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Abstract. Nonlinear effects are used to specially broaden the spectrum by the

interaction with a material at high intensities. Here we study nonlinear effects in a light

induced first-order phase transition of a thin layer of VO2. The behaviour that we’ve

found is a step-function evolution of nonlinear effects at the fluence threshold, where

the phase transition happens. The spectrum broadens significantly from ∆ω = 0.04

rads/fs up to ∆ω = 1.66 rads/fs.
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1. Introduction:

Nonlinear optics (NLO) has been studied since 1961 and now underpins many modern

technologies. When a high intense source of light, usually a laser, hits a material it may

change its optical response during its exposure. The interaction is referred to nonlinear

because it does not depend linearly on the intensity of the electric field, but non-linearly.

NLO is characterized by the response of the material. Conventionally, the

polarization in the material can be described as a power series expansion in the electric

field strength Ẽ:

P̃ (t) = ϵ0

[
χ(1)Ẽ(t) + χ(2)Ẽ2(t) + χ(3)Ẽ3(t) + · · ·

]
= P̃L(t) + P̃NL(t)

(1)

where ϵ0 is the permitivity in vacuum and χ are the susceptibilites of the material at

different orders. χ(1) correspond to the linear optics, P̃L(t) = ϵ0χ
(1)Ẽ(t), while greater

orders correspond to nonlinear optics, P̃NL(t).

The new frequencies are generated by the nonlinear polarization, which is stronger

the more intense the light. In the perturbative limit, these effects scale with the powers
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of the electric field. For instance, ”second harmonic generation” (SHG), denoted by χ(2),

increases its strength as the square of light’s intensity, and ”third harmonic generation”

(THG), which the denoted by χ(3) grows as the cube of the light’s intensity [1]. Beyond

this simple picture are effects like ”high harmonic generation” (HHG), for which the

field strengths are so high that the perturbative approximation breaks down, and the

signal shows an exponential increase with the field strength [2].

An alternative system for nonlinear optics is the light-induced phase transition. An

ultrashort laser can induce a structural phase transition, where the optical properties

of the new phase are different from the ground state. This change doesn’t occur at

a specific strength of the field but at a critical fluence, where the properties change

sharply like a step-function switch [3]. Because this dependence on the fluence, a light-

induced phase transition doesn’t follow the field expansion model or even any function

of field strength. Pump-probe measurements have been extensively used in the study

of the dynamics of phase transitions [4, 5, 6, 7], but not from a nonlinear optics point

of view. Critically, this transitions can be very fast, so that’s why the changing of

the optical properties are like a step-function in time when crossing over the threshold.

This behaviour is called ”threshold-switching” and this effects on the driving pulse have

been seen with picosecond electrical pulses [8] but not yet with femtosecond light pulses.

Here, we will study the optical properties of the ”threshold-switching” phenomena

of VO2 from a nonlinear optics perspective. To do so, we will construct a model to study

the reflected light during the phase transition at different fluences and pulse durations.

2. Model

VO2 has three phases in its solid state: a rutile metallic phase (R) and two insulating

monoclinic phases (M1 and M2) [9]. When a femtosecond pulse laser hits on the crystal,

a photoinduced phase transition may occur from the insulator phase M1 to the metallic

phase R. This transition occurs when the energy induced by the laser gets larger than

the so called threshold energy. Sometime later after the pulse stops striking, the crystal

relaxes to its previous phase.

When the phase changes, it changes the sample reflectivity. Because the change

is extremely fast, the order of a few femtoseconds [10], it takes place while the pulse

is propagating through the material. In other words, the temporal shape of the pulse

is modified during the phase transition as the reflectivity changes, so it will cause a

broadening of the spectrum.

However, in real crystals this change is not infinitely sharp but is broadened by the

initial range of domains of crystallities leading to a range of transition temperatures.

Figure 1 represents the transmission of VO2 at different temperatures. The change of
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transmission is due to the phase transition of the material. We see that, for a real

crystal, the transmission doesn’t change instantaneously at a critical certain critical

temperature, smoothly along a temperature range [11]. To understand how this prac-

tically impacts the effect and how much spectral broadening can we expect from a real

system, we will model the behaviour of the reflected light as a function of the fluence

and the pulse duration.

Figure 1: Temperature-dependent optical transmission of a polycrystaline VO2 as it

passes through the phase transition, reproduced from reference [11]. The transition is

broadened because of nanoscale inhomogeneity.

We will use the data from figure 1 to obtain the distribution of the different critical

temperatures.

D =
∂Transmission

∂Tc

(2)

It is not clear if the phase transition by photoinduction is caused by thermal effects,

because thermal effects are slow in time. However, it has been shown that the critical

fluence, the optical energy per unit area needed to trigger the transition, closely follows

the thermal energy required [12]. The thermal energy is the necessary energy to bring

from a initial temperature up to the one where the phase transition occurs. We can

relate this energy to the fluence in order to relate the critical thermal distribution of

equation 2 to a critical fluence distribution.

To do so, we integrate the heat capacity of VO2 [13], shown in figure 2, over the

temperature, from room temperature to a critical temperature, to obtain the energy

required to induced the phase transition. We will do this integration for different critical

temperatures to obtain its correspondent value of thermal energy:
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Figure 2: Data of heat capacity of VO2 represented from reference [13].

ET =

∫ Tc

Ti

cvdT (3)

where Ti and Tc are the initial and critical temperature, cv heat capacity and ET is the

thermal energy. We treat the variation in Tc for the different crystallites as an effective

shift in Ti, which is equivalent to first order in a shift in overall cv curve. Then knowing

the value for the thermal energy at different temperatures we obtain the critical fluences

[14] from each value of ET :

Fc =
dET

1−R
(4)

where d is the penetration depth, with a value of 62 nm, and R is the reflectivity

of the sample, 0.18 [14]. Since each critical fluence is assigned to a critical temperature,

so we can obtain a distribution of critical fluences from equation 2.

Now, with the fluences obtained from equation 4, we seek the instant of time during

the pulse when it will undergo the phase transition, assigning to each critical time a

weighting according to the distribution value from equation 2, D(Tc) = D(Fc) from

which we reconstruct the overall material response. To know at which time this will

occur, we set a Dirac delta function that will have value 1 at that time when the fluence

applied is equal to the critical one. This will tell us at which time the transition will

occur. But, since the phase transition in a real material is, while very fast in time,

finite, we will use an erf function of 5 femtoseconds width instead to simulate that fast

transition. This leads us to an overall expression for the signal as:
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Signal(t) =
1

2

∫
D(Fc) · erf

(
t · (1− δ(F − Fc)) + 5

5
+ 1

)
dFc (5)

With the data obtained from equation 5, we can see when VO2 will start to change

phase and how quickly in time for each fluence that we apply. Since the signal overlaps

in time with the pulse, the phase transition will have a back-reaction on the driving

pulse. This will tell us which fraction of the pulse will be reflected by the M1 or R-

phase. So, knowing that the reflectivity for the M1 phase is 0.15 and for R-phase is 0.3

(both measured at normal incidence with a white light lamp in our lab) we will see the

shape in time of the reflected pulse for different fluences, as shown in figure 3.

.

(a) 1 mJ/cm2 (b) 1.82 mJ/cm2

(c) 2 mJ/cm2 (d) 2.22 mJ/cm2

Figure 3: A 35 fs pulse reflected on a VO2 thin layer at different fluences. The plot

on the left represents the time domain while the right one represents its spectrum. In

3b the theshold fluence is reached, 1.82 mJ/cm2,and the sample begins to transform,

changing it’s reflectivity. Due to this, the spectrum suddenly shows a large broadening.

As we see in figure 3, the pulse is constant while increasing the fluence until we

reach critical fluence at 1.82 mJ/cm2, where the reflectivity starts to change and shifts

the shape of the temporal pulse abruptly. Because of this, the spectrum, represented
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on the right, suddenly broadens with this minimum change.

In figure 4 we represented the evolution of the spectrum width for a fixed fluence

and then for a fixed pulse duration:

(a) Evolution for t0=35.50 fs (b) Evolution for F0=1.90 mJ/cm2

Figure 4: Evolution of the spectral width for (a) constant pulse duration and (b)

constant fluence over the threshold.

In figure 4a we see that at the threshold fluence has a sudden big jump from 0.04

rads/fs up to 1.66 rads/fs, almost 100 times wider. This threshold switch effect has a

strong dependence on the fluence and a weak one on the time pulse duration, so we

can get a abrupt evolution of the spectrum width at this critical fluence. Also we see

that the blurring from a realistic polycristall ine sample doesn’t strongly effect it, as the

effect is clearly visible and dramatic.
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Figure 5: Spectrum widths for different pulse durations and fluences. The spectrum

is constant as a function of fluence below the criticla fluence, where the bandwidth

increases roughly

On figure 5 we represented the standard deviation of pulse’s spectrum to see how

much it change its width with the pulse duration and the fluence. For a constant pulse

duration, the spectrum below threshold has a value constant (for t0=35.50 fs is 0.04

rads/fs), but above threshold has a big jump and starts to grow until F0=3 mJ/cm2.

For a constant fluence the spectrum doesn’t change too much, but it shrinks the longer

the pulse is.

Since there is no much change for the pulse duration axis, we will prepare an

experimental setup to study the transmitted laser pulse at 800 nm and a pulse duration

of t0 = 30fs.

3. Experimental

The sample of VO2 is a thin layer of 60 nm thick that has been grown on a sapphire

substrate approximately 1 mm thick. We have measured the fluence threshold in this

sample with ultrafast pump-probe to be 6 mJ/cm2. We will measure the transmitted

light through the sample at normal incidence. To do so, we’ve prepared a spatial phase

interferometry (SPI) [15] and Grenouille [16] setup, see figure 6.

We split the pulse in two parts with a beam splitter; one as the signal, which will

pump the sample, and the other as a reference pulse. Both will have the same optical
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path length at the beginning. The signal will pass through the VO2 and then through

a set of mirrors on a moving table, which will used to apply a time delay. The reference

pulse will be reflected on a flipped mirror, where it can direct the pulse to the Grenouille

to characterize the pulse. Then, we set a delay in the signal pulse and both pulses will

be recombined at the interferometer. We will study changes in the signal pulses at

different fluences set by the fluence controller, which is composed with a waveplate and

a polarizer.

Figure 6: Spectral phase interferometry setup for characterize the phase transmision

induced change in the pump.

In figure 7 we present the data from the Grenouille, which gives us information

about the phase of the reference pulse.

(a) FROG trace of the

reference pulse.

(b) Spectral phase and

intensity of the reference

pulse.

Figure 7: Reference pulse characterization obtained from the Grebouille.
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The SPI signal in the spectrometer is given by:

SFTSI(ω) = Ssignal + Sref + 2
√

Ssignal(ω) + Sref (ω) cos(Ψsignal −Ψref + ωτ)) (6)

where Sref and Ssignal are the intensities for the reference and signal pulse, measured

blocking one arm and then the other on the interferometer, Ψref and Ψsignal are their

respective phases and ω and τ are the frequency at we measured in the spectrometer

and time delay of the pulse [17]. The measured spectrum is represented in figure 8 at

different fluences, adjusting the exposure to ensure optical S/N for each fluence.

Figure 8: Normalized interference of the reference pulse and the signal one at different

fluences.

We can see in figure 8 that the fringes are in phase for both fluences below the

phase transition, 6 mJ/cm2 in this sample, but show a dramatic shift above it. The

fringes map the phase different between Ψsignal and Ψref , so this displacement means

that the phase of the pulse changes over the threshold fluence. This is because the phase

transition of VO2 changes the shape of the temporal pulse, modifying its transmitivity.

Further analysis is necessary to reconstruct the time-domain structure of the signal pulse

in the two limits.
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4. Conclusions

Firs-order phase transitions offer a new type of nonlinear optics, presenting a huge

change in optical properties once the threshold fluence is reached. In our model we

predict a huge broadening and a minimal effect of polycrystalinity, suggesting the effect

should be experimentally observable. Then, we measured this effect in the lab using

SPI and see that the phases changes with the fluence, presenting there the effect on

the spectrum by the phase transition. The phases change with the fluence because the

phase transition is affecting the incident light.
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Balčiunas T, Mücke O D, Pugzlys A et al. 2012 science 336 1287–1291

[3] Lopez R, Haglund Jr R F, Feldman L C, Boatner L A and Haynes T E 2004 Applied physics letters

85 5191–5193

[4] Fedotov V, MacDonald K and Zheludev N 2005 Journal of Optics A: Pure and Applied Optics 7

S241

[5] Gallmann L, Sutter D, Matuschek N, Steinmeyer G, Keller U, Iaconis C and Walmsley I 1999

Optics letters 24 1314–1316

[6] Lisewski J, Heathcote J, Petrov G I and Yakovlev V V 2005 Optical pulse-shaping using

ultrafast phase transformation in vanadium dioxide Ultrafast Phenomena in Semiconductors

and Nanostructure Materials IX vol 5725 (SPIE) pp 91–97

[7] Zheludev N 2002 Contemporary Physics 43 365–377

[8] Zalden P, Shu M J, Chen F, Wu X, Zhu Y, Wen H, Johnston S, Shen Z X, Landreman P,

Brongersma M et al. 2016 Physical Review Letters 117 067601

[9] Park J H, Coy J M, Kasirga T S, Huang C, Fei Z, Hunter S and Cobden D H 2013 Nature 500

431–434

[10] Jager M F, Ott C, Kraus P M, Kaplan C J, Pouse W, Marvel R E, Haglund R F, Neumark D M

and Leone S R 2017 Proceedings of the National Academy of Sciences 114 9558–9563

[11] Vidas L, Gunther C M, Miller T A, Pfau B, Perez-Salinas D, Mart́ınez E, Schneider M, Guhrs E,

Gargiani P, Valvidares M et al. 2018 Nano Letters 18 3449–3453
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