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Abstract 19 

 20 

Allogeneic hematopoietic stem cell transplantation (allo-SCT) is a 21 

potentially curative therapy for FLT3 internal tandem duplication mutant (FLT3-ITD
+
) 22 

acute myeloid leukemia, but relapse rate is high. A recent study showed that sorafenib, a 23 

first generation FLT3 and multikinase inhibitor, enhanced graft-versus-leukemia (GVL) 24 

effects against FLT3-ITD
+
 leukemia via interleukin-15 (IL-15) production. However, it 25 

remains to be clarified whether this effect could be mediated by selective FLT3 26 

inhibition. We investigated whether gilteritinib, a selective FLT3 inhibitor, could 27 

enhance GVL effects against FLT3-ITD
 
transfected Ba/F3 leukemia (Ba/F3-FLT3-ITD) 28 

in mice. Oral administration of gilteritinib from day +5 to +14 after allo-SCT reduced 29 

expression of the co-inhibitory receptors PD-1 and TIGIT on donor CD8
+
 T cells and 30 

enhanced IL-15 expression in Ba/F3-FLT3-ITD. Bioluminescent imaging using 31 

luciferase-transfected Ba/F3-FLT3-ITD demonstrated that gilteritinib significantly 32 

suppressed leukemia expansion after allo-SCT, whereas it did not impact the morbidity 33 

or mortality of graft-versus-host disease (GVHD), resulting in significant improvement 34 

of overall survival. In conclusion, short-term administration of gilteritinib after 35 

allo-SCT enhanced GVL effects against FLT3-ITD
+
 leukemia without exacerbating 36 

GVHD. 37 

38 
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Introduction 39 

FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD), which is 40 

attributed to a head-to-tail duplication of 3-400 base pairs in the juxtamembrane-domain 41 

coding sequence, is the most frequent (20-25%) mutation in adult acute myeloid 42 

leukemia (AML)
1, 2

. The FLT3-ITD mutation is associated with a high leukemic burden 43 

and a poor prognosis of AML
3-5

. Although allogeneic hematopoietic stem cell 44 

transplantation (allo-SCT) potentially improves the outcomes of FLT3-ITD
+
 AML, the 45 

relapse rates are significantly higher in FLT3-ITD
+
 AML than those in FLT3-ITD 46 

negative AML after allo-SCT
6-10

.  47 

 48 

FLT3 inhibitors are being developed to target constitutively activated 49 

FLT3-ITD signaling, which induces the proliferation and survival of leukemia cells. 50 

First-generation FLT3 inhibitors, such as sorafenib, are not specific to FLT3 and are 51 

categorized as multikinase inhibitors, whereas the second-generation FLT3 inhibitors, 52 

such as gilteritinib and quizartinib, are more specific to targeting mutated FLT3. In 53 

murine models of allo-SCT, sorafenib has been shown to induce the interferon 54 

regulatory factor 7 (IRF7)-dependent production of IL-15 in leukemia cells, which 55 

promotes the expansion of donor cytotoxic T cells and potentiates graft-versus-leukemia 56 

(GVL) effects against FLT3-ITD
+
 leukemia

5
. However, it remains to be clarified as to 57 
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whether second-generation FLT3 inhibitors can promote GVL effects after allo-SCT. In 58 

the current study, we explored the impacts of the short-term administration of 59 

gilteritinib on GVHD and GVL effects after mouse allo-SCT. 60 

  61 
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Materials and methods 62 

Mice: Female C57BL/6 (H-2
b
) and B6C3F1 (H-2

b/k
) mice were purchased from CLEA 63 

Japan (Shimizu, Japan) and Charles River Japan (Kanagawa, Japan), respectively. Mice 64 

were 8-12 weeks of age at the time of transplantation and were maintained in a specific 65 

pathogen-free environment. The recipient mice were randomly allocated to each 66 

experimental group, thus ensuring that the mean body weight in each group 67 

was similar. All the animal experiments were performed in a nonblinded fashion and 68 

under the auspices of the Institutional Animal Care and Research Advisory Committee.
 

69 

Cell line: FLT3-ITD transfected C3H-derived Ba/F3 leukemia cells (Ba/F3-FLT3-ITD), 70 

FLT3-ITD-untransfected Ba/F3, and human myeloid leukemia cell line harboring 71 

FLT3-ITD (MOLM-13 cells) were provided by Astellas Pharma Inc. (Tokyo, Japan)
11

. 72 

C57BL/6-derived myeloid leukemia cell line C1498 was purchased from ATCC. To 73 

create a luciferase expressing Ba/F3-FLT3-ITD cell line (Ba/F3-FLT3-ITD-luc
+
), the 74 

retroviral vector pMSCV-luc-IRES-YFP was kindly provided by Dr. Gerard Grosveld 75 

(Department of Genetics, St. Jude Children’s Research Hospital). Briefly, 76 

Ba/F3-FLT3-ITD cells were infected with virus particles generated from HEK293T 77 

cells that were transfected with pMSCV-lus-IRES-YFP plasmid and pCL-Eco (Addgene, 78 

Cambridge, MA) in the RPMI 1640 medium supplemented with 1 g/ml puromycin 79 
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(Sigma-Aldrich Japan, Tokyo, Japan) and 6 g/ml polybrene (Nakarai Tesque, Kyoto, 80 

Japan)
12

. pCL-Eco was obtained from Dr. Inder Verma (Addgene plasmid #12371)
13

. 81 

After infection, a single YFP expressing clone was recovered by using the limiting 82 

dilution method.  83 

SCT: On day 0, B6C3F1 (H-2
b/k

) recipients were lethally irradiated with 10.5 Gy total 84 

body irradiation, and split into 2 doses with 4 hr intervals, followed by i.v. injection 85 

with 5 × 10
6
 T-cell depleted BM (TCD-BM) cells either alone or in combination with 1 86 

× 10
6
 purified T cells from major histocompatibility complex haploidentical B6 (H-2

b
) 87 

on day 0. The purification of T cells and TCD-BM was performed by using Pan T Cell 88 

Isolation Kit II, mouse (Miltenyi Biotec Japan, Tokyo, Japan) and 89 

anti-CD90-MicroBeads (Miltenyi Biotec Japan), respectively, as well as and the 90 

AutoMACS Pro Separator (Miltenyi Biotec Japan). To assess the GVL effects, recipient 91 

mice were transferred with 5 × 10
4
 or 5 × 10

5
 Ba/F3-FLT3-ITD-luc

+
 cells on day 0. 92 

Gilteritinib, which was provided by Astellas Pharma Inc., was dissolved in 0.5% 93 

methylcellulose at a concentration of 1.25 mg/ml, and recipient mice were orally 94 

administered with either gilteritinib at 10 mg/kg/day or vehicle from day +5 to day +14 95 

after allo-SCT. 96 

Evaluation of GVHD and GVL: Survival was monitored daily, and the severity of 97 
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GVHD was assessed by using the GVHD scoring system with five parameters
14

. 98 

Bioluminescent imaging (BLI) was conducted weekly to evaluate the GVL effects. Mice 99 

were anesthetized by using isoflurane and were subcutaneously injected with 500 g 100 

d-luciferin (Promega, Madison, WI) at 5 min before in vivo imaging. Luciferase
+
 cells 101 

were detected by using IVIS Imaging System ver. 4.3.1 (Perkin Elmer, Waltham, MA). 102 

Light emission is presented as photons per second per square centimeter per steer 103 

radiant (ph/s/cm
2
/sr). Leukemia death was defined by the existence of 104 

hepatosplenomegaly with macroscopic tumor nodules, hinder leg paralysis
15

, or 105 

leukemia expansion on BLI. Deaths without these signs were attributed to GVHD. To 106 

evaluate allospecific cytotoxic T lymphocyte (CTL) responses, vehicle- or 107 

gilteritinib-treated recipients of TCD-BM plus T cells were i.v. injected with 3 × 10
6
 108 

untransfected Ba/F3 (allogeneic) or C1498 (syngeneic) labeled with 5 M CellTrace™ 109 

Violet (CTV, Thermo Fisher Scientific) on day +8 after allo-SCT. CTV positive cells in 110 

the bone morrow were enumerated 2 hrs after the transfer. 111 

Culture: Ba/F3-FLT3-ITD cells or MOLM-13 cells (5 × 10
5
 cells/well) were cultured in 112 

RPM I1640 medium containing 10% FCS in 6-well plates. Cells were stimulated with 113 

either gilteritinib or quizartinib (Selleck Biotech, Tokyo, Japan) at concentrations of 1.0, 114 

10, or 100 nM, or sorafenib (SYNKinase, Shanghai, China) at concentrations of 0.1, 1.0, 115 
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or 10 M for 24 hrs.  116 

Q-PCR: The total RNA extracted from the leukemia cells by using either ISOGEN II 117 

(Nippon Gene, Toyama, Japan) or RNeasy Kit (QIAGEN) was subjected to cDNA 118 

synthesis by using ReverTra Ace qPCR RT Master Mix with gDNA Remover (Toyobo 119 

FSQ-301, Osaka, Japan) or SuperScript IV VILO Master Mix (Thermo Fisher 120 

Scientific). Quantitative PCR (Q-PCR) was performed on the CFX96 Touch Real-Time 121 

PCR Detection System (Bio-Rad, Redmond, WA) by using TaqMan Fast Advanced 122 

Master Mix (Thermo Fisher Scientific, Waltham, MA) or on the QuantStudio 12K Flex 123 

Real-Time PCR System (Thermo Fisher Scientific), with TaqMan Gene Expression 124 

Master Mix (Thermo Fisher Scientific) and the following primer-probe sets. The mouse 125 

18S rRNA primer probe set (Sigma Aldrich) was 126 

5’-GCTCTTTCTCGATTCCGTGGG-3’ for the forward primer, 127 

5’-ATGCCAGAGTCTCGTTCGTTATC-3’ for the reverse primer, and 128 

FAM-CTCCACCAAC TAAGAACGGCCATGCACC-TAMRA for the probe, or 129 

4319413E set (Thermo Fisher Scientific). The human GAPDH primer probe set was 130 

4319413E set (Thermo Fisher Scientific). The IL-15 primer-probe sets were 131 

Mm00434210_m1 (Thermo Fisher Scientific) for mouse cells and RT
2
 qPCR Primer 132 

Assay PPH00694B (QIAGEN) for human cells. The expression levels of 18S rRNA or 133 
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GAPDH were used as a standard. 134 

Flow cytometric analysis: The monoclonal antibodies (mAbs) that were used were 135 

PE-CF594-, PE-Cy7-, PerCP-Cy5.5-, APC-, BV510-, BV605-, or BV786-conjugated 136 

anti-mouse CD4 (Cat#: 553051), CD8 (Cat#: 563152), CD44 (Cat#: 563114), CD62L 137 

(Cat#: 560516), TCR (Cat#: 560657), TIGIT (Cat#: 744215), and PD-1 (Cat#: 562523) 138 

purchased from BD Pharmingen (San Diego, CA). The dead cells were excluded from 139 

the analyses, based on the positivity of the Fixable viability stain 780 from BD 140 

Pharmingen. Cells were analyzed by using a FACSAria III (BD Bioscience, Tokyo, 141 

Japan) and FlowJo software (BD Biosciences).  142 

Statistical analysis: Dunnett’s multiple comparison test was used to compare in vitro 143 

IL-15 expression, and Mann-Whitney U tests were used to compare other data. The 144 

Kaplan–Meier product limit method was used to obtain survival probability and the 145 

log-rank test was applied to compare the survival curves. Cumulative incidences of 146 

leukemia or GVHD death in each experimental group were compared by using the 147 

Gray’s test. Analyses were performed by using GraphPad Prism 8 software (GraphPad 148 

Software, San Diego, CA) and EZR (Saitama Medical Center, Jichi Medical University, 149 

Japan), the graphic user interface for R (The R Foundation for Statistical Computing, 150 

Vienna, Austria)
16

. Results with P < 0.05 were statistically significant. 151 
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  152 
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Results 153 

Gilteritinib promotes IL-15 production from FLT3-ITD
+
 leukemia 154 

First, we tested whether gilteritinib could stimulate FLT3-ITD-expressing 155 

leukemia cells to produce IL-15. Ba/F3-FLT3-ITD cells and human myeloid leukemia 156 

cells harboring FLT3-ITD (MOLM-13) were cultured in the presence or absence of 157 

gilteritinib, quizartinib, or sorafenib for 24 hrs. All three reagents significantly 158 

upregulated IL-15 expression both in Ba/F3-FLT3-ITD and MOLM/13 cells in a 159 

partially dose-dependent manner (Figure 1, A and B). To confirm these findings in vivo, 160 

lethally irradiated B6C3F1 mice were transplanted with 5 × 10
6
 TCD-BM cells and 1 × 161 

10
6
 purified T cells from allogeneic B6 donors combined with 1 × 10

5
 YFP-labeled 162 

Ba/F3-FLT3-ITD cells. Gilteritinib at 10 mg/kg/day or vehicle was orally administered 163 

from day +5 to day +8 after allo-SCT. The Q-PCR analysis showed a significant 164 

upregulation of IL-15 in Ba/F3-ITD cells that were purified from the spleen and bone 165 

marrow of the gilteritinib-treated mice on day +8 (Figure 1, C and D). The flow 166 

cytometric analysis showed that gilteritinib significantly reduced the co-inhibitory 167 

receptors, PD-1 and TIGIT on donor CD8
+
 T cells in the spleen, thus suggesting that 168 

IL-15 production induced by gilteritinib inhibited T-cell exhaustion after allo-SCT 169 

(Figure 1, E to G). To evaluate allospecific donor CTL responses, vehicle- or 170 
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gilteritinib-treated recipients of TCD-BM plus T cells were i.v. injected with 171 

CTV-labeled untransfected Ba/F3 (allogeneic) or C57BL/6-derived C1498 (syngeneic) 172 

cells on day +8 after allo-SCT, and CTV
+
 leukemia cells were enumerated in the bone 173 

marrow 2 hrs later. We found that untransfected Ba/F3 cells were significantly reduced 174 

in gilteritinib-treated mice compared to vehicle treated recipients, while the number of 175 

donor-derived C1498 were comparable in vehicle- and gilteritinib-treated recipients, 176 

indicating that gilteritinib enhanced allospecific donor CTL responses (Figure 1, H and 177 

I). 178 

 179 

Gilteritinib enhances graft-versus-leukemia effects against FLT3-ITD-mutant 180 

leukemia 181 

Next, we tested whether gilteritinib could enhance GVL effects against 182 

Ba/F3-FLT3-ITD cells after allo-SCT. Lethally irradiated B6C3F1 mice were 183 

transplanted with 5 × 10
6
 TCD-BM cells either alone or in combination with 1 × 10

6
 184 

purified T cells from allogeneic B6 donors. Recipient mice were transferred with 5 × 185 

10
4
 Ba/F3-FLT3-ITD-luc

+
 cells on day 0, and gilteritinib was administered from day +5 186 

to day +14 after allo-SCT. The BLI demonstrated that gilteritinib had only modest 187 

anti-leukemic effects in the recipients of TCD-BM; all vehicle-treated and 188 



 

 

13 

gilteritinib-treated recipients of TCD-BM died with leukemia by day +15 and day +22, 189 

respectively (Figure 2, A and B). Leukemia death was significantly suppressed in the 190 

recipients of T cells compared to TCD-BM controls, thus indicating GVL effects. 191 

However, all the mice succumbed to leukemia or GVHD by day +46 (Figure 2, A and 192 

F). In GVHD mice, short-term administration of gilteritinib significantly suppressed the 193 

expansion of Ba/F3-FLT3-ITD-luc
+
 cells and reduced leukemia death after T-cell 194 

replete allo-SCT; 12 out of 15 vehicle-treated recipients and 8 out of 15 195 

gilteritinib-treated recipients after T-cell replete allo-SCT succumbed to leukemia 196 

(Figure 2A). Cumulative incidence of leukemia death in gilteritinib-treated recipients 197 

was 60% at day +80 and significantly lower than that in vehicle-treated allogeneic 198 

recipients (Figure 2B). Importantly, gilteritinib did not impact the morbidity or 199 

mortality of GVHD, thus resulting in significantly prolonged overall survival in the 200 

recipients of T cells (Figure 2, C to F). Taken together, short-term gilteritinib 201 

administration enhanced GVL effects against FLT3-ITD
+
 leukemia without 202 

exacerbating GVHD. 203 

204 
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Discussion 205 

Emerging evidence has suggested that FLT3 inhibitor is more effective in the 206 

posttransplant setting than in the nontransplant setting
17

. The first-generation FLT3 and 207 

multi-kinase inhibitor, sorafenib has been shown to induce more long-lasting remission 208 

in patients after allo-SCT than in patients relapsing after chemotherapy
18-20

. Recent 209 

randomized trials have demonstrated that sorafenib maintenance after allo-SCT 210 

significantly reduced the risks of relapse and death of FLT3-ITD positive AML
21, 22

. 211 

These findings suggest that FLT3 inhibitors can enhance GVL effects in addition to their 212 

direct cytotoxic effects on FLT3-ITD-mutated AML cells. In preclinical models, 213 

sorafenib activates IRF7 by downregulating activating transcription factor 4 (ATF4), 214 

which enhances IL-15 production from leukemia cells
5
. IL-15 from leukemia cells has 215 

been shown to expand CD8
+
CD107a

+
IFN-γ

+
 donor cytotoxic T cells with increased 216 

Bcl-2 and reduced PD-1 expression levels, which enhanced GVL effects against 217 

FLT3-ITD-positive leukemia
5
. Recently, it has been reported that leukemia-derived 218 

lactic acid impaired metabolic activity of T cells inducing dysfunctional T cells
23

. 219 

Because metabolic reprogramming is also associated with T cell exhaustion, it is 220 

intriguing to evaluate if FLT3 inhibitors could modulate production of lactic acid in 221 

leukemia cells in the future studies
24

.  222 
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 223 

Despite the findings that support the GVL-potentiating effects of sorafenib, the 224 

impacts of selective FLT3 inhibitors such as gilteritinib on GVL effects have not been 225 

well studied. We herein demonstrated that the administration of gilteritinib after 226 

allo-SCT enhances IL-15 production from mouse FLT3-ITD-positive leukemia, 227 

potentiates CTL responses of donor T cells, and promotes GVL effects after allo-SCT. 228 

Long-term suppression of leukemia growth was observed in some of the 229 

gilteritinib-treated T-cell-replete recipients, thus suggesting that gilteritinib contributed 230 

to an immune-mediated cure of FLT3-ITD-positive leukemia after allo-HCT. Although 231 

we haven’t tested if other selective FLT3 inhibitors such as quizartinib affect donor 232 

T-cell profiles or GVL effects after allo-SCT, enhanced IL-15 expression in 233 

quizartinib-treated leukemia cells suggests that FLT3 inhibitors in general can mitigate 234 

exhaustion of donor T cells and enhance GVL effects after allo-SCT.  235 

 236 

IL-15 production from leukemia cells significantly reduces T-cell expression of 237 

PD-1, which is a critical molecule for tolerance induction after allo-SCT
25, 26

, which 238 

raises the concern that FLT3-ITD inhibition can exaggerate GVHD. A randomized trial 239 

showed that maintenance therapy with sorafenib after allo-SCT can reduce the risk of 240 
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relapse without increasing acute or chronic GVHD
22

, whereas there was a trend towards 241 

increased GVHD in another randomized trial
21

. It is worth noting that gilteritinib did not 242 

impact the clinical GVHD scores, body weight changes, or mortality of GVHD in our 243 

model, even though GVHD was more severe with shorter survival in our model, 244 

compared to the previous sorafenib study, in which the delayed infusion of donor T cells 245 

after allo-SCT mitigated GVHD, as has been previously shown
5, 27, 28

. It has been 246 

suggested that sorafenib-treated leukemia cells produce both IL-15 and IL-15Ra and can 247 

trans-present the IL-15/IL-15Ra complex to donor T cells
29

. Thus, FLT3-ITD inhibition 248 

may activate donor T cells localizing around leukemia cells, without activating T cells 249 

in the GVHD target organs. Furthermore, FLT3-ITD inhibitors likely activate immunity 250 

only in the presence of leukemia cells, because they require IL-15 production from 251 

leukemia cells. This nature of action of FLT3-ITD inhibitors makes FLT3-ITD 252 

inhibition after allo-SCT safer and enables us to elicit just enough immunity to eradicate 253 

leukemia cells. 254 

 255 

It is important to assess whether gilteritinib reduced leukemia death by 256 

enhancing GVL effects or solely by direct anti-leukemia effects of FLT3 inhibition. We 257 

consider gilteritinib enhanced GVL effects for following reasons. First, BLI analyses 258 
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demonstrated that leukemia cells started to expand during gilteritinib-treatment in the 259 

recipients transplanted with TCD-BM alone (Figure 2A, day12), indicating that 260 

gilteritinib alone is not enough to reject Ba/F3-FLT3-ITD cells after T-cell deplete 261 

allo-SCT. Second, in vivo CTL assay demonstrated that gilteritinib significantly 262 

enhanced allospecific CTL responses against FLT3-ITD-untransfected Ba/F3. Therefore, 263 

we concluded that gilteritinib reduced leukemia death at least partially by enhancing 264 

GVL effects. We used short-term administration of gilteritinib to minimize the direct 265 

anti-leukemia effect against Ba/F3-FLT3-ITD.  266 

 267 

In summary, short-term gilteritinib administration after allo-SCT promotes 268 

IL-15 production from FLT3-ITD-positive leukemia cells and enhances GVL effects 269 

without affecting GVHD severity. Our data showing that gilteritinib enhanced GVL 270 

effects support the use of gilteritinib as a maintenance. However, since gilteritinib 271 

effects require residual AML cells, it is unclear if maintenance is effective in the 272 

recipients with minimal amount of residual AML cells
5
. Thus, the safety and efficacy of 273 

gilteritinib administration after clinical allo-SCT need to be studied in future and 274 

ongoing clinical trials. 275 

  276 
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Figure Legends 430 

Figure 1. FLT3-ITD inhibitors promote IL-15 expression in Ba/F3-FLT3-ITD cells 431 

(A,B) Ba/F3-FLT3-ITD (A) or MOLM-13 (B) cells were cultured in the presence or 432 

absence of gilteritinib or quizartinib at concentrations of 1.0, 10, or 100 nM or sorafenib 433 

at concentrations of 0.1, 1.0, or 10 M for 24 hrs. RNA extracted from cells was 434 

subjected to qPCR targeting IL-15. The expression levels of IL-15 were normalized to 435 

18S rRNA (A) or GAPDH (B) expression levels. Data were collected in triplicate and 436 

are shown as the means ± SDs. (C-G) Lethally irradiated B6C3F1 mice were 437 

transplanted with 5 × 10
6
 TCD-BM cells and 1 × 10

6
 purified T cells from allogeneic B6 438 

donors combined with 1 × 10
5
 Ba/F3-FLT3-ITD cells, followed by oral administrations 439 

of 10 mg/kg/day gilteritinib or vehicle from day +5 to day +8 after allo-SCT. (C,D) 440 

Relative expression levels of IL-15 in Ba/F3-FLT3-ITD cells purified from the spleen 441 

(C) and BM (D) on day +8 after allo-SCT (n = 14/group). Data from three independent 442 

experiments are combined and shown as the means ± SEs. (D-F) Flow cytometric 443 

analysis of spleens was performed on day +8 after allo-SCT. Histograms (E) and mean 444 

fluorescence intensities of PD-1 (F) and TIGIT (G) on donor 445 

TCR
+
CD8

+
CD62L

-
CD44

+
 cells. Data from two independent experiments are 446 

combined and shown as the means ± SEs (n = 10/group). (H,I) Vehicle- or 447 



 

 

25 

gilteritinib-treated recipients of TCD-BM plus T cells were i.v. injected with 3 × 10
6
 448 

CTV-labeled untransfected Ba/F3 (C, n=7/group) or C1498 (D, n=5/group) cells on day 449 

+8 after allo-SCT. CTV-labeled cells in the bone marrow were enumerated 2 hrs after 450 

the injection. Data from two independent experiments are combined. *, P < 0.05; **, P 451 

< 0.01.  452 

 453 

Figure 2. Gilteritinib enhances GVL effects against Ba/F3-FLT3-ITD-luc leukemia 454 

Lethally irradiated B6C3F1 mice were transplanted with 5 × 10
6
 TCD-BM cells either 455 

alone or in combination with 1 × 10
6
 T cells from allogeneic B6 donors and transferred 456 

with 5 × 10
4
 Ba/F3-FLT3-ITD-luc

+
 cells on day 0. Recipients were orally administered 457 

with either gilteritinib or vehicle from day +5 to +14 after allo-SCT. Representative 458 

images of BLI (A), cumulative incidences of leukemia death (B), body weight (C, 459 

means ± SDs), clinical GVHD scores (D, means ± SDs), cumulative incidences of 460 

GVHD death (E), and overall survival (F) in the recipients of TCD-BM treated with 461 

either vehicle or gilteritinib, and in the recipients of TCD-BM plus T cells treated with 462 

either vehicle or gilteritinib (n=15/group). (A) Images from one of three similar 463 

experiments are shown. (B-F) Data from three independent experiments were 464 

combined. 465 
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