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Image Segmentation Based on Fuzzy Low-Rank
Structural Clustering

Sensen Song, Zhenhong Jia, Jie Yang, and Nikola Kasabov, Fellow, IEEE

Abstract—Fuzzy clustering is an essential algorithm in image
segmentation, and most of them are fuzzy c-mean (FCM) algo-
rithms. However, it is sensitive to noise, center point selection,
cluster number, and distance metric. To address this problem,
we propose a new fuzzy clustering method based on low-rank
representation (LRR) for image segmentation, which integrates
low-rank structure with fuzzy theory. First, we improve the
morphological reconstruction super-pixel method based on edge
detection by introducing anisotropy to enhance the image edge.
Thus, on the one hand, the improved morphological recon-
struction super-pixel method can improve its noise-resistance
performance; on the other hand, the complexity of the subsequent
low-rank computation can be reduced by enhancing the super-
pixels constructed by the edges. Second, inspired by the fact
that rank can represent correlation, we propose the concept of
fuzzy low-rank structure, where fuzzy means not dealing with
data directly but with the relationship between data. Specifically,
we perform rank minimization on the constructed membership
matrix to obtain the optimal matrix. To obtain better clustering
results, we added the Frobenius norm of the fuzzy matrix
as a fuzzy regularization term in the LRR model to achieve
global convergence and obtain a membership matrix with a
strong element correlation. Finally, we obtain the final clustering
results by clustering the processed membership matrix using
a subspace clustering with a low-rank structure constraint.
Experiments performed on artificial and real-world images show
that the proposed method is effective and efficient, which is more
competitive than state-of-the-art methods.

Index Terms—Fuzzy clustering, low-rank representation, im-
age segmentation, fuzzy low-rank structure, super-pixel.

I. INTRODUCTION

IMAGE segmentation is a well-known problem in computer
vision research, which refers to dividing an image into

several disjoint regions based on features such as grayscale,
color, spatial texture, and geometry [1]. These features show
consistency or similarity within the same region while dis-
playing significant differences between regions. According to
this consensus, many kinds of algorithms for image segmen-
tation have been proposed, clustering algorithms[2], [3], [4],
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active contour models [5], graph cuts [6], random walkers
[7], region merging [8], neural networks [9], etc. Among
these algorithms, clustering algorithms are employed to cluster
the pixels in an image into several regions and can achieve
unsupervised image segmentation without labels. Moreover, it
has fewer parameters compared to other classes of algorithms.
Furthermore, clustering algorithms are robust and effective in
dimensionality reduction of high-dimensional data, so they
have obvious advantages in multi-channel image segmentation.
Therefore, clustering algorithms have attracted much attention.

Among the clustering methods, the FCM algorithm is
one of the most widely used fuzzy clustering algorithms in
image segmentation [10], [11]. Although it has dramatically
improved compared to its previous fuzzy clustering algorithms,
it still has some problems, such as unsatisfactory clustering of
images affected by noise, outlier points, and other artifacts.
The most severe issue is that the results of FCM-based image
segmentation are highly dependent on the center point, the
number of clusters chosen, and the distance metric [12], [10],
[4]. As a result, many different improvement solutions have
been presented.

Several further studies have been conducted to solve the
problems mentioned above. The most straightforward strategy
is to merge the local spatial information into the objective
function to improve the segmentation effect. Inspired by this,
the FCM algorithm with spatial constraints, such as FCM S
[13], FCM S1/S2 [14], and deviation-sparse fuzzy c-means
with neighbor information constraint (DSFCM) [15], was
proposed. However, they have high computational complexity
and are not robust to Gaussian noise. Krinidis and Chatzis [11]
proposed a fuzzy local information c-mean (FLICM) method
to improve the denoising ability. However, it has some short-
comings in identifying class boundary pixels and preserving
image details. To overcome this drawback, Gong et al. [16]
introduced a kernel metric and a weighted fuzzy factor to
enhance the robustness of FLICM (KWFLICM) for identifying
class boundary pixels and preserving image details. Moreover,
they also provided two other schemes: a variant of the FLICM
algorithm (RFLICM) [17] and a fuzzy local similarity measure
based on the pixel space attraction model (ADFLICM) [18].
The former uses local variable coefficients instead of fixed
spatial distances to extract local texture information. At the
same time, the latter adaptively determines the weight factors
of adjacent pixel effects to preserve the edges and details of
image regions. Following the concept of region-level infor-
mation, Wang et al. [19] proposed an improved FCM, which
combines adaptive local and region-level information with
median membership of Kullback–Leibler (KL) information for
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noisy image segmentation (FALRCM). Also, they presented an
improved FCM with adaptive space and intensity constraints
and membership linking (FCM SICM) [20] for noisy image
segmentation.

However, the added constraint terms and complex structure
easily increase the computational complexity while improving
denoising performance. To reduce the computational complex-
ity, Szilagyi et al. [21] enhanced FCM (EnFCM) by linearly
weighting sum each pixel’s local neighborhood mean grayness
with the original image and then clustering them based on
the grayness histogram of the summed image. Therefore, the
runtime of EnFCM is very short. Cai et al. [22] introduced a
local similarity measure that combines spatial and grayscale
information to form a nonlinear weighted summed image.
Namely, the clustering is performed based on summing the
image grayscale histograms. So it is a fast generalized FCM
(FGFCM) algorithm and its runtime, similar to EnFCM, is
also very short. Lei et al. [10] solved the computational
complexity problem by morphological reconstruction [23]
and membership filtering, which is a fast and robust FCM
algorithm (FRFCM) due to its removal of repeated distance
calculations between pixels and clustering centers within the
neighborhood window. Inspired by the super-pixel technique
[24], [25], [26], [27], [28] and EnFCM, Lei et al. [29] proposed
a fast FCM color image segmentation algorithm (SFFCM)
based on super-pixels. It has two advantages. One is that the
proposed watershed transform-based multiscale morphological
gradient reconstruction (MMGR-WT) algorithm can provide
better super-pixel results, which helps to improve the final
clustering results. The other is that the color histogram is
incorporated into the objective function of FCM, which speeds
up the implementation of the algorithm. Although SFFCM
is very good for color image segmentation, it requires a
manual setting of the number of clusters. From the affiliation
perspective, a triangular inequality-based membership scale
FCM (MSFCM) is proposed [30], which effectively improves
the convergence speed and maintains the accuracy of data
clustering.

There are also problems inherent to the FCM framework,
such as center points selection, the number of clusters, and
the distance metric. Many researchers have explored new fuzzy
frameworks. For example, in KWFLICM, they argued that one
of the main reasons for the non-robustness of FCM is the use
of non-robust Euclidean distance. Therefore, they proposed
a non-Euclidean distance measure based on a kernel method
to accomplish clustering. Lei Tao et al. [4] proposed a new
automatic fuzzy clustering framework (AFCF) to solve two
problems further. One employs density peak clustering to
determine the number of clusters adaptively. The other uses
covariance analysis and Markov random fields to measure
the similarity between different super-pixel regions instead
of Euclidean distance. Fang et al. [31] presented a new
active contour image segmentation model based on global
and local fuzzy image fitting (FRAGL). They designed two
fitted images: a global fuzzy fitted image and a local fuzzy
fitted image. The blurring theory is introduced into the active
contour model to make it more robust to image segmentation
with noise, boundary-blurring, and intensity inhomogeneity.

Moreover, they provided a hybrid energy-driven active contour
segmentation method (HLFRA) based on the edges of blurred
regions for image segmentation with high noise and intensity
inhomogeneity [32]. These papers mentioned above are new
fuzzy theory-based image segmentation methods.

To solve the abovementioned problems, we propose an
image segmentation algorithm based on fuzzy low-rank struc-
ture clustering (FLRSC). Its structure consists of two main
parts; the first part is the preprocessing part. We perform
super-pixel preprocessing on the image before clustering to
transform the pixel-level features into region-level features.
Its role is to improve the speed of subsequent processing
and reduce the computational complexity and incorporate
anisotropy to enhance its noise immunity and edge preserva-
tion. The second part is a new fuzzy clustering framework that
combines fuzzy theory with the low-rank structure to obtain
different clusters by minimizing the rank structure for image
segmentation. Through experiments, the effectiveness of the
proposed algorithm in denoising and image segmentation has
been demonstrated. Its main contributions are as follows:

1) We improve the edge detection-based super-pixel algo-
rithm, which preserves rich edge details and good noise
immunity performance.

2) The image segmentation algorithm based on fuzzy low-
rank clustering is a clustering method that does not need
to set the center points and the number of clusters. It
has fewer parameters than the already existing fuzzy
algorithms.

3) We propose a new framework for image segmentation
that combines low-rank structure and fuzzy theory to
obtain optimal solutions by an iterative weighting algo-
rithm and demonstrate its convergence with better results
in image segmentation applications.

The rest of this paper is organized as follows. In Section
II, we illustrate the motivations of this work. In Section
III, we propose our methodology and analyze its superiority.
The experimental results on synthetic and natural images are
described in Section IV. Finally, we present our conclusion in
Section V.

II. RELATED WORK

In this section, we focus on the related algorithms that
our algorithm is motivated by, mainly including three aspects
of algorithms: first, the super-pixel algorithm, second, the
fuzzy clustering algorithm, and third, the low-rank matrix
representation.

A. Motivation for Using Super-pixel

Super-pixels refer to pixel blocks with certain visual sig-
nificance composed of adjacent pixels with similar texture,
color, brightness, and other features. It employs the similar-
ity of features between pixels to group pixels and replaces
a large number of pixels with a small number of super-
pixels to express image features, which greatly reduces the
complexity of subsequent image processing, so it is usually
used as a preprocessing step in segmentation algorithms. It
has been widely used in computer vision applications such
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as image segmentation, pose estimation, object tracking, and
object recognition. Several common super-pixel segmentation
methods are: mean-shift [33], SLIC [24], DBSCAN [25], LSC
[26], GMMSP [27], HS [28], and MMGR-WT [29].

These algorithms have their advantages and disadvantages.
For example, the mean-shift algorithm has good noise im-
munity and edge fit. However, it has three parameters and is
sensitive to them and susceptible to their effects. Although
the SLIC algorithm has fast processing speed, uniform super-
pixel size, and good tightness, the results of subsequent region
merging are not satisfactory. The DBSCAN algorithm can be
adaptively clustered and can effectively handle noisy points,
but it is sensitive to the uniformity of data density. LSC
combines local features with a globally optimized objective
function to produce more reasonable super-pixels. GMMSP
generates super-pixels from the Gaussian distribution of pixels.
MMGR-WT is based on multi-scale morphological gradient
reconstruction images, but different results are obtained from
different edge images.

We found that the morphological reconstruction algorithm
[34] is also one of the excellent choices for super-pixel
generation. The adaptive morphological reconstruction (AMR)
algorithm in [35] gives us great inspiration. It is defined as
follows:

ψ(g, s,m) = ∨s≤i≤m{Rϕ
g (f)bi} (1)

where Rϕ
g (f) is compositional morphological closing recon-

struction, ϕ denotes closing reconstruction. bi is the nested
structural element, where i is the scale parameter of the
structural element, and 1 ≤ s ≤ i ≤ m, s,m ∈ N+,
i = s, s+ 1, ...,m. g is a gradient image, f = εbi(g) denotes
its morphological expansion reconstruction from f to g, and
f < g.

AMR can provide different segmentation results by chang-
ing the parameter of s. We can see that when the value of
s is small, the number of clusters is large, the segmentation
area is small, and vice versa. However, although increasing
the value of s can reduce the number of regions, the accuracy
of segmenting regions will decrease. Although setting the
parameter s achieves a good segmentation result in the noise-
free image, it is sensitive to noise, and the effect is less
satisfactory.

B. Fuzzy C-means clustering
Given an image X = x1, x2, ...xi, ..., xn, xi ∈ Rn, can be

viewed as a dataset in an n-dimensional vector space. n is
the number of feature vectors (the number of pixels in the
image) and c is the number of clusters (2 ≤ c < N). Then
the objective function of FCM is defined as follows:

Jm(U, V ) =

c∑
i=1

n∑
j=1

umij∥xj − vi∥
2 (2)

where U = {umij} the fuzzy membership of xj with respect to
the clustering center V = {vi}, 0 ≤ uij ≤ 1, and

∑c
i=1 uij =

1. m is the fuzzification index of matrix U . ∥ · ∥ denotes the
Euclidean norm. The FCM uses an alternative optimization
(AO) scheme [36] to obtain the optimal U and V :

U t = argmin
U

Jm(U, V t) (3)

V t = argmin
V

Jm(U t, V ) (4)

where t is the number of iterations, FCM usually initializes U0

or V 0 randomly and then updates U and V until convergence.
Finally, a cluster image is formed centered on V to complete
image segmentation.

C. Low-Rank Representation

In recent years, the subspace clustering algorithm based
on low-rank representation (LRR) [37], [38], [39], [40], [41]
has become a prevalent method for data clustering. It takes
advantage of the low-rank property of data self-representation
to establish the affinity matrix, which can ensure that data
belonging to the same subspace can be represented linearly
with each other. Moreover, from the global structure of the
data set, LRR can establish the objective function by matrix
rank minimization. However, matrix rank minimization is
challenging to solve. Therefore, researchers usually adopt
norm minimization to approximate rank minimization.

In [42], the formulation of the LRR problem is

min
Z
rank(Z) s.t. X = AZ. (5)

The optimal solution Z of the above problem is called the
low-rank representation of the data X with respect to the
dictionary A. The above optimization problem is difficult to
solve, and its solution may not be unique. Therefore, many
norm functions are employed to replace low-rank functions,
which are transformed into a convex optimization problem.

III. METHODOLOGY

In this section, we begin with a description of how we con-
struct a fuzzy low-rank structure that overcomes the inherent
drawbacks of the FCM algorithm and approximation of the
rank minimization problem. First, we improve the super-pixel
method, which improves the noise immunity performance and
reduces the complexity of the rank minimization calculation.
Second, we combine the low-rank structure with fuzzy theory.
The clustering does not depend on the selection of center
points and the number of clusters. Moreover, we provide a
new method to solve the rank minimization problem [43], [44],
[45], [46].

A. Super-pixel-based on improved AMR

In computer vision, super-pixels are increasingly used in the
pre-processing stage of image processing. The main reason
is that the application of super-pixels can effectively reduce
the redundancy of local information in an image, making
image processing much less complex. Moreover, individual
image pixel does not have any practical significance, and only
when combined into different regions can they convey the
information they carry to people.

In [29], the effectiveness of the morphological reconstruc-
tion (MR) super-pixel algorithm for subsequent image process-
ing has been demonstrated. It improves the speed of image
processing and incorporates the local information of image
pixels since super-pixels are small regions composed of pixel
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49 48 59 89 86

50 69 76 87 79

52 55 64 72 84

51 56 62 82 81

53.22 55.24 56.59 82.53 82.84

54.56 62.66 65.48 81.83 81.67

56.01 60.44 63.45 79.90 80.64

56.34 58.97 61.50 79.60 80.17

Anisotropy

Fig. 1. Performance of edge noise immunity with and without anisotropic algorithms under noisy conditions.

(a) (b) (c)

Fig. 2. Comparison of AMR algorithm and improved AMR algorithm. (a) Original image “118035”. (b) Super-pixels generated by the AMR algorithm.(the
number of super-pixel is 92) (c) Super-pixels generated by the improved AMR algorithm.(the number of super-pixel is 71)

points whose positions are adjacent and have similar features
such as color, luminance, and texture. However, MR-based
super-pixels depend on their gradient images because the ac-
curacy of their edges determines the subsequent segmentation
results. Moreover, the detection of edges is sensitive to noise.
Therefore, to enhance the noise immunity, we improve AMR
by adding anisotropy [47] enhance its edge-holding capability,
and then Eq.(1) becomes

ψ(g, s,m) = ∨s≤i≤m{Rϕ
g (F )bi} (6)

where F = div{d(∥∇f∥ · ∇f)}, and ∇ is gradient operator.
d(∥∇f∥·∇f) is the diffusion function that controls the degree
of diffusion, and its expression is

d(∥∇f∥) = 1

1 + (∥∇f∥/i)2
(7)

where i is the scale parameter.
To demonstrate the effectiveness of the improved AMR

algorithm, Fig. 1 shows that our algorithm can effectively
filter out the noise and keep the edges smooth under noisy
conditions after adding anisotropy. Moreover, in Fig. 2, taking
the image ”118035” in the database BSD500 as an example,
the original image corresponds to Fig. 2(a), the result of AMR
corresponds to Fig. 2(b), and the result of the improved AMR
corresponds to Fig. 2(c). It effectively preserves edges, re-
moves smaller blocks of super-pixels, and reduces the number
of super-pixels. Since our purpose is to present an image
segmentation algorithm with denoising capability and fast,

the improved AMR algorithm is more suitable for our task
requirements than other super-pixel algorithms.

B. Fuzzy low-rank structural clustering

The FCM-based image segmentation algorithm results are
limited by the selection of its center points and the number
of clusters, as well as the distance metric. To solve the above
problems, we are required to get rid of the influence of the
original fuzzy structure and search for a new fuzzy framework.
Moreover, the low-rank subspace clustering algorithm can
establish the objective function by minimizing the rank of
the matrix and does not require the above settings. Inspired
by this, we present a new fuzzy low-rank structure that
combines fuzzy theory and low-rank structure to solve the
inherent problem of the FCM-based algorithm and the LRR
problem. Concretely, we obtain the membership relationship
of each data by extending the number of center points in
the FCM algorithm to consider each data as a center point.
Then rank minimization is employed to obtain the low-rank
structure of the membership matrix. In other words, we are
not dealing with the data itself but the related data between
the data. Moreover, to solve the LRR problem, we add a fuzzy
regularization term to increase the association between data,
making the approximation rank minimization more desirable.

The proposed fuzzy low-rank structure clustering algorithm
has two parts: one is the fuzzy data processing, which clusters
the associated data in subspace. That is, the data with similar
membership are grouped. The other is image segmentation,
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which processes the optimized membership data through the
algorithm of paper [41] to discover the low-rank structure
information hidden in the initial data, and finally completes
the clustering of the initial data, i.e., completes the image
segmentation.

1) Fuzzy low-rank processing: The objective function of
the FCM algorithm is shown in Eq. (2), and the number of its
clusters c is fixed and predetermined, but it is not clear to us
what is the appropriate number of clusters to set for processing
images. Although the optimal clustering result can be obtained
by an alternative optimization method, the predetermined num-
ber of clusters is not necessarily appropriate. Then it will cause
the error of clustering. Therefore, we assume that each pixel is
the center of clustering to overcome this drawback. That is to
say, the number of clusters extends to the input image’s pixel
count, which will lead to the alternative optimization method
cannot complete the clustering task. Eq. (5) motivates us to
accomplish the clustering of data from a global structure per-
spective by removing redundancy through rank minimization.
Specifically, considering the extended membership matrix U as
the spatial relationship matrix and the new clustering center
V as the conditional constraint, the objective function is as
follows:

min
U

rank(U) s.t. AU = V, (8)

where A is a “dictionary” that linearly spans the data space.
Since the rank function is not convex and it is difficult to find
the optimal value, the optimization problem of Eq. (8) can be
relaxed to the following convex optimization problem:

min
U
∥U∥2∗ s.t. AU = V, (9)

where ∥U∥2∗ denotes the kernel norm of U . However, this con-
vex relaxation formulation may not be the best approximation
to the original nonconvex problem Eq. (8), so we would like to
use other relaxations that can better approximate the original
problem Eq. (8). By definition, the Schatten − p norm is a
better relaxation of the rank objective function than the kernel
norm when p < 1 [48]. Then the form of Eq. (8) can become

min
U
∥U∥pSp

+ β · ∥AU − V ∥2F . (10)

Although the constraint of the ∥AU − V ∥2F term can ensure
the convergence of the above equation, the constraint is not
very strong, so it may not be able to approximate the rank
minimization well. To strengthen the constraint of Eq. (10),
we add a fuzzy regularization term ∥U∥2F , which is essentially
a convex quadratic term, so that the model can be more robust
and more closely approximates the rank minimization to reach
the optimal solution. Also, to prevent the singularity of the
gradient, the smoothing regularization term µI [46] is added,
and our objective function is

J(U) = min
U
∥U ;µI∥pSp

+α · ∥U∥2F + β · ∥AU − V ∥2F , (11)

where α, β, and µ > 0, I ∈ Rn×n is the identity matrix.

To solve the above solution, in the first step, taking the
derivative of J(U) with respect to U ,and ∥U ;µI∥pSp

=

Tr((UTU + µ2I)
p
2 ) we have

∂J(U)

∂U
=
∂(Tr(UTU + µ2I)

p
2 )

∂U

+
∂(α · ∥U∥2F + β · ∥AU − V ∥2F )

∂U
,

(12)

and set it to zero,

p(UTU + µ2I)
p
2−1U + (2βATA+ 2αI)U − 2βATV = 0.

(13)
The detailed procedure for the derivation from Eq. (12) to

Eq. (13) is in Appendix A. The above nonlinear equation is a
fixed point equation can be written as follows:(

p(UTU + µ2I)
p
2−1 + 2βATA+ αI

)
U

= 2βATV − αU.
(14)

To obtain the optimal solution, we define an iterative
algorithm as follows:

(Qt + 2βATA+ αI)Ut+1 = 2βATV − αUt, (15)

where Qt = p(UT
t Ut + µ2

t I)
p
2−1, µt+1 = µt

ρ , and ρ > 1,
ρ is the parameter that controls the descent of µ. We obtain
the optimal solution by updating the iterative Eq. (15) until
convergence. According to the above discussion, the algorithm
to solve problem (15) is summarized in Algorithm 1.

Algorithm 1: Algorithm to solve problem (15)
Data: membership matrix U , constraint matrix A,V ,

parameters α > 0, β > 0, ρ > 1, and 0 < p < 1.
1 Initialize: Ut=0 is the affinity matrix of A and V ,

µ0 > 0;
2 while not converged do
3 Calculate Qt = p(UT

t Ut + µ2
t I)

p
2−1;

4 Calculate Qt + 2βATA+ αI;
5 Calculate 2βATV − αUt;
6 Calculate µt+1 = µt

ρ ;
7 Update Ut+1, µt+1;
8 Check the convergence conditions ∥Ut+1 − Ut∥∞;
9 if ∥Ut+1 − Ut∥∞ ≤ ϵ then

10 break
11 end
12 t← t+ 1;
13 end

Although it has been demonstrated in many papers that Eq.
(10) is convergent, we add a fuzzy regularization term. There-
fore, to verify the convergence of our proposed algorithm, it
is necessary to satisfy the following Theorem 3.1.

Theorem 3.1: Given 0 < p < 1, and Ut is a sequence
generated by the Algorithm 1, and it satisfies the following
properties:

1) J(Ut+1) ≤ J(Ut), where the equality holds if and only
if Ut+1 = Ut;

2) limt→∞(Ut+1 − Ut) = 0;
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(a) (b) (c)

Fig. 3. An example of the image segmentation process. (a) Original image “3063”, (b) Super-pixels generated by the AMR algorithm, (c) Segmentation result
after fuzzy low-rank structure clustering.

3) If there exists a subspace matrix Uk
t ,such that Uk

t → U ,
U satisfies the first-order differential optimality condi-
tion ∂J(U)

∂U = 0.
Our proposed algorithm satisfies this Theorem 3.1. Its

detailed proof procedure is in Appendix B. Therefore, our
algorithm has good convergence, showing that Eq. (11) can
approximate the rank minimization better. Here, we obtain the
membership matrix U , which results from global optimization.

2) Image segmentation: Previously, the optimized member-
ship matrix U was obtained by the fuzzy processing algorithm.
Now, we face a new problem to exploit the membership rela-
tionship in the matrix U for image segmentation. In the paper
[42], we found that they introduced a new rank constraint,
which consists of two steps to build the relationship matrix
and spectral clustering. This constraint allows their model to
learn a subspace indicator that captures the different clusters
directly from the data without post-processing. Because it can
discover low-rank structural information hidden in the data
without post-processing, it is well appropriate to handle our
membership matrix U with the following equation [42],

min
Gi|ki=1

k∑
i=1

∑
j

min(sσj(UGi), 1)

2

s.t. Gi|ki=1 ⊆ {0, 1}n×n,

k∑
i=1

Gi = I,

(16)

where σj(UGi) represents the j-th singular value of the matrix
UGi. The k diagonal matrices G1, G2, ..., Gk are defined to
represent the subspace matrix Ui, and s > 0.

To solve the problem(16), they employed an iteration-based
reweighting method instead of the KKT conditions since the
constraints are constant [42]. Therefore, problem (16) can be
transformed into the following problem:

min
Gi|ki=1

Tr(AiGi)

s.t. Gi|ki=1 ⊆ {0, 1}n×n,

k∑
i=1

Gi = I,
(17)

where Ai = UTDiU , and Di = ((n − 1) +∑k
i=1 sσj)ÛΛÛT .Based on the Singular Value Decomposition

(SVD), we can obtain UGi = Û
∑

i V
T . Here, n is the

number of singular values σj (j = 1, ..., n) in matrix UGi,
and the Λi is a diagonal matrix and its j-th diagonal element
is sσj , if sσj < 1 or 0 otherwise.

Since Gi|ki=1 are all n by n diagonal matrices, then Eq. (17)
can be rewritten as

min
gci⊆{0,1},

∑k
i=1 gi=1

k∑
i=1

n∑
c=1

acigci, (18)

where gci is the c-th diagonal element of matrix Gi and aci
is the c-th diagonal element of matrix Ai. We can obtain the
optimal solution to the Eq. (17) [42],

gci =

{
1, argmin

l
acl 1 ≤ l ≤ k

0, otherwise
(19)

Finally, the position of gci = 1 with the row and column of
the membership matrix U is restored to the super-pixel image
to complete the image segmentation. An example of the image
segmentation process is shown in Fig. 3.

IV. EXPERIMENTS

To demonstrate the effectiveness of our proposed FLRSC,
we evaluate its results on synthetic noisy images and color
images. Qualitative and quantitative comparisons with some
state-of-the-art methods are also provided, and experimental
discussions and analyses are performed. The following two
main effects of FLRSC are verified in the experiments: 1. the
ability to denoise images with synthetic noise; 2. feasibility
and robustness are tested on images from the Berkeley seg-
mentation dataset (BSDS500) [49].

There are sixteen algorithms for comparison, i.e., FCM [50],
FCM S1 [14], FCM S2 [14], EnFCM [21], FGFCM [22],
FLICM [11], KWFLICM [16], FRFCM [23], DSFCM [15],
FALRCM [19], FCM SICM [20], SFFCM [29], RSSFCA
[51], FRAGL [31], HLFRA [32], AFCF [4]. These are all
algorithms based on fuzzy theory for solving image segmen-
tation problems.

A. Parameters Setting

The parameter settings in these comparison algorithms fol-
low the corresponding original paper except for some general
parameter settings, which we set uniformly for a fair com-
parison. For example, the FCM-based comparison algorithm
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(a) (b) (c) (d) (e) (f)
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Fig. 4. Comparison of segmentation results on the first symmetric image. (a)
original image. (b) The first Noisy synthetic image (Gaussian noise, the noise
level is 15%). (c) FCM S1. (d) FCM S2. (e) EnFCM. (f) FGFCM. (g) FLICM
. (h) KWFLICM. (i) FRFCM. (j) DSFCM. (k) FALRCM. (l) FCM SICM. (m)
SFFCM. (n) RSSFCA. (o) FRAGL. (p) HLFRA. (q) AFCF. (r) FLRSC.

requires three indispensable parameters: the weighting expo-
nent, the minimum error threshold, and the maximum number
of iterations. Moreover, in our experiments, the values of these
parameters are 2, 10−4, and 100, respectively. In addition,
there is the number of clusters set to 3 and the neighborhood
window size set to 3×3. For FCM S1, FCM S2, and EnFCM,
α is the control parameter associated with local denoising and
is generally set to α = 3.8. The spatial scale factor and the
gray-level scale factor are λs = 3 and λg = 5 for FGFCM.
Moreover, there is no other setting for FLICM, KWFLICM
[24], or DSFCM except for the three essential parameters and
the number of clusters. In FRFCM, the structural element size
and the filter window are both set to 3 × 3. The RSSFCA
requires a regularization parameter γ = 0.2. For the SFFCM
and the AFCF, their preprocessing algorithm MMGR-WT has
two parameters, which are r1 = 2 and η = 10−4, respectively.
For the FALRCM, the control factor k = 50 and the KL
divergence constraint γKL = 0.15. In the FCM SICM, the
parameters related to the bilateral filter are set to σd = 1
and σr = 7. While FRAGL and HLFRA, the parameter
settings are the same as the original article. The structure
of FLRSC is different from FCM, so it does not have the
three required parameter settings. Its super-pixel parameters
are the same except that the minimum structural scale s is
set differently from AMR. The parameter s can control the
size of the super-pixel region, which we set to 1 to retain
more details. Moreover, the smoothing term parameter µ, the
fuzzy regularization term parameter α, and the constraint term
parameter β must be greater than zero to ensure convergence.
From the iterative Eq. (15), it can be noticed that the values
of α should not be too large, while β should not be too
small in general. Otherwise, it will cause the problem of non-
convergence. Based on experience, we set α = 0.2 and β = 1.
The parameters µ and ρ are set as in [46], µ0 = 0.1∥U∥2 and
ρ = 1.1. Furthermore, the value of p should not be too small
because too small may not converge to the optimal solution
in the experiment. Thus we set p = 0.8. All experiments are
performed on a PC workstation with a 3.6 GHz CPU and 8
GB RAM using MATLAB 2019a.

B. Results on Synthetic Images

To demonstrate the robust denoising ability of our proposed
FLRSC, three synthetic images of size 256*256 are employed

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 5. Comparison of segmentation results on the second symmetric image.
(a) original image (b) The second Noisy synthetic image (salt & pepper
noise, the noise level is 30%). (c) FCM S1. (d) FCM S2. (e) EnFCM. (f)
FGFCM. (g) FLICM . (h) KWFLICM. (i) FRFCM. (j) DSFCM. (k) FALRCM.
(l) FCM SICM. (m) SFFCM. (n) RSSFCA. (o) FRAGL. (p) HLFRA. (q)
AFCF. (r) FLRSC.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 6. Comparison of segmentation results on the third symmetric image.
(a) original image (b) The third Noisy synthetic image (the mixed noise, the
noise level is G 10% and SP 20%). (c) FCM S1. (d) FCM S2. (e) EnFCM. (f)
FGFCM. (g) FLICM . (h) KWFLICM. (i) FRFCM. (j) DSFCM. (k) FALRCM.
(l) FCM SICM. (m) SFFCM. (n) RSSFCA. (o) FRAGL. (p) HLFRA. (q)
AFCF. (r) FLRSC.

in the experiment. They are multi-channel color images with
different shapes, corrupted by Gaussian noise (G), salt &
pepper noise (SP), and mixed noise, as shown in Fig. 4, Fig.
5, and Fig. 6, respectively. We evaluate the performance of
FLRSC and the comparison method using the segmentation
accuracy (SA), defined as the sum of correctly classified pixels
divided by the total number of pixels, and the quantitative
index score (S), representing the degree of equality between
the pixel set Ak and ground-truth Ck. They are calculated as
follows:

S =

m∑
k=1

Ak ∩ Ck

Ak ∪ Ck
, (20)

SA =

m∑
k=1

Ak ∩ Ck∑m
j=1 Cj

, (21)

where m is the number of classes, Ak represents the set of
pixels falling into the kth class in the result, and Ck denotes the
set of pixels belonging to the class in ground truth. Moreover,
Table. 1 and Table. 2 present the average SA and S values of
the proposed algorithm and the comparison algorithms, which
are the average results of 100 replicate experiments.

In Fig. 4, Fig. 5, and Fig. 6, the segmentation results
of FCM S1, FCM S2, EnFCM, FGFCM, and FLICM have
poor performance, and they are sensitive to Gaussian noise,
salt & pepper noise, and their mixtures. As shown in
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TABLE I
SEGMENTATION ACCURACIES (SA%) OF SIXTEEN ALGORITHMS ON THE FIRST SYNTHETIC IMAGE CORRUPTED BY NOISE, WHERE SP REPRESENTS SALT

& PEPPER NOISE AND G REPRESENTS GAUSSIAN NOISE. THE BEST VALUES ARE HIGHLIGHTED.

Methods G 5% G 10% G 20% SP 10% SP 20% SP 30% SP 10% + G 5% SP 20% + G 10% SP 30%+ G 20%

FCM S1 90.69 85.31 76.38 88.77 80.68 69.37 87.18 69.30 58.91

FCM S2 91.45 84.72 77.58 98.57 93.61 85.92 88.65 81.32 72.52

EnFCM 89.65 87.68 70.47 86.35 88.59 81.26 88.24 72.20 54.30

FGFCM 95.04 86.54 68.63 95.36 87.22 81.45 91.05 88.41 76.01

FLICM 97.34 90.46 83.87 92.85 85.59 83.84 86.35 85.69 65.12

KWFLICM 98.13 93.16 80.79 99.60 98.44 97.91 97.80 91.26 77.51

FRFCM 99.22 92.53 79.46 99.84 99.01 97.54 99.18 97.43 80.23

DSFCM 99.12 96.78 88.67 99.82 99.36 96.35 99.66 92.79 68.92

FALRCM 99.41 95.70 92.15 87.47 88.21 80.55 99.56 98.80 96.55

FCM SICM 99.65 98.52 96.39 99.65 98.48 98.12 99.84 99.35 97.73

SFFCM 98.23 97.00 81.65 99.79 98.61 97.83 99.55 96.17 94.00

RSSFCA 97.96 96.21 89.44 99.56 96.42 95.28 99.25 96.73 77.77

FRAGL 55.60 53.14 50.60 52.88 51.63 48.76 78.09 73.59 62.18

HLFRA 67.77 60.93 55.38 78.84 65.26 59.68 90.99 78.85 44.69

AFCF 99.45 96.34 88.98 99.06 97.75 89.56 99.58 97.15 80.39

FLRSC 99.70 98.06 97.19 99.81 99.80 99.32 99.77 99.62 98.16

TABLE II
SCORES (S%) OF SIXTEEN ALGORITHMS ON THE SECOND SYNTHETIC IMAGE CORRUPTED BY NOISE, WHERE SP REPRESENTS SALT & PEPPER NOISE

AND G REPRESENTS GAUSSIAN NOISE. THE BEST VALUES ARE HIGHLIGHTED.

Methods G 5% G 10% G 20% SP 10% SP 20% SP 30% SP 10% + G 5% SP 20% + G 10% SP 30%+ G 20%

FCM S1 79.40 56.43 45.24 81.66 69.79 49.73 69.23 47.85 39.28

FCM S2 73.98 51.56 44.62 92.30 82.97 73.06 64.24 62.86 52.25

EnFCM 71.28 68.38 57.19 68.16 48.18 42.08 67.78 59.79 37.64

FGFCM 89.62 72.01 57.74 84.48 69.74 52.23 69.06 60.72 39.24

FLICM 88.82 66.17 59.69 82.54 55.72 46.50 73.56 52.06 47.73

KWFLICM 93.43 86.54 67.93 99.26 99.04 98.44 89.22 71.69 46.96

FRFCM 99.58 96.55 91.03 99.25 99.10 91.57 97.52 85.68 80.42

DSFCM 99.64 95.14 92.15 99.39 99.04 98.44 99.11 92.19 77.78

FALRCM 99.65 99.35 96.17 98.10 99.12 98.02 99.64 98.38 94.62

FCM SICM 99.80 99.08 98.63 99.67 99.15 99.01 99.59 99.07 98.61

SFFCM 99.08 87.33 81.67 98.93 97.90 94.63 98.96 98.03 84.50

RSSFCA 88.71 69.34 57.71 99.62 98.25 92.52 99.21 76.28 70.22

FRAGL 47.75 44.33 42.98 47.77 47.80 47.68 47.33 46.36 34.54

HLFRA 47.87 52.16 45.39 47.85 47.36 39.82 47.82 47.42 29.27

AFCF 99.10 98.76 80.50 97.32 90.56 81.13 97.60 96.11 79.40

FLRSC 99.92 99.36 98.96 99.31 99.30 99.14 99.79 99.07 96.37

TABLE I, FCM S1 uses a mean filter to process local spatial
information. Although it will affect the low-level noise, the
denoising ability will worsen as the noise intensity increases.
The FCM S2 is more effective for SP noise than Gaussian
noise since its use of median filters. The FLICM introduces
parameter-free local information to improve noise immunity.
Then, the KWFLICM adds a kernel metric to overcome some
shortcomings of FLICM in identifying class boundary pixels
and preserving image details. Therefore its SA and S values
are better than FLICM, as seen in TABLE II. As compared
to previous algorithms, the EnFCM only uses histograms

to reduce computational complexity without considering the
denoising problem, resulting in poor noisy image segmentation
performance. Furthermore, the FGFCM algorithm outperforms
EnFCM because it introduces a new factor as a local (spatial
and grayscale) similarity metric for noise immunity and detail
preservation.

Furthermore, Fig. 4, Fig. 5, Fig. 6, TABLE I, and TABLE
II show that the FRFCM, DSFCM, FALRCM, FCM SICM,
SFFCM, RSSFCA, and AFCF can achieve better segmen-
tation performance in the presence of noise interference.
The FRFCM is based on MR and member filtering, which
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FCM S1

FCM S2

ENFCM
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SFFCM

FRAGL

HLFRA
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Fig. 7. Visual comparison of segmentation results on relatively simple scene
images of BSDS500 using seventeen algorithms

solves the computational complexity problem and improves
noise immunity performance. Additionally, DSFCM imposes
a sparse constraint on the deviation between measured and
theoretical values, making it easier to identify noise or outliers.
As shown in TABLE I and TABLE II, the values of SA and
S of FALRCM do not linearly decrease with increasing noise
intensity. However, their denoising effect performs better in
a specific noise interval, which we analyzed as being related
to the KL information of its local median affiliation. Some of
the FCM SICM metrics are best at one noise level. We can
see that this is due to its algorithm design for noise image
segmentation, which employs a fast bilateral filtering method
to obtain local spatial and intensity information. The SFFCM
can effectively remove Gaussian and SP noise by using
adaptive and irregular local spatial neighborhood information.
The RSSFCA can remove noise by incorporating the Gaussian
metric under regularization into the objective function. More-
over, AFCF shows that the super-pixel technique and prior
entropy can significantly improve segmentation accuracy in
noisy images. While FRAGL and HLFRA are active contour-
based image segmentation algorithms driven by global and

Inputs

FCM

FCM S1

FCM S2

ENFCM

FGFCM

FLICM

KWFLICM

FRFCM

DSFCM

FALRCM

FCM SICM

SFFCM

FRAGL

HLFRA

AFCF

FLRSC

Fig. 8. Visual comparison of segmentation results on relatively complex scene
images of BSDS500 using seventeen algorithms

local blur information and blurred region energy, respectively,
the effect on noisy synthetic images is unsatisfactory, and
the edge information is easily lost. Compared to the above
algorithms, the proposed FLRSC algorithm can effectively
filter the noise at the edges and preserve the edges well,
demonstrating the effectiveness of FLRSC for noisy image
segmentation.

C. Results on Color Images

To demonstrate the effectiveness and superiority of the
proposed FLRSC algorithm for image segmentation, we tested
and verified it on the database BSD500. Moreover, the param-
eters of comparison algorithms follow the original paper, and
the number of clusters is set to 3 in the FCM-based algorithm
for a fair comparison.

In this paper, we adopt four popular evaluation metric
functions, probabilistic rand index (PRI), variation of infor-
mation (VoI), global consistency error (GCE), and boundary
displacement error (BDE), to evaluate the segmentation re-
sults of the proposed FLRSC and the comparison algorithms.
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS ON THE

BSDS500 DATASET. THE BEST VALUES ARE HIGHLIGHTED.

Methods PRI ↑ VoI ↓ GCE ↓ BDE ↓

FCM 0.69 2.93 0.38 14.47

FCM S1 0.70 2.87 0.37 14.30

FCM S2 0.69 2.86 0.36 14.42

EnFCM 0.71 2.90 0.39 14.65

FGFCM 0.69 2.85 0.36 14.24

FLICM 0.70 2.82 0.36 14.12

KWFLICM 0.72 2.80 0.35 14.27

FRFCM 0.73 2.60 0.30 13.98

DSFCM 0.70 2.82 0.36 14.63

FALRCM 0.71 2.62 0.32 14.40

FCM SICM 0.67 2.87 0.34 14.78

SFFCM 0.72 2.31 0.26 14.35

RSSFCA 0.73 2.28 0.28 14.46

FRAGL 0.66 2.57 0.29 14.23

HLFRA 0.65 2.55 0.27 14.21

AFCF 0.74 2.22 0.22 13.93

FLRSC o.76 2.14 0.21 13.88

They evaluate the performance of segmentation results from
different aspects, making the evaluation more accurate. Among
them, PRI is the ratio of the number of pixels that overlap the
result of the image segmentation algorithm and ground truth
to the whole number of pixels. And VoI defines the distance
between the segmentation result of an image segmentation
algorithm and the ground truth as the average conditional
entropy. Moreover, it can measure the degree of randomness
in the segmentation results that the ground truth cannot cover.
While GCE measures the degree to which the result of the
image segmentation algorithm is consistent with the ground
truth. And BDE calculates the average displacement error
between the result of the image segmentation algorithm and
the boundary pixels in the ground truth. The larger the PRI
value and the smaller the VoI, GCE, and BED values in the
quantitative results, the closer the segmentation results are to
the ground truth, indicating the superior performance of the
proposed algorithm.

In Fig. 7 and Fig. 8, some examples of image segmentation,
containing simple backgrounds, complex backgrounds, scenes
with similar objects and backgrounds, etc., are shown to
demonstrate the effectiveness of the proposed FLRSC al-
gorithm for image segmentation. Moreover, the superiority
of FLRSC is intuitively reflected by the values of the four
evaluation metrics in TABLE III. It can be seen that FCM,
FCM S1, and FCM S2, have similar PRI, VI, GCE, and BDE
values in TABLE III. Moreover, the main difference between
them is that FCM S1 and FCM S2 add mean and median

filters, respectively, which can reduce some noise. However,
there is no significant improvement in image segmentation,
as shown in Fig. 7 and Fig. 8. Although EnFCM can speed
up the image processing, the cost is that its GCE and BDE
values perform worse than FCM. Then FGFCM introduces a
local similarity measure based on EnFCM, which improves the
value of each evaluation metric. The FLICM and KWFLICM
introduce local information, making the image clustering effect
better than before. Furthermore, as shown in TABLE III, not
only are their four evaluation metrics improved, but their
denoising effect is superior to previous work. The PRI and
BDE values of FRFCM are inferior to those of AFCF and
FLRSC, which also show that preprocessing the image is
efficient for fuzzy clustering. DSFCM, RSSFCA, FCM SICM,
FALRCM, and HLFRA add regularization or other informa-
tion constraints to FCM. However, the four metric values of
FCM SICM perform poorly, while its denoising performance
is just second to the FLRSC, indicating its suitability for
noisy image processing. In contrast, the DSFCM and RSSFCA
obtain better segmentation results by using sparse regular-
ization and self-sparse Gaussian regularization, respectively.
The FRAGL and HLFRA are active contour models with
fuzzy information that obtain binary segmentation images,
as shown in Fig. 7 and Fig. 8. Therefore, their PRI values
are significantly lower than those of other algorithms. The
metrics of SFFCM and AFCF perform relatively well, and
their denoising effects are also superior. It demonstrates that
the super-pixel preprocessing of the image can reduce the
subsequent computations and reduce the noise interference,
which results in a promising segmentation result. The proposed
FLRSC outperforms the comparison algorithms in all four
evaluation metrics, demonstrating that FLRSC can effectively
obtain better image segmentation results for color images.

D. Complexity Analysis

The computational complexity of an algorithm is also a
valuable metric for assessing its performance. The table shows
the computational complexity of the proposed FLRSC and
the competing methods. N is the number of image pixels,
c denotes the number of clusters, t indicates the number
of iterations. ω represents the filter window’s size, and q
is the image’s grayscale value. N ′ is the number of super-
pixels significantly less than N , T ′ is the number of iterations
less than t, and O(M(c)) is the computational complexity of
Newton’s method.

Compared to other algorithms, the FILICM, KWFLICM,
and DSFCM have relatively high computational complexity,
which means that they have to compute the information
for each neighborhood. Similarly, the FALRCM algorithm
increases the computational complexity due to the addition
of KL information and region-level information. To reduce
the computational complexity, FCM S1 and FCM S2 use
filters instead of neighborhood spatial information, and En-
FCM and FGFCM employ the grayscale histogram technique
replaces the computation for each pixel, thus increasing the
computational speed. Moreover, FRFCM is very fast be-
cause it removes the repeated distance calculation between
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TABLE IV
COMPUTATIONAL COMPLEXITY OF DIFFERENT ALGORITHMS.

Methods Computational complexity

FCM O(N × c× t)

FCM S1 O(N × ω2 +N × c× t)

FCM S2 O(N × ω2 +N × c× t)

EnFCM O(N × ω2 + q × c× t)

FGFCM O(N × ω2 + q × c× t)

FLICM O(N × ω2 × c× t)

KWFLICM O(N × (ω + 1)2 +N × ω2 × c× t)

FRFCM O(N × ω2 + q × c× t)

DSFCM O(N × ω2 × c× t)

FALRCM O(N × (ω2 + 3) +N × ω2 × c× t)

FCM SICM O(N × q × log(N × q) + 2N × ω2 +N × c× t)

SFFCM O(N × T ′ +N ′ × c× t)

RSSFCA O(N × (M(C) + c)× t+N × c× t)

FRAGL O(N2 × ω2 × t+N2 × t)

HLFRA O(2N2 × ω × t+N2 × t)

AFCF O(N × T ′ +N ′ × c× t× 2)

FLRSC O(N × T ′ +N ′2 × t+N ′3 × t)

pixels and clustering centers in the neighborhood window.
Although the FCM SICM expression looks complicated, its
computation speed is not too slow because it has no local
information calculation. However, the computational workload
of RSSFCA goes up because the Newton algorithm is used
in the iterative process. The FRAGL and HLFRA are active
contour segmentation methods incorporating local and other
information. Therefore, there is no doubt that they are time-
consuming. In contrast, the SFFCM and AFCF algorithms are
faster because they employ super-pixel preprocessing, which
reduces the quantity of data. As can be seen from the table,
the computational speed of the proposed FLRSC depends on
the number of super-pixels N : the fewer the super-pixels, the
more efficient the computation—however, the fewer the super-
pixels, the lower the segmentation accuracy.

V. CONCLUSION

In the paper, we explore a new fuzzy clustering algorithm
that does not require center point selection, the number of
clusters, or the distance metric. Moreover, we propose a new
framework for image segmentation based on fuzzy low-rank
structure clustering, which combines low-rank structure and
fuzzy theory to achieve image segmentation. The proposed
FLRSC has two main contributions. One is that the objective
function can be established by minimizing the rank of the
membership matrix, thus replacing the classical form of the
FCM function. Furthermore, it is concerned with membership
data relative to the data rather than the data itself. The other is
to build the objective function with a fuzzy regularization term

to guarantee robustness and convergence. And then, a smooth-
ing regularization term is added to prevent the gradient from
becoming singular. We also demonstrate its convergence and
solve its optimal solution with a weighted iterative algorithm.
In addition, the improved super-pixel generation algorithm has
good noise immunity for super-pixel image preprocessing. The
experiments on synthetic and color images demonstrate the
excellence and robustness of the proposed FLRSC.

The running speed and segmentation accuracy of our al-
gorithm depend on the super-pixel processing of the image,
which is a limitation for fuzzy low-rank structure processing.
In future work, we will consider deep learning algorithms to
extract image super-pixel features and explore new ways of
combining fuzzy theory and low-rank representation.

APPENDIX A
THE DERIVATION PROCESS OF EQ. (12) TO EQ. (13)

The right term of Eq. (12) can be written as

∂(Tr((UTU + µ2I)
p
2 )

∂U

+
∂(α · ∥U∥2F )

∂U

+
∂(β · ∥AU − V ∥2F )

∂U
= 0.

(22)

According to the derivative rule of the matrix, its first term
becomes

∂(Tr((UTU + µ2I)
p
2 )

∂U

=
p

2
((UTU + µ2I)

p
2−1 · ∂(Tr(U

TU)

∂U
.

(23)

Then, in the next step, we need to solve for ∂(Tr(UTU)
∂U . By

the differential rule of matrices and the properties of traces
[52], we have

d(Tr(UTU)) = Tr(d(UTU))

= Tr(d(UT )U) + Tr(UT dU)

= Tr((dU)TU) + Tr(UT dU)

= Tr(U(dU)T ) + Tr(UT dU)

= Tr(UT dU) + Tr(UT dU)

= 2Tr(UT dU).

(24)

Since df(U) = Tr(∂(f(U)
∂UT

dU), we derive

∂(Tr(UTU)

∂U
= 2U. (25)

Therefore,

∂(Tr((UTU + µ2I)
p
2 )

∂U
= p((UTU + µ2I)

p
2−1U. (26)

Both the second and third terms are derivations with respect
to the F-norm, and

∥U∥2F = Tr(UTU), (27)

∥AU − V ∥2F = Tr((AU − V )T (AU − V )), (28)
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we have

∂(α · ∥U∥2F )
∂U

=
∂(α · Tr(UTU)

∂U
= 2αU, (29)

and

∂(β · ∥AU − V ∥2F )
∂U

=
∂(β · Tr((AU − V )T (AU − V ))

∂U
= 2β(ATAU −ATV ),

(30)

so the Eq. (12) is converted to Eq. (13),

p(UTU + µ2I)
p
2−1U + (2βATA+ 2αI)U − 2βATV = 0.

(31)

APPENDIX B
PROOF OF THEOREM 3.1

Proof : (1) First, we define an auxiliary function

f(x, y) = (µ2 + x2)
p
2 − (µ2 + y2)

p
2

− py(µ2 + x2)
p
2−1(x− y).

(32)

Then, we have

f(x, y) = [(px2 − 2pxy + py2) + (2µ2 + (2− p)x2

+ py2 − 2(µ2 + x2)1−
p
2 2(µ2 + y2)

p
2 )]

· (µ2 + x2)
p
2−1

= p(x− y)2 · (µ2 + x2)
p
2−1

+ [(2− p)(µ2 + x2) + p(µ2 + y2)

− 2(µ2 + x2)1−
p
2 2(µ2 + y2)

p
2 )]

· (µ2 + x2)
p
2−1.

(33)

Since for any nonnegative constants a, b, and t ∈ (0, 1), we
have a(1−t)xt ≤ (1− t)a+ tb, where the equality holds if and
only if a = b. Therefore, the second term in the above equation
is non-negative and the first term, f(x, y) = 0 when x = y,
is a non-negative complete square term. Moreover, f(x, y) ≥
p(x − y)2 · (µ2 + x2)

p
2−1, which is used to demonstrate the

second term.

Let
J(Ut)− J(Ut+1)

= Tr(UT
t Ut + µ2I)

p
2 − Tr(UT

t+1Ut+1 + µ2I)
p
2

+ β · (∥AUt − V ∥2F − ∥AUt+1 − V ∥2F )
+ α · (∥Ut∥2F − ∥Ut+1∥2F )
= Tr(UT

t Ut + µ2I)
p
2 − Tr(UT

t+1Ut+1 + µ2I)
p
2

+ β · Tr((AUt − V )T (AUt − V )

− (AUt+1 − V )T (AUt+1 − V ))

+ α · Tr(UT
t Ut − UT

t+1Ut+1)

= Tr(UT
t Ut + µ2I)

p
2 − Tr(UT

t+1Ut+1 + µ2I)
p
2

+ β · Tr((AUt)
T (AUt)− (AUt)

TV − V T (AUt)

− (AUt+1)
T (AUt+1) + (AUt+1)

TV + V T (AUt+1))

+ α · Tr(UT
t Ut − UT

t+1Ut+1)

= Tr(UT
t Ut + µ2I)

p
2 − Tr(UT

t+1Ut+1 + µ2I)
p
2

+ β · [∥AUt −AUt+1∥2F + Tr((AUt)
T (AUt+1)

+ (AUt+1)
T (AUt)− 2(AUt+1)

T (AUt+1)

− (AUt)
TV − V T (AUt)− (AUt+1)

T (AUt+1)

+ (AUt+1)
TV + V T (AUt+1))]

+ α · Tr(UT
t Ut − UT

t+1Ut+1),

(34)

considering the properties of the matrix trace, the above
expression can be written as

J(Ut)− J(Ut+1)

= Tr(UT
t Ut + µ2I)

p
2 − Tr(UT

t+1Ut+1 + µ2I)
p
2

− Tr((2βATV − 2βATAUt+1 − αUt − αUt+1)

· (Ut − Ut+1)) + β · ∥AUt −AUt+1∥2F .

(35)

By the Eq. (15) and Eq. (32), we obtain

J(Ut)− J(Ut+1)

= Tr(UT
t Ut + µ2I)

p
2 − Tr(UT

t+1Ut+1 + µ2I)
p
2

− Tr(Qt(Ut − Ut+1)) + β · ∥AUt −AUt+1∥2F
= Tr((UT

t Ut + µ2I)
p
2 − (UT

t+1Ut+1 + µ2I)
p
2

−QtUt+1(Ut − Ut+1)) + β · ∥AUt −AUt+1∥2F
= Tr(f(Ut, Ut+1)) + β · ∥AUt −AUt+1∥2F .

(36)

Now, it is known that f(Ut, Ut+1)=0 and ∥AUt −AUt+1∥2F
only when Ut = Ut+1, then Eq. (30) implies that J(Ut+1) ≤
J(Ut).

(2) By Qt = p(UT
t Ut + µ2I)

p
2−1 and J(Ut+1) ≤ J(Ut),

we have

Q
p

p−2

t =

(
p

2β

) p
p−2

(UT
t Ut + µ2I)

p
2

≤
(
p

2β

) p
p−2

J(Ut) ≤
(
p

2β

) p
p−2

J(U0).

(37)

We assume that
(

p
2β

) p
p−2

J(U0) =W0, then Qt ≥W
p−2
p

0 =

W1. Therefore,

f(Ut, Ut+1) ≥ p(Ut − Ut+1)
2 · (U2

t + µ2I)
p
2−1

≥W1p(Ut − Ut+1)
2,

(38)
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and

J(Ut)− J(Ut+1) = Tr(f(Ut, Ut+1))

+ β · ∥AUt −AUt+1∥2F
≥ Tr(W1p(Ut − Ut+1)

2)

+ β · ∥AUt −AUt+1∥2F
≥ Tr(W1p(Ut − Ut+1)

2).

(39)

By summing these inequalities, we obtain
n∑

i=0

Tr(W1p(Ut − Ut+1)
2) ≤ J(U0)− J(Ut+1)

≤ J(U0).

(40)

Thus, we draw the conclusion that

lim
x→∞

(Ut − Ut+1) = 0. (41)

(3) By the above properties (1) and (2), we have

0 ≤ J(Ut+1) ≤ J(Ut). (42)

Then it can be seen that J(U) is monotonically decreasing,
and the lower boundary is zero and the upper boundary is
J(U0). If there exists Uk

t → U , then by the iterative algorithm,
U(t+ 1)k will also converge to a matrix U⋆, and U = U⋆.

Moreover,

J(U)− J(U⋆) ≥ Tr(W1p(U − U⋆)2)

+ β · ∥AU −AU⋆∥2F .
(43)

If we assume its limit is J , then J(U) = J(U⋆) = J . From
Eq. (36), it follows that

∥AU −AU⋆∥2F ≤ J(U)− J(U⋆) = 0. (44)

Thus, we can obtain

A(U − U⋆) = 0. (45)

Since

Tr(UTU + µ2I)
p
2 + α · ∥U∥2F + ∥AU − V ∥2F

= Tr((U⋆)TU⋆ + µ2I)
p
2 + α · ∥U⋆∥2F + ∥AU⋆ − V ∥2F ,

(46)

we also further derive

Tr(UTU + µ2I)
p
2 − Tr((U⋆)TU⋆ + µ2I)

p
2

= α · ∥U⋆∥2F − α · ∥U∥
2
F .

(47)

Considering the iterative relationship

(Qt + 2βATA+ αI)Ut+1 = 2βATV − αUt. (48)

When t→∞, the above equation becomes

((Qt + 2βATA+ αI)U⋆) = (2βATV − αU). (49)

By multiplying (U − U⋆)T with both sides of Eq. (43), it
becomes

(U − U⋆)T (Qt + 2βATA+ αI)U⋆

= (U − U⋆)T (2βATV − αU).
(50)

Thus, we have

Tr
[
(U − U⋆)T (Qt + 2βATA+ αI)U⋆

]
= Tr

[
(U − U⋆)T (2βATV − αU)

]
.

(51)

Obviously,

Tr[(U − U⋆)TQt + (U − U⋆)T (2βATA− 2βATV )

+ (U − U⋆)T (αU⋆ + U)] = 0.
(52)

By the equality A(U − U⋆) = 0 and Eq. (47), we obtain

Tr(f(U,U⋆)) = 0, (53)

which concludes U = U⋆. Therefore, when k →∞ and Uk
t =

U , U satisfies the first-order differential optimality condition
∂J(U)
∂U = 0.
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