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Abstract
Introduction: Pap smear is considered to be the primary examination for the diagnosis of cervical cancer. But the
analysis of pap smear slides is a time-consuming task and tedious as it requires manual intervention. The diagnostic
efficiency depends on the medical expertise of the pathologist, and human error often hinders the diagnosis. Automated
segmentation and classification of cervical nuclei will help diagnose cervical cancer in earlier stages. Materials and
Methods: The proposed work first segments the data, and then utilizes the segmented data for classification. The
proposed methodology includes three models: a deep learning-based segmentation model, a fusion-based feature
extraction model and a classification model. In this work, a Residual-Squeeze-and-Excitation-module is proposed
for efficient cervical nuclei segmentation. Classification is performed using the Multi-layer Perceptron. Three sets of
deep features are extracted from these segmented nuclei using the pre-trained and fine-tuned VGG19, VGG-F, and
CaffeNet models, and two hand-crafted descriptors, Bag-of-Features and Linear-Binary-Patterns, are extracted for
each image. These feature sets are processed using the principal component analysis method and concatenated
for classification. For this work, Herlev, SIPaKMeD, and ISBI2014 datasets are used for evaluation. The Herlev dataset
is used for evaluating both segmentation, and classification models. Whereas the SIPaKMeD is used for evaluating
the classification model, and the ISBI2014 is used for evaluating the segmentation model. Results The segmentation
network enhanced the precision and ZSI by 2.04%, and 2.00% on the Herlev dataset, and the precision and recall by
0.68%, and 2.59% on the ISBI2014 dataset. The classification approach enhanced the accuracy, recall, and specificity
by 0.59%, 0.47%, and 1.15% on the Herlev dataset, and by 0.02%, 0.15%, and 0.22% on the SIPaKMed dataset.
Conclusion: The experiments demonstrate that the proposed work achieves promising performance on segmentation
and classification in cervical cytopathology cell images.
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Introduction

Cervical cancer is one of the leading causes of death
in women across the world1. The treatment and survival
chances from this cancer are heavily dependent on the stage
at the time of diagnosis. When cervical cancer is diagnosed
at an early stage (or precancerous stage)1, the chances of
survival are very high, and the recovery is also fast. Cervical
cytology is the most popular and trusted procedure for the
screening of cervical cancer at early stages. This is a physical
procedure in which few cells are collected from the cervix
and are transferred into a container with special liquid (in
case of liquid-based pap smear) to preserve the sample or
onto a glass slide (in case of conventional pap smear) for
examination under a microscope. This procedure has shown
promising results in reducing the mortality rate of cervical
cancer in women2. This procedure was performed for the
screening of cervical cancer across the world. However, this
procedure is not available for population-wide screening
in underdeveloped and developing countries because of
its complexity and tedious nature as it involves a human
intervention to manually examine for the abnormal cells
in the cytology specimen3. But the automation of this

examination procedure with computerized techniques like
Artificial Intelligence (AI) will increase the efficiency and
also reduce the detection time4.

Over the last few decades, there has been a lot of research
that is done in automating several medical practices with AI
via machine learning and deep learning44,48. These methods
have shown promising results in the diagnosis of Pneumonia,
Brain tumors, Heart diseases, COVID-19, Tuberculosis47,
and also in the diagnosis of other cancers like breast58, lung,
and brain. Even in this field, there are several studies that
were proposed for the screening of cervical cancer from
cervical cytology images3,5,6,56. Like, Dong et al.7 proposed
an approach that uses a canny segmentation algorithm to
segment the nuclei regions from the cytology images from
the single-cell dataset; from these regions edge features, are
extracted using adaptive gradient vector flow snake model,
and these features are used to train the support vector

1Vellore Institute of Technology, Chennai, India
2Ulster University, Northern Ireland, UK

Corresponding author:
Pratheepan Yogarajah, p.yogarajah@ulster.ac.uk

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

machine algorithm for classifying normal and abnormal
cells. Few other studies were presented in8,9 using the same
dataset, where the authors used Fuzzy C means clustering
and Radiating-Gradient-Vector Flow (GVF) model for nuclei
segmentation. Marinkis et al.10 performed Benign/Malignant
classification on the same dataset using nearest neighbor
classifiers trained with features selected using genetic
algorithms.

Genctav et al.11 implemented smear level segmentation
based on circularity, uniformity, and nuclear size. In the later
part of the study, they also used an unsupervised learning
approach to conduct binary classification on a smear level
dataset. Their results show improved effectiveness when
dealing with challenges associated to poor strained quality.
Bora et al.12 used shape-based nuclei features extracted
by the Maximal stable external region (MSER) algorithm
followed by thresholding ratio and some morphological
operations for smear level segmentation. To analyse the
hyperchromatic variations in the nuclei, the scientists
employed textual characteristics based on entropy, skewness,
and kurtosis, as well as intensity features based on ripplet
transform. According to the findings, the updated MSER
algorithm can handle pap smear images with worse quality
due to inadequate straining and can also remove undesirable
structures in the cell.

There were few methods that employed multi-level
approaches for segmentation. Like, Zhang et al.13 used
a graph cut method integrated with textual and intensity-
based features for segmentation. It was observed that all
such methods rely on multi-level segmentation coupled with
some post and pre-processing steps. Hence the failure at
any level will affect the performance of the segmentation
model, which in turn will also have a great effect on the
classification accuracy and will increase the diagnosis error.
Lu et al.14 also implemented such a multi-level approach
for segmentation, but their method failed on abnormal cells.
This might be due to incomplete hand-crafted feature sets
preventing the techniques from describing low-level features.
However, hand-crafted features do not contain all the
structural information of the nuclei; hence they result in poor
segmentation performance. To enhance the segmentation
performance, nuclei-type-specific criterion values should be
used for the segmentation of different types of cervical nuclei
with some post and pre-processing. This increases the length
of the pipeline, and an error in any step will be convex to the
error and will reflect on the subsequent steps.

The disadvantages discussed above can be addressed
using deep learning methods. These methods have shown
enhanced performance in medical image segmentation,
classification, lesion detection15,16. There are few studies
that reported enhanced segmentation performance in terms
of accuracy and efficiency while using DL methods. Zhao
et al.17 proposed a convolutional neural network-based
deformable multipatch ensemble model for single-cell nuclei
segmentation on the Herlev dataset. Liu et al.18 built
a segmentation model for single-cell nuclei segmentation
by altering the structure of Mask R-CNN and adding
fully linked conditional random fields. Lin et al.19 used
morphological convolutional neural networks to conduct
multi-class and binary classification of single pap smear
pictures. Song et al.20,21 proposed a two-step approach,

where in the first step, a deep learning method was used to
segment the nuclei, and in the next step, a graph partitioning
and superpixel approaches are used for the coarse-to-fine
segmentation of the nuclei. A similar two-step approach was
proposed by Zhang et al.22, where the authors segmented
the single-cell nuclei by integrating convolutional neural
networks (CNN) with graph-based approaches. Gautam et
al.23 developed a CNN model using transfer learning for
single-cell nuclei segmentation.

With this motivation, a fully automatic cervical nuclei
segmentation and classification approach was proposed in
this paper. The proposed approach consists of a deep
learning-based segmentation model, a fusion-based feature
extraction model and a classification model. The structure of
proposed work is shown in Figure. 1. The contributions of
the paper are summarised as follows:

• The proposed work first segments the data, and then
utilizes the segmented data for classification.

• The segmentation model is designed by modifying the
structure of the U-Net model. A residual block with
the Squeeze and Excitation (SE) block is used in place
of the convolutional layers in each stage of the U-Net
encoder-decoder network. This segmentation model
was used to segment the nuclei from the cells.

• From the segmented image, the deep features and
hand-crafted features are extracted and fused using
the standard concatenation. To remove the redundancy
among the extracted features, the PCA method is used
before concatenation for feature selection.

• These fused features are used for training the multi-
layer perceptron for classification.

The rest of the paper is organized as follows; Section
2 describes the materials and methods used, Section 3
describes experimental results and data used, section 4
presents the discussion, and section 5 concludes the work.

Materials and Methods

Residual SE UNet
In this work, a novel segmentation architecture based on
UNet was proposed for the segmentation of nuclei from the
pap smear images. The structure of the proposed network is
shown in Figure. 2. In this network, a residual block with
the Squeeze and Excitation (SE) block is used in place of
the convolutional layers in each stage of the UNet encoder-
decoder network. This Residual SE module is shown in
Figure. 3. The residual block consists of a stack of two 3× 3
convolutional, two batch normalizations, 2 ReLU layers, and
an auxiliary connection between the input and the output
layer. The residual unit eases the network’s learning, and
the skip connection between the high and low levels in the
residual unit will help for the propagation of information
without degradation24.

In segmentation, spatial information is essential to identify
the suspicious regions in the images. So, to improve the
ability of the network to distinguish between the local and
global information and to enhance its learning ability in each
stage, an SE block is used after the residual block in this
network. The SE block recalibrates the extracted features
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Figure 1. The structure of the proposed work.

Figure 2. The structure of the proposed Residual SE UNet.

in two stages; in the first stage, the squeeze operation is
performed where the features are globalized channel-wise
into a one-dimensional (1D) array. In the second stage,
these features are passed through two dense layers, and
activations were described as weights to the input channels;
this is referred to as excitation operation. These channel
weights scale with the input features and enhance the feature
representation ability of the network.

The network proposed in this work is a 9 level architecture
consisting of three parts, namely encoder, decoder, and a

bridge. The encoder converts the input image into a compact
representation, and the decoder recovers this representation
into pixel-wise classification. The bridge acts as a connection
between encoder and decoder parts. The encoding block
consists of four residual SE modules; specifically, the
encoding block uses four downsampling operations after
each Residual SE module to extract high-level semantic
information. In each Residual SE encoding module, a
stride of 2 is applied to the first convolutional layer of
the module to downsample the feature map by its half
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Figure 3. The structure of the proposed Residual Squeeze and
Excitation module.

instead of using a pool operation to preserve positional
information. Correspondingly, the decoder path consists of
four Residual SE modules. There is a concatenation of the
feature map from the corresponding encoding path with the
upsampled feature map from the previous module. After the
last encoding module, there is a 1×1 convolutional layer and
a sigmoid activation layer to project the desired segmented
image.

In the segmentation task, the imbalance between the
background and the nucleus may result in segmentation bias.
To deal with this problem, a loss function based on the dice
coefficient is employed in this work. This loss function is
presented in equation 1.

Lossseg = 1− 1 + 2× Yseg ×Gseg

1 + Yseg +Gseg
(1)

Where Yseg represents the predicted mask by the Residual
SE UNet, Gseg is the ground truth, and Lossseg is the
segmentation loss. This model is compiled using the Adam
optimizer39 with a batch size of 16, and the learning rate is
set to 1× 10−5. The model is trained for 300 epochs with
100 steps for each epoch.

Proposed classification model
The proposed multi-feature fusion approach consists of four
main parts: (1) fine-tuning the pre-trained models to extract
deep features, (2) computing LBP and BoF features for
each segmented image, (3) Reducing the dimensions of the
extracted features sets using PCA and (4) concatenating the
hand-crafted and deep features for training the MLP for
classification.

Deep feature extraction: In this work, three deep convolu-
tional neural networks (DCNN), namely VGG1925, VGG-
F26, and CaffeNet27, are employed for feature extraction.
The VGG19 contains 16 convolutional layers with 3×3
filters, five pooling layers, and three dense layers with 4096,
4096, and 1000 neurons. CaffeNet is a variant of AlexNet28;
it contains five convolutional layers, three pooling layers,
and three dense layers with the same number of neurons
as the VGG19. VGG-F includes the same number of con-
volutional, pooling, and dense layers as CaffeNet but with
different filters. All these models are pre-trained on a natural
dataset known ImageNet, which contains 14 million images
categorized into 1000 classes. These models take an image

of 224×224×3 dimensions and generate a prediction vector
with 1000 dimensions.

The number of neurons in the final dense layer is modified
to the number of classes in the dataset to make these models
acceptable for the categorization of pap smear pictures. Then
the segmented images with size 224×224×3 are fed into
the networks for fine-tuning. The Adam optimizer is chosen
with a batch size of 32 and trained for 250 epochs. Since
the training set used in this work is much smaller than
the ImageNet, the learning rate is set to 0.0001, and this
continues to drop by one-tenth for every 25 epochs, which
prevents the models from overfitting. And 20 percent of
the training images are randomly chosen as the validation
set to evaluate the model during each epoch; if the error
rate on the 80% training set continues to decrease and the
error rate on the validation set stops declining, the training
process is terminated even before reaching the maximum
epoch limit. Then the 4096-dimensional output from the
second last dense layers of the fine-tuned models is extracted
and used for further classification.

Hand-crafted feature: In this work, Linear Binary Patterns
(LBP)29 and Bag of Features (BoF)30 descriptors are used to
characterize each image. The LBP descriptor is computed in
three steps. For each pixel, the values of its eight neighboring
pixels are assigned a binary value based on the center pixel;
the value of the neighboring pixel is one of the existing
values that is greater than the center pixel and is given
zero if it is less than the center pixel. In the next step,
these eight binary values are concatenated to form an eight-
bit integer taking values from

{
0, ...., 255

}
. This process

is carried out for all the pixels in the images. In the last
step, the histogram of the frequency of each integer from
the entire image is considered to be the 256 dimensional
(D) descriptor. The computation of BoF also follows a
three-step process.The Speed-Up-Robust-Feature (SURF)31

approach is used to extract the key points and descriptors
F =

{
f1, f2, ...fn

}
from the images in the first stage, where

each descriptor is a 128-dimensional vector. In the next
phase, Vector Quantization (VQ) is used to assign descriptors
F to the KBF clusters, also known as visual vocabulary. In the
last step, the distribution of the SURF descriptors F over the
visual vocabulary is counted as the BoF descriptor.

Principal Component Analysis: For each input image, there
are three sets of deep features and two sets of hand-crafted
features extracted, each of which has dimensions between
256 to 4096. The PCA algorithm is used on a group-
by-group basis to deal with the curse of dimensionality
and to select the most discriminative features. Let the
jth set of features be represented as FejD,N , D, where
N represents the number of samples and D represents
the dimension of the features. Then the single-value-
decomposition (SVD)32 is applied to the covariance matrix
of FejD,N and its eigenvalues

{
e1, e2, ...., en

}
are obtained.

TThese eigenvalues and their accompanying eigenvectors{
v1, v2, ..., vn

}
are listed in decreasing order. The features

are then projected into a lower-dimensional space that are
spanned by the eigenvectors, where the sum of the associated
eigenvalues is greater than p percent of the total eigenvalues.
The dimension of the generated features is controlled by the
p parameter.
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Multi layer perceptron (MLP): MLP is a multi-layer feed-
forward deep neural network with a non-linear mapping
of inputs to outputs. MLP is made up of three layers: an
input layer, a hidden layer, and an output layer, in which
each node is connected with suitable weights to all the
nodes in the following layer. For training, MLP employs
the backpropagation algorithm, which works by modifying
the weights at each node, this backpropagation technique
lowers the error transmitted throughout the network. The
error Ei(n) at the ith output node for the dth data point is
computed using equation 2.

Ei(n) = g(n)i − y(n)i (2)

Where y(n)i represents the predicted output, and the g(n)i
represents the actual output. This error can be minimized by
correcting the weights at each node, presented in equation 3,
with new weights computed using equation 4.

σ(n) =
1

2

∑
i

[E2
i (n)] (3)

∆Wij(n) = −α
∂σ(n)

∂i(n)
gj(n) (4)

Where gj(n) is the output of the previous node and α is the
learning rate. This process is repeated until the error becomes
constant. This work uses one hidden layer by considering the
advantages presented in33 and is activated using the ReLU
function.

Parameter setting: In this work, there are three types of
parameters, namely DCNN based parameters, parameters
related to dimensionality reduction, and parameters associ-
ated with MLP. Since we have opted for the transfer learning
of the pre-trained DCNN’s, only their weights and kernels
are fine-tuned, but the structure and other parameters are
unchanged. The parameters related to the dimensionality
reduction, and MLP are set based on the performance
reported on the validation test.

The dimensions of the BoF are based on the size of the
visual vocabulary (KBF). Only the KBF is set to different
values in this work, whereas the remaining parameters are
unchanged. Figure. 4 shows the accuracy graph reported by
the proposed method on the validation set while varying the
size of the KBF; the maximum accuracy is reported when
the size of KBF is 150. So the size of the KBF is set as 150.
(KBF = 150)

In PCA-based dimensionality reduction, the threshold
value is changed, and other parameters are unchanged.
Figure. 5 shows the accuracy reported on the validation set
by the proposed model with variant thresholds; the maximum
accuracy was reported when the threshold was set to 95%.

In MLP, the batch size is changed by keeping the other
parameters constant. The batch size is to different values
starting from 8 to 64, and the graph of accuracy for each
batch size is shown in Figure. 6; the maximum accuracy was
obtained on the validation set when the batch size is 32. So
the batch size is set to 32.

Figure 4. Accuracy reported on the validation set for the variant
sizes of BoF.

Figure 5. Accuracy reported on the validation set with
threshold values.

Figure 6. Accuracy reported on the validation set for different
batch sizes.

Experimental Results

Datasets
In this work, we employed three datasets namely Herlev,
SIPaKMeD, and ISBI 2014 datasets for evaluation. Among
these datasets the Herlev dataset is used for evaluating
both segmentation, and classification models. Whereas the
SIPaKMeD is used for evaluating the classification model,
and the ISBI 2014 is used for evaluating the segmentation
model.

Herlev dataset is collected by the Herlev University
Hospital using a microscope and digital camera35. The
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image resolution used while acquiring the image is 0.201
µm per pixel34. All the specimens are processed using the
conventional pap straining and pap smear procedure. This
Herlev dataset consists of 917 single cervical cell images
classified into seven classes. An experienced doctor and
two cyto-technicians manually annotate these images. The
dataset also provides the ground truth images for training
segmentation models. The categorical distribution of the
dataset is shown in Table 1, and few sample images from the
dataset are shown in Figure. 7. As shown in Figure. 7, most
of the normal cells have smaller nuclei than the abnormal
cells. And the SCCIS cells had a similar nucleus size as the
CE cells, making the classification task challenging. In this
work, the Herlev dataset is split into training, validation and
testing sets based on the train-test strategy presented in36.
Among the 917 images the 70% of images from each class
are used for training, 10% are used for validation, and the
rest 20% are used for testing the model.

Table 1. Class distribution in Herlev dataset.

Category Class No of Images

Abnormal

Squamous cell carcinoma
in situ intermediate (SCCIS) 150

Severe squamous non-
keratinizing dysplasia
(SSNKD)

197

Moderate squamous
non-keratinizing dysplasia
(MSNKD)

146

Mild squamous non-
keratinizing dysplasia
(MiSNKD)

182

Normal
Columnar epithelial (CE) 98
Intermediate squamous
epithelial (ISE) 70

Superficial squamous
epithelial (SQE) 74

SIPaKMeD dataset45 consists of 4049 isolated cervical cell
images, which are manually cropped from 966 cluster cell
images of Pap smear slides. The images are captured using
a CCD camera adapted to an optical microscope. These cells
are divided into five different classes. This class distribution
is tabulated in Table 2. Among these the 60% of images from
each class are used for training, 20% are used for validation,
and the rest 20% are used for testing the model.

Table 2. Class distribution in SIPaKMeD dataset
.

Category Class No of Images

Normal Parabasal (PARA) 787
Superficial-intermediate (SI) 831

Abnormal Dyskeratotic (DYSK) 813
Koilocytotic (KOIL) 825

Benign Metaplastic (META) 793

ISBI 2014 dataset is provided as a part of the Overlapping
Cervical Cytology Image Segmentation Challenge ISBI
2014. This dataset contains 16 real images, and 945 synthetic
images. The real images are of 1024× 1024 resolutions
in grey-scale orientation. The real images are cropped into

Figure 7. Sample images from the Herlev dataset.

512× 512 resolution, which were later enhanced into 1780
images. Among the 1780 images, the 1650 images are
provided for training, and the rest 130 images are provided
for testing the models. The 20% of the train set is used for
validation.

Performance metrics
Segmentation metrics: The Residual SE UNet is evaluated
using pixel-based recall and precision measures. These
measures are formulated in equations 5 and 6.

Recalls =
TPs

TPs + FNs
(5)

Precisions =
TPs

TPs + FPs
(6)

In the above equations 5 and 6, TPs represents the
number of pixels that are correctly predicted as the nuclei
region, FPs and FNs represent the number of pixels that
are wrongly predicted as background and nuclei regions. In
addition to these measures Zijdenbos Similarity Index (ZSI)
is also used for evaluation and is presented in equation 7.

ZSI =
2× TPs

2× TPs + FPs + FNs
(7)

According to37, the predicted mask and ground truth are
excellently matched when ZSI is greater than 0.7.

Classification metrics: The classification network is eval-
uated using accuracy, recall, specificity, precision, and F1-
score. The metrics can be calculated using equations 8-12.

Accuracyc =

∑7
i=1

No of correctly classified
samples as class i∑7

i=1

Total number of
samples in class i

(8)

Recallc =
TPc

TPC + FNc
(9)

Specificityc =
TNc

TNc + FPc
(10)

Precisionc =
TPc

TPc + FPc
(11)
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F1− scorec =
2× Precisionc ×Recallc
Precisionc +Recallc

(12)

In the equations 5-12, TPc represents the number of
images correctly classified as abnormal, TNc represents the
number of images that are correctly classified as normal,
FPc and FNc represents the number of images that are
wrongly classified as abnormal and normal.

Ablation study
Residual SE UNet: We have also performed an abilation
study to understand the efficiency of each module in Residual
SE UNet. These ablation experiments are performed on the
Herlev dataset. The results of this study are shown in Table
3. From Table 3, it can be seen that there is an performance
enhancement with the addition of Residual SE Modules to
the standard UNet.

Table 3. Abilation study of the Residual SE UNet.

Models Precision Recall ZSI
Standard UNet 86.59 89.05 0.83
UNet + Residual module
(without SE block) 90.19 92.31 0.90

UNet + Residual module
(with SE block) 97.24 96.2 0.97

Classification network: In this work, the performance of
the Feature Concatenation Approach was assessed using
three groups of feature representations. The first group
represents the performance reported by the proposed
approach while using sole hand-crafted features, the second
group represents the performance reported by combining
hand-crafted features with the deep features extracted by
fully trained models, and the third group presents the
performance reported while using hand-crafted features with
deep features extracted by the fine-tuned and pre-trained
models.

From Table 4, it was observed that the feature
representations learned by the transfer learning model
reported better classification accuracy than the hand-crafted
features. However, the fully-trained models reported worse
accuracy than the hand-crafted features. The features
extracted by the fully-trained models, when used solely or
when combined with the hand-crafted features, also reported
worse accuracy than the pre-trained transfer learning models.
This shows the advantage of using the transfer learning
approach while having data scarcity and other constraints. In
addition, the concatenation of deep and hand-crafted features
reported significantly better classification accuracy.

Results reported

Segmentation
The proposed Residual SE UNet is evaluated using the
Herlev, and the ISBI 2014 datasets. The Table 5 presents the
precision, recall, and ZSI scores reported by the proposed
model for segmenting the 7 types of cervical nuclei on
Hevlev dataset. Furthermore, the average results of 7 types
achieved by the Residual SE UNet on both the datasets is

compared with the other existing approaches. These results
are shown in Tables6 and 7. The proposed segmentation
model reported a precision of 97.24%, recall of 96.2%, and
ZSI of 0.97 on the test set.

The proposed model reported better average precision,
and ZSI than the existing works on Herlev dataset. Also,
the proposed model reported better average precision and
recall than existing works on ISBI 2014 dataset. Figure 8
shows the qualitative comparison of the segmented output
reported by the proposed model and the existing methods on
images from the Herlev dataset. It can be observed that the
proposed segmentation model can generate accurate nucleus
boundaries for a wide variety of nuclei with irregular nuclei
shape, size, and non-uniform chromatin distribution.

Classification
In this work, we evaluated the proposed classification
approach by using two datasets namely Herlev, and
SIPaKMeD. In medical informatics, recall is considered
to be the most important metric40,41. Table 8 presents the
recall reported for each class while using hand-crafted
features, deep features extracted by transfer learning models,
and jointly using both (proposed feature concatenation).
The highest recall is highlighted in bold. The proposed
feature concatenation approach performed best in 5 out of
7 categories and is also higher than the other feature sets on
both the datasets.

The proposed feature concatenation approach is also
compared with the existing methods8,10,35,38,49–52. The above
methods are downloaded from their public implementations
and trained and tested with the same evaluation protocol
used by the proposed work on the Herlev, and SIPAKMED
datasets for a fair comparison. This comparison in terms of
accuracy, recall, and specificity is shown in Table 9. The
proposed model reported higher accuracy than the existing
works.

Computational complexity
The proposed work is implemented in Pycharm. The overall
processing of a pap-smear image of 224× 224× 3 pixel
resolution on a PC with 2.4 GHz dual-core Intel i5 and 4 GB
took 21s. These running times were reported on the images
from the single-cell Herlev dataset. In this work, code profile
analysis is also performed to understand the time consumed
by the segmentation and classification method. Among the
two methods, the segmentation method consumed 12s, and
the classification method consumed 9s (including 7s for
feature extraction and 2s for classification).

Discussion
The experimental findings show that the proposed models
can accurately segment and classify cervical nuclei from pap
smear images with good precision, recall, specificity, and
ZSI. The following are the primary points that emphasise the
proposed work.

• The manual morphological analysis of cellular images
for diagnosing cervical cancer from pap smear slides
on a large scale is a time-consuming and tedious
task. And a manual examination of these slides
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Table 4. Accuracy reported while using different feature sets.

Methods Features sets Accuracy

Hand crafted features BoF 75.98
LBP 78.43

Deep features extracted
by fully training CNN’s

Deep features from VGG19 72.63
Deep features from VGG-F 71.32
Deep features from Caffe Net 69.50
3 Deep features 74.92

Deep features extracted
by pre-trained CNN’s

Deep features from pre-trained VGG19 90.19
Deep feature from pre-trained VGG-F 91.12
Deep feature from pre-trained Caffe Net 89.42
3 Deep features 93.00

Deep features extracted
by fully training CNN’s
with hand-crafted features

3 Deep features + LBP 81.05
3 Deep features + BoF 82.78
3 Deep features + LBP + BoF 85.12

Deep features extracted
by pre-trained CNN’s
through fine tuning with
hand-crafted features

3 Deep features from pre-trained models + LBP 93.13
3 Deep features from pre-trained models + BoF 95.45
3 Deep features from pre-trained models + BoF
+ LBP (proposed) 98.39

Table 5. Comparison of class specific precision, recall, and ZSI
reported by the Residual SE UNet with the existing works
employing Herlev dataset.

Methods Class Precision Recall ZSI

Multi-scale
hierarchical
segmentation
algorithm11

SSNKD 90.12 89.39 0.921
SQE 69.37 63.48 0.848
ISE 79.29 73.31 0.914
CE 85.15 77.58 0.892
MSNKD 91.00 86.78 0.904
MiSNKD 88.64 86.73 0.895
SCCIS 90.35 89.36 0.913
Mean 84.84 80.94 0.898

Mask RCNN
+LFC +CRF18

SSNKD 96.06 97.12 0.951
SQE 95.05 97 0.950
ISE 93.10 94.17 0.921
CE 93.09 94.51 0.821
MSNKD 96.04 98.17 0.97
MiSNKD 96.04 97.08 0.96
SCCIS 97.04 95.12 0.951
Mean 95.20 96.16 0.932

Radiating
Gradient
Vector flow9

SSNKD 88.23 89.66 0.879
SQE 92.05 88.10 0.898
ISE 95.12 92.42 0.869
CE 86.79 76.57 0.821
MSNKD 89.27 86.84 0.875
MiSNKD 92.29 90.44 0.862
SCCIS 84.17 90.88 0.867
Mean 89.70 87.84 0.867

Proposed
Residual
SE UNet

SSNKD 95.68 94.31 0.950
SQE 98.71 98.29 0.989
ISE 97.78 95.04 0.995
CE 98.84 95.31 0.942
MSNKD 96.18 95.69 0.977
MiSNKD 97.94 98.00 0.969
SCCIS 95.59 96.80 0.973
Mean 97.24 96.20 0.970

often contains human error3,42,43, resulting in false-
positive/negative findings. Automated segmentation

Table 6. Comparison of average precision, recall, and ZSI
reported by the Residual SE UNet with the existing works
employing Herlev dataset.

Methods Precision Recall ZSI
Multi-scale hierarchical
segmentation
algorithm11

84.84 80.94 0.898

Mask RCNN + LFC +
CRF18

96.00 96.00 0.950

Radiating Gradient Vec-
tor flow9

89.70 87.84 0.867

D-MEM (U-Net)59 94.60 98.40 0.933
PGU-net+60 90.10 96.80 0.926
Proposed Residual SE
UNet

97.24 96.20 0.970

Table 7. Comparison of precision, and recall reported by the
Residual SE UNet with the existing works employing ISBI 2014
dataset.

Method Precision Recall
HMLS53 93.81 92.34
MSERLS54 94.23 91.82
LTSN57 97.64 94.00
DeepCNN155 94.61 95.59
Proposed model 98.32 97.18

and classification of the nuclei will help rapidly assess
pap smear slides on a large scale with zero human error
and less diagnostic time than the manual procedure.
This work is advantageous as it can segment and
classify cervical nuclei with high accuracy, precision,
recall, and ZSI, enabling rapid nuclear-quantification
analysis.

• Even though the proposed segmentation method is
computationally more expensive than the multi-scale
network11 (64 vs 59) and Mask R-CNN18 (64 vs 62)
methods, this can be optimized by using sophisticated
hardware.
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Figure 8. Qualitative comparison of the proposed model with existing methods. The ground truth boundary is indicated by green
color, the boundary predicted by the Residual SE UNet is indicated by red color, the boundary predicted by the Multi-scale
hierarchical segmentation algorithm 11, Mask RCNN + LFC + CRF 18, Radiating Gradient Vector flow 9 are indicated by orange,
yellow and blue colours.

• A box plot is presented in Figure. 9, which
shows the distribution of the ZSI metric reported
by the proposed segmentation model, multi-scale
network11, MaskRCNN18, and Radiating Gradient
Vector flow9 on the Harlev test set. The proposed
segmentation method has a higher median of ZSI
than the other three methods. This demonstrates
the proposed segmentation model’s superiority over
existing techniques.

• The proposed approach does not involve any pipeline
methods and pre-processing methods discussed in
the literature. It directly takes the pap-smear image
as input and segment cervical nuclei. The features
extracted from the segmented cervical nuclei and used
for the classification. The proposed segmentation and
classification models reported higher performance (in
terms of precision, recall and ZSI for segmentation
task and accuracy, recall, and specificity for classifi-
cation task) than the existing works that employed pre
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Table 8. Recall reported for each class while using different transfer learning models.

Dataset Classes VGG19 VGG-F Caffe Net LBP BoF Proposed model

Herlev

SSNKD 90.39 89.78 93.10 83.60 86.19 99.12
SQE 99.36 94.24 95.63 79.53 82.92 98.76
ISE 91.21 92.08 94.42 88.27 89.16 99.45
CE 95.68 89.26 93.42 87.31 89 99.39
MSNKD 93.37 96.24 95.19 82.36 86.29 98.92
MiSNKD 96.30 99.37 94.53 75.29 70.50 98.42
SCCIS 94.59 95.91 94.25 84.45 80.26 98.74
Mean 94.41 93.84 94.36 82.97 83.47 98.97

SIPAKMED

PARA 97.16 98.33 98.62 90.42 88.53 98.72
SI 96.72 99.41 98.89 85.89 83.29 99.62
DYSK 97.11 97.52 97.81 87.14 86.31 98.54
KOIL 96.39 98.67 97.89 91.55 85.68 99.25
META 96.11 99.01 98.87 89.33 84.52 99.62
Mean 96.69 98.59 98.41 88.86 85.66 99.15

Table 9. Comparison of accuracy, recall, and specificity reported by the proposed model with other existing works on the Herlev,
and SIPAKMED datasets

.

Dataset Methods Accuracy Recall Specificity

Herlev

DeepCervix46 90.30 91.10 –
Jantzen et al.35 93.60 97.50 85.60
Marinakis et al.38 96.70 98.40 92.20
Marinakis et al.10 96.80 98.50 92.10
Chankong et al.8 97.80 98.30 96.50
Liu et al.61 92.35 93.50 -
Proposed model 98.39 98.97 97.65

SIPAKMED

DeepPap50 93.58 97.40 98.60
Win et al.51 94.09 - -
CompactVGG49 97.80 98.30 99.17
Qin et al.52 98.14 98.10 99.53
DeepCervix46 99.14 99.00 –
Proposed model 99.16 99.15 99.75

and post-processing methods(reported in Table 6 and
Table 9).

• Even though our proposed segmentation and classifi-
cation models enhanced the performance in segment-
ing and classifying cervical cytopathology cell images,
our models have the following limitations. The perfor-
mance of our algorithms needs further perfection for
real preclinical use. Moreover, we have not explored
the possibility of any data resampling for balancing the
dataset that may result in better performance.

Figure 9. Comparison of ZSI values reported by the Residual
SE UNet with existing methods on Herlev dataset

.

Conclusion
This work proposes two deep learning-based approaches
for the segmentation and classification of cervical nuclei.
The segmentation network was designed using the well-
known architecture UNet as the backbone, and residual SE
modules are designed for efficient feature extraction. These
modules are used in place of the convolutional layers in the
standard UNet for segmentation. From the segmented nuclei,
three sets of deep features and two sets of hand-crafted
features are extracted, and PCA is used to reduce these
features’ dimensions for concatenation. The single layer
perceptron is employed for classification . These methods
are trained and evaluated using the Herlev, SIPaKMeD, and
ISBI 2014 datasets. Among these datasets the Herlev dataset
is used for evaluating both segmentation, and classification
models. Whereas the SIPaKMeD is used for evaluating
the classification model, and the ISBI 2014 is used for
evaluating the segmentation model. Both the segmentation
and classification works reported better performance than
the existing works in the literature. We anticipate that these
methods help for the rapid diagnosis of cervical cancer in
the early stage, thus reducing the mortality rate and helping
patients for a faster diagnosis. In the future work, different
pre-processing methods such as transfer learning, and vision-
transformer-based approaches can be studied to diagnose
cervical cancer from pap smear images.
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