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The notion of cusp forms for a class of reductive
symmetric spaces of split rank one
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Abstract

We study a notion of cusp forms for the symmetric spaGgs$i with G =
SL(n,R)andH = S(GL(n—1,R) x GL(1,RR)). We classify all minimal parabolic
subgroups of for which the associated cuspidal integrals are convergedtdis-
cuss the possible definitions of cusp forms. Finally, we stiat the closure of the
direct sum of the discrete series of representatiors/df coincides with the space
of cusp forms.

Introduction

In this article we investigate the convergence of certaiegrals that can be used to give
a notion of cusp forms on the symmetric sp&tgn, R)/S(GL(n — 1,R) x GL(1,R)),
which we here denote by(,,. Furthermore, we determine the relation between the dis-
crete series representations and the space of cusp forres® spaces.

Harish-Chandra defined a notion of cusp forms for reductreegroups and proved
that the space of cusp forms coincides with the closed sp#reih?-Schwartz space of
the discrete series of representations. This fact playsanoritant role in his work on the
Plancherel decomposition. Inl[1] a notion of cusp forms &l hyperbolic spaces was
introduced, following a more general suggestion by M. Riettslensen. Subsequently, in
[4], the first and second author gave a definition of cusp fdonsplit rank1 reductive
symmetric spaces. However, the notion|df [4] deviates froemgeneral suggestion of
Flensted—Jensen at an important point. The main purposeeopresent article is to
explore the necessity of this deviation.

In order to give a precise description of the purpose of tlesgmt article we first
recall some background. Létbe semisimple and l&t/ H be a symmetric space of split
rank 1; hereH is an open subgroup of the group of fixed points of an invotutiof G.
Every minimal parabolic subgroup of G contains ar-stable maximal split connected
abelian subgroug » of GG. The set of minimal parabolic subgroups decomposes into two
disjoint sets: the sé® of P such thatdp/(Ap N H) is 1 dimensional and the s of P
such thatdp/(Ap N H) is 0 dimensional, i.e. Ap C H.
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The main goal is now to identify a suitable class of minimaigh@lic subgroup$’
with the property that for every in the Harish-Chandra Schwartz spatig>/H) the

integral
/ ¢(n)dn (1.2)
Np/(NpNH)

is absolutely convergent. Herér denotes the unipotent radical 8fanddn is an Np-
invariant Radon measure ovi»/(Np N H). A cusp form is then defined to be a function

¢ € C(G/H) such that
/ d(gn)dn =0 (1.2)
Np/(NpﬂH)

for every such parabolic subgrodpand every € G.

Flensted-Jensen has suggested to use the set of paralbgrosps that can be char-

acterized as follows,

P.:={PeP:dim(NpNH)= Igglg}){dim(NQ NH)}.
These parabolic subgroups are said tdykextreme, see [4, Def. 1.1] for an equivalent
characterization.

In [1] it was confirmed for real hyperbolic spaces that thegnal is absolutely con-
vergent forP € P, and for everyy € C(G/H).

In [4] a notion calledy-compatibility was introduced for parabolic subgroups P
by imposing a condition on the roots that are positive for For the space(,, this
condition is recalled in Definition 2.5. It was proved|in [Apt forh-compatible parabolic
subgroups” € P the integrals[(Lll) are absolutely convergent. Let

Py :={P € P : Pish-compatiblg.

For real hyperbolic spaces this set equals but in general this need not be the case.
The difference occurs for example for the symmetric spacgs|If n > 4 thenP, is
not contained irP,, and ifn > 3 is odd thenP, is not contained iP,. Therefore, the
family X, is a good test-case for determining whether or not the nereg-éompatible
parabolic subgroups inl[4] is an artefact of the proof, an@tivear or not the dimension
of Np N H is relevant for the convergence of the integrals.

In Section[1 we describe some generalities concerning phacafubgroups. The
results in this section hold for any reductive symmetriccgpdn Sectio ]2 we describe
the polar decomposition aok,, and the Harish-Chandra Schwartz spa¢«’,,) of X,,.
Our main results are formulated in Sectidn 3 and proved imeh®ining sections.

The first main result (Theorem 3.1) is a classification of alimal parabolic sub-
groups P such that the integral (I.1) is absolutely convergent for¢gake C(X,,). We
extend the notion dj-compatibility to all minimal parabolic subgroups(not just those
in P, but also the ones i®). We then show that(ll1) is absolutely convergent for all
¢ € C(X,) ifand only if P is h-compatible.

The second main result (Theoréml3.2) describes the behatviofinity of the func-
tion

Hpop: Ap — C; a— a’f / o(an) dn, (1.3)
Np/(NpnH)
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for P € PyNP,and¢ € C(X,). In particular it is shown that if: is even, therH p¢

is rapidly decreasing; if is odd, thertH p¢ is rapidly decreasing in one direction, while
it converges to a possibly non-zero limit in the other di@tt Moreover, for every-
compatibleP € Q there exists & € P, NP, and ag € G such that the integral (I.1)
equals a limit ofH p (¢(g-)).

As a consequence of Theorém]3.2, we will show in Propodiii@ritgat if (.2) holds
for all P € P, N P., then [I.2) holds for alh-compatible parabolic subgroups. This and
Theorem 311 justifies the use & N P. in the definition of cusp forms for reductive
symmetric space of split rank

In [I] it was shown that there exist discrete series reptasiens for certain real
hyperbolic spaces for which the generating functions ateugp forms. These discrete
series representations are called non-cuspidal. Usingethits of [4] and the estimates
from Theoreni_3]2 for the behavior at infinity ¢f {I.3), we shtvat for X,, there are no
non-cuspidal discrete series representations. Our final reault (Theorerf 3]6) is thus
that the space of cusp forms df), coincides with the closed span of the discrete series
of representations fak,,.

For other papers concerning the particular symmetric spacsee for examplé [12],
[11], [6], [7] and [16].

We would like to thank Mogens Flensted-Jensen for manyféduliscussions related
to the present work.

1 Parabolic subgroups and split components

In this preliminary chapter we collect some properties Wlace valid for general reduc-
tive symmetric spaceS/H. HereG is a reductive Lie group of the Harish-Chandra class
and H is an open subgroup of the group of fixed points for an invohuti of G. We are
concerned with properties of-stable connected split abelian subgroups and parabolic
subgroups ofy. The main result is that every parabolic subgrdupf GG contains ar-
stable maximal split abelian subgroupof GG, which is unique up to conjugation by an
element ofNp N H.

1.1 Split abelian subalgebras

We writeg = h @ q for the eigenspace decomposition for the infinitesimal liatron o
Herel is the Lie algebra off andq is the—1 eigenspace. Recall that an abelian subspace
a of g is called split ifg decomposes as a sum of joirtveight spaces.

Lemma 1.1. Leta be ac-stable maximal split abelian subalgebragfThen there exists
a o-stable Cartan decompositign= ¢ ® p with a C p.

Proof. From the construction in[10, Thms. 6.10, 6.11] it followatthere exists a Cartan

involution #, such that,(X) = —X for X € a. Sincea is o-stable, the construction in
the proof of [8, Thm. 11.7.1], applied t6, ando, gives a Cartan involutiofl which in
addition commutes with. O



Definition 1.2. We defineA, to be the set of all maximal split abelian subspaces$ q,
and.A to be the set of all maximal split abelian subalgelra$ g for whichan g € A,.
Thesplit rankof G/ H is the dimension of any € A, (it will follow from Corollary 1.5
below that this is well defined).

Note that/ acts onA, and.4 by conjugation.
Lemma 1.3.If a € A, thena is o-stable.

Proof. LetY € a. ThenY andoY both commute wittu N q and henc&” — oY € anyg
by maximality. HencegY € a. O

Proposition 1.4. A subspacer C g belongs taA if and only if there exists a-stable
Cartan decompositiog = ¢ @ p such thats is maximal abelian ip anda N q is maximal
abelian inp N g. The action off on A by conjugation is transitive.

Proof. Let A’ denote the set of subspaaes g for which there exists a-stable Cartan
decompositiony = £ @ p such that is maximal abelian ip anda N q is maximal abelian
in p N g. It follows from [14, Lemmas 4,7] thall acts transitively ord’.

It follows from Lemmd_ 1.1l and Lemnia 1.3 thdtC A’. Hence A = A'. O

Corollary 1.5. A subspaceés C q belongs toA, if and only if there exists a-stable
Cartan decompositiop = ¢ @ p such that is a maximal abelian subspaceoh q. The
action of  on A, by conjugation is transitive.

Proof. Letb € A; and leta € A with b = a N q. The asserted Cartan decomposition
exists according to Proposition 1.4.

Conversely, leb C g and assume thatis maximal abelian ip N g for someo-stable
Cartan decomposition = ¢ @ p. Leta C p be a maximal abelian subspace witD b.
Thena N q = b by maximality. It follows from Propositioh 114 that € .4 and hence
be A,

The transitivity of the action follows from the corresponglistatement in Proposition
1.4. O

1.2 Parabolic subgroups

We recall that if? and( are parabolic subgroups, théns called opposite t@ if PNQ
is @ common Levi subgroup @? and@. If P is a parabolic subgroup we writ€y for
its unipotent radical. Recall also thasplit componentf P is a maximal connected split
subgroup of the center of a Levi subgroupraf

Note that a parabolic subgroupis minimal if and only if the Lie algebras of its split
components are maximal split g Note also that it is a maximal split abelian subalge-
bra ofg and A = exp(a), then the normalizeN(A) of A in G acts by conjugation on
the set of minimal parabolic subgroups containigrhis action is transitive.

Lemma 1.6. Let P be a minimal parabolic subgroup. 4 and B are two split compo-
nents ofP, then there exists a uniquec Np such thatB = nAn~!.
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Proof. There existg € G such thatB = gAg~!. ThenP andg—! Pg both containA and
henceg~ ' Pg = wPw™! for somew € Ng(A). The producyw normalizesP and thus
belongs toP. The existence of now follows by decomposing this element according to
the Levi decompositio®® = Z(A)Np.

Now assume that,n, € Np satisfyB = nLQAnié. Thenn; 'n, centralizesA and
thusn; 'ny € Zo(A) N Np = {e}. This proves uniqueness. O

Lemma 1.7. Let P and @ be minimal parabolic subgroups. Assume tRaand () have
common split componentsand B. Then there exists a uniquec Np N Ng such that
B =nAn'.

Proof. By Lemma[1.6 there exists a uniquec Np such thatB = nAn~!. It suffices to
show thatr € Ny. Leta € A be dominant with respect t8. Then for everyk € N we
havea*na*n=1' € a=*B C Q. Since( is a closed subgroup and*na*n=! converges
ton~! for k — oo, it follows thatn € ). Furthermore, since € Np, the elemenltog(n)
is a sum ofa-weight vectors with non-zero weights. This implies that N;. O

Theorem 1.8.Let P be a minimal parabolic subgroup.
() There exists a-stable split componem of P.

(i) If A and B are twoo-stable split components &f, then there exists a uniquee
Np N H such thatB = nAn~!.

Proof. See[[17, Lemma 12] for a proof that uses [15] and only appliedgebraic groups.
An alternative proof is given in 9, Lemma 2.4], also undez g#ssumption of algebraic
groups. The stateme(ij is proved without this assumption in |14, Lemma 2], and hence
we only need to provéi).

If A andB are twoo-stable split components @f, then by Lemma 1]7 there exists a
uniquen € Np N o (Np) such thatB = nAn~!. Observe that

B =0(B) =0(n)o(A)o(n) =o(n)Ac(n)"".
From the uniqueness afwe conclude that(n) = n, or equivalentlyp € Np N H. [
The preceding theorem allows for the following definition.

Definition 1.9. Let P be a minimal parabolic subgroup and l&étbe ac-stable split
component of”. We define ther-parabolic rank of to be the dimension ol /(AN H).

We write P for the set of minimal parabolic subgroups of maximgbarabolic rank.
(Note thatP € P if and only if P admits a split componend = expa with a €
A.) Furthermore, we writ& for the set of all minimal parabolic subgroups of mini-
mal o-parabolic rank. Ifa € A, then we writeP(a) for the set of minimal parabolic
subgroups containingxp a. Note thatP(a) C P. If b is a o-stable maximal split
abelian subalgebra af such thatb N h has maximal dimension, then we wrig(b)
for the set of minimal parabolic subgroups containing b. Note thatQ(b) C Q.



Corollary 1.10.

(i) Leta € AandletP € P. Then there exists an elemént H such thathPh~!
P(a).

(i) Letb be ar-stable maximal split abelian subalgebragguch thabnh has maximal
dimension. Then for every ¢ O there exists an elemehtc H suchthathQh~! ¢

Q(b).

Proof. Ad (i): There exists & € A such thatxp b C P. By Propositiori 1.4 there exists
anh € H such thatd = hBh~!. This implies that4 is contained irh Ph 1.

Ad (ii): The claim follows from the fact that all such subalgebras/dreonjugate.
See Lemm@&lll and 14, Lemmas 4,7]. O

1.3 Positive systems djf-roots

Let A be ac-stable connected maximal split abelian subgroup:@nd leta be its Lie
algebra. We writé:(a) for the root system of in g. Given a rootx € X (a), we writeg,
for the associated root space.

Definition 1.11. By anh-root in X(a) we mean a root € ¥(a) such thafg, N # {0}.
The set of such roots is denoted Hy(a).

Proposition 1.12.
(i) If o € ¥y(a), thena| = 0.

(i) Zy(a N q) is a reductive Lie algebra of which N is a maximal split abelian
subalgebra. The root systemof b in Z;(a N q) equalsy,(a), viewed as a subset
of (anh)*.

(iii) Assume thatt € A. ThenXy(a) = X(a) N (a N b)*. Furthermore, ifo € 3y(a),
theng, C bh.

Proof. Ad (i):If g, Nbh # {0}, theng,o Ngo = 0(ga) Nga # {0}. Thisimpliesca = a.

Ad (ii): Let ¢ be a Cartan involution giving rise to a Cartan decomposiienn
Lemmal.l. Sinc&,(an q) is f-stable, it follows from[[1D, Cor. 6.29] th&,(a N q) is
reductive. The maximality od implies thata N § is a maximal split abelian subalgebra
of Zy(a N q). Let @ be the root system af N h in Z,(a N q). It follows from (i) that
algny € @ for everya € ¥y(a). Now letg € ® and leta € a* be given byn |, = /5 and
alang = 0. Theng, N b contains the root space 6f hencex € ¥y (a). We conclude that
d = Zh(a).

Ad (iii): It suffices to prove that under the given assumptinC b for everya €
¥.(a) that vanishes on N q. Let a be such a root and let € g, N q. We writed for a
Cartan involution giving rise to a Cartan decompositionrasemma_L]l. Sinc& is in
the centralizer ofi N q, it follows from the maximality ofa N g that X — 0(X) € ang.
SinceX — 0(X) € g, ® g, it follows thatX — 6(X) = 0 and thereforeX =0. [
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If P € P(a), then we writeX(a; P) for the positive system of(a) consisting of
roots that are positive with respect® In other words, a roat € ¥(a) is an element of
Y (a; P) if and only if the root spacg,, is contained imp.

We fix a positive syster; (a) of X(a).

Corollary 1.13. Let ) be a minimal parabolic subgroup and let be ao-stable split
component of). Then@ is Ng(a N bh) N Zy(a N q)-conjugate to a minimal parabolic
subgroupP’ such that

¥y (a) € X(a; P).

Proof. The set;(a) N X(a; Q) is a positive system for the root systeip(a). It follows
from Propositior _1.1Zii) that each such positive system is conjugatéima) by an
element of the normalizer @fN h in Zy(a N q). O

2 The symmetric space under consideration

2.1 The spaceX,,

For the remainder of this articlewill be a natural number with > 3 andG will be the
real Lie groupSL(n, R). Let o be the involution orGG given by

where

The fixed point subgrougi of o is obtained from the subgr0L$>(GL(n — 1,R) x
GL(l,R)) of G (embedded in the usual manner) by conjugation with the gadhal

matrix
1 b1
) z}__4_2_
R = | An—2 . (21)
B D
V2, C V2

We denote thén — 2 dimensional reductive symmetric spa&¢H by X,.
Let ¢ be the Cartan involution given by

0(g) = (97,

and let K be the fixed point subgroup @f i.e., K is the maximal compact subgroup
SO(n). SinceS is orthogonal, the involutions andfd commute. The Lie algebrgof G
admits the decompositign= h & q into the eigenspaces fot Here

—trx Ut Y
{( wo, T —w ) :x € Mat(n — 2,R),y € R,v e R" % w e R"?}
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is the Lie algebra off and

RSN
g={ w, | w tyeRzeRvER weR" 2}
_;g}rzjﬂ__;_

Similarly, we have the Cartan decompositips- ¢ @ p; heret equalsso(n) andp equals
the space of traceless symmetricx n matrices. We note that

aq := Rdiag(1,0,...,0,—1)

is a maximal abelian subspacepafi q. Hence, the split rank ok, is equal tol. We put
Aq := exp(aq) and fort € R we definea; € A, by

a; := exp (t diag(1,0,...,0, —1)). (2.2)

2.2 Polar decomposition
The spaceX,, admits a polar decomposition: the map
K x Ay — Xy; (k,a) — ka-H

is surjective. Ifa - H € Ka' - H for aa’ € A,, then there exists &in Nknp(a,), the
normalizer ofa, in K N H, such that = ka'k~". In fact, since the action oV (a,)
ona, is length-preserving (with respect to the Killing form) and

0 0 1
0 —]_I IO
b= |07 @3)
_____ 1in=3,
1 0 0

is an element i N H such thakqak,' = a~! for everya € A, we haven-H € Ka'-H
ifand only ifa’ € {a,a'}.

Lemma2.1.Letg € Gandt € R. If g € Ka; - H, then
lgo(9)~ " lEs = n — 2 + 2 cosh(4¢),
where|| - | zs denotes the Hilbert-Schmidt norm diut(n, R).

Proof. A straightforward computation shows that

lgo(g) Mg = tr (90(9)‘1(90(9)‘1)t> = tr(q;).

The result now follows from the fact thaf equals the matrixiag(e*,1,...,1,e4).



2.3 Schwartz functions

In this section we give a definition of the space of Schwartcfion onX,,. This def-
inition differs from the one in[[3, Sect. 17], but it is eas#gen from|[[3, Thm. 17.1,
Prop. 17.2] combined with Remdrk#.5 of the present papattiie definitions are equiv-
alent.

Definition 2.2. A Schwartz function on¥X,, is a smooth functiow : X,, — C, such that
for everyu € U(g) andm > 0 the seminorm

sup cosh™ () (1 + [t])™|(u¢)(ka, - H)|

kEK tcR

is finite. Hereu is obtained with the regular action 6f(g) from the left. The vector
space of Schwartz functions oY, equipped with the locally convex topology induced
by these seminorms, is denoted®yX,, ).

Remark 2.3. To simplify computational expressions later on, it will bgetul to work
with the following seminorms instead, fore U(g) andm € N,

P (0) = sup (2cosh4t)"T (1 4 log(2 cosh(41)))™|(ud)(ka; - H)|.  (2.4)

keK teR

Obviously, a smooth function : X,, — C belongs taC(X,,) if and only if these semi-
norms are finite. Moreover, the seminorms,, detemine the Fréchet topology 60.X,,).

For future reference we shall now construct some specifizv@ih functions onX,,.
Lemma 2.4. Letv < 152, The functionp, : X,, — R, defined by
¢y (kay - H) = cosh”(4t),
is Schwartz.
Proof. We will show thatC(X,,) contains every functiop € C*°(X,,) such that
K x (1,00) = C; (k,t) — ¢(ka, - H)
is a linear combination of functions of the form
K x (1,00) — C; (k,t) — @(k) cosh™(t) sinh”(t), (2.5)

with ¢ € C*°(K) and real numbers, © with sum\ + ¢ = 4v < 1 — n. Clearly our
function¢, has this property. It is easily seen that,,(¢) < oo for such a function, and
hence it suffices to show that this class of functions is iavdrunder the left action by
U(g). For this it suffices to consider the action pyLet X € g, then we can writeX
as a linear combination of elements of the fafmb(%)Y” with some fixed basis elements
Y € g and with coefficients which are smooth functionstof K. We shall use a basis
of weight vectorsY” for the adjoint action ofi, on g. If Y belongs toa, or Zy(a,), then

9



itis easily seen that,t) — [Ad(k)(Y)é](ka, - H) will again be of the form[(2]5) with
A+ v = 4v. It remains to consider the case wheftés a root vector for a roat of a,.
Sincea, is of-invariant, the associated root spaceyiis o0-invariant as well, hence
we may assume thaty = Y. If ¢0Y =Y, a simple computation shows that
N 1

Y=—" (Y+ov)+
aa_afa

Ad(a)(Y + oY)

aa _ CL*CV
foralla € A,, and ifc0Y = —Y, the corresponding formula reads

aa + a [0} alOé + a [e%
Note that fora = a, in both cases the coefficient &f + 0Y is a linear combination of
functionscosh? ¢ sinh? ¢ with p + ¢ = 0. Hence, when we appld (k)Y to ¢ as above,
the term withY” + 6Y will produce a new function of the same kind, whereas the term
with Ad(a.)(Y + oY) will be annihilated because of thé-invariance from the right.
This proves the claim. O

2.4 h-compatible parabolic subgroups

Let P be a minimal parabolic subgroup. By Theoreml 1.8 there exsistsstable split
componentd of P, which is unique up to conjugation by N H. We fix such a split
component4d and writea for its Lie algebra. We recall the definition of the root sys-
tem X (a) of h-roots from Definitior 1.I1. We writ&;(a; P) for the positive system
Y(a; P) N 3y(a) of Xy(a) and define

PPy :% Z a.

aeEh(a;P)

Definition 2.5. The parabolic subgroup is said to béy-compatible if one of the follow-
ing conditions are fulfilled:

(a) P is of o-parabolic rank and(«a, ppy) > 0 for all & € 3(a; P);
(b) P is of g-parabolic rank) and(«, ppy) > 0 for all a € X(a; P).

Remark 2.6. We note that this notion is independent of the choice,dince any other
choice would beP N H-conjugate toa. Furthermore, it is now readily seen that the
property ofh-compatibility is preserved under conjugation By

SinceX,, is of split rankl1, every minimal parabolic subgroup is eitherseparabolic
rank 1 or of o-parabolic rank). We recall thatP denotes the set of minimal parabolic
subgroups of-parabolic rank andQ denotes the set of minimal parabolic subgroups of
o-parabolic rank). We write’P, and Q, for the sets ofy-compatible parabolic subgroups
in P andQ, respectively. Recall th&, denotes the set d? € P such that the dimension
of Np/(NpN H) is minimal, i.e. dim (Np/(NpN H)) = n—1; see Proposition 4.4 and
Equation[(4.1D).
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For everyn > 3 the setPy, is non-empty. Ifn is even, then{ acts transitively orP,
andP, C P.. If nis odd, then thé{-action admits three orbits, see Proposifion 4.4. One
orbitis equal taP, \ (P. N Py); the other two orbits are containedi N P,

If nis even, therQ, = (. If n is odd, thenQy is non-empty and? acts transitively
on it, see Propositidn 3.3.

3 Main theorems

3.1 Convergence

Let P be a minimal parabolic subgroup@fand letdx be a non-zerdvp-invariant Radon
measure oiNp/(Np N H).

Theorem 3.1. The integral

/ ¢(x- H)dx
Np/(NpﬂH)

is absolutely convergent for evepye C(X,,) if and only if P is h-compatible.

The proof of this theorem will be given in Sectidds 4 ahd 5.

3.2 Limit behavior

Assume that” € P, N P,. Let A be ac-stable split component af and letL be the
centralizer ofd in G. ThenL = M A, whereM is the (unique) maximal compact sub-
group of L. Now P = LNp andP = M ANp are a Levi and a Langlands decomposition
respectively. Note that = Lie(A) € A. We define

det Ad(l)]
det Ad(l)]

np

5PZL—>R>0; [~

npNZg(ang)

Let .
pp = 5 Z .
a€d(a;P)
Then form € M anda € A
5P(ma> = qPPPPb
For¢ € C(X,) we define its Harish-Chandra transfots ¢ to be the function o /(LN
H) given by

Hpo(l) = 6p(1) / é(ln)dn (I € L).

Np/(NpﬂH)

Note that the integrals are absolutely convergent by Thefd and define a right. N
H)-invariant function on_.
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Theorem 3.2.Let P € P, N P, be as above and let< a N q be such thapp(v) > 0.
(i) Assumen is even. Then for every € C(X,,) and everyN € N,

sup |t Hpo(mexp(tv))| < oc.
meM teR

(i) Assumen is odd. Then for every € C(X,,), everyr € R and everyN € N,

sup ’tN?—[pd)(meXp(tv))} < 00.

meM t<r

Moreover, the limit
pp() = lim Hpo(exp(tv))

exists, and there exists &nrcompatiblel) € Q and an elemeng € G such that for

everyo € C(X,),
nr(0) = | b(gn) dn.
Nq/(NgNnH)

Vice versa, i) € Q, then there exists & € P, N P, and an elemerg € G such
that for everyp € C(X,),

/ ¢(gn) dn = pup().
Nq/(NoNH)
The proof of the theorem will be given in Sectian 6.

3.3 Cusp forms

As explained in the introduction, the aim of the article isexplore which parabolic
subgroups should be used in the definition of cusp forms fitwctve symmetric spaces
of split rank1. In [4] it was proved that for such a symmetric spacehe integral

/ 6(n) dn
Np/(NpﬂH)

is absolutely convergent for afl € C(X') and everyP € P.

It follows from Theoren_3]1 that for the spac&s only the h-compatible parabolic
subgroups provide integrals that are convergent for alW&actz functions. We conclude
from this that the condition thaP is h-compatible, which was needed in [4], is not an
artefact of the proof.

Forn odd the se®j, is non-empty. In[[4] only the minimal parabolic subgroupsnfr
P, were used. The remaining question that needs to be answerdtether the class
of parabolic subgroups that is used for the definition of dasms should include any
minimal parabolic subgroup fror@;.
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Proposition 3.3. Let¢ € C(X,,). The following four conditions are equivalent.

(i) Foreveryg € G and everyh-compatible parabolic subgroup,

/ ¢(gn)dn = 0. (3.1)
Np/(NpnH)

(i) Foreveryg € G and everyP € P, equation[[3.) holds.
(iii) Foreveryg € G and everyP € P, NP, equation[(3.11) holds.

(iv) There exists & in eachH-conjugacy class irP, N P, such that for every € G
equation[(3.11) holds.

Proof. The implicationgi) = (ii) = (iii) = (iv) are trivial.

Conversely, if[[3.11) holds for a givelnrcompatible parabolic subgroup and every
g € G, then it also holds for every/-conjugate ofP. This provesiv) = (iii). The
implication(iii) = (ii) is proven in[[4, Lemma 8.14].

Now assume&) € Qy. By Theoren 3R the integrals ovéf,/(Ny N H) can be
obtained as limits of integrals ovéfr /(NpN H ) for someP € P,NP.. This establishes
the implication(ii) = (i). O

Definition 3.4. A function ¢ € C(X,,) is said to be a cusp form if one of the equivalent
conditions in Proposition 3.3 is satisfied.

We write C..s, (X,) for the space of cusp forms ak,, andCq4(X,,) for the closed
span of the discrete series representation’,pfGiveng € G and¢ € C(X,,), we write
L,¢ for the function given byL,¢(z) = ¢(g 'z), for z € X,. In [4] the following
theorem, which we here only state far,, is proved for general reductive symmetric
spaces of split rank.

Theorem 3.5.
(I) Ccusp(Xn) g Cds(Xn)
(i) 1f Cas(X0)% C Consp(Xn)X, thenCas(X,) = Cousp(Xn)-

(iii) Fix a € Awitha, C a. Let¢ € C(X,,) be K-finite. Thenp € Cq5(X,,) if and only if
for everyh-compatible minimal paraboli® € P(a) and everyk € K the function

Hp(Lro)

q

is a finite linear combination of exponential functions withn-zero exponents.
Theoreni 3.6 and the estimates in Theofem 3.2 have the foitpearollary.

Theorem 3.6.Cqs(X,) = Ceusp (Xon)-
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Proof. By (i) and(ii) in Theoreni35 it suffices to prove th@t,(X,,)* C Ceusp(Xn)¥.
Let ¢ € Cqs(X,,)%. We need to show that is a cusp form. For this we will prove that
condition([v) in Propositio 3.8 is satisfied.

By (iii) in Theoreni 3.5 the restriction 6{p¢ to A, is of exponential type with non-
zero exponents. From Theorém]3.2 it follows that this fuorcis bounded. The only
function onA, that satisfies both conditions is the€unction. This proves that

/ ¢(an)dn =0
Np/(NpOH)

for everya € A;. Now, letg € GG. By the lwasawa decomposition there exist K,
a € Ayanday € AN H suchthay € kaay Np. Using thatp is K-invariant, we find

aff_pp’”/ o(gn) dn:/ ¢(an) dn = 0.
Np/(NpﬂH) Np/(NpﬂH)

This proves the claim. O

4 Proof of Theorem[3.1 foro-parabolic rank 1

In this section we deal with the proof for Theoréml3.1 underabsumption tha® is of
o-parabolic rank. In[4.1 {4.4 we first reduce the statement to a (seemingly)jeseral
statement, which we then provein 4.5 =4.7.

4.1 Root systems.
We recall the definition ofi,, A, anda, from Sectioi 211, and define

n—1

ay = {diag(zl,xg, cey Tpo1, 1)t X € R 22y + in = 0}.

=2

Note thata, is a maximal abelian subspaceof q anday is a subspace gf N h such
thata = a, @ a, is a maximal abelian subspacepofWe write A for exp(a)

In the remainder of this section we shall describe the rostesy ofa in g. For1 <
k < n we define the functional

er:a— R; diag(xy, ..., x,) — xp.
The root system of in g then equals
Si=%(g,a)={e;—e;:1<i,j<ni#j}

The root spaces a, ., = RE; j, whereE; ; is the matrix whose entry on th® row
and;™ column equald, whereas all remaining entries equal zero.
Note that
Spi=g(a) ={e; —e;:2<4,j<n—1,i#j}
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is the root system im,, for Z,(a,); see Proposition 1.1@). We set

e =) ={e—e:2<i<j<n-—1} (4.1)
and define 1
Py =75 > o
aEEa
The set

Ye=YNa; = {£(e1 —e,)}

forms a root system. We denote the associated positivem;{&tp— en} by X

4.2 Classification of parabolic subgroups

Recall thatP denotes the set of minimal parabolic subgroups containmgtable max-
imal connected split abelian subgroé) such thatb N g has maximal dimension, i.e.,
dim(b N q) = 1. Recall also thaP(a) denotes the subset & consisting of minimal
parabolic subgroups containingg From now on we shall writé&2(P) := >(a; P) for
P e P(a).

Lemma 4.1. Let ) € P. Then there exists a parabolic subgrofpe P(a) which is
H-conjugate ta?) and satisfies

(SFUS) C 2(P). (4.2)

Let P be any such parabolic subgroup. Thep, = p,. Moreover,() is h-compatible if
and only if P is h-compatible (see Definitidn 2.5).

Proof. By Corollaries .10 anf1.13) is H-conjugate to a parabolic subgrouy
P(a) with 5 C B(P'). If X(P') Na; = X7, then [42) holds wittP = P'. Otherwise,
recall the element, from (2.3). This element is iV (aq) N Zxnu(as) and acts by
inversion ona,. Hence,P = ko P'k, " satisfies[(42). In particulapr, = py. The final
assertion follows from Remafk 2.6. O

We will now classify the parabolic subgrougs € P(a) satisfying [4.2). Every
parabolic subgroup’ € P(a) is uniquely determined by the corresponding positive sys-
tem>(P). The set of these positive systems is in bijection with thamsetric groups,,:
an element € S, corresponds to the positive systéifiP) given by

E(P) = {67_71@) — Er-1(5) - 1< <j < TL}

Equivalently, a root; — e; € ¥ belongs taX(P) if and only if (i) < 7(j). We thus see
that the parabolic subgrougs € P(a) satisfying [(4.2) correspond to thee S,, such
that

(i) <7(j) for 2<i<j<n-—1 and (1) < 7(n). (4.3)

Given such a permutatione S,,, there exists a unigue with 2 < k£ < n, such that

T(k—=1) <7(1) < 7(k), 4.4)
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and a uniqué, with £ < [ < n, such that
T(l—1) <7(n) < 7(l). (4.5)

Conversely, for each pair of integdrs, () satisfying2 < k£ < [ < n, there exists a unique
T € S, satisfying[(4.8),[(414) and (4.5). From now on we wiitg, for the corresponding
minimal parabolic subgroup arEi,j’l for X(Py,). Furthermore, we writé, ; = M ANy,

for the Langlands decomposition &7, ;. For future reference we note that the positive
system corresponding t@, /) is given by the disjoint union

E:’l:E;UE:U{e]——el:2§j§k—1}u{el—ej:kﬁjgn—l} (4.6)
U{ej—en:2§j§l—1}u{en—ej:lgjgn—l}.

In the following we assume thatis thead-invariant bilinear form ors((n, R) given
by b(X,Y) = tr (XY). Itis well known that is a positive multiple of the Killing form
B, in fact, b = ﬁB. The restriction oft to a, denoted(- , -), is a positive definite
inner product. We equip* with the dual inner product, also denotéd, -), which
on two elements,, v € a* is given as follows. The elements have unique expressions
p=>;pe; andv = 3. v;e; provided we demand that, ; = 0 and)_, v; = 0. In
terms of these expressions,

(s v) = vy (4.7)

In particular, each roat; — e; has lengthy/2.

Lemma 4.2. Leti andj be integers such thdt< i < j <n. Then

j—i if 2<i<j<n—1,
e if i=1 and 2<j<n-—1,
<€i_ej7ph> ) ntl : if ; ) —
ntl g if 2<i<n—-1 and j=n,
0 if +=1 and j=n.

In particular, (v, py) > 0 for everya € $(P,) if and only if 2 <k <1 < 23,

Proof. Using the definition opy, we find

—_

n—

20y = Z (ei—ej) =) (n+1—2ie,.

2<i<j<n—1 i

Il
)

The first statement in the lemma is a direct consequence sfféhmula; the second
follows from comparison witH (416). O

Lemma 4.3. Let2 < k <[ < n and letn,; be the Lie algebra oN, ;. Then

Ny N h - @ 9o @ @ (1 + U)gej—el D @ (1 + U)gen—ej- (48)

aest 2<j<k—1 I<j<n—1
J)
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Proof. Sinceo(e;) = e, ando(e;) = e; for2 < j <n —1, we find

Z;lﬂa(ﬁzl):E;U{ej—el:2§jSk—l}u{el—ej:lgjgn—l}
U{ej—en:ZSjgk:—l}U{en—ej:lgjgn—l},

the union being disjoint. The root spaggsfor a € E; are contained ify. Furthermore,
if both a ando () are roots ins;, \ X7, then

ga D Jo(a) = (1 + U)ga ) (1 - U)gaa

where the first term in the right-hand side is a subspaaeg ofi h and the second term is
a subspace in,; N q. This proves that the right-hand side [of (4.8) is contaimad.j N .

To prove the converse, assume thate n;; N h. ThenY = Zaezgl Y., where
Y, € ga. SinceY € h, we haves(Y') = Y. This implies that (Y,,) = Yo{a) if both «
ando(«) are elements of;, andY, = 0 otherwise. Let be a root such that,, # 0. If
a = o(a) thena € X7 If a # o(a), then there exist @ < j < k — 1 such that either
a=e;—e Oro(a) = e;—eyq, Or there exists &< j < n—1such that eithett = e, —¢;
oro(a) = e, — e;. ThereforeY is contained in the right-hand side bf (4.8). This proves
the lemma. ]

Proposition 4.4. Let P € P. Then there exist unique integérand/, with2 < k <[ <
n, such thatP is H-conjugate taP; ;. Moreover,P € Py if and only if
n-+1 n—+3

<k<I<
2 - - =7 2

andP € P, ifand only ifk = [.

Proof. The existence of the integeksand! follows directly from Lemm&4]1. To prove
uniqueness of these integers, 2K k£ < [ < nand2 < k' < I’ < n, and assume
that there exists ah € H with hP, ;h~' = Py ;. Note thatd andhAh~! are botho-
stable split components df,. ;. From Theorem 118 it follows that there exists a unique
n € Ny N H such thatthAh~'n~' = A. We write 2’ for nh. Note thath’ € Ny(a) =
Ny (aq) N Ny (ay) andh/ Py b/t = P . It follows that ' acts trivially onX:} and
thereforeh’ € Zy(a,). From Corollany_1.I2 we see tha}, is the root system od, in
Zy(aq). Sinceh’ € Ny (ay) N Zy(aq), it induces an element in the Weyl group of this
root system. As the positive systeny is contained in botl;, andy;) ., it follows that
w acts trivially onZ,j, and thus we conclude that acts trivially ona,. This proves that
W' P, = P, and hencé = £’ andl = ',

From Lemma412 it is easily seen thate P, if and only if 2+ < k <1 < 23, The
final claim, thatP € P, if and only if £ = [, follows from Lemmad 4.B. O

Remark 4.5. We recall from[[4, Def. 1.1] that a parabolic subgrobpe P(a) is said to
be g-extreme ifS(P) N oL (P) = X(P) \ Xy. Sinceofe; = —e;for2 < j <n—1,
whereassfle; = —e,, it follows from the characterization df;,; above thatP;; is g-
extreme if and only it = 2 andl = n — 1. Let 3] be the positive system for the root
system>(g, a,) obtained by restricting the roots frob,,_; \ ¥ to a,. ThenZ] =
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{a,2a}, where2a = e; — e,,. Itis now readily checked that has multiplicity2(n — 2),
whereaa has multiplicity1. Accordingly, po := p(Xq) is given bypy = (n — 1)« SO
that

al® = e(n—1t (t € R).

The elementp, € a! defined above corresponds to the elemeptappearing in([B,
Prop. 17.2]. Accordingly, it follows that Definition 2.2 ofi¢ Schwartz spacé(X,,)
is consistent with the characterisation giveriin [3, Thm117

4.3 Decomposition and invariant measures

Let £ and( be integers such that< k& < < n. We recall thatP,; = Zx(a)ANy, is
the minimal parabolic subgroup containidgsuch that:( P ;) = Z,jl, and that the latter
root system is given by (4.6).

We define
Uk = Bei—eyp ©® @ gejfen ©® @ gelfej-
2<5<i-1 k<j<n-—1

Note thatuy ,; is a Lie subalgebra afy;. We write Uy ; for the Lie subgroupxp(uy ).
Forz,y € R*2andz € R, we define

RN
ux,y,z = o :_[_VL,_Q_: ’!_/ B (49)
| 1

A straightforward computation shows that
Uy = {tzy,. € {0} 2 xR"* y e R x {0}"', 2z € R}.
By Lemmd4.B, we have
g = (g N h) Sy (4.10)
Lemma 4.6. The map
Uky X (Ngy N H) — Niy; (u,n) — un

is a diffeomorphism. There exist normalizations for thafant measurelx on N ;/ N ;N
H and the Haar measuréu of Uy, ; such that for every < CC(N;C,Z/(NM N H))

/ P(z) dx = / ¢(u- (Ney N H)) du. (4.11)
Nig1 /(N NH) Uk,1

Finally, the normalizations may be chosen such that, in t@aldj the above integrals
equal

/ / / gb(uxyz - (Ngg N H)) dz dy dz. (4.12)
2€R JyeRI=2x{0}n—! Jze{0}k—2xRn—k

18



Proof. The first two assertions follow from[2, Prop. 2.16]. For theafiassertion, we
note that

0 iz
Ugy,z+(x,y)/2 = €XP | i Q”:E i@_/ B
| | 0

It follows that, up to suitable normalization of measurdss $econd integral in (4.111)
equals

/ / / ¢(ux7y,z+<m,y>/2 - (Nea N H)) dx dydz.
2€R JyeR!=2x{0}n =t Jze{0}k—2 xR+

The equality with[(4.12) now follows from a simple substitumtof variables. O

To conclude this section we state one more lemma.

Lemma 4.7. Letw be the longest Weyl group element foy = (Z(a,); ay), relative
to the positive systern (4.1), and le§ € Nxnu(a) N Zxknu(aq) be a representative for
w. Then

O'@(?U(]Pk,lwal) = PnJrg,l,nJrg,k.

Moreover, ifp € C°(X,,), then

/U"+2—l,7l+2—k d(u-H)du= /Uk’l gb(ae(wou) . H) du.

Proof. From the identities

el 1 =1 —e, 1=1
Ww-e;=14€1 2<i<n-—1 and obe;=4¢ —e; 2<i<n-—1
en 1=n —e; 1=n,

we obtain thavf(w - ¥, ) =X}, o .

statement follows from the first as

This proves the first statement. The second

. -1
Uk — Unto—into—k; u — of(wouwg )

is a diffeomorphism with Jacobian O

4.4 Reduction to an equivalent theorem

The space&’(X,,) is stable under translation Iy and pull-back byr6. Under the as-
sumption thatP is of o-parabolic ranki, we conclude from Propositidn 4.4, Lemmnal4.6
and Lemma4]7 that TheordmB.1 is equivalent to the followlegprem.

Theorem 4.8.Letk and/ be integers such that< k <[ < n+2— k. Then the integral
o(u-H)du
Uk,
is absolutely convergent for evepye C(X,,) ifand only if 2 < k <1 < 233,

From now on we assume thiaand! are integers suchthat< £ <[l <n+2 — k.
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4.5 The integral
Lemma4.9.Letz,y e R"?andz € R. fu,, .- H € Ka, - H, then

2cosh(4t) =(1 — z + (z,9))* (1 + 2)* + (1 — 2z + (z, )*[ly I + ((z, y) — 2)°
+ (1 + 2|2 + 20z, v) + =Pyl + 1zl + 22 + [[yl]* + 1. (4.13)

We denote the orthogonal projectid =2 — {0}*2 x R* x {0}" ' by r. Letx €
{02 xR** ye R2x {0}""andz e R. fu,,. - H € Ka, - H, then

2cosh(4t) = (x, Ay .x) + (b ., ) + ¢y -, (4.14)
where

Ay = (lyl>+ 1 +2)>+1) (fn_Q + W(y)ﬂ(y)t) € Aut(R"?),
by =2(1—2)(Ilyl> + (1 + 2)* + 1) w(y) € {0} x RF x {0},
ey =1 =22(lyl* + A +2)° +1) + (z° + 22+ [[y]*) € Rxo.

Proof. Straight-forward computations show that

((e,9) =2+ 1)1 +2); (1+2)at |2

Us 20 (U y2) ™ = UgySuy, S~ = (z,y) —z+ 1)y Loty |y

and
[ 1—2 + y2'|| 5 = n — 2+ 2(z, y) + ||z]]*[|y]|*.

Equation [(4.1B) now follows from Lemnia 2.1. Equatibn (4.04% direct consequence
of (4.13). O

Corollary 4.10. Let¢ € C(X,) be K-invariant and non-negative. Let: R-, — R
be given by

¢(2coshdt) = ¢(a; - H).

(Note that the functiof® > ¢ — ¢(a, - H) is even since is K -invariant.) Furthermore,
let J, : R"2 x R — R, be given by

Te(y,2) = (PP + (1L +2)2+1) 2 (1+|ln(y)]|>) 2
and letd’ : R"? x R — R, be given by

1

02 = (1= 22 (Il + (4 2P 4 1)

+ (2% + 22+ yl?).

Then

d(u-H) du:/ / Jk(y,z)/ o(||z|*+C (y, 2)) dz dy d=.
Uk, 2€R JyeRl—2x {0}n—! ze{0}k—2xRn—k
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Proof. First, note that, by Lemnia 4.6,

¢(u-H)du= / / / O(Ugy .- H)dx dydz.
Uk, 2€R JyeRi=2x {0}~ Jxe{0}k—2x R~k

We will use Lemmd_4]9 to rewrite this integral. Note that teetrictionB, . of A, .
to {0}¥=2 x R"* is a positive definite symmetric automorphism {@f}*~2 x R"*,
We defineB,/? and B, /* to be the square root (defined in the usual way) and the inverse
square root oBy - respectlvely Now we apply the substitution of variables- B2z +
1B ,2/?b, . to the inner integral. When, . - H € Ka, - H we obtain fromIEZ[M) that

2cosh(4t) = ||2'||* + ¢,

where

1 _1
2< C;J,z = Cyz — ZHBy,ZQ by,ZHQ-

The Jacobian of the substitution equals the determinait, of. In turn, this determi-
nant equalgdet B, .)~'/* = Ji(y, z). Observing thab, . is an eigenvector oB, . with
eigenvalug[|y[? + (1 + 2)* 4+ 1)(1 + [|7(y)||*), we see that

I ()]1*

1. 1
—[|By2by - )? = (1 =2 ([yl* + 1+ 2)° +1) — =
{182 = 0= 22+ (24 1) T

Hencec, . = ¢(y, z), and the corollary is proved. O

4.6 The case of convergence
In view of RemarK 2.3, the following proposition implies tfifé part of Theorem[4.8.

Proposition 4.11. Assume-t < k <1 < 22, Form € R, let¢,, : X,, — R be defined
by

—m

Om(Kas - H) = (2cosh4t) a" " (1 + log(2 cosh(4t))) (k' € K,t € R).

Then there exists: > 0 such that the integral/  ¢,,(u - H) du is convergent.
Uk,

Proof. Let f,,(u) = ul%”(l + logu)™™ for w > 1. Thenf equalse,, as defined in
Corollary[4.10, and we see that it suffices to show that

= / / Ji(y, Z)/ fo([|2]1* + ¢ (y, 2)) da dy dz < o0,
2€R JyeRI=2x{0}n—l ze{0}k—2xRn—Fk

for m > 0 sufficiently large. We substitute = ¢/(y, z)'/2¢ in the inner integral and
obtain thatl,, is equal to

n—k
/ / Jk<y,z)c’(y,z)2/ (¢ (y, 2)(IEI° + 1)) d€ dy dz.
2€R JyeRI=2x {0}t ce{0}k—2 xRk
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Observe that ifn = my + mqy with m, my > 0, then

(1+log [¢(y, 2)([IEIP+1)]) ™ < (1 +1logc(y,2)) ™ (1 +log(ll]* + 1)) ™"

Hence,

L,
I < / / W, ) (y, 2)"
2€R JyeRI-2x {0}

/ (l€N? +1)77* (1 + log(Jl€[|* + 1)) ™ de. (4.15)
ge{o}k—2 xR~k

;e

(1+1logd(y,2)) " dydz

Sincek > "T“, we have”T‘1 > n — k and see that the integral ovérconverges for
my > 2 (use polar coordinates).

For the integral ovefy, z) we shall need the following estimate &éfy, z). We write
y = (v,w,0), wherev € R*2 andw = n(y) € R'*, and claim that

Iy, 2) > 2w+ D) (A =22+ D) (Jol* + (1+2)> + 1) + [|w]|* + 1. (4.16)
To verify the claim, we note that
Ay 2) = (Jwl* + DA = 2 (IlI* + flwll* + (L +2)* + 1) + 2% + 22 + [[o]|* + [Jw]|?
= (JwlP® + D7 (1 = 2)* + 1+ [lw]*) lo]]* + 2* + 1 +2z2HwH2) +[Jwl* +1

v

(ol + 17 (1 = 202 + D)ol + 2+ 1) + [l + 1
> Ll + 1) (L= 2+ Dol + 24+ 4) + ol + 1.
Using

(=2 +1)((1+2)*+1) =2"+4,

we obtain the validity of clain{{4.16).
We first assume that = [. Thenw = 0 and we obtain

Ay, 2) >3 (A=2+1)(lv*+ 1 +2)*+1) +1

and k_
Je(y,z) = (WP + (1422 +1)=

Hence, there exists a const&@nt- 0, independent of, such that

n+1

Imgc/ / (||v||2+(1+z)2+1)177”((1—z)2+1) Z
z€R JyeRk—2

x (1 +log [1+ (1= 2+ 1) (ol + (1 + 2)° + 1)}) " dvdz.

[SIEd

The substitution of = ((1 + 2)% + 1)/ now allows us to estimatg,, by a constant
times the product of the integrals

1-n -m
[l 1% (1 bl + 1) ™™ dy (@17)
neRrF—
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and

k__n+3 n+1
2

S (=2 +1)

_k
2

(1+1log(3z" +2)) ™ dz

/ZER (1+2)*+1)

wherem, = ms + my. In the above we already saw that (4.17) convergesifoe> 2.
The remaining integral is easily seen to convergerigr> 2.

Next we assumeé < [. Thenn is odd andk = "T“ Il — k = 1. Hence, the power
of ¢(y, z) in the first integral in[(4.15) equals zero. We thus see thas bounded by a
constant times

1—n

/ / / (||U||2+w2+(1+z)2+1)T(w2+1)_% (1+logc’(y,z))7m2 dwdvdz.
2z€R JveERk-2 JweR
Furthermore,

Ay, z) > 2w + )7 (o] + (1 +2)* + 1) + w® + 1.

The substitutions = (w? + 1)/2y and1 + » = (w? + 1)%/2¢ then allow us to estimate
by the product of

Lol )T (Dol + ¢ 1) ™ )
(m,C)ERF =2 xR

and
/ (w2 +1)72 (1 +log(w?+1)) ™ dw,
weR

wherem, = ms + my4. Both integrals are easily seen to convergefgrm, > 2. O

4.7 The case of divergence
The following proposition and its corollary imply the ‘onify part of Theoren{4.B.
Proposition 4.12. Letr € R and let¢, be the functionX,, — R given by

o, (K'a; - H) = (2 cosh 4t)” (k' € K,t € R).

Then the integral| ¢, (u - H) duis divergent fors > min{*", 2-1}.
Uk,

Proof. Let ¢, be the function associated ¢g as in Corollarf4.10. Then, (r) = r for

r > 1. Clearly, the integral
/ (H:cH2+c)Vd:1:
xeRnfk

is divergent for all positive constantsf v > ’“T" Hence, it follows from Corollarjy 4.10
thathM ¢, (u - H) du is divergent for suchv. Note thatp, satisfies

0y (00(kg) - H) = &(g-H) (g€ G k€ K).
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Combining this with Lemm@a4l7, we infer that

/ Ou(u-H)du = ¢, (u - H) du.
Unto—in+2—k Uk,

By the previous argument, we obtain that the first, hencethbseecond integral is diver-

gent fory > 20 — 221 The assertion now follows. O

Corollary 4.13. Assume: < “t or [ > 3. Then there exists a functione C(X,,)

suchthat/ ¢(u- H)duis divergent.
Uk,

Proof. Assumek < 2 or/ > 3. Thenmin{%2, 21} < -2 We may therefore take
v such thamin{%" -1} < v < 152 Theng, € C(X,,) by LemmdZH}. The result now

follows by application of Propositidn 4.112. O

5 Proof of Theorem[3.1 foro-parabolic rank 0

We now turn to the proof of Theorelm 8.1 under the assumptian/ths of o-parabolic
rank0. In5.1 {5.4 we first reduce the statement to a (seeminglg)dereral statement,
which we then prove in5l5=38.7.

5.1 Root systems

Recall the element from (2.1). We defind = Ad(x)a. Note thatb is a Cartan subal-
gebra ofg and thata, C b C h. Furthermorep is a Cartan subalgebra bfas well. We
write B for exp(b).

Recall the functionals,;, from Sectiori 4.11. Fot < k& < n we definef;, : b — R by
fr = ex o Ad(x)~!. The root system of in g then equals

Yi=%(g,b)={fi—fi:1<ij<ni#j}

The associated root spaces are givegpy;, = R(Ad(/@)Ei,j).
Note that

Sp=5(b) = {fi—fi:1<i,j<n—1i#j}

is both the root system dfin h and the set of-roots inX. Let
Sy ={fi—f:1<i<j<n—1}. (5.1)

ThenfaL is a positive system far,. Finally, we define

ﬁh:::% jg: .

s+
agly
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5.2 Classification of parabolic subgroups

Recall thatQ denotes the set of minimal parabolic subgroups containingy@mal con-
nected split abelian subgroup that is containediin Furthermore,Q(b) denotes the
subset of@ consisting of minimal parabolic subgroups containigGiven@ € P(b),
we agree to use the abbreviatibQ) := %(b; Q).

Lemma 5.1. Let P € Q. Then there exists a parabolic subgro@pe Q(b) which is
H-conjugate toP and satisfies

_Jr p—

= CT(Q). (5.2)

Let () be any such parabolic subgroup. Theg, = p,. Moreover,P is h-compatible if
and only if@ is h-compatible (see Definitidn 2.5).

Proof. SinceP ¢ Q, it follows from Corollaries 1.70 and 1.3 th&tis H-conjugate to
a minimal parabolic subgrouf € Q(b) satisfying [5.2). The latter condition implies
thatpg , = py. The final statement follows from RemdrkR.6. O

We will now classify the parabolic subgrou@se Q(b) satisfying [5.2). The assign-
mentQ — 3(Q) defines a bijection from the s#t(b) onto the set of positive systems
for 3. In turn, the latter set is in bijective correspondence withpermutation groug,,.
For a givenr € S,,, the associated positive system is given by

S(Q) = {fT—l(i) — fT—l(j) 1<i< i < n}

Equivalently, a rootf; — f; € X belongs tox(Q) if and only if (i) < 7(j). We infer
that the parabolic subgroug € Q(b) satisfying [5.2) correspond to the permutations
T € S, satisfying

(i) <7(j) for 1<i<j<n-—1. (5.3)

Given such a permutation € S,,, there exists a unique, with 1 < k£ < n, such that
7(n) = k. Conversely, for each integérwith 1 < £ < n, there exists a unique € S,
satisfying [(5.8) and(n) = k. From now on we write&),. for the corresponding minimal

parabolic subgroup antl, for 3(Q,). Moreover, we writeN,, for N, . For future
reference we note that the positive system determingdibyiven by the disjoint union

S =5, U{fi—far1<i<k-1}U{fu—fi:k<i<n-1}. (5.4)

We now provideb* with the inner product that turnsd(x)* : b* — a* into an isometry;
see[(4.77) for the description of the inner productidn

Lemma 5.2. Leti andj be integers such thdt< : < j < n. Then

) j—i if 1<i<j<n-—1,
<fi_fj7ph>:{n .

5—1 if 1<i:<n-1 and j=n.

In particular («, p,) > 0 for everya € iz ifand only if; < k < 5 + 1, i.e., if and only
if n is odd andt = 2£.
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Proof. Using the definition of;,, we find

n—1

20y = » (n—2i)f;.

=1
The first statement follows directly from this formula aneé #$econd follows from com-
parison with[5.4). O

Combining the previous lemmas, we now arrive at the foll@ypnoposition.

Proposition 5.3. Let @ € Q. Then there exist a unique integerwith 1 < k& < n, such

that ) is H-conjugate toQ),. Moreover,() is h-compatible if and only if» is odd and
k=t
2

Proof. Only the uniqueness remains to be proved. Let £, k' < n and assume that
there exists ah € H suchthahQ,h~! = Q.. ThenB andhBh~! are bothr-stable split
components of),,. From Theorer 118 it follows that there exists a unique N, N H
such thahhBh~'n~! = B. Leth/ = nh. Thenh’ € Ny (b) andh’Q.h'~! = Q.. Now

k' induces an element in the Weyl group of the root systeh,. Sinceih+ IS a positive
system fory,, andfg]F is contained in botfX, andY,), it follows thatw acts trivially on

i; and hence thai’ acts trivially onb. We conclude thatQ,h~! = Q. and therefore
k = K'. This proves uniqueness. O

5.3 Decomposition and invariant measures

Let k& be an integer such that< £ < n.

Lemma 5.4. Letn, be the Lie algebra oiV,. Then

n,Nh= @ Oa = @ R(Ad(x)E; ),

a€§; 1<i<j<n—1
wNg= P s.= P RAdWE,)® @ R(AdRK)E,,).
acS\T 1<i<k—1 hsisnl

Proof. Let o« € 3. Sinceca = a andg, is 1-dimensional, we have eithgr, C b or
g. C q. By definition, the first is the case for € ¥, and the latter forv € ¥\ ¥;. The
lemma now follows from[(5]4). O

We write V. for the submanifoldxp(ny N ¢) of N,. Forz,y € R™ with (z,y) =0

we define
0, x _ Inoq+ 2zt o B
vw,y:/{exp(:&t—;a—)/{12/{(————y—t—2———;i— KL (5.5)
A straightforward computation shows that
Vi = {vsy € RF T x {0}"7F, y € {0} x R**}.

We equipV;. with the push-forward alongxp of the Lebesgue measure opn q. Then
the following lemma is a direct consequencelof [5, Prop. art] Lemma5]4.

26



Lemma 5.5. The map
Vi X (N, N H) — Ny; (v,m) = vn

is a diffeomorphism. Moreover, there exists a normalizatay the invariant measuréx
on N, /(N N H) such that for every € C° (N, /(N N H)),

/Nk/(NmH) ¢(r)dr = /vk(b(v'(Nka)) o,

5.4 Reduction to an equivalent theorem

Under the assumption th&tis of o-parabolic rank), it follows from Propositio 5.3 and
Lemmd&.b that Theorem 3.1 is equivalent to the followingteen.

Theorem 5.6. Let k be an integer with < £ < n. Then the integral

¢(v- H)dv
Vi

is absolutely convergent for evepye C(X,,) if and only ifk = 231, In particular, if n is
even, then for every there exist® € C(X,,) such that the integral is divergent.

5.5 The integral

Recall [5.5) for the definition of,, .

Lemma5.7. Letz,y € R* ! with (x,y) = 0. Ifv,, - H € Ka, - H, then
2 cosh(4t) = 2+ 4l|? + 4]y |> + 4/l ly])>

Proof. By straightforward computations we see that

_ L, 1+ 2zy 2
Vg0 (Vg 1 — vi’y = Vg oy = K ( - _Q_yt_ aga —; T ) 1 (5.6)
and
1101+ 2yt ||5s = n — 14 4] ||y]1*.
Therefore,

102,490 (Vay) " I Hs = n + 4] + 4llyl|* + 4]|z]]* ||y
The lemma now follows from Lemnia 2.1. O

Corollary 5.8. Let¢ € C(X,) be K-invariant and non-negative. As in Corollary 4110,
let ¢ : R>o — R be defined by

(2 coshdt) = ¢(a; - H).
Then

/’wviﬂdvz/“ / 52+ Allzll? + 4yl + 4] 2ly]?) dy d.
Vi Rk—1 JRn—k
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Proof. Letz € R*! x {0}" %, y € {0}*~! x R"~* and assume that,, € ', H, for
k' € K andt € R. Then it follows that

Hvoy - H) = d(2coshdt) = ¢(2 + 4|z ]|* + 4]lyl* + 4]l z]1*[ly[*),

by Lemmd5h.y. O

5.6 The case of convergence

In view of Remark 2.3, the following proposition implies ttifé part of Theorem5.6.

Proposition 5.9. Assume: = ”T“ Form € R, leto,, : X,, — R be given by

Om(K'a; - H) = (2 cosh 4t) (1 + log(2cosh 4t)) ™™ (k' € K,t € R).

Then there exists» > 0 such that the integrall ¢,,(v - H) dv is absolutely convergent.
Vi

Proof. Let ¢,, be defined in terms of as in Corollan{5B. Them,,(z) = =+ (1 +
log z)~™ from which we see that,, is a decrasing function of > 1. Hence,

Om (2 + 4dllzl* + 4llyll* + 421y ]1*) < G+ N2l + [yll* + lzl*]ly 1),

for z € R¥-1 = R*z, y € R"* = R*z and by the mentioned corollary we see that

Gm(v- H)dv

Vn+1

/ / Gun(1+ 2% + Iy ]2 + ||x||2||y||2>dydx

+ ||z +
] (1+] |r>2 iC 2HyH) i
e Jrmzt (1+1og(1+ (=] + lyl1 + [lz]]*[y]2))
Since
2
(1 +log (1 + [l + [lylI* + llz*lyl*) " > (1 +log(L + [lz[*)) (1 +log(1 + [[y*)),

the last double integral is at most

J A AL
=2 (1 -+ log(1 + [l2]9) ¥

By using polar coordinates, one readily verifies that thegrdl in this expression is
absolutely convergent fon > 2. O
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5.7 The case of divergence

The following proposition and its corollary imply the ‘onify part of Theoren{5.5.

Proposition 5.10.Letr € R and let¢, : X,, — R be given by

o, (K'ay - H) = (2 cosh 4t)” (k' € K,t € R).

Then the integral g ¢, (v - H) dvis divergent fors > min {155, &2 1,
k

Proof. The functiong, associated t@, as in Corollary 5.B is given by — 2. By the
mentioned corollary we obtain

o Hydo= [ [ (2l + 4yl + 4ol ) dydo
Vk Rk—1 n—k

Clearly the integral on the right-hand side is divergemt it 0. We assume that < 0.
Then the integral on the right-hand side is larger than

e [ el Ll el )y
RE-1 JRn—k

:4”/ (1+ HxH?)”dx/ (T4 lyl*)” dy. (5.7)
Rk—1 Rn—k

The condition onv implies tha2v > 1 — k or 2v > k£ — n. By using polar coordinates,
we see that one of the integralsin (5.7) diverges. This cetaplthe proof. O

Corollary 5.11. Assume: # 2. Then there exists a functiah € C(X,,) such that

¢(v - H) dv is divergent.
Vi

Proof. Assumek # . Thenmin {15%, £} < 1= and we may select such that
min{lg } <r< 177”.

Theng, € C(X,,) by Lemmd2Z.H4. The claim now follows from Proposition 3.10. [

6 Proof of Theorem3.2

6.1 Reduction to an equivalent theorem

By Propositiod 4.4 and Propositién b.3 it suffices to provedkaims in Theoreri 3.2 for
P = P, with 2 <k = | < 283 and (forn odd)Q = Quz1 only.
We recall the definition o&t from (2.2). An easy computatlon shows that

5pk’k,(at) = el
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It follows from Theoreni 48 that for alh € C(X,,) the integral

¢(asu - H) du
Uk i
yields a well-defined function of € R. We are interested in the decay of this function,
or more precisely, of the modified function
s+ e’ ¢(asu - H) du,
Uk, k
and will prove the following result, which implies Theorén#3

Theorem 6.1. Assumeit! < k < 2£3. Leto € C(X,,).

(i) If nis even, then for everyy € N there exist > 0 andm € N such that for every
seR,

e | olasu- H)du| < o1+ |s) ™ pnm(@) 6.1)

Uk,k

(i) If nis odd, then for everyz € R and N € N there exist & > 0 andm € N such
that for everys € R with s < R,

e | blagu- H) du‘ < e(1+ |5 N (). (6.2)

U,k

Furthermore, fors moving in the other direction, there exists an element K,
independent o, such that

lim e* ¢lasu- H)du = / ¢(kov - H) dv. (6.3)
S—00 Us Vit

2

In particular, the limit exists, and is non-zero as a funaotif ¢.

6.2 Proof of Theorem 6.1

We recall the definition of.,, , . from (4.9) and start with a few lemmas.

Lemma6.2.Lets € R,z € R" %,y e R*?andz € R. If a,u,,,.- H € Ka; - H, then

2cosh(4t) = f1 + foll=l? + fallyll® + [z l*]lyl1?, (6.4)
where

fi=fi(s,2) = (1 — 2)2(1 + 2)* + e + 222, (6.5)

fo=fos,2) = e*(1 + 2)* + e, (6.6)

fa= fs(s,2) = *(1 — 2)* + e . (6.7)
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Proof. From [4.9) we find

hence
(1 =2) ety z
asum7y,za(asum7y7z)*1 — eS(1—=2)y | Lo+ ya ey
Oz espt et

The proof is completed by combining Lemial2.1 with a strd@iatard computation of
the squared Hilbert-Schmid norm of the last matrix, analsgo the computation in the
proof of Lemmd 4.0 (note that nog, y) = 0 sincek = I). O

We shall need some estimates for f> and f5.

Lemma 6.3. Lets, z € R and letf; = fi(s, z) be as above foi = 1,2, 3. Then

fofs=fi+2, 2<fi, A< fafs<2f (6.8)

and
1+ 22 < fr. (6.9)

Proof. The equality in[(6.B) is easily verified, and the lower bouad f; follows from
(©.4) withz = y = 0. Then,f; < fi +2 < 2f; implies the final statement i (6.8).
Finally we observe that in addition < f, we also havez? < f;, whence[(60). O

Lemma 6.4. Let R € R. Then there exists a constaat> 0 such that
fils,2) > A(e*2” +e7), 1=23, (6.10)
forall z e Randalls < R.

Proof. We may assumeé = 2 sincefs(s, z) = fa(s,—z). Letb € R be the solution to
b? — b = e~ that is larger than. We shall establisi (6.1.0) for all< R with

b—1
A="1"=,
b

Inserting the definition of, we see that with this value of, (6.10) is equivalent to
2s 2 —2s b—1 25 2 —2s
e“(z+ 1) +e ZT(e 25+ e )

and hence also to
e® (2> +2bz +b) +e > > 0.

This last inequality is valid for alt € R ands < R since the minimum of? + 20z + b
as a function of is —b? + b = —e £, O
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Proof of Theorerh 6l1Let ¢ € C(X,,). Throughout the proof we will use the notation

Is(s) := o(asu) du

Uk k

The proof consists of three parts. In part (a) we will addtassrapid decay of*/4(s)
for s — —oo both forn odd and even. In part (b) we will address the similar decay
for s — oo in casen is even. Finally, in part (c) we will address the limit ber@vior
s — oo In casen is odd.
Fix N € N. Then by [[Z.4), the function satisfies the estimate

6(2)] < pan (@) f(z)  (z € Xy), (6.11)
wheref : X,, — R is given by

—-N

f(Ka,-H) = (2 cosh(415))7an1 (1 + log (2 cosh(4t))) (K € K,t e R). (6.12)

Let

I¢(s) == flasu - H) du,
Uk i

then we have the estimate
1 15(s)] < pan(@)Ip(s),

so that for parts (a) and (b) it suffices to show thatl(6.1) &B8)(are satisfied witkp
replaced byf. DefineV : R>; — R by

U(r)=r"1 (1+log(r))™™, (r>1,N>0). (6.13)

Then it follows that
U(2cosh(4t)) = f(K'a; - H)

for ¥’ € K andt € R. Moreover, using (6]4) we see that

Flastsy:) = U(fr+ fellal® + fllyll® + =l lyl)- (6.14)

Hence,

— / / / V(f 4 fall2llP + fallyl? + [ 2ly]?) de dy d=.
2€R JyeRk—2 JgzecRn—k

Part (a). Performing the following substitutions on the inner intgr

T = (fl/f2)1/2§> Yy = (fl/f3)1/277>

we obtain

/ZER/neRk 2/§6Rn " fl)(;:) (%) ? d§dndz, (6.15)
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where ;
F(&m) =1+ €17+ Il + <= 1€l7lIn 11>
f2f3

In the following we assume thaf > 6. Using [6.18) we now see that the integrand in
(6.18) is absolutely bounded by
n-1 n=3 _n—-k k=2 _
FEm ™ T H™ f 7 f5 2 (1+1log F(&,n) +log(f1) (6.16)

€ T — k’

then0 < e < 1 by our assumption oh. Moreover,

n—k="3+e k-2="24+1-¢ (6.17)

Sincef, < f»fs, it follows that the expressiof (6.]16) is bounded from ablmye

F(e, )™, 2 f5 7 (1+log F(€,m) +log(f1)) ™

for all s.
From [6.8) we infer that

F(gmn) = (L+ 3”@+ 3lnl*)-
It thus finally follows that
I1(s) < L I5(s), (6.18)

where

11:/Rnk 91(§) dé, [2:/[Rk292(77)d€, [3(8):/Rgg(s,z)dz, (6.19)
with

91(6) =(1+ Lle)) =" (1 + log(1 + L]l€l?) 7,
g2(n) =(1 + 3[|n)1%) T (1 + log(1 + 3[|n[1%) ", (6.20)
gs(5,2) =fa(s,2) 5 fals,2) 7 2 (1 +log(fi(s,2))) " 7.

It follows from (6.17) that the dimensions— k andk — 2 are at most* so that/; and
1, are finite, thanks to the logarithmic terms (which in fact aeeded in at most one of
the integrals). Thus it only remains to estimate the thitdgral in [6.19).

We first assume < R for some givenkR € R. Using [6.10) forf, and f3;, and
estimating two of the logarithmic factors iR(s) by (6.9) and the remaining ones by
fi > max{2,e *}, we find

I3(s) < C’/(eQSz2 +e )7 2(1 + log(1 + 22))72 dz (1 + max{log 2, —43})7(]\[76)
R
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for all s < R, with C > 0 a constant depending dW. By substitution of: = ¢=2(, and
using thats < R, we find

13(8) < C’e—S/@Q+ 1)—1/2(1 +1og(1 +€—4RC2))72 ¢ (1 + |S|)7(N—6)’
R

with a new constanC > 0. The integral converges, and singéwas arbitrary we
conclude from[(6.18) thak (G.2) holds, regardless of théyaf n. This completes part
(a) of the proof.

Part (b). We assume that> 0 and that: is even. Therk = 22 ande = 1, hence

13(5) :/RfQ(sz)_ifg(S,Z)_‘ll(l+10g(f1(5’z)))_(N_4) ds.

The integral oveR can be replaced by an integral olr,, becausés(s, —z) = f3(s, 2)
andfi(s,—z) = fi(s, z). We split the integration into two parts, and integrate safedy
over the intervall — 4, 1+ ¢] and its complement iR, with § € (0, 1) to be fixed later
(it will depend ons). Let us writeJs(s) for the integral ovefl — §, 1 + 6] andJs(s) for
the integral over the complement of this seRig,.

For Js(s) we use the estimates

f1>2, fa(s,2) >e*,  fi(s,2) > e*(z—1)%

and forz > 0 and obtain

144
Js(s) < e_s/ |z = 1]7Y2dz = 4e7%6"/2 (6.21)
1-5

For<Js(s) we estimatef; by (6.9) in two of the logarithmic factors and fy > 552
in the remaining factors. Furthermore, we estimate

fols,z) = (1 +2)% fa(s,2) > e®(z—1)%
and obtain

s(s) < Ce / (14 2) 722 = 172 (1 + log(1 + 2%)) (1 + log(e'*6%)) "™,
0

with a constant” > 0 depending onV but independent of andd. The integral over
converges and we obtain (with a new constant 0 of the same (in)dependency),

—(N-6)

“Js(s) < Ce (1 + log(e*6?)) (6.22)

By adding [6.211) and{6.22), we see that by choosirge~2* we can ensure that
I5(s) < Ce™*(1 4 5)~WV=6),

with yet another constaidt > 0. This implies[(6.1) for the remaining case> 0.
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Part (c). We now turn to the statements about the limit in Thedrerh 6skutne that
n is odd. We shall first deal with the case= [ = "T“ and consider the integral

Iy(s) = /U ¢(asu- H) du

+1 n+1
2 02

:/ / . n1/ . d(astyy ) drdydz. (6.23)
zeRJyeR™ 2 x{0} 2 Jze{0} 2 xR 2

This time, we perform the substitution of variables

251, (6.24)

r=e€ y=e°n and z=e"

and obtain from[(6.23) that

6s]¢(5 1 (I)S(gan)w) dgdndwv (625)

N T .
weR JneR™ T x (0} T Jee{0} T xR T

where
qu(gv n, w) - ¢(asuesf,e*5n,e*25w—1)-
Recall the definition of from (2.1). From LemmB&#6l5 below we see that

. 1
sllglo (I)s(ga 7, CU) = ¢(K’ U(w,n)%g)a

for all (w,n, &) € R*1. Assuming that we may interchange the limit for+ oo with the
integral on the right-hand side ¢f(6]25) we obtain

lim e’Iy(s) = // 3/ 1¢(m_1v(wn)gg) d¢ dn dw
500 RJR"Z" JR"Z s
- [ e
Vn+1

2

—1

for the choice of Lebesgue measurecorresponding t42/3)“z d¢ dn dw.

Thus, for the proof of (613) it remains to be shown that we nmagrchange limit and
integral in [6.25). To prove this, we adopt the followingaségy.

For0 < 0 < 1 ands > 0 we define the set

Ass i=R" xR"2 x [(2—6)e®, (2 + 6)e*]
and denote byB;, its complement ifR" ! ~ R"= x R"z x R. We observe that
for everyv € R™! there existss, € R such thatv € Bs, forall 0 < 6 < 1 and
s > so. Accordingly, the characteristic functidns; ; converges to the constant function
1, pointwise onR" !, for s — oo.
In the text below, we will show that

/ |®4(&,m, w)| d€ dndw < C6 (6.26)
Aé,s
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for a suitable constantt > 0, independent of and). On the other hand, we will show
that for each) < § < 1 there exists an integrable functié® : R"~! — R, such that

1545, Ps| < F5 on R*! (6.27)

for all s > 0. By application of Lebesgue’s convergence theorem it théovis that

lim &, d€ dndw.
S§—00

n

lim b, dédndw = /

S$—00
Bé,s

Combining this with [[6.26) we readily see that the interd@of limit and integral is
allowed.

To achieve the goals mentioned above, we recall the definiiq, f> and f; from
(6.5) - (6.7), but now considered as functiong @fw). Then by virtue of the substitution

©.23), if follows from [6.6) that
fo=e (W +1). (6.28)

Furthermore, we defing and¥ as in [6.1P) and (6.13). Then from(6111) ahd (6.14)
we infer that

@56, m,0)] < g (9) U(fr+ e foll€l” + e fallnll® + €l Inl1?).-

SinceV is decreasing oi®-;, whereasf; > f,/f» by (6.8), it follows that

|®g(§ﬂ%w)| S Ml,N(¢) \Ps(ganaw)v (629)

where

(6 m) = Wi 1+ Ll + PP

This estimate, combined with (6]28), motivates the use afa fubstitution
E=(1+uw) oy, n= (145,
Note that this substitution does not effect the subgdétss) andB(d, s) of R, defined

above. For any measurable subSet R, the function¥, is integrable oveR" 2 x S if
and only if the function

1

U0 ¢, w) == (L4+w) 72 U(f+ I + Al ) + xRl )%)

is integrable over this set, and accordingly,

/ W, (€7, w) dE diyd = / T(x, 1, ) dy dip o
R"—2xS R*—2xS
We observe that
1 1
L+ I + 117 + Ixllell > (1 + Qllxll)(l + §||¢||)-
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SinceV : r — r—”T_l(l +log )~ is decreasing angi, > 2, we now obtain the estimate

T(x,,w) < (1+w?) 200+ X+ 1902+ IIxDPIe)?)
< g1(x) g2(¥) hs(w),

whereg,, g, are defined as ifi {6.20) and where
hs(w) == (1 + w)*%(l +log fl)*(Nfﬁl)_

We observed already that the functignendg, are integrable oveR "z andR"Tf?’, with
integrals/; and/,, respectively. Let us therefore focus on the functignOn the interval
(2 — §)e®, (2 + §)e*] we have the estimatést w? > ¢ and f; > 1. Hence,

(2+0)e?s

/ hs(w) dw < / e % dw = 20.
15’5 (275)623

It follows that

/ U, (€,n,w) dédndw < 211150
Aé,s

and by applying[(6.29) we obtain the estimaie (6.26).
It remains to prove the claimed majorization ®f on B; ;. Here we shall use the
following lower bound onfy,

14 %5%2 (W ¢ [(2— 6)e2, (2 + 6)e2]). (6.30)

To see this, note that the conditionoris equivalent td2 — e~?w| > §, and hencd(6.30)
follows immediately from the estimates > £ > f; and f; > 2 (see[(6.B)).
From [6.30) we obtain the estimate

hs(w) < (1+ wz)*%(l + %5%}2)(]\[4) (weRN\[(2—68)e*, (2+0)e*)])

for everys > 0. We now make the additional assumption that> 5 to ensure that the
function on the right-hand side is integrable o¥er
Define the functiorG; : R"! — R, by

Gs(x, ¥, w) = g1(x) ga(®) (W + 1) 72 (1 + log(1 + %5%2))_”_4),

ThenG; is integrable orR"~! and for everys > 0 we have the estimate
{I;S S é(g on B(g’s.
DefineGs : R — R> by
2\ L N 24 L 2\ — L
Gs(&mw) = (1 +w?)?Gs((1+w?)2E, (1 +w) 2, w).
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ThenG; is integrable o™ !, and it follows that
U, <G on By,

for everys > 0. In view of (6.29) this proved (6.27) with; := 11 n(¢)Gs. We have thus
established the limit formul& (6.3) for the cdse- | = ”T“

We will complete the proof of Theorem 6.1 by proving (6.3) fbe remaining case
E=1= "T*?’ Let w be the longest Weyl group element for the root system=
3(Zy(aq); ay), relative to the positive system (4.1), anddet € Nirn(a) N Zxam(ag)
be a representative far. By Lemmd4.7,

lim es/ ¢(asu) du = lim es/ ¢ (wo ob(asu)) du
S—+00 Unis 5—+00 Unt1 nel

n+3
2 T2 2 T2

_ / 6 (wo o0k 1v) - H) dv
Vi1

_ / o (wo w5 - H) do. (6.31)
A

Let w, be a representative iVxy(b) for the longest Weyl group element &5 (b),
relative to the positive systerin (5.1). Then, in view of Prsiion[5.3,

'l,Ul@Vn_—H'LU;l = Vn_+1
2 2

Hence, the integral in(6.81) is equal to
/ <z$(w0/<;w1_1v . H) dv.
Vn+1

This completes the proof of Theorém16.1. ]

Lemma 6.5. Letk = | = 2. Then_ with r_10_tation as in(4.9) and(%.5) and writing
u(z,y, 2) = Uy, ., We have the following limit i,

SILIEO asu(e’€, ey, e *w—1) - H = “_1U(w,n),§§ - H.

Proof. We start with a computation iSL(2,R), whose Lie algebra has the standard
lwasawa decompositiosi(2, R) = RU @ RY @ RV, with

(1) (A D) v (80)

We agree to writd, := exp ¢U, a, := exp sY andn, := exp zV. In particular,

1 1 -1 1 -1
K=k :E(l 1) and n_lz(o 1).
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Let o be the involution 081 (2, R) given by switching the diagonal entries as well as the
off diagonal entries, and Id{, denote the associated group of fixed points.
We will first show that in the quotiert.(2, R)/H, we have
lim Agn_q - HO = K,il . H(]. (632)
According to [18, Thm. 1.3] the ma@ — G, g — go(g)~! induces a diffeomorphism
from G /G onto a submanifold of;. Applying this general fact to the situation at hand,
we see that fo(6.32) to be valid, it suffices to show that

asn_io(amn_1) ' = ko(k) ™t = ke (s — o00).

Now this follows by a straightforward calculation.
In turn, it follows from [6.32) that there exists a functign: R — SL(2,R) with
limg o q(s) = e and
nia_sx ' q(s) € Hy (s € R).

We agree to identif$gL(2, R) with a closed subgroup &fl.(n, R) via the embedding

Thenk andas in SL(2, R) correspond with the similarly denoted element§ir{n, R).
FurthermoreH, equals the intersection 61.(2, R) with the subgroug? of SL(n, R).

n—1

Forz € {0}" xR"T,y € R"= x {0}" andz € R we define

RENES L gt iz
’lU(SC,’y,Z) ‘= €exp _ _: _ _: _y_ - __:__n_—Q_T:%ng;t_:g_/_ . (633)
Pt I 2t 11

Then by a straightforward calculation, one checks that tagim
A=w(z,y, z)_lu((l — 32)3,Y, %)
satisfiesSAS~! = A, hence belongs tél. Thus, ifz # 2, then
asu(z,y,z)- H = a*w((l1—-32)"'z,y,2) - H

= w(( — %z)_lx, Y, z) nia_sk tq(s)- H
= aw((1—32)"'zy, 2+ a; v q(s) - H
= w((l — %z)*le*%, ey, e*(z + 1)) ktq(s) - H

Through the substitutiof (6.24) the last expression besome
w(2(3 — e Pw) T nw) K g(s) - H.
For s — oo this expression tends to
wEEnw) k™ H =5, 00 H,

see[([6.3B) and (8.5). The result follows. O
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