root system. We denote the associated positive system
{
e1 − en} byΣ+

q .

4.2 Classification of parabolic subgroups

Recall thatP denotes the set of minimal parabolic subgroups containing aσ-stable max-
imal connected split abelian subgroupB, such thatb ∩ q has maximal dimension, i.e.,
dim(b ∩ q) = 1. Recall also thatP(a) denotes the subset ofP consisting of minimal
parabolic subgroups containingA. From now on we shall writeΣ(P ) := Σ(a;P ) for
P ∈ P(a).

Lemma 4.1. LetQ ∈ P. Then there exists a parabolic subgroupP ∈ P(a) which is
H-conjugate toQ and satisfies

(Σ+
h ∪ Σ+

q ) ⊆ Σ(P ). (4.2)

LetP be any such parabolic subgroup. ThenρP,h = ρh. Moreover,Q is h-compatible if
and only ifP is h-compatible (see Definition 2.5).

Proof. By Corollaries 1.10 and 1.13,Q is H-conjugate to a parabolic subgroupP ′ ∈
P(a) with Σ+

h ⊆ Σ(P ′). If Σ(P ′) ∩ a∗q = Σ+
q , then (4.2) holds withP = P ′. Otherwise,

recall the elementk0 from (2.3). This element is inNK∩H(aq) ∩ ZK∩H(ah) and acts by
inversion onaq. Hence,P = k0P

′k−1
0 satisfies (4.2). In particular,ρP,h = ρh. The final

assertion follows from Remark 2.6.

We will now classify the parabolic subgroupsP ∈ P(a) satisfying (4.2). Every
parabolic subgroupP ∈ P(a) is uniquely determined by the corresponding positive sys-
temΣ(P ). The set of these positive systems is in bijection with the symmetric groupSn:
an elementτ ∈ Sn corresponds to the positive systemΣ(P ) given by

Σ(P ) = {eτ−1(i) − eτ−1(j) : 1 ≤ i < j ≤ n}.

Equivalently, a rootei − ej ∈ Σ belongs toΣ(P ) if and only if τ(i) < τ(j). We thus see
that the parabolic subgroupsP ∈ P(a) satisfying (4.2) correspond to theτ ∈ Sn such
that

τ(i) < τ(j) for 2 ≤ i < j ≤ n− 1 and τ(1) < τ(n). (4.3)

Given such a permutationτ ∈ Sn, there exists a uniquek, with 2 ≤ k ≤ n, such that

τ(k − 1) ≤ τ(1) < τ(k), (4.4)
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and a uniquel, with k ≤ l ≤ n, such that

τ(l − 1) < τ(n) ≤ τ(l). (4.5)

Conversely, for each pair of integers(k, l) satisfying2 ≤ k ≤ l ≤ n, there exists a unique
τ ∈ Sn satisfying (4.3), (4.4) and (4.5). From now on we writePk,l for the corresponding
minimal parabolic subgroup andΣ+

k,l for Σ(Pk,l). Furthermore, we writePk,l =MANk,l

for the Langlands decomposition ofPk,l. For future reference we note that the positive
system corresponding to(k, l) is given by the disjoint union

Σ+
k,l = Σ+

h ∪ Σ+
q ∪

{
ej − e1 : 2 ≤ j ≤ k − 1

}
∪
{
e1 − ej : k ≤ j ≤ n− 1

}
(4.6)

∪
{
ej − en : 2 ≤ j ≤ l − 1

}
∪
{
en − ej : l ≤ j ≤ n− 1

}
.

In the following we assume thatb is thead-invariant bilinear form onsl(n,R) given
by b(X, Y ) = tr (XY ). It is well known thatb is a positive multiple of the Killing form
B, in fact, b = 1

4n
B. The restriction ofb to a, denoted〈 · , · 〉, is a positive definite

inner product. We equipa∗ with the dual inner product, also denoted〈 · , · 〉, which
on two elementsµ, ν ∈ a∗ is given as follows. The elements have unique expressions
µ =

∑
j µjej andν =

∑
j νjej provided we demand that

∑
j µj = 0 and

∑
j νj = 0. In

terms of these expressions,
〈µ , ν〉 =

∑

j

µjνj. (4.7)

In particular, each rootei − ej has length
√
2.

Lemma 4.2. Let i andj be integers such that1 ≤ i < j ≤ n. Then

〈ei − ej , ρh〉 =






j − i if 2 ≤ i < j ≤ n− 1,

j − n+1
2

if i = 1 and 2 ≤ j ≤ n− 1,
n+1
2

− i if 2 ≤ i ≤ n− 1 and j = n,

0 if i = 1 and j = n.

In particular, 〈α, ρh〉 ≥ 0 for everyα ∈ Σ(Pk,l) if and only if n+1
2

≤ k ≤ l ≤ n+3
2

.

Proof. Using the definition ofρh, we find

2ρh =
∑

2≤i<j≤n−1

(ei − ej) =
n−1∑

i=2

(n+ 1− 2i)ei.

The first statement in the lemma is a direct consequence of this formula; the second
follows from comparison with (4.6).

Lemma 4.3. Let 2 ≤ k ≤ l ≤ n and letnk,l be the Lie algebra ofNk,l. Then

nk,l ∩ h =
⊕

α∈Σ+

h

gα ⊕
⊕

2≤j≤k−1

(1 + σ)gej−e1 ⊕
⊕

l≤j≤n−1

(1 + σ)gen−ej . (4.8)
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Proof. Sinceσ(e1) = en andσ(ej) = ej for 2 ≤ j ≤ n− 1, we find

Σ+
k,l ∩ σ(Σ+

k,l) = Σ+
h ∪

{
ej − e1 : 2 ≤ j ≤ k − 1

}
∪
{
e1 − ej : l ≤ j ≤ n− 1

}

∪
{
ej − en : 2 ≤ j ≤ k − 1

}
∪
{
en − ej : l ≤ j ≤ n− 1

}
,

the union being disjoint. The root spacesgα for α ∈ Σ+
h are contained inh. Furthermore,

if bothα andσ(α) are roots inΣ+
k,l \ Σ+

h , then

gα ⊕ gσ(α) = (1 + σ)gα ⊕ (1− σ)gα,

where the first term in the right-hand side is a subspace ofnk,l ∩ h and the second term is
a subspace innk,l∩q. This proves that the right-hand side of (4.8) is contained in nk,l∩h.

To prove the converse, assume thatY ∈ nk,l ∩ h. ThenY =
∑

α∈Σ+

k,l
Yα, where

Yα ∈ gα. SinceY ∈ h, we haveσ(Y ) = Y . This implies thatσ(Yα) = Yσ(α) if both α
andσ(α) are elements ofΣ+

k,l andYα = 0 otherwise. Letα be a root such thatYα 6= 0. If
α = σ(α) thenα ∈ Σ+

h . If α 6= σ(α), then there exist a2 ≤ j ≤ k − 1 such that either
α = ej−e1 orσ(α) = ej−e1, or there exists al ≤ j ≤ n−1 such that eitherα = en−ej
or σ(α) = en − ej. Therefore,Y is contained in the right-hand side of (4.8). This proves
the lemma.

Proposition 4.4. LetP ∈ P. Then there exist unique integersk andl, with 2 ≤ k ≤ l ≤
n, such thatP isH-conjugate toPk,l. Moreover,P ∈ Ph if and only if

n + 1

2
≤ k ≤ l ≤ n + 3

2

andP ∈ P∗ if and only ifk = l.

Proof. The existence of the integersk andl follows directly from Lemma 4.1. To prove
uniqueness of these integers, let2 ≤ k ≤ l ≤ n and2 ≤ k′ ≤ l′ ≤ n, and assume
that there exists anh ∈ H with hPk,lh

−1 = Pk′,l′. Note thatA andhAh−1 are bothσ-
stable split components ofPk′,l′. From Theorem 1.8 it follows that there exists a unique
n ∈ Nk′,l′ ∩H such thatnhAh−1n−1 = A. We writeh′ for nh. Note thath′ ∈ NH(a) =
NH(aq) ∩ NH(ah) andh′Pk,lh

′−1 = Pk′,l′. It follows thath′ acts trivially onΣ+
q and

thereforeh′ ∈ ZH(aq). From Corollary 1.12 we see thatΣh is the root system ofah in
Zh(aq). Sinceh′ ∈ NH(ah) ∩ ZH(aq), it induces an elementw in the Weyl group of this
root system. As the positive systemΣ+

h is contained in bothΣ+
k,l andΣ+

k′,l′, it follows that
w acts trivially onΣ+

h , and thus we conclude thath′ acts trivially onah. This proves that
h′Pk,lh

′−1 = Pk,l and hencek = k′ andl = l′.
From Lemma 4.2 it is easily seen thatP ∈ Ph if and only if n+1

2
≤ k ≤ l ≤ n+3

2
. The

final claim, thatP ∈ P∗ if and only if k = l, follows from Lemma 4.3.

Remark 4.5. We recall from [4, Def. 1.1] that a parabolic subgroupP ∈ P(a) is said to
beq-extreme ifΣ(P ) ∩ σθΣ(P ) = Σ(P ) \ Σh. Sinceσθej = −ej for 2 ≤ j ≤ n − 1,
whereasσθe1 = −en, it follows from the characterization ofΣk,l above thatPk,l is q-
extreme if and only ifk = 2 andl = n − 1. Let Σ+

0 be the positive system for the root
systemΣ(g, aq) obtained by restricting the roots fromΣ2,n−1 \ Σh to aq. ThenΣ+

0 =

17



{α, 2α}, where2α = e1 − en. It is now readily checked thatα has multiplicity2(n− 2),
whereas2α has multiplicity1. Accordingly,ρ0 := ρ(Σ+

0 ) is given byρ0 = (n − 1)α, so
that

aρ0t = e(n−1)t (t ∈ R).

The elementρ0 ∈ a∗q defined above corresponds to the elementρQ appearing in [3,
Prop. 17.2]. Accordingly, it follows that Definition 2.2 of the Schwartz spaceC(Xn)
is consistent with the characterisation given in [3, Thm. 17.1].

4.3 Decomposition and invariant measures

Let k andl be integers such that2 ≤ k ≤ l ≤ n. We recall thatPk,l = ZK(a)ANk,l is
the minimal parabolic subgroup containingA such thatΣ(Pk,l) = Σ+

k,l, and that the latter
root system is given by (4.6).

We define
uk,l = ge1−en ⊕

⊕

2≤j≤l−1

gej−en ⊕
⊕

k≤j≤n−1

ge1−ej .

Note thatuk,l is a Lie subalgebra ofnk,l. We writeUk,l for the Lie subgroupexp(uk,l).
Forx, y ∈ Rn−2 andz ∈ R, we define

ux,y,z =




1 xt z
In−2 y

1


 . (4.9)

A straightforward computation shows that

Uk,l =
{
ux,y,z : x ∈ {0}k−2 × R

n−k, y ∈ R
l−2 × {0}n−l, z ∈ R

}
.

By Lemma 4.3, we have

nk,l = (nk,l ∩ h)⊕ uk,l. (4.10)

Lemma 4.6. The map

Uk,l × (Nk,l ∩H) → Nk,l; (u, n) 7→ un

is a diffeomorphism. There exist normalizations for the invariant measuredx onNk,l/Nk,l∩
H and the Haar measuredu ofUk,l such that for everyφ ∈ Cc

(
Nk,l/(Nk,l ∩H)

)

∫

Nk,l/(Nk,l∩H)

φ(x) dx =

∫

Uk,l

φ
(
u · (Nk,l ∩H)

)
du. (4.11)

Finally, the normalizations may be chosen such that, in addition, the above integrals
equal

∫

z∈R

∫

y∈Rl−2×{0}n−l

∫

x∈{0}k−2×Rn−k

φ
(
ux,y,z · (Nk,l ∩H)

)
dx dy dz. (4.12)
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Proof. The first two assertions follow from [2, Prop. 2.16]. For the final assertion, we
note that

ux,y,z+〈x , y〉/2 = exp




0 xt z
0n−2 y

0


 .

It follows that, up to suitable normalization of measures, the second integral in (4.11)
equals

∫

z∈R

∫

y∈Rl−2×{0}n−l

∫

x∈{0}k−2×Rn−k

φ
(
ux,y,z+〈x , y〉/2 · (Nk,l ∩H)

)
dx dy dz.

The equality with (4.12) now follows from a simple substitution of variables.

To conclude this section we state one more lemma.

Lemma 4.7. Letw be the longest Weyl group element forΣh = Σ
(
Zh(aq); ah

)
, relative

to the positive system (4.1), and letw0 ∈ NK∩H(a) ∩ ZK∩H(aq) be a representative for
w. Then

σθ(w0Pk,lw
−1
0 ) = Pn+2−l,n+2−k.

Moreover, ifφ ∈ C∞
c (Xn), then

∫

Un+2−l,n+2−k

φ(u ·H) du =

∫

Uk,l

φ
(
σθ(w0u) ·H

)
du.

Proof. From the identities

w · ei =





e1 i = 1

en+1−i 2 ≤ i ≤ n− 1

en i = n

and σθei =





−en i = 1

−ei 2 ≤ i ≤ n− 1

−e1 i = n,

we obtain thatσθ(w · Σ+
k,l) = Σ+

n+2−l,n+2−k. This proves the first statement. The second
statement follows from the first as

Uk,l → Un+2−l,n+2−k; u 7→ σθ(w0uw
−1
0 )

is a diffeomorphism with Jacobian1.

4.4 Reduction to an equivalent theorem

The spaceC(Xn) is stable under translation byG and pull-back byσθ. Under the as-
sumption thatP is of σ-parabolic rank1, we conclude from Proposition 4.4, Lemma 4.6
and Lemma 4.7 that Theorem 3.1 is equivalent to the followingtheorem.

Theorem 4.8.Letk andl be integers such that2 ≤ k ≤ l ≤ n+2−k. Then the integral
∫

Uk,l

φ(u ·H) du

is absolutely convergent for everyφ ∈ C(Xn) if and only if n+1
2

≤ k ≤ l ≤ n+3
2

.

From now on we assume thatk andl are integers such that2 ≤ k ≤ l ≤ n+ 2− k.
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4.5 The integral

Lemma 4.9. Letx, y ∈ Rn−2 andz ∈ R. If ux,y,z ·H ∈ Kat ·H, then

2 cosh(4t) =(1− z + 〈x, y〉)2(1 + z)2 + (1− z + 〈x, y〉)2‖y‖2 + (〈x, y〉 − z)2

+ (1 + z)2‖x‖2 + 2〈x, y〉+ ‖x‖2‖y‖2 + ‖x‖2 + z2 + ‖y‖2 + 1. (4.13)

We denote the orthogonal projectionRn−2 → {0}k−2 × Rl−k × {0}n−l by π. Let x ∈
{0}k−2 × Rn−k, y ∈ Rl−2 × {0}n−l andz ∈ R. If ux,y,z ·H ∈ Kat ·H, then

2 cosh(4t) = 〈x,Ay,zx〉 + 〈by,z, x〉 + cy,z, (4.14)

where

Ay,z =
(
‖y‖2 + (1 + z)2 + 1

)(
In−2 + π(y)π(y)t

)
∈ Aut(Rn−2),

by,z = 2(1− z)
(
‖y‖2 + (1 + z)2 + 1

)
π(y) ∈ {0}k−2 × R

l−k × {0}n−l,

cy,z = (1− z)2
(
‖y‖2 + (1 + z)2 + 1

)
+ (z2 + 2z + ‖y‖2) ∈ R≥2.

Proof. Straight-forward computations show that

ux,y,zσ(ux,y,z)
−1 = ux,y,zSu

−1
x,y,zS

−1 =




(〈x, y〉 − z + 1)(1 + z) (1 + z)xt z

(〈x, y〉 − z + 1)y In−2 + yxt y
〈x, y〉 − z xt 1





and
‖In−2 + yxt‖2HS = n− 2 + 2〈x, y〉+ ‖x‖2‖y‖2.

Equation (4.13) now follows from Lemma 2.1. Equation (4.14)is a direct consequence
of (4.13).

Corollary 4.10. Letφ ∈ C(Xn) beK-invariant and non-negative. Let̄φ : R≥2 → R≥0

be given by
φ̄(2 cosh 4t) = φ(at ·H).

(Note that the functionR ∋ t 7→ φ(at ·H) is even sinceφ isK-invariant.) Furthermore,
let Jk : Rn−2 × R → R>0 be given by

Jk(y, z) =
(
‖y‖2 + (1 + z)2 + 1

)k−n
2 (1 + ‖π(y)‖2)− 1

2

and letc′ : Rn−2 × R → R≥2 be given by

c′(y, z) = (1− z)2
(
‖y‖2 + (1 + z)2 + 1

) 1

1 + ‖π(y)‖2 +
(
z2 + 2z + ‖y‖2

)
.

Then
∫

Uk,l

φ(u·H) du =

∫

z∈R

∫

y∈Rl−2×{0}n−l

Jk(y, z)

∫

x∈{0}k−2×Rn−k

φ̄
(
‖x‖2+c′(y, z)

)
dx dy dz.
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Proof. First, note that, by Lemma 4.6,
∫

Uk,l

φ(u ·H) du =

∫

z∈R

∫

y∈Rl−2×{0}n−l

∫

x∈{0}k−2×Rn−k

φ(ux,y,z ·H) dx dy dz.

We will use Lemma 4.9 to rewrite this integral. Note that the restrictionBy,z of Ay,z

to {0}k−2 × Rn−k is a positive definite symmetric automorphism of{0}k−2 × Rn−k.
We defineB1/2

y,z andB−1/2
y,z to be the square root (defined in the usual way) and the inverse

square root ofBy,z, respectively. Now we apply the substitution of variablesx′ = B1/2
y,zx+

1
2
B−1/2

y,z by,z to the inner integral. Whenux,y,z ·H ∈ Kat ·H we obtain from (4.14) that

2 cosh(4t) = ‖x′‖2 + c′y,z,

where

2 ≤ c′y,z = cy,z −
1

4
‖B− 1

2
y,z by,z‖2.

The Jacobian of the substitution equals the determinant ofB−1/2
y,z . In turn, this determi-

nant equals(detBy,z)
−1/2 = Jk(y, z). Observing thatby,z is an eigenvector ofBy,z with

eigenvalue
(
‖y‖2 + (1 + z)2 + 1

)
(1 + ‖π(y)‖2), we see that

1

4
‖B− 1

2
y,z by,z‖2 = (1− z)2

(
‖y‖2 + (1 + z)2 + 1

) ‖π(y)‖2
1 + ‖π(y)‖2 .

Hencec′y,z = c′(y, z), and the corollary is proved.

4.6 The case of convergence

In view of Remark 2.3, the following proposition implies the‘if’ part of Theorem 4.8.

Proposition 4.11.Assumen+1
2

≤ k ≤ l ≤ n+3
2

. Form ∈ R, let φm :Xn → R be defined
by

φm(k
′at ·H) := (2 cosh 4t)

1−n
4

(
1 + log(2 cosh(4t))

)−m
(k′ ∈ K, t ∈ R).

Then there existsm ≥ 0 such that the integral
∫

Uk,l

φm(u ·H) du is convergent.

Proof. Let fm(u) = u
1−n
4 (1 + log u)−m for u ≥ 1. Thenf equalsφ̄m as defined in

Corollary 4.10, and we see that it suffices to show that

Im :=

∫

z∈R

∫

y∈Rl−2×{0}n−l

Jk(y, z)

∫

x∈{0}k−2×Rn−k

fm
(
‖x‖2 + c′(y, z)

)
dx dy dz <∞,

for m ≥ 0 sufficiently large. We substitutex = c′(y, z)1/2ξ in the inner integral and
obtain thatIm is equal to
∫

z∈R

∫

y∈Rl−2×{0}n−l

Jk(y, z)c
′(y, z)

n−k
2

∫

ξ∈{0}k−2×Rn−k

fm
(
c′(y, z)(‖ξ‖2 + 1)

)
dξ dy dz.

21



Observe that ifm = m1 +m2 with m1, m2 ≥ 0, then
(
1 + log

[
c′(y, z)(‖ξ‖2 + 1)

])−m ≤
(
1 + log c′(y, z)

)−m2
(
1 + log(‖ξ‖2 + 1)

)−m1 .

Hence,

Im ≤
∫

z∈R

∫

y∈Rl−2×{0}n−l

Jk(y, z)c
′(y, z)

n+1

4
− k

2

(
1 + log c′(y, z)

)−m2 dy dz

×
∫

ξ∈{0}k−2×Rn−k

(‖ξ‖2 + 1)
1−n
4

(
1 + log(‖ξ‖2 + 1)

)−m1 dξ. (4.15)

Sincek ≥ n+1
2
, we haven−1

2
≥ n − k and see that the integral overξ converges for

m1 ≥ 2 (use polar coordinates).
For the integral over(y, z) we shall need the following estimate ofc′(y, z). We write

y = (v, w, 0), wherev ∈ Rk−2 andw = π(y) ∈ Rl−k, and claim that

c′(y, z) ≥ 1
4
(‖w‖2 + 1)−1

(
(1− z)2 + 1

)(
‖v‖2 + (1 + z)2 + 1

)
+ ‖w‖2 + 1. (4.16)

To verify the claim, we note that

c′(y, z) = (‖w‖2 + 1)−1(1− z)2
(
‖v‖2 + ‖w‖2 + (1 + z)2 + 1

)
+ z2 + 2z + ‖v‖2 + ‖w‖2

= (‖w‖2 + 1)−1
((

(1− z)2 + 1 + ‖w‖2
)
‖v‖2 + z4 + 1 + 2z2‖w‖2

)
+ ‖w‖2 + 1

≥ (‖w‖2 + 1)−1
((

(1− z)2 + 1
)
‖v‖2 + z4 + 1

)
+ ‖w‖2 + 1

≥ 1
4
(‖w‖2 + 1)−1

((
(1− z)2 + 1

)
‖v‖2 + z4 + 4

)
+ ‖w‖2 + 1.

Using (
(1− z)2 + 1

)(
(1 + z)2 + 1

)
= z4 + 4,

we obtain the validity of claim (4.16).
We first assume thatk = l. Thenw = 0 and we obtain

c′(y, z) ≥ 1
4

(
(1− z)2 + 1

)(
‖v‖2 + (1 + z)2 + 1

)
+ 1

and
Jk(y, z) = (‖v‖2 + (1 + z)2 + 1)

k−n
2 .

Hence, there exists a constantC > 0, independent ofm, such that

Im ≤ C

∫

z∈R

∫

v∈Rk−2

(
‖v‖2 + (1 + z)2 + 1

) 1−n
4
(
(1− z)2 + 1

)n+1

4
− k

2

×
(
1 + log

[
1 + 1

4

(
(1− z)2 + 1

)(
‖v‖2 + (1 + z)2 + 1

)])−m2

dv dz.

The substitution ofv = ((1 + z)2 + 1)1/2η now allows us to estimateIm by a constant
times the product of the integrals

∫

η∈Rk−2

(‖η‖2 + 1)
1−n
4

(
1 + log(‖η‖2 + 1)

)−m3 dy (4.17)
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and
∫

z∈R

(
(1 + z)2 + 1

)k
2
−n+3

4
(
(1− z)2 + 1

)n+1

4
− k

2
(
1 + log(1

4
z4 + 2)

)−m4
dz

wherem2 = m3 +m4. In the above we already saw that (4.17) converges form3 ≥ 2.
The remaining integral is easily seen to converge form4 ≥ 2.

Next we assumek < l. Thenn is odd andk = n+1
2

, l − k = 1. Hence, the power
of c′(y, z) in the first integral in (4.15) equals zero. We thus see thatIm is bounded by a
constant times
∫

z∈R

∫

v∈Rk−2

∫

w∈R

(
‖v‖2+w2+(1+z)2+1

) 1−n
4 (w2+1)−

1

2

(
1+log c′(y, z)

)−m2 dw dv dz.

Furthermore,

c′(y, z) ≥ 1
4
(w2 + 1)−1

(
‖v‖2 + (1 + z)2 + 1

)
+ w2 + 1.

The substitutionsv = (w2 + 1)1/2η and1 + z = (w2 + 1)1/2ζ then allow us to estimate
by the product of

∫

(η,ζ)∈Rk−2×R

(‖η‖2 + ζ2 + 1)
1−n
4

(
1 + log(‖η‖2 + ζ2 + 1)

)−m3
d(η, ζ)

and ∫

w∈R
(w2 + 1)−

1

2

(
1 + log(w2 + 1)

)−m4
dw,

wherem2 = m3 +m4. Both integrals are easily seen to converge form3, m4 ≥ 2.

4.7 The case of divergence

The following proposition and its corollary imply the ‘onlyif’ part of Theorem 4.8.

Proposition 4.12.Letν ∈ R and letφν be the functionXn → R given by

φν(k
′at ·H) = (2 cosh 4t)ν (k′ ∈ K, t ∈ R).

Then the integral
∫

Uk,l

φν(u ·H) du is divergent forν > min{k−n
2
, 2−l

2
}.

Proof. Let φ̄ν be the function associated toφν as in Corollary 4.10. Then̄φν(r) = rν for
r ≥ 1. Clearly, the integral ∫

x∈Rn−k

(
‖x‖2 + c

)ν
dx

is divergent for all positive constantsc if ν > k−n
2
. Hence, it follows from Corollary 4.10

that
∫
Uk,l

φν(u ·H) du is divergent for suchν. Note thatφν satisfies

φν

(
σθ(kg) ·H

)
= φν(g ·H) (g ∈ G, k ∈ K).
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Combining this with Lemma 4.7, we infer that
∫

Un+2−l,n+2−k

φν(u ·H) du =

∫

Uk,l

φν(u ·H) du.

By the previous argument, we obtain that the first, hence alsothe second integral is diver-
gent forν > (n+2−l)−n

2
= 2−l

2
. The assertion now follows.

Corollary 4.13. Assumek < n+1
2

or l > n+3
2

. Then there exists a functionφ ∈ C(Xn)

such that
∫

Uk,l

φ(u ·H) du is divergent.

Proof. Assumek < n+1
2

or l > n+3
2

. Thenmin{k−n
2
, 2−l

2
} < 1−n

4
. We may therefore take

ν such thatmin{k−n
2
, 2−l

2
} < ν < 1−n

4
. Thenφν ∈ C(Xn) by Lemma 2.4. The result now

follows by application of Proposition 4.12.

5 Proof of Theorem 3.1 forσ-parabolic rank 0

We now turn to the proof of Theorem 3.1 under the assumption thatP is of σ-parabolic
rank0. In 5.1 – 5.4 we first reduce the statement to a (seemingly) less general statement,
which we then prove in 5.5 – 5.7.

5.1 Root systems

Recall the elementκ from (2.1). We defineb = Ad(κ)a. Note thatb is a Cartan subal-
gebra ofg and thatah ⊆ b ⊆ h. Furthermore,b is a Cartan subalgebra ofh as well. We
writeB for exp(b).

Recall the functionalsek from Section 4.1. For1 ≤ k ≤ n we definefk : b → R by
fk = ek ◦ Ad(κ)−1. The root system ofb in g then equals

Σ := Σ(g, b) =
{
fi − fj : 1 ≤ i, j ≤ n, i 6= j

}
.

The associated root spaces are given bygfi−fj = R
(
Ad(κ)Ei,j

)
.

Note that
Σh := Σh(b) =

{
fi − fj : 1 ≤ i, j ≤ n− 1, i 6= j

}

is both the root system ofb in h and the set ofh-roots inΣ. Let

Σ
+

h = {fi − fj : 1 ≤ i < j ≤ n− 1
}
. (5.1)

ThenΣ
+

h is a positive system forΣh. Finally, we define

ρ̄h :=
1

2

∑

α∈Σ+

h

α.

24



5.2 Classification of parabolic subgroups

Recall thatQ denotes the set of minimal parabolic subgroups containing amaximal con-
nected split abelian subgroup that is contained inH. Furthermore,Q(b) denotes the
subset ofQ consisting of minimal parabolic subgroups containingB. GivenQ ∈ P(b),
we agree to use the abbreviationΣ(Q) := Σ(b;Q).

Lemma 5.1. Let P ∈ Q. Then there exists a parabolic subgroupQ ∈ Q(b) which is
H-conjugate toP and satisfies

Σ
+

h ⊆ Σ(Q). (5.2)

LetQ be any such parabolic subgroup. ThenρQ,h = ρ̄h. Moreover,P is h-compatible if
and only ifQ is h-compatible (see Definition 2.5).

Proof. SinceP ∈ Q, it follows from Corollaries 1.10 and 1.13 thatP isH-conjugate to
a minimal parabolic subgroupQ ∈ Q(b) satisfying (5.2). The latter condition implies
thatρQ,h = ρ̄h. The final statement follows from Remark 2.6.

We will now classify the parabolic subgroupsQ ∈ Q(b) satisfying (5.2). The assign-
mentQ 7→ Σ(Q) defines a bijection from the setP(b) onto the set of positive systems
for Σ. In turn, the latter set is in bijective correspondence with the permutation groupSn.
For a givenτ ∈ Sn, the associated positive system is given by

Σ(Q) = {fτ−1(i) − fτ−1(j) : 1 ≤ i < j ≤ n}.

Equivalently, a rootfi − fj ∈ Σ belongs toΣ(Q) if and only if τ(i) < τ(j). We infer
that the parabolic subgroupsQ ∈ Q(b) satisfying (5.2) correspond to the permutations
τ ∈ Sn satisfying

τ(i) < τ(j) for 1 ≤ i < j ≤ n− 1. (5.3)

Given such a permutationτ ∈ Sn, there exists a uniquek, with 1 ≤ k ≤ n, such that
τ(n) = k. Conversely, for each integerk with 1 ≤ k ≤ n, there exists a uniqueτ ∈ Sn

satisfying (5.3) andτ(n) = k. From now on we writeQk for the corresponding minimal
parabolic subgroup andΣ

+

k for Σ(Qk). Moreover, we writeNk for NQk
. For future

reference we note that the positive system determined byk is given by the disjoint union

Σ
+

k = Σ
+

h ∪
{
fi − fn : 1 ≤ i ≤ k − 1

}
∪
{
fn − fi : k ≤ i ≤ n− 1

}
. (5.4)

We now provideb∗ with the inner product that turnsAd(κ)∗ : b∗ → a∗ into an isometry;
see (4.7) for the description of the inner product ona∗.

Lemma 5.2. Let i andj be integers such that1 ≤ i < j ≤ n. Then

〈fi − fj, ρ̄h〉 =
{
j − i if 1 ≤ i < j ≤ n− 1,
n
2
− i if 1 ≤ i ≤ n− 1 and j = n.

In particular 〈α, ρ̄h〉 > 0 for everyα ∈ Σ
+

k if and only if n
2
< k < n

2
+ 1, i.e., if and only

if n is odd andk = n+1
2

.
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Proof. Using the definition of̄ρh, we find

2ρ̄h =
n−1∑

i=1

(n− 2i)fi.

The first statement follows directly from this formula and the second follows from com-
parison with (5.4).

Combining the previous lemmas, we now arrive at the following proposition.

Proposition 5.3. LetQ ∈ Q. Then there exist a unique integerk, with 1 ≤ k ≤ n, such
thatQ is H-conjugate toQk. Moreover,Q is h-compatible if and only ifn is odd and
k = n+1

2
.

Proof. Only the uniqueness remains to be proved. Let1 ≤ k, k′ ≤ n and assume that
there exists anh ∈ H such thathQkh

−1 = Qk′. ThenB andhBh−1 are bothσ-stable split
components ofQk′. From Theorem 1.8 it follows that there exists a uniquen ∈ Nk′ ∩H
such thatnhBh−1n−1 = B. Let h′ = nh. Thenh′ ∈ NH(b) andh′Qkh

′−1 = Qk′ . Now
h′ induces an elementw in the Weyl group of the root systemΣh. SinceΣ

+

h is a positive

system forΣh andΣ
+

h is contained in bothΣ
+

k andΣ
+

k′, it follows thatw acts trivially on

Σ
+

h and hence thath′ acts trivially onb. We conclude thathQkh
−1 = Qk′ and therefore

k = k′. This proves uniqueness.

5.3 Decomposition and invariant measures

Let k be an integer such that1 ≤ k ≤ n.

Lemma 5.4. Letnk be the Lie algebra ofNk. Then

nk ∩ h =
⊕

α∈Σ+

h

gα =
⊕

1≤i<j≤n−1

R
(
Ad(κ)Ei,j

)
,

nk ∩ q =
⊕

α∈Σ\Σ+

h

gα =
⊕

1≤i≤k−1

R
(
Ad(κ)Ei,n

)
⊕

⊕

k≤i≤n−1

R
(
Ad(κ)En,i

)
.

Proof. Let α ∈ Σ. Sinceσα = α andgα is 1-dimensional, we have eithergα ⊆ h or
gα ⊆ q. By definition, the first is the case forα ∈ Σh and the latter forα ∈ Σ \ Σh. The
lemma now follows from (5.4).

We writeVk for the submanifoldexp(nk ∩ q) of Nk. Forx, y ∈ Rn−1 with 〈x, y〉 = 0
we define

vx,y = κ exp

(
0 x
yt 0

)
κ−1 = κ

(
In−1 +

1
2
xyt x

yt 1

)
κ−1. (5.5)

A straightforward computation shows that

Vk =
{
vx,y : x ∈ R

k−1 × {0}n−k, y ∈ {0}k−1 × R
n−k

}
.

We equipVk with the push-forward alongexp of the Lebesgue measure onnk ∩ q. Then
the following lemma is a direct consequence of [5, Prop. 1.1]and Lemma 5.4.
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Lemma 5.5. The map

Vk × (Nk ∩H) → Nk; (v, n) 7→ vn

is a diffeomorphism. Moreover, there exists a normalization for the invariant measuredx
onNk/(Nk ∩H) such that for everyφ ∈ C∞

c

(
Nk/(Nk ∩H)

)
,

∫

Nk/(Nk∩H)

φ(x) dx =

∫

Vk

φ
(
v · (Nk ∩H)

)
dv.

5.4 Reduction to an equivalent theorem

Under the assumption thatP is of σ-parabolic rank0, it follows from Proposition 5.3 and
Lemma 5.5 that Theorem 3.1 is equivalent to the following theorem.

Theorem 5.6.Letk be an integer with1 ≤ k ≤ n. Then the integral
∫

Vk

φ(v ·H) dv

is absolutely convergent for everyφ ∈ C(Xn) if and only ifk = n+1
2

. In particular, if n is
even, then for everyk there existsφ ∈ C(Xn) such that the integral is divergent.

5.5 The integral

Recall (5.5) for the definition ofvx,y.

Lemma 5.7. Letx, y ∈ Rn−1 with 〈x, y〉 = 0. If vx,y ·H ∈ Kat ·H, then

2 cosh(4t) = 2 + 4‖x‖2 + 4‖y‖2 + 4‖x‖2‖y‖2.
Proof. By straightforward computations we see that

vx,yσ(vx,y)
−1 = v2x,y = v2x,2y = κ

(
In−1 + 2xyt 2x

2yt 1

)
κ−1 (5.6)

and
‖In−1 + 2yxt‖2HS = n− 1 + 4‖x‖2‖y‖2.

Therefore,
‖vx,yσ(vx,y)−1‖2HS = n + 4‖x‖2 + 4‖y‖2 + 4‖x‖2‖y‖2.

The lemma now follows from Lemma 2.1.

Corollary 5.8. Letφ ∈ C(Xn) beK-invariant and non-negative. As in Corollary 4.10,
let φ̄ : R≥2 → R≥0 be defined by

φ̄(2 cosh 4t) = φ(at ·H).

Then
∫

Vk

φ(v ·H) dv =

∫

Rk−1

∫

Rn−k

φ̄
(
2 + 4‖x‖2 + 4‖y‖2 + 4‖x‖2‖y‖2

)
dy dx.
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Proof. Let x ∈ Rk−1 × {0}n−k, y ∈ {0}k−1 × Rn−k and assume thatvx,y ∈ k′atH, for
k′ ∈ K andt ∈ R. Then it follows that

φ(vx,y ·H) = φ̄(2 cosh 4t) = φ̄(2 + 4‖x‖2 + 4‖y‖2 + 4‖x‖2‖y‖2),

by Lemma 5.7.

5.6 The case of convergence

In view of Remark 2.3, the following proposition implies the‘if’ part of Theorem 5.6.

Proposition 5.9. Assumek = n+1
2

. Form ∈ R, letφm : Xn → R be given by

φm(k
′at ·H) = (2 cosh 4t)

1−n
4

(
1 + log(2 cosh 4t)

)−m
(k′ ∈ K, t ∈ R).

Then there existsm ≥ 0 such that the integral
∫

Vk

φm(v ·H) dv is absolutely convergent.

Proof. Let φ̄m be defined in terms of̄φ as in Corollary 5.8. Then̄φm(z) = z
1−n
4 (1 +

log z)−m from which we see that̄φm is a decrasing function ofz ≥ 1. Hence,

φ̄m(2 + 4‖x‖2 + 4‖y‖2 + 4‖x‖2‖y‖2)) ≤ φ̄m(1 + ‖x‖2 + ‖y‖2 + ‖x‖2‖y‖2),

for x ∈ Rk−1 = R
n−1

2 , y ∈ Rn−k = R
n−1

2 and by the mentioned corollary we see that

∫

Vn+1
2

φm(v ·H) dv

≤
∫

R
n−1
2

∫

R
n−1
2

φ̄m(1 + ‖x‖2 + ‖y‖2 + ‖x‖2‖y‖2) dy dx

=

∫

R
n−1
2

∫

R
n−1
2

(
1 + ‖x‖2

) 1−n
4
(
1 + ‖y‖2

) 1−n
4

(
1 + log(1 + ‖x‖2 + ‖y‖2 + ‖x‖2‖y‖2)

)m dy dx.

Since

(
1 + log(1 + ‖x‖2 + ‖y‖2 + ‖x‖2‖y‖2)

)2 ≥
(
1 + log(1 + ‖x‖2)

)(
1 + log(1 + ‖y‖2)

)
,

the last double integral is at most




∫

R
n−1
2

(
1 + ‖x‖2

) 1−n
4

(
1 + log(1 + ‖x‖2)

)m
2

dr




2

.

By using polar coordinates, one readily verifies that the integral in this expression is
absolutely convergent form > 2.
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5.7 The case of divergence

The following proposition and its corollary imply the ‘onlyif’ part of Theorem 5.6.

Proposition 5.10.Letν ∈ R and letφν : Xn → R be given by

φν(k
′at ·H) = (2 cosh 4t)ν (k′ ∈ K, t ∈ R).

Then the integral
∫

Vk

φν(v ·H) dv is divergent forν ≥ min
{

1−k
2
, k−n

2

}
.

Proof. The functionφ̄ν associated toφν as in Corollary 5.8 is given byz 7→ zν . By the
mentioned corollary we obtain

∫

Vk

φν(v ·H) dv =

∫

Rk−1

∫

Rn−k

(
2 + 4‖x‖2 + 4‖y‖2 + 4‖x‖2‖y‖2

)ν
dy dx.

Clearly the integral on the right-hand side is divergent ifν ≥ 0. We assume thatν < 0.
Then the integral on the right-hand side is larger than

4ν
∫

Rk−1

∫

Rn−k

(
1 + ‖x‖2 + ‖y‖2 + ‖x‖2‖y‖2

)ν
dy dx

= 4ν
∫

Rk−1

(
1 + ‖x‖2

)ν
dx

∫

Rn−k

(
1 + ‖y‖2

)ν
dy. (5.7)

The condition onν implies that2ν ≥ 1 − k or 2ν ≥ k − n. By using polar coordinates,
we see that one of the integrals in (5.7) diverges. This completes the proof.

Corollary 5.11. Assumek 6= n+1
2

. Then there exists a functionφ ∈ C(Xn) such that∫

Vk

φ(v ·H) dv is divergent.

Proof. Assumek 6= n+1
2
. Thenmin

{
1−k
2
, k−n

2

}
< 1−n

4
and we may selectν such that

min
{

1−k
2
, k−n

2

}
< ν < 1−n

4
.

Thenφν ∈ C(Xn) by Lemma 2.4. The claim now follows from Proposition 5.10.

6 Proof of Theorem 3.2

6.1 Reduction to an equivalent theorem

By Proposition 4.4 and Proposition 5.3 it suffices to prove the claims in Theorem 3.2 for
P = Pk,l with n+1

2
≤ k = l ≤ n+3

2
and (forn odd)Q = Qn+1

2

only.
We recall the definition ofat from (2.2). An easy computation shows that

δPk,k
(at) = et.
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It follows from Theorem 4.8 that for allφ ∈ C(Xn) the integral
∫

Uk,k

φ(asu ·H) du

yields a well-defined function ofs ∈ R. We are interested in the decay of this function,
or more precisely, of the modified function

s 7→ es
∫

Uk,k

φ(asu ·H) du,

and will prove the following result, which implies Theorem 3.2.

Theorem 6.1.Assumen+1
2

≤ k ≤ n+3
2

. Letφ ∈ C(Xn).

(i) If n is even, then for everyN ∈ N there existc > 0 andm ∈ N such that for every
s ∈ R, ∣∣∣es

∫

Uk,k

φ(asu ·H) du
∣∣∣ ≤ c(1 + |s|)−Nµ1,m(φ). (6.1)

(ii) If n is odd, then for everyR ∈ R andN ∈ N there exist ac > 0 andm ∈ N such
that for everys ∈ R with s < R,

∣∣∣es
∫

Uk,k

φ(asu ·H) du
∣∣∣ ≤ c(1 + |s|)−Nµ1,m(φ). (6.2)

Furthermore, fors moving in the other direction, there exists an elementκ0 ∈ K,
independent ofφ, such that

lim
s→∞

es
∫

Uk,k

φ(asu ·H) du =

∫

Vn+1
2

φ(κ0v ·H) dv. (6.3)

In particular, the limit exists, and is non-zero as a function ofφ.

6.2 Proof of Theorem 6.1

We recall the definition ofux,y,z from (4.9) and start with a few lemmas.

Lemma 6.2. Let s ∈ R, x ∈ R
n−k, y ∈ R

k−2 andz ∈ R. If asux,y,z ·H ∈ Kat ·H, then

2 cosh(4t) = f1 + f2‖x‖2 + f3‖y‖2 + ‖x‖2‖y‖2, (6.4)

where

f1 = f1(s, z) = e4s(1− z)2(1 + z)2 + e−4s + 2z2, (6.5)

f2 = f2(s, z) = e2s(1 + z)2 + e−2s, (6.6)

f3 = f3(s, z) = e2s(1− z)2 + e−2s. (6.7)
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Proof. From (4.9) we find

asux,y,z =




es esxt esz
In−2 y

e−s


 ,

hence

asux,y,zσ(asux,y,z)
−1 =




e2s(1− z2) es(1 + z)xt z
es(1− z)y In−2 + yxt e−sy

−z e−sxt e−2s


 .

The proof is completed by combining Lemma 2.1 with a straightforward computation of
the squared Hilbert-Schmid norm of the last matrix, analogous to the computation in the
proof of Lemma 4.9 (note that now〈x, y〉 = 0 sincek = l).

We shall need some estimates forf1, f2 andf3.

Lemma 6.3. Let s, z ∈ R and letfi = fi(s, z) be as above fori = 1, 2, 3. Then

f2f3 = f1 + 2, 2 ≤ f1, f1 ≤ f2f3 ≤ 2f1 (6.8)

and
1 + z2 ≤ f1. (6.9)

Proof. The equality in (6.8) is easily verified, and the lower bound for f1 follows from
(6.4) with x = y = 0. Then,f1 ≤ f1 + 2 ≤ 2f1 implies the final statement in (6.8).
Finally we observe that in addition to2 ≤ f1 we also have2z2 ≤ f1, whence (6.9).

Lemma 6.4. LetR ∈ R. Then there exists a constantA > 0 such that

fi(s, z) ≥ A(e2sz2 + e−2s), i = 2, 3, (6.10)

for all z ∈ R and alls ≤ R.

Proof. We may assumei = 2 sincef3(s, z) = f2(s,−z). Let b ∈ R be the solution to
b2 − b = e−4R that is larger than1. We shall establish (6.10) for alls ≤ R with

A =
b− 1

b
.

Inserting the definition off2 we see that with this value ofA, (6.10) is equivalent to

e2s(z + 1)2 + e−2s ≥ b− 1

b
(e2sz2 + e−2s)

and hence also to
e2s(z2 + 2bz + b) + e−2s ≥ 0.

This last inequality is valid for allz ∈ R ands ≤ R since the minimum ofz2 + 2bz + b
as a function ofz is−b2 + b = −e−4R.
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Proof of Theorem 6.1.Let φ ∈ C(Xn). Throughout the proof we will use the notation

Iφ(s) :=

∫

Uk,k

φ(asu) du.

The proof consists of three parts. In part (a) we will addressthe rapid decay ofesIφ(s)
for s → −∞ both for n odd and even. In part (b) we will address the similar decay
for s → ∞ in casen is even. Finally, in part (c) we will address the limit behavior for
s→ ∞ in casen is odd.

Fix N ∈ N. Then by (2.4), the functionφ satisfies the estimate

|φ(x)| ≤ µ1,N(φ)f(x) (x ∈ Xn), (6.11)

wheref : Xn → R>0 is given by

f(k′at ·H) =
(
2 cosh(4t)

)−n−1

4
(
1 + log

(
2 cosh(4t)

))−N
(k′ ∈ K, t ∈ R). (6.12)

Let

If (s) :=

∫

Uk,k

f(asu ·H) du,

then we have the estimate
|Iφ(s)| ≤ µ1,N(φ)If(s),

so that for parts (a) and (b) it suffices to show that (6.1) and (6.2) are satisfied withφ
replaced byf . DefineΨ : R≥1 → R by

Ψ(r) = r−
n−1

4 (1 + log(r))−N , (r ≥ 1, N ≥ 0). (6.13)

Then it follows that
Ψ(2 cosh(4t)) = f(k′at ·H)

for k′ ∈ K andt ∈ R. Moreover, using (6.4) we see that

f(asux,y,z) = Ψ(f1 + f2‖x‖2 + f3‖y‖2 + ‖x‖2‖y‖2). (6.14)

Hence,

If (s) =

∫

z∈R

∫

y∈Rk−2

∫

x∈Rn−k

Ψ(f1 + f2‖x‖2 + f3‖y‖2 + ‖x‖2‖y‖2) dx dy dz.

Part (a). Performing the following substitutions on the inner integrals,

x = (f1/f2)
1/2ξ, y = (f1/f3)

1/2η,

we obtain

If (s) =

∫

z∈R

∫

η∈Rk−2

∫

ξ∈Rn−k

Ψ(F (ξ, η)f1)
(f1
f2

)n−k
2
(f1
f3

)k−2

2 dξ dη dz, (6.15)
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where

F (ξ, η) := 1 + ‖ξ‖2 + ‖η‖2 + f1
f2f3

‖ξ‖2‖η‖2.

In the following we assume thatN ≥ 6. Using (6.13) we now see that the integrand in
(6.15) is absolutely bounded by

F (ξ, η)−
n−1

4 f
n−3

4

1 f
−n−k

2

2 f
− k−2

2

3

(
1 + logF (ξ, η) + log(f1)

)−N
. (6.16)

Let
ǫ = n+3

2
− k;

then0 ≤ ǫ ≤ 1 by our assumption onk. Moreover,

n− k = n−3
2

+ ǫ, k − 2 = n−3
2

+ 1− ǫ. (6.17)

Sincef1 ≤ f2f3, it follows that the expression (6.16) is bounded from aboveby

F (ξ, η)−
n−1

4 f
− ǫ

2

2 f
− 1−ǫ

2

3

(
1 + logF (ξ, η) + log(f1)

)−N

for all s.
From (6.8) we infer that

F (ξ, η) ≥ (1 + 1
2
‖ξ‖2)(1 + 1

2
‖η‖2).

It thus finally follows that
If(s) ≤ I1I2I3(s), (6.18)

where

I1 =

∫

Rn−k

g1(ξ) dξ, I2 =

∫

Rk−2

g2(η) dξ, I3(s) =

∫

R

g3(s, z) dz, (6.19)

with

g1(ξ) =(1 + 1
2
‖ξ‖2)−n−1

4

(
1 + log(1 + 1

2
‖ξ‖2)

)−2
,

g2(η) =(1 + 1
2
‖η‖2)−n−1

4

(
1 + log(1 + 1

2
‖η‖2)

)−2
, (6.20)

g3(s, z) =f2(s, z)
− ǫ

2f3(s, z)
− 1−ǫ

2

(
1 + log(f1(s, z))

)−(N−4)
.

It follows from (6.17) that the dimensionsn− k andk − 2 are at mostn−1
2

so thatI1 and
I2 are finite, thanks to the logarithmic terms (which in fact areneeded in at most one of
the integrals). Thus it only remains to estimate the third integral in (6.19).

We first assumes ≤ R for some givenR ∈ R. Using (6.10) forf2 and f3, and
estimating two of the logarithmic factors inI3(s) by (6.9) and the remaining ones by
f1 ≥ max{2, e−4s}, we find

I3(s) ≤ C

∫

R

(e2sz2 + e−2s)−1/2
(
1 + log(1 + z2)

)−2
dz

(
1 + max{log 2,−4s}

)−(N−6)
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for all s ≤ R, with C > 0 a constant depending onN . By substitution ofz = e−2sζ , and
using thats ≤ R, we find

I3(s) ≤ Ce−s

∫

R

(ζ2 + 1)−1/2
(
1 + log(1 + e−4Rζ2)

)−2
dζ

(
1 + |s|

)−(N−6)
,

with a new constantC > 0. The integral converges, and sinceN was arbitrary we
conclude from (6.18) that (6.2) holds, regardless of the parity of n. This completes part
(a) of the proof.

Part (b). We assume thats ≥ 0 and thatn is even. Thenk = n+2
2

andǫ = 1
2
, hence

I3(s) =

∫

R

f2(s, z)
− 1

4 f3(s, z)
− 1

4

(
1 + log(f1(s, z))

)−(N−4)
dz.

The integral overR can be replaced by an integral overR>0, becausef2(s,−z) = f3(s, z)
andf1(s,−z) = f1(s, z). We split the integration into two parts, and integrate separately
over the interval[1− δ, 1+ δ] and its complement inR>0, with δ ∈ (0, 1) to be fixed later
(it will depend ons). Let us writeJδ(s) for the integral over[1 − δ, 1 + δ] andcJδ(s) for
the integral over the complement of this set inR>0.

ForJδ(s) we use the estimates

f1 ≥ 2, f2(s, z) ≥ e2s, f3(s, z) ≥ e2s(z − 1)2,

and forz ≥ 0 and obtain

Jδ(s) ≤ e−s

∫ 1+δ

1−δ

|z − 1|−1/2 dz = 4e−sδ1/2. (6.21)

For cJδ(s) we estimatef1 by (6.9) in two of the logarithmic factors and byf1 ≥ e4sδ2

in the remaining factors. Furthermore, we estimate

f2(s, z) ≥ e2s(1 + z)2, f3(s, z) ≥ e2s(z − 1)2,

and obtain

cJδ(s) ≤ Ce−s

∫ ∞

0

(1 + z)−1/2|z − 1|−1/2
(
1 + log(1 + z2)

)−2
dz

(
1+ log(e4sδ2)

)−(N−6)
,

with a constantC > 0 depending onN but independent ofs andδ. The integral overz
converges and we obtain (with a new constantC > 0 of the same (in)dependency),

cJδ(s) ≤ Ce−s
(
1 + log(e4sδ2)

)−(N−6)
. (6.22)

By adding (6.21) and (6.22), we see that by choosingδ = e−
3

2
s we can ensure that

I3(s) ≤ Ce−s(1 + s)−(N−6),

with yet another constantC > 0. This implies (6.1) for the remaining cases ≥ 0.
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Part (c). We now turn to the statements about the limit in Theorem 6.1. Assume that
n is odd. We shall first deal with the casek = l = n+1

2
and consider the integral

Iφ(s) =

∫

Un+1
2

, n+1
2

φ(asu ·H) du

=

∫

z∈R

∫

y∈R
n−3
2 ×{0}

n−1
2

∫

x∈{0}
n−3
2 ×R

n−1
2

φ(asux,y,z) dx dy dz. (6.23)

This time, we perform the substitution of variables

x = esξ, y = e−sη, and z = e−2sω − 1, (6.24)

and obtain from (6.23) that

esIφ(s) =

∫

ω∈R

∫

η∈R
n−3
2 ×{0}

n−1
2

∫

ξ∈{0}
n−3
2 ×R

n−1
2

Φs(ξ, η, ω) dξ dη dω, (6.25)

where
Φs(ξ, η, ω) = φ(asuesξ,e−sη,e−2sω−1).

Recall the definition ofκ from (2.1). From Lemma 6.5 below we see that

lim
s→∞

Φs(ξ, η, ω) = φ(κ−1v(ω,η), 2
3
ξ),

for all (ω, η, ξ) ∈ Rn−1. Assuming that we may interchange the limit fors→ ∞ with the
integral on the right-hand side of (6.25) we obtain

lim
s→∞

esIφ(s) =

∫

R

∫

R
n−3
2

∫

R
n−1
2

φ(κ−1v(ω,η), 2
3
ξ) dξ dη dω

=

∫

Vn+1
2

φ(κ−1v) dv,

for the choice of Lebesgue measuredv corresponding to(2/3)
n−1

2 dξ dη dω.
Thus, for the proof of (6.3) it remains to be shown that we may interchange limit and

integral in (6.25). To prove this, we adopt the following strategy.
For0 < δ < 1 ands > 0 we define the set

Aδ,s := R
n−1

2 × R
n−3

2 × [(2− δ)e2s, (2 + δ)e2s]

and denote byBδ,s its complement inRn−1 ≃ R
n−1

2 × R
n−3

2 × R. We observe that
for everyv ∈ Rn−1 there existss0 ∈ R such thatv ∈ Bδ,s for all 0 < δ < 1 and
s ≥ s0. Accordingly, the characteristic function1Bδ,s

converges to the constant function
1, pointwise onRn−1, for s→ ∞.

In the text below, we will show that
∫

Aδ,s

|Φs(ξ, η, ω)| dξ dη dω ≤ Cδ (6.26)
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for a suitable constantC > 0, independent ofs andδ. On the other hand, we will show
that for each0 < δ < 1 there exists an integrable functionFδ : R

n−1 → R≥0, such that

1B(δ,s)|Φs| ≤ Fδ on R
n−1 (6.27)

for all s > 0. By application of Lebesgue’s convergence theorem it then follows that

lim
s→∞

∫

Bδ,s

Φs dξ dη dω =

∫

Rn

lim
s→∞

Φs dξ dη dω.

Combining this with (6.26) we readily see that the interchange of limit and integral is
allowed.

To achieve the goals mentioned above, we recall the definition of f1, f2 andf3 from
(6.5) - (6.7), but now considered as functions of(s, ω). Then by virtue of the substitution
(6.24), if follows from (6.6) that

f2 = e−2s(ω2 + 1). (6.28)

Furthermore, we definef andΨ as in (6.12) and (6.13). Then from (6.11) and (6.14)
we infer that

|Φs(ξ, η, ω)| ≤ µ1,N(φ) Ψ(f1 + e2sf2‖ξ‖2 + e−2sf3‖η‖2 + ‖ξ‖2‖η‖2).

SinceΨ is decreasing onR≥1, whereasf3 ≥ f1/f2 by (6.8), it follows that

|Φs(ξ, η, ω)| ≤ µ1,N(φ) Ψs(ξ, η, ω), (6.29)

where

Ψs(ξ, η, ω) := Ψ(f1 + e2sf2‖ξ‖2 +
f1
e2sf2

‖η‖2 + ‖ξ‖2‖η‖2).

This estimate, combined with (6.28), motivates the use of a final substitution

ξ = (1 + ω2)−
1

2χ, η = (1 + ω2)
1

2ψ.

Note that this substitution does not effect the subsetsA(δ, s) andB(δ, s) of Rn−1, defined
above. For any measurable subsetS ⊆ R, the functionΨs is integrable overRn−2 × S if
and only if the function

Ψ̃s(χ, ψ, ω) := (1 + ω2)−
1

2 Ψ(f1 + ‖χ‖2 + f1‖ψ‖2 + ‖χ‖2‖ψ‖2)

is integrable over this set, and accordingly,
∫

Rn−2×S

Ψs(ξ, η, ω) dξ dη dω =

∫

Rn−2×S

Ψ̃s(χ, ψ, ω) dχ dψ dω.

We observe that

1 + ‖χ‖2 + ‖ψ‖2 + ‖χ‖‖ψ‖ ≥ (1 +
1

2
‖χ‖)(1 + 1

2
‖ψ‖).
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SinceΨ : r 7→ r−
n−1

4 (1 + log r)−N is decreasing andf1 ≥ 2, we now obtain the estimate

Ψ̃(χ, ψ, ω) ≤ (1 + ω2)−1/2Ψ(f1 + ‖χ‖2 + ‖ψ‖2 + ‖χ‖2‖ψ‖2)
≤ g1(χ) g2(ψ) hs(ω),

whereg1, g2 are defined as in (6.20) and where

hs(ω) := (1 + ω)−
1

2 (1 + log f1)
−(N−4).

We observed already that the functionsg1 andg2 are integrable overR
n−1

2 andR
n−3

2 ,with
integralsI1 andI2, respectively. Let us therefore focus on the functionhs.On the interval
[(2− δ)e2s, (2 + δ)e2s] we have the estimates1 + ω2 ≥ e4s andf1 ≥ 1. Hence,

∫

Iδ,s

hs(ω) dω ≤
∫ (2+δ)e2s

(2−δ)e2s
e−2s dω = 2δ.

It follows that ∫

Aδ,s

Ψs(ξ, η, ω) dξ dη dω ≤ 2I1I2δ

and by applying (6.29) we obtain the estimate (6.26).
It remains to prove the claimed majorization ofΦs on Bδ,s. Here we shall use the

following lower bound onf1,

f1 ≥ 1 +
1

2
δ2ω2 (ω /∈ [(2− δ)e2s, (2 + δ)e2s]). (6.30)

To see this, note that the condition onω is equivalent to|2−e−2sω| ≥ δ, and hence (6.30)
follows immediately from the estimatesf1 ≥ 1

2
f2f3 andf1 ≥ 2 (see (6.8)).

From (6.30) we obtain the estimate

hs(ω) ≤ (1 + ω2)−
1

2 (1 +
1

2
δ2ω2)−(N−4) (ω ∈ R \ [(2− δ)e2s, (2 + δ)e2s])

for everys > 0. We now make the additional assumption thatN ≥ 5 to ensure that the
function on the right-hand side is integrable overR.

Define the functioñGδ : R
n−1 → R≥0 by

G̃δ(χ, ψ, ω) = g1(χ) g2(ψ) (ω
2 + 1)−

1

2

(
1 + log(1 +

1

2
δ2ω2)

)−(N−4)
.

ThenG̃δ is integrable onRn−1 and for everys > 0 we have the estimate

Ψ̃s ≤ G̃δ on Bδ,s.

DefineGδ : R
n−1 → R≥0 by

Gδ(ξ, η, ω) = (1 + ω2)
1

2 G̃δ((1 + ω2)
1

2 ξ, (1 + ω2)−
1

2η, ω).
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ThenGδ is integrable onRn−1, and it follows that

Ψs ≤ Gδ on Bδ,s,

for everys > 0. In view of (6.29) this proves (6.27) withFδ := µ1,N(φ)Gδ. We have thus
established the limit formula (6.3) for the casek = l = n+1

2
.

We will complete the proof of Theorem 6.1 by proving (6.3) forthe remaining case
k = l = n+3

2
. Let w be the longest Weyl group element for the root systemΣh =

Σ
(
Zh(aq); ah

)
, relative to the positive system (4.1), and letw0 ∈ NK∩H(a) ∩ ZK∩H(aq)

be a representative forw. By Lemma 4.7,

lim
s→∞

es
∫

Un+3
2

, n+3
2

φ(asu) du = lim
s→∞

es
∫

Un+1
2

, n+1
2

φ
(
w0 σθ(asu)

)
du

=

∫

Vn+1
2

φ
(
w0 σθ(κ

−1v) ·H
)
dv

=

∫

θVn+1
2

φ
(
w0 κv̄ ·H

)
dv̄. (6.31)

Let w1 be a representative inNK∩H(b) for the longest Weyl group element ofΣh(b),
relative to the positive system (5.1). Then, in view of Proposition 5.3,

w1θVn+1

2

w−1
1 = Vn+1

2

.

Hence, the integral in (6.31) is equal to
∫

Vn+1
2

φ
(
w0κw

−1
1 v ·H

)
dv.

This completes the proof of Theorem 6.1.

Lemma 6.5. Let k = l = n+1
2
. Then with notation as in (4.9) and (5.5) and writing

u(x, y, z) = ux,y,z, we have the following limit inXn,

lim
s→∞

as u(e
sξ, e−sη, e−2sω − 1) ·H = κ−1v(ω,η), 2

3
ξ ·H.

Proof. We start with a computation inSL(2,R), whose Lie algebra has the standard
Iwasawa decompositionsl(2,R) = RU ⊕ RY ⊕ RV, with

U :=

(
0 −1
1 0

)
, Y :=

(
1 0
0 −1

)
, V :=

(
0 1
0 0

)
.

We agree to writekϕ := expϕU, as := exp sY andnz := exp zV. In particular,

κ := kπ
4
=

1√
2

(
1 −1
1 1

)
and n−1 =

(
1 −1
0 1

)
.
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Let σ be the involution ofSL(2,R) given by switching the diagonal entries as well as the
off diagonal entries, and letH0 denote the associated group of fixed points.

We will first show that in the quotientSL(2,R)/H0 we have

lim
s→∞

asn−1 ·H0 = κ−1 ·H0. (6.32)

According to [13, Thm. 1.3] the mapG → G, g 7→ gσ(g)−1 induces a diffeomorphism
fromG/Gσ onto a submanifold ofG. Applying this general fact to the situation at hand,
we see that for (6.32) to be valid, it suffices to show that

asn−1σ(asn−1)
−1 → κσ(κ)−1 = kπ

2
(s→ ∞).

Now this follows by a straightforward calculation.
In turn, it follows from (6.32) that there exists a functionq : R → SL(2,R) with

lims→∞ q(s) = e and
n1a−sκ

−1 q(s) ∈ H0 (s ∈ R).

We agree to identifySL(2,R) with a closed subgroup ofSL(n,R) via the embedding

(
a b
c d

)
7→




a b
In−2

c d


 .

Thenκ andas in SL(2,R) correspond with the similarly denoted elements inSL(n,R).
Furthermore,H0 equals the intersection ofSL(2,R) with the subgroupH of SL(n,R).

Forx ∈ {0}n−3

2 × R
n−1

2 , y ∈ R
n−3

2 × {0}n−1

2 andz ∈ R we define

w(x, y, z) := exp




z
y

xt


 =




1 1
2
zxt z

In−2 +
1
2
yxt y

xt 1


 . (6.33)

Then by a straightforward calculation, one checks that the matrix

A = w
(
x, y, z

)−1
u
(
(1− 1

2
z)x, y, z

)

satisfiesSAS−1 = A, hence belongs toH. Thus, ifz 6= 2, then

as u(x, y, z) ·H = asw
(
(1− 1

2
z)−1x, y, z

)
·H

= as w
(
(1− 1

2
z)−1x, y, z

)
n1 a−s κ

−1 q(s) ·H
= as w

(
(1− 1

2
z)−1x, y, z + 1

)
a−1
s κ−1 q(s) ·H

= w
(
(1− 1

2
z)−1e−sx, esy, e2s(z + 1)

)
κ−1 q(s) ·H.

Through the substitution (6.24) the last expression becomes

w
(
2(3− e−2sω)−1ξ, η, ω

)
κ−1 q(s) ·H.

Fors→ ∞ this expression tends to

w(2
3
ξ, η, ω) κ−1 ·H = κ−1v(ω,η), 2

3
ξ ·H,

see (6.33) and (5.5). The result follows.
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