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ABSTRACT
Hybrid multi-objective evolutionary algorithms have recently be-
come a hot topic in the domain of metaheuristics. Introducing new
algorithms that inherit other algorithms’ operators and structures
can improve the performance of the algorithm. Here, we proposed
a hybrid multi-objective algorithm based on the operators of the
genetic algorithm (GA) and teaching learning-based optimization
(TLBO) and the structures of reference point-based (from NSGA-III)
and R2 indicators methods. The new algorithm (R2-HMTLBO) im-
proves diversity and convergence by using NSGA-III and R2-based
TLBO, respectively. Also, to enhance the algorithm performance,
an elite archive is proposed. The proposed multi-objective algo-
rithm is evaluated on 19 benchmark test problems and compared
to four state-of-the-art algorithms. IGD metric is applied for com-
parison, and the results reveal that the proposed R2-HMTLBO out-
performs MOEA/D, MOMBI-II, and MOEA/IGD-NS significantly in
16/19 tests, 14/19 tests and 13/19 tests, respectively. Furthermore,
R2-HMTLBO obtained considerably better results compared to all
other algorithms in 4 test problems, although it does not outperform
NSGA-III on a number of tests.

CCS CONCEPTS
• Theory of computation→ Bio-inspired optimization; Evo-
lutionary algorithms.
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1 INTRODUCTION
Optimization is a long-standing topic of importance in artificial
intelligence (AI) research. Metaheuristics are well-known opti-
mization methods following the principle of natural evolution.
Compared to conventional methods (mathematical-based/gradient-
based optimizers), metaheuristics perform better in non-deferential,
noisy, and discontinuous environments. Evolutionary algorithms
(EAs) and swarm intelligence (SI) are two branches of metaheuris-
tics. Although they include a vast range of algorithms, such as the
genetic algorithm (GA) [13] , differential evolution (DE) [22], and
particle swarm optimization (PSO) [16], most of them have the
same structure.

Optimization problems are typically classified into three cate-
gories depending on the number of objectives in the problem: single-
objective (one objective), multi-objective (two or three objectives)
and many-objective (more than three objectives). In general, real-
world optimization problems consist of multi-objective problems
(MOPs) or many-objective problems (MaOPs), and in many cases
the objectives are contradictory. Multi-objective/many-objective
evolutionary-based algorithms (MOEAs/MaOEAs) can be divided
into three frameworks: 1) Domination-based, 2) Decomposition-
based, and 3) Indicator-based methods. Domination-based algo-
rithms apply twomain outlines in their structure: Pareto dominance
strategy and distance-based density strategy. The domination-based
strategy is responsible for finding non-dominated solutions near the
true pareto front (PF). On the other hand, the distance-based density
strategy promotes the uniform solutions’ distribution. Nondomi-
nated sorting genetic algorithm-II (NSGA-II) [5] and its modified
version, NSGA-III [4], are classified in this group, and their struc-
tures follow an identical pattern. The basic idea behind them is
sorting solutions based on their dominations and retaining their
diversities based on the specific distribution approaches. The dis-
tribution approach helps the algorithm reach uniform solutions;
the crowding distance operator [5] and a method based on the
reference points [3] are devised for NSGA-II and NSGA-III, respec-
tively. The multi-objective evolutionary algorithm based on de-
composition (MOEA/D) [31] is the most well-known algorithm
in the decomposition-based framework. In decomposition-based
approaches, a scalarization function decomposes all the objectives
into several single-objective sub-problems and then solves them.
There are three popular scalarization functions: weighted sum (WS),
Tchebycheff (TCH), and penalty-based intersection (PBI), of which
TCH is most popular. Indicator based algorithms apply a criterion
for evaluating and ranking the performance of the population mem-
bers. These algorithms try to measure two criteria of convergence
and diversity simultaneously. Hypervolume (HV) [8], ∆p [21], and
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R2 [1] are typical indicators. The Indicator-based evolutionary al-
gorithm (IBEA) [35] is one of the first algorithms in this group.

Overall, each category has its pros and cons. For instance, domination-
based approaches lack power to reach true PF, leading to poor
convergence. Specifically, this issue degenerates the algorithms’
convergence when the number of objectives is increased. On the
other hand, regarding the solutions’ distribution, it has better per-
formance, improved further by introducing the concept of reference
points in NSGA-III. In addition, choosing the proper scalarization
function, weight vectors and the number of neighbors is a critical
challenge for decomposition-based methods, and many modifica-
tions have been proposed in recent years to address these challenges
[14, 15, 33]. Based on the type of indicator, most indicator-based
methods simultaneously try to assess the convergence and diversity
of solutions. However, the main drawback of this approach is its
high computational cost, especially in MaOPs [28]. New indicators,
such as the R2 indicator, have been introduced in an attempt to solve
this issue. It is evident that there is no perfect and infallible algo-
rithm for solvingMOPs/MaOPs. To overcome this issue, researchers
have recently considered hybrid algorithms where the deficiencies
of one algorithm can be compensated by utilizing the structures or
operators from other algorithms in hybridization. Hybridization
can be applied to two sections: the algorithm’s structure (popular
in MOEAs/MaOEAs) [2, 19, 23, 24] or the algorithm’s operators
(popular in single-objective EAs) [17, 29, 30].

This paper introduces a hybrid MOEA based on the two algo-
rithms of NSGA-III and teaching-learning based optimization(TLBO).
The new algorithm (R2-HMTLBO) inherits the solution’s diversity
and convergence from the synergies of NSGA-III and TLBO, re-
spectively. TLBO is a straightforward algorithm that does not need
specific parameters and has powerful performance in combination
with GA operators. Furthermore, the R2 indicator is incorporated in
TLBO to convert TLBO to a multi-objective algorithm for the first
time. For this purpose, an elite archive is created, which accelerates
the algorithm’s convergence. Finally, the algorithm’s performance
is evaluated by various functions from three well-known bench-
mark cost functions (ZDT, DTLZ and CEC09). Recently, hybrid
algorithms have been proposed [18, 27], but most are restricted to
popular SI and EA algorithms such as PSO and GA. Here we bench-
mark the proposed R2-HMTLBO algorithm and demonstrate that
achieves SOTA performance when compared to NSGA-III, MOEA/D,
MOMBI-II and MOEA/IGD-NS in nineteen test problems.

The remainder of this work is organized as follows: The prelimi-
naries of MOPs and the fundamental structures of NSGA-III, TLBO,
R2-indicator are explained in Section 2. Next, the structure of our
proposed algorithm is presented in Section 3. Section 4 describes
benchmark functions, performance indicator, and experimental de-
sign. The results of R2-HMTLBO are discussed Section 5. Finally,
our conclusion and future plans are provided in Section 6.

2 BACKGROUND
2.1 Multi-Objective Optimization Problem
Generally, daily optimization problems include MOPs which can
be described in Equation. 1:

Minimize/Maximize F (x) = (f1(x), ..., fm (x))
T (1)

∀x ∈ Φ (Φ→ Rm )

where Φ is the search space, and x is a decision variable. Rm , and
m are objective space and number of objective functions, respec-
tively. The goal of Equation. 1 is to minimize/maximize all objec-
tive functions (f1(x), ..., fm (x)) in one run and find Pareto opti-
mal solutions and PF as follows: A vector a = (a1,a2, ...,am )T
dominates vector b = (b1,b2, ...,bm )T (represented as a ≺ b) iff
∀i ∈ 1, 2, ...,m,ai ≤ bi and a , b. Moreover, an obtained solution
x∗ ∈ Φ is named a Pareto optimal solution if F (y) ≺ F (x∗) when iff
∀y �Φ. Pareto set (PS) is the set of Pareto optimal solutions, denoted
as PS = {x ∈ Ω | �y ∈ Ω, F (y) ≺ F (x)}, and PF is the projection
of PS into the objective space. PS is a subset in the variables space,
whereas the PF is a subset in the objective space.

2.2 Reference point method
NSGA-III is one of the well-known domination-based algorithms
that apply the reference points concept to improve diversity crite-
rion. After applying selection, combination and mutation operators
at the first stage, NSGA-III applies the non-dominated sorting op-
erator (NSO) to produce non-dominated solutions. At the second
stage, it utilizes reference points on the hyperplanes to distribute
the solutions uniformly. The reference points are allocated on the
hyperplane by Das and Dennis’s method [3]. For instance, in a
problem withm objectives and p divisions for each dimension, H
reference points can be generated.

H =
(m + p − 1)!
p!(m − 1)!

(2)

The association operator then connects each individual to the
nearest reference point and adds one number to that individual
as the association population (by a counter). The connecting cri-
terion is the perpendicular distance between each individual with
the reference line (the reference line passes through the origin
and reference points). Each reference point, which includes less
associated population, will be chosen in the final stage regarding
the Niche-preservation operation. This process continues until the
population member equals the reference points.

2.3 R2 Indicator method
The R2 indicator and its family (R1 and R3) were proposed in [10]
for the first time, trying to assess the two sets’ relative quality.
The utility function (scalarization function) plays a crucial role in
R2 and R3 calculations [10]. WS, TCH, PBI are the most popular
utility functions in recent publications. For example, to evaluate
the quality of an arbitrary set (S) compared to reference point z∗
regarding the TCH utility function, the R2 indicator is calculated
as shown in Equation. 3:

R2(S,U , z∗) =
1
|U |

∑
u ∈U

min
x ∈S

{
max

i=1,2, ...,m

| fi (x) − z
∗ |

ui

}
(3)

whereU is a distributed weight vector, and the probability distribu-
tion onU is considered as 1

U . The best result is related to a smaller
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value of R2, indicating a smaller distance between reference point
z∗ and the arbitrary set S.

2.4 Teaching Learning-Based Optimization
Teaching Learning-Based Optimization [20] is a population-based
EA derived from the interaction between teachers and students in
a class. Recently it has undergone many changes, but its basic form
includes two phases of Teaching and Learning. As the best solution
among all individuals (in one generation), in the teacher phase, the
teacher tries to guide other students according to Equation. 4:

xnew = xold + r
(
tc − tf xmean

)
(4)

xmean =
1
N

N∑
i=1

x i

where N is the total number of individuals in a generation, and r
is a vector of uniformly distributed random numbers between 0
to 1. tc is teacher, and tf is known as the teaching factor, a value
between 1 or 2 selected randomly (with equal probability). In the
learning phase, students (Individuals) improve their performance
by communicating and sharing their knowledge. These activities
result in better solutions and improve the algorithm’s exploration.
Therefore, the learning phase can be formulated as Equation. 5:

xnew =

{
xold + r

(
x j − xk

)
if f (x j ) < f (xk )

xold + r
(
xk − x j

)
if f (xk ) < f (x j )

(5)

where j and k are randomly selected numbers between 1 to N , and
f (.) is the algorithm’s fitness function.

3 PROPOSED ALGORITHM FRAMEWORK -
R2-HMTLBO

We propose a new algorithm framework, R2-HMTLBO, that em-
ploys both the NSGA-III and TLBO algorithms to improve the diver-
sity and convergence of solutions, respectively. To apply TLBO for
MOPs, a scheme is devised based on the R2-indicator. Compared
to WS, TCH, and PBI, recently, achievement scalarization function
(ASF) has received increasing attention compared to other methods
as promising results have been obtained for MaOPs. Therefore, we
have applied ASF, as shown in Equation. 6 in our framework:

ASF (S|U , z∗) = max
1≤i≤m

{ ��fi (x) − z∗i ��
Ui

}
(6)

whereU is a weight vector (Ui ≥ 0 for 1 ≤ i ≤ m and
∑m
i=1Ui = 1),

and z∗ is a reference vector. As TLBO is an elitist based MOEA,
an external archive is considered to select teachers among all non-
dominated individuals, collected from the first generation onwards.
The archive’s members are ranked and sorted using (Algorithm. 1)
[12]. The sorting criteria (in ascending order), based on the priority,
includes ASF output and the 2-norm of the objectives, respectively.

The main structure of R2-HMTLBO is presented in Algorithm. 2.
Firstly, the population (N individuals) is initialized and evaluated.
Also, at this stage, reference points are generated based on the Riesz
s-energy method [11]. NSO defines the non-dominated individuals.
Non-dominated individuals are ranked and sorted by the R2-rank

Algorithm 1: R2 Ranking structure
input :Archive Members (Parc ), and weight vector (U )
output :Ranked Archive’s members (NewParch )

1 for uarc ∈ U do
2 for parc ∈ Parc do
3 p.Sval ← ASF (p.Obj |0,u) # p.Sval : scalarization

value, p.Obj: objectives
4 NewParch = Sort(Parch ,p.Sval1st , 2 − norm2nd ) #1st :

first priority, 2nd : second priority

Algorithm 2: R2-HMTLBO structure
input :Number of individuals (N )
output :Final Population

1 Initialize first population (P );
2 Generate reference points;
3 Apply NSO;
4 Rank non-dominated solutions and archive them in Arc ;
5 for i to Iterationmax do
6 Qi1← apply SBX and PM on Pi ;
7 Qi2← apply TLBO operators on Pi ;
8 Ri = Qi1 ∪Qi2;
9 Normalize Ri members;

10 Apply Association operator;
11 Apply Niche-preservation operator and create P

′

i ;
12 Apply NSO;
13 Rank and sort P

′

i and archive it in Arc

operator and stored in the archive. Then the algorithm continues
until it reaches the termination criterion. In each generation, GA
operators (simulated binary crossover [SBX] and polynomial mu-
tation [PM]) and TLBO operators are applied to the population in
parallel. Regarding the teaching phase, teachers are selected from
20% of the best archive’s R2-ranked individuals. After concatenating
the populations, normalization, association and niche-preservation
operators fromNSGA-III are applied, separatingN individuals. NSO
is then be applied to the populations, and non-dominated individ-
uals are added to the archive. At the end of each generation, the
R2-ranking operator is applied to the archive’s members and N
Individuals will be sorted and selected if their numbers exceed N.

4 EXPERIMENTAL DESIGN
In order to evaluate the proposed algorithm R2-HMTLBO, three
benchmark test functions of ZDT [34], DTLZ [6] and CEC09 (UF)
[32] are applied. The results obtained are compared with two well-
known algorithms of NSGA-III and MOEA/D, as well as two new
indicator-based algorithms of MOMBI-II [12] and MOEA/IGD-NS
[26]. The applied test problems’ features are shown in Table. 1. The
number of objectives is considered two for ZDT and UF1-UF7 test
functions and three for UF8-UF10 and DTLZ1-DTLZ4 test functions.
We use inverse generational distance (IGD) as the performance
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Table 1: ZDT, UF, and DTLZ characteristics

Test Problem Objective Dimension features

ZDT1 2 30 Convex PF
ZDT2 2 30 Concave PF
ZDT3 2 30 Discrete PS & PF
ZDT4 2 30 Multifrontal PF
ZDT6 2 30 Concave PF
UF1 2 30 Concave PF & Complex PS
UF2 2 30 Concave PF & Complex PS
UF3 2 30 Concave PF & Complex PS
UF4 2 30 Convex PF & Complex PS
UF5 2 30 Discrete PF & Complex PS
UF6 2 30 Discrete PF & Complex PS
UF7 2 30 Complex PS
UF8 3 30 Concave and Parabolic PF & Complex PS
UF9 3 30 Discrete and Planar PF & Complex PS
UF10 3 30 Concave and Parabolic PF
DTLZ1 3 7 Linear
DTLZ2 3 12 Concave
DTLZ3 3 12 Concave & Multimodal
DTLZ4 3 12 Concave & Biased

metric. IGD (Equation. 7) is a well-known metric for evaluating an
algorithms’ convergence and diversity simultaneously.

IGD(A,P) =

∑
x ∈P ED(x ,A)

|P|
(7)

where A is an estimated set, and P is related to the true PF. 1
|P |

is the total number of points in P, and the Euclidean distance
between x and its nearest point in P is calculated by the ED(.).
Each test function ran twenty times independently to evaluate
performance across multiple randomly initialized starting points.
For ZDT test problems 10k are chosen as the maximum number of
function evaluations (NFE). In addition, for other bi-objective and
three-objective test problems (CEC09 and DTLZ), 60k and 100k are
considered as the maximum NFE, respectively. In all algorithms,
100 is selected as the number of the population. The source code
for NSGA-III and MOEA/D are available in [9] and the source code
for MOMBI-II and MOEA/IGD-NS are available in [25].

5 DISCUSSION
The performance (mean and standard deviation of IGDmetric for 20
runs) of each algorithm is shown in Table. 2, and the best results (the
smallest mean value) are highlighted and presented in boldface. The
Tukey HSD test [7] with a 5% significant level is applied for each
test problem to perform statistical analysis. For example, in Table.
2, the symbols of +, −, and ≈ represent that the other algorithms
work significantly better (p < 0.05), worse, and similar, respectively,
compared R2-HMTLBO.

The last row of Table. 2 indicates how many times other algo-
rithms perform better, worse, and similar to our algorithm. Statisti-
cally, R2-HMTLBOoutperformsMOEA/D,MOMBI-II, andMOEA/IGD-
NS significantly 16/19 tests, 14/19 tests and 13/19 tests, respectively.
Furthermore, in ZDT4, UF5, UF7, andDTLZ1, R2-HMTLBOobtained
the best results compared to all other algorithms. There is consid-
erable overlap between R2-HMTLBO and NSGA-III performance.
On the other hand, regarding the IGD mean, R2-HMTLBO defeated
other algorithms in all ZDT test problems. Also, it outperformed

the other algorithms in CEC09 and DTLZ test problems such as
UF1, UF2, UF5, UF6, UF7, UF10, DTLZ1, and DTLZ4. In UF3, UF4,
UF8, UF9, and DTLZ2 NSGA-III and in DTLZ3 MOMBI-II achieved
better IGD than the other algorithms. In DTLZ3 R2-HMTLBO has
the worst IGD. It is more apparent that our algorithm did not have
proper performance in UF9, which contains planar and discrete PF.
The DTLZ3 is a difficult multimodal problem, and it has been shown
that R2-HMTLBO could not achieve acceptable solution. Also, al-
though DTLZ1 is more complicated than DTLZ2, R2-HMTLBO
produced better results in DLLZ1 regarding its linearity. Overall,
based on the results, R2-HMTLBO, compared to all algorithms, pro-
duced the smallest average of IGDs across all the test problems.
Also, in two-objective problems, it performs specifically better than
three-objective problems.

6 CONCLUSION AND FUTUREWORKS
In this paper, a hybrid multi-objective algorithm based on the two
algorithms of TLBO and GA is proposed. The results demonstrated
that the concatenation of the GA and TLBO operators leads to a
more robust algorithm. Furthermore, as two subjects of diversity
and convergence have a crucial impact on MOPs, two reference
points and R2 indicator structures are applied to improve both
issues in our algorithm. Finally, the proposed algorithm is tested
on three well-known benchmark test problems (ZDT, DTLZ, and
CEC09) and compared with two well-known algorithms of NSGA-
III and MOEA/D. Results are also compared against MOMBI-II
and MOEA/IGD-N, which are devised based on the R2 and IGD
indicators. Based on the obtained results, R2-HMTLBO revealed
notable performance in two-objective problems, and compared to
the other algorithms converged well. On the other hand, regarding
the three-objective test problems, it had a competitive performance.
We plan to investigate the synergy of different EA operators and
MOEA structures more as part of our future work. In three-objective
problems, the algorithm does not perform as successfully as bi-
objective problems in reaching the solutions. Therefore, there is a
need to search for alternative indicator-based methods or devise a
better scheme for the elite archive to address this problem.
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Table 2: ZDT, UF, and DTLZ test problem results based on the IGD metric

Test Problem R2-HMTLBO NSGA-III MOEAD MOMBI-II MOEA/IGD-NS

ZDT1 3.4980E-3 ± 6.9000E-5 1.2970E-2 ± 2.4660E-3 (≈) 6.3064E-2 ± 1.9113E-2 (−) 5.8522E-2 ± 5.4020E-2 (−) 1.8554E-2 ± 5.1080E-3 (−)
ZDT2 3.6490E-3 ± 6.8000E-5 2.4248E-2 ± 1.6111E-1 (−) 2.6808E-1 ± 1.8547E-2 (−) 1.3736E-1 ± 1.2649E-2 (−) 6.4300E-2 ± 7.7360E-2 (≈)
ZDT3 5.3010E-3 ± 1.4200E-5 1.5776E-2 ± 1.6888E-2 (≈) 7.0039E-2 ± 2.3990E-2 (−) 1.7309E-2 ± 1.2429E-2 (≈) 1.8676E-2 ± 5.7220E-3 (−)
ZDT4 3.4700E-3 ± 2.7000E-5 4.6259E-1 ± 2.2945E-1 (−) 8.0349E-1 ± 7.6720E-1 (−) 3.4504E-1 ± 1.6524E-1 (−) 4.7288E-1 ± 2.2013E-1 (−)
ZDT6 1.7058E-1 ± 1.1500E-4 9.2324E-1 ± 8.3029E-2 (−) 6.2133E-1 ± 1.3369E-1 (−) 5.1522E-2 ± 2.3780E-2 (−) 2.0145E-1 ± 6.8613E-2 (≈)
UF1 6.2471E-2 ± 1.8898E-2 9.0994E-2 ± 2.5818E-2 (≈) 1.3840E-1 ± 5.9939E-2 (−) 1.1333E-1 ± 3.3444E-2 (−) 1.2125E-1 ± 3.6193E-2 (−)
UF2 2.8347E-2 ± 1.4620E-3 3.4976E-2 ± 8.0130E-3 (≈) 6.2177E-2 ± 3.2276E-2 (−) 4.6555E-2 ± 8.5870E-3 (−) 4.7135E-2 ± 6.3410E-3 (−)
UF3 1.2748E-1 ± 1.4573-2 1.0381E-1 ± 2.5687E-2 (≈) 1.7016E-1 ± 4.7597E-2 (−) 2.4948E-1 ± 5.5551E-2 (−) 2.3950E-1 ± 5.2926E-2 (−)
UF4 4.7389E-2 ± 6.7300E-4 4.6581E-2 ± 7.9700E-4 (≈) 6.0119E-2 ± 4.3580E-3 (−) 4.9119E-2 ± 2.7780E-3 (≈) 5.0113E-2 ± 1.6680E-3 (−)
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