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Abstract: The use of multi-connectivity has become a useful tool to manage the traffic in hetero-
geneous cellular network deployments, since it allows a device to be simultaneously connected to
multiple cells. The proper exploitation of this technique requires to adequately configure the traffic
sent through each cell depending on the experienced conditions. This motivates this work, which
tackles the problem of how to optimally split the traffic among the cells when the multi-connectivity
feature is used. To this end, the paper proposes the use of a deep reinforcement learning solution
based on a Deep Q-Network (DQN) in order to determine the amount of traffic of a device that needs
to be delivered through each cell, making the decision as a function of the current traffic and radio
conditions. The obtained results show a near-optimal performance of the DQN-based solution with
an average difference of only 3.9% in terms of reward with respect to the optimum strategy. Moreover,
the solution clearly outperforms a reference scheme based on Signal to Interference Noise Ratio
(SINR) with differences of up to 50% in terms of reward and up to 166% in terms of throughput for
certain situations. Overall, the presented results show the promising performance of the DQN-based
approach that establishes a basis for further research in the topic of multi-connectivity and for the
application of this type of techniques in other problems of the radio access network.

Keywords: multi-connectivity; deep learning; Deep Q-Network; heterogeneous networks; cellular
networks; 5G NR; LTE; O-RAN

1. Introduction

With the ongoing increase of data traffic as well as the emergence of new services
with high speed and reliability requirements, Mobile Network Operators (MNO) are
actively trialing and deploying fifth generation (5G) networks in an effort to support new
vertical-driven use cases and enhanced user experiences [1]. 5G New Radio (5G NR)
deployments are progressively introduced on top of existing legacy technologies, such as
Long-Term Evolution (LTE), leading to heterogeneous deployments with multiple radio
access technologies (RATs), different cell types, such as macrocells, indoor and outdoor
small cells, and operating in a wide range of spectrum bands (e.g., sub-6 GHz bands
used by all RATs and millimeter wave (mmW) bands used by 5G New Radio). Network
densification has been a mainstay of LTE networks, and the need for small cells will be even
more critical in 5G and beyond systems due to operation in higher spectrum bands and
the need to support traffic densities that are two to three orders of magnitude higher than
in LTE [2]. The general industry consensus is that 5G will drive hyperdense deployments
with site densities in excess of 150 sites/km2 in urban and selected indoor scenarios [3].

In this context, multi-connectivity (MC) has emerged as a key technology for sup-
porting simultaneous access via LTE and 5G networks [4], and is also expected to play
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a key role in further network evolutions towards the sixth generation (6G). The central
idea behind the MC concept is that User Equipment (UE) has connectivity with different
nodes of the Radio Access Network (RAN) at the same time, e.g., eNodeBs (eNB) operating
with LTE and/or gNodeBs (gNB) operating with 5G NR [5]. There is one master node
(MN) responsible for the radio-access control plane and one, or in the general case multiple,
secondary node(s) (SN), that provide additional user-plane links. In this way, the UE can
be provided with radio resources from distinct eNBs/gNBs, which has benefits in terms
of additional capacity for better supporting the data rate and reliability requirements of
5G and beyond systems. At the same time, this brings the challenge of properly managing
the MC operation through the configuration of the traffic sent through each node. This
allows exploiting those situations where MC is more beneficial in front of other situations
in which MC may not be the best option depending on the load in the involved nodes or
the propagation conditions experienced by the UE.

In the Third Generation Partnership Project (3GPP), MC is specified through the Multi-
Radio Dual Connectivity (MR-DC) feature defined in [6] that considers different options
depending on the technology used by the MN and by the SN, and on the core network
technology (i.e., 5G core or Evolved Packet Core (EPC)). The operation of MR-DC is built
upon the use of three different types of radio bearers [6], namely the Master Cell Group
(MCG) bearers in which data is transmitted through the MN, the Secondary Cell Group
(SCG) bearers in which data is transmitted through the SN, and the Split bearers, in which
data is split between the SN and the MN at the Packet Data Convergence Protocol (PDCP)
layer of the radio interface protocol stack. The MR-DC feature between LTE and 5G is
widely used nowadays in the current 5G Non-StandAlone (NSA) deployments that have
enabled a quick introduction of 5G NR making use of the EPC core network of the legacy
LTE systems [5].

The interest in MC is also reflected in some 3GPP Release 17 study items that have
addressed the MR-DC with multiple cells operating in different bands. One example
is [7], which considers up to four bands in LTE and two bands in 5G NR, one for the sub-
6GHz Frequency Range 1 (FR1) and the other for the mmWave Frequency Range 2 (FR2).
Moreover, several works have also recently considered the use of MC in contexts that are
relevant for future beyond 5G and 6G systems, such as the communication over mmWave
and THz frequency bands [8], the multi-connectivity between a base station and other UEs
acting as relays [9], and hybrid satellite and terrestrial networks [10], in which for example
the joint use of a reconfigurable intelligent surface and a base station are used to strengthen
satellite signals in [11].

From an algorithmic perspective, the literature has considered different problems in
relation to MC, such as resource allocation [12,13], cell and RAT selection [14,15], and traffic
split [16–19]. Concerning resource allocation, a Smart Aggregated RAT Access (SARA)
strategy is proposed in [12] for joint RAT selection and resource allocation in a scenario
with cellular base stations and Wi-Fi access points. The solution makes use of a Semi
Markov Decision Process (SMDP)-based hierarchical decision framework (HDF). In [13]
the optimization problem of resource allocation in a MC scenario with 5G and LTE is
formulated. Then, a solution based on two heuristic algorithms is proposed, namely a base
station selection algorithm performed by the UE and a resource block allocation algorithm
executed by the base station.

The problem of secondary base station selection in MC with 5G/LTE is addressed
in [14], which presents different algorithms aimed at improving robustness and perfor-
mance while minimizing the energy consumption. In turn, [15] considers an LTE/WiFi
scenario and proposes a network switching strategy based on a Markov Decision Process
and a value iteration algorithm to determine the set of RATs that a user is connected to in
each handover window.

The problem of traffic split between different RATs is considered in [16] focusing
on an LTE/Wi-Fi scenario. The paper assumes a heterogeneous network controlled by
a single coordinating node that collects relevant information, decides on the best choice



Sensors 2022, 22, 6179 3 of 19

of RAT for all users, and advises on the actual amount of radio resources that every user
may utilize on each technology. The problem is formulated analytically, and a solution
based on the weighted max-min algorithm is proposed. In [17] the problem of traffic split
between the master and the secondary eNB in LTE with dual connectivity is modelled as a
Constrained Markov Decision Process, and a solution based on the Lagrangian approach is
proposed. Similarly, [18] considers a scenario with 5G-LTE multi-connectivity, and makes
use of Lagrangian Dual Decomposition to determine the fraction of traffic transmitted
through each cell that maximizes the goodput, whereas [19] formulates a PDCP split bearer
decision problem that decides whether and how to split the traffic across multiple cells
in order to meet the bandwidth requirements of user services and proposes a heuristic
solution to solve the problem.

This paper addresses the traffic split multi-connectivity problem in multi-RAT scenar-
ios. The target is to determine a policy to optimally distribute the traffic of a UE across the
different RATs and cells by fulfilling the QoS requirements while minimizing the resource
consumption of the UE and ensuring that no overload situations arise in the involved cells.

The novelty of the paper with respect to prior works dealing with traffic split [16–19]
is the use of Deep Reinforcement Learning (DRL), and in particular the Deep Q-Network
(DQN) technique [20], in order to learn the traffic split policy to be applied on a per UE
basis so that the amount of bandwidth used by a UE is minimized while at the same time
providing the required bit rate and avoiding overload situations in the involved cells. To
the authors’ best knowledge, the use of DQN has not been considered by other researchers
in the context of traffic split for MC. Instead, previous works have considered different
algorithmic solutions and different optimization targets, such as linear programming for
ensuring fairness in [16], Lagrangian multipliers for minimizing delay in [17], Lagrangian
Dual Decomposition for optimizing goodput in [18] or a heuristic algorithm for maximizing
the number of served UEs in [19]. Following the trend of applying machine learning for
different problems in the RAN [21] and for different applications [22], the motivation to
consider DRL in MC is that DRL techniques are useful for optimizing dynamic decision-
making problems in the absence of an accurate mathematical model of the operational
environment. Moreover, thanks to their capability of generalizing from past experience,
DRL techniques are efficient in problems that depend on a large number of input variables
and in which both the inputs and the decision-making outputs can take a large range of
possible values, as it is the case of the MC problem considered here.

Based on a first version of the DQN model presented in our recent work [23] and
further evolved in [24], this paper significantly extends these works by presenting the de-
tailed formulation and algorithmic solution of the DQN model, the architectural framework
based on the open RAN (O-RAN) architecture [25] for supporting the proposed solution,
and by providing a much more exhaustive performance assessment of the algorithm con-
sidering different evaluation conditions. The O-RAN based framework for supporting the
implementation of the proposed approach constitutes another novelty of the paper with
respect to previous works.

The rest of the paper is organized as follows. Section 2 presents the system model,
formulates the considered multi-connectivity problem and presents the O-RAN-based
architectural framework. Section 3 presents the proposed DQN-based solution. Different
performance results are provided in Section 4. Finally, Section 5 summarises the conclusions.

2. Multi-Connectivity Model Formulation
2.1. Problem Definition

Let us consider a heterogeneous RAN where different UEs with multi-connectivity
capabilities are camping. A given u-th UE considers M different RATs and N different cells
per RAT as candidates for the multi-connectivity. Then, let us denote as Au = {Cm,n} the set
of candidate cells detected by the u-th UE, where Cm,n denotes the n-th cell of the m-th RAT
with n = 1, . . . , N and m = 1, . . . , M. It is worth mentioning that, due to the mobility of
the UE, the specific detected cells in a given RAT may change with time. In this respect,
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it is assumed that the N candidate cells of a RAT correspond to the best N cells detected
by the UE at a certain time based on measurements averaged during a time window of
duration ∆T s.

Through the use of multi-connectivity, the traffic of the u-th UE is split across multiple
RATs/cells of the set Au. It is assumed that, at a certain time, the UE can be simultaneously
connected to a maximum of Nmax cells among the M·N candidates. The multi-connectivity
configuration of the u-th UE can be expressed as the M × N matrix Bu = {βm,n}, where
βm,n ∈ [0, 1] defines the fraction of total traffic of the u-th UE that is delivered through the
n-th cell of the m-th RAT. Then, the objective is to find the optimal configuration Bu = {βm,n}
to be applied in a time window of ∆T that allows ensuring the Quality of Service (QoS)
requirements with minimum resource consumption and avoiding overload situations in
the different RATs/cells. In this respect, it is assumed that the QoS requirement of the user
u is expressed in terms of a required bit rate Ru (b/s) to be provided.

To formalize the problem, let us denote as Tu(Bu) the total throughput or bit rate ob-
tained by user u during the last time window period ∆T as a result of the multi-connectivity
configuration Bu. Let us also denote am,n(βm,n) as the number of physical resources in the
m-th cell and n-th RAT assigned to the u-th UE to transmit the traffic corresponding to
fraction βm,n. Assuming LTE and 5G NR-based RATs, the physical resources correspond to
the Physical Resource Blocks (PRBs), each one defined as a set of 12 contiguous subcarriers
in an OFDMA access [3]. Then, considering that bm,n is the bandwidth of one PRB in the
m-th cell and n-th RAT, the bandwidth allocated to the user u in this RAT, denoted as
γ(βm,n), is given by:

γ(βm,n) = am,n(βm,n)·bm,n (1)

In addition, the total fraction of occupied PRBs in a RAT/cell accounting for all the
UEs connected to that cell is denoted as ρm,n(βm,n).

With all the above, the considered problem to be solved for the u-th UE is formally
defined

Bu = arg min
Bu

[
1

wmax

M

∑
m=1

N

∑
n=1

γ(βm,n)

]
s.t. Tu(Bu) ≥ Ru , ρm,n(βm,n) ≤ ρmax ∀m, n

M

∑
m=1

N

∑
n=1

βm,n = 1 (2)

where wmax is the maximum possible bandwidth to be assigned to the user u and
ρmax ∈ [0, 1] is the maximum threshold established to avoid overload situations in a
cell. Then, the problem in Equation (2) intends to find the multi-connectivity configuration
Bu that minimizes the fraction of total bandwidth allocated to the u-th UE while at the same
time ensuring that the provided throughput is above the required bit rate, i.e., Tu(Bu) ≥ Ru
and that the total fraction of occupied PRBs in the involved RATs/cells is lower than a
threshold ρmax. It is worth mentioning that in the problem of Equation (2) the effects of
mobility, propagation and interference are implicitly captured in the term γ(βm,n). Specif-
ically, as the UE moves, its propagation and interference conditions with respect to the
different cells changes and, therefore, the involved cells modify the amount of bandwidth
to be allocated to the UE so that the traffic fraction βm,n can be transmitted.

2.2. Proposed O-RAN Based System Architecture for MC Configuration

In order to enforce in the network, the multi-connectivity configuration Bu obtained
as a result of the above problem, this paper proposes the system architecture depicted in
Figure 1. It is based on the O-RAN Alliance reference architecture [25], which comple-
ments 3GPP 5G standards with a foundation of virtualized network elements, white-box
hardware and standardized interfaces that fully embrace the core principles of openness
and intelligence. One of the principal characteristics of O-RAN architecture is the RAN
disaggregation, which splits a 5G NR base station (gNB) into different functional units,
namely a Central Unit (CU), a Distributed Unit (DU), and a Radio Unit (RU) (called O-CU,
O-DU, and O-RU in O-RAN specifications). The O-CU can be further split into two logical
components, one for the Control Plane (CP), and one for the User Plane (UP). The O-RAN
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architecture also considers the use of LTE technology with so-called O-eNB nodes. The
O-CU hosts the upper layers of the radio interface protocol stack. These include the PDCP
layer that splits the traffic in case of multi-connectivity, in addition to the Radio Resource
Control (RRC) and the Service Data Adaptation Protocol (SDAP) layers for control plane
and user plane, respectively, that are on top of PDCP. In turn the O-DU hosts the lower
layers of the protocol stack, namely the Radio Link Control (RLC), the Medium Access Con-
trol (MAC), which hosts the scheduler in charge of allocating the PRBs to the different UEs,
and the upper parts of the Physical (PHY) layer (e.g., channel coding, modulation). Finally,
the O-RU hosts the lower parts of the PHY layer (e.g., Inverse Fast Fourier Transformation
(IFFT) for Orthogonal Frequency Division Multiple Access (OFDMA) transmission) and
the Radio Frequency (RF) functions.
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The multi-connectivity situation illustrated in Figure 1 considers the downlink traffic
transmitted to a UE served by two cells of 5G NR RAT m = 1. The cell n = 1 is at the MN
while the cell n = 2 is at the SN. The multi-connectivity configuration for the different users is
determined by an MC controller, which can be hosted at the near-real time RAN Intelligent
Controller (near-RT RIC) of the O-RAN architecture. The near-RT RIC is deployed at the
edge of the network, is able to operate control loops with a periodicity between 10 ms and
1 s, and it can interact with the DUs and CUs in the RAN. A relevant characteristic of the
near-RT RIC is that it supports the execution of third-party applications, referred to as
xApps [26]. Then, the MC controller can be implemented as one of these xApps.

The inputs of the MC controller are different measurements (further explained in next
section) from the RAT/cells, as shown in Figure 1. These measurements can be sent to
the near-RT RIC through the E2 interface. At the near-RT RIC, they are sent to the xApp
MC controller where they are collected and processed in order to be adapted to the format
required by the DQN agent that constitutes the core of the MC controller, as is explained
in Section 3. The output of the MC controller is the configuration Bu = {βm,n} with the
weights βm,n to be configured at the PDCP layer of the MN, which resides in the O-CU.
This configuration can be established via the E2 interface that supports enabling, disabling
or modifying the dual connectivity process [27]. Based on this configuration, the PDCP
splits the traffic between the MN and the SN, and delivers the part of the traffic of the SN
via the Xn interface that interconnects the MN and the SN. Then, the MAC scheduler at
each O-DU allocates the necessary amount of bandwidth resources γ(βm,n) to the UE to
transmit the fraction of traffic βm,n corresponding to the cell. The specific design of the
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MAC scheduler is out of the scope of this work, but in general it considers aspects such as
the instantaneous propagation and interference conditions observed by the UE, the QoS
requirements, the amount of UEs in the cell, etc.

3. DQN-Based Solution

To address the problem defined by (2) a large number of variables must be considered,
such as the propagation and interference conditions experienced by the UE in the links
with the different cells/RATs, the existing load in each cell, and the QoS requirements,
among others. Additionally, there is also a dependence of the behavior of the MAC layer in
each cell/RAT that determines the amount of resources allocated to the UE. However, since
the MC controller operates on top of the different RATs, in general does not have a precise
model of how these resource allocation techniques work to determine the value of γ(βm,n)
and its impact on the QoS metrics. Then, given the complexity and the multiplicity of inputs
to the multi-connectivity problem, DRL techniques are considered as solid candidates for
approaching it. Particularly, this paper relies on the DQN algorithm, which is a model-free
and value-based DRL algorithm that considers discrete action spaces. This algorithm has
been already successfully applied to other problems in the RAN, such as capacity sharing
in [28], resource allocation in heterogeneous networks in [29], and spectrum sharing in
4G/5G networks in [30].

Other more sophisticated techniques, such as Double DQN (DDQN) or Deep Deter-
ministic Policy Gradients (DDPG), could be considered to overcome the overestimation
of the Q values in DQN. A previous work of the authors in the area of capacity shar-
ing [31], where DQN was compared against DDQN and DDPG, suggested retaining DQN
for this work. While no significant differences in terms of performance would be expected,
practicality considerations such as the speed of the training process, and the number of
hyperparameters to configure, may favor DQN.

In the proposed approach, learning is a dynamic process carried out by the DQN agent
located at the MC controller, which makes decisions on the multi-connectivity configura-
tions for the different UEs. The agent operates in discrete times with granularity equal to
the time window duration ∆T. These discrete times are denoted as t, t + 1, . . . , t + k, . . . At
time t, the DQN selects an action a(t) that contains the MC configuration to be applied for
a given UE in the next time window. The action selection is based on the current state at
time t, denoted as s(t), and on the decision-making policy available at this time. Then, as a
result of applying the selected MC configuration, a reward signal r(t + 1) is provided to the
DQN agent at the end of the time window. This reward signal measures how good or bad
was the last performed action a(t) according to the considered optimization criteria and,
in consequence, this obtained signal is used to improve the decision-making policy. The
different components of this process are detailed in the following.

3.1. State, Action and Reward Specification

The state s(t) is a vector that includes the following components for a given u-th UE:

• Requirement of the u-th UE: Ru.
• Spectral efficiency per RAT/cell {Sm,n} of the u-th UE.
• Current configuration Bu = {βm,n}, which corresponds to the configuration applied at

time t-1 to the u-th UE.
• Fraction of occupied bandwidth resources by the u-th UE in each RAT/cell {γ(βm,n)}.
• Fraction of total occupied bandwidth resources in each RAT/cell {ρm,n(βm,n)}.

All the values Sm,n, γ(βm,n) and ρm,n(βm,n) are average values measured during the
last time window of duration ∆T, i.e., between discrete times t-1 and t. Notice that the state
has a total of 1 + 4·N·M components.

Each action a(t)∈ A represents a matrix Bu = {βm,n} that corresponds to the MC
configuration to be applied during the next time window ∆T. The action space A includes
all the possible MC configurations, and is defined considering that the possible βm,n values
are discretized with granularity ∆β and that the aggregate of all βm,n values in matrix
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Bu equals 1. Moreover, the action space also considers that a UE can be connected to a
maximum of Nmax cells. Therefore, at most Nmax values of βm,n can be different from 0 in a
certain action.

The reward r(t + 1) measures how good or bad was the performance obtained by the
last action a(t) for the state s(t) in relation to the target and constraints of the optimization.
Then, considering the optimization problem (2), and that the last action a(t) is given by MC
configuration Bu = {βm,n}, the reward is defined as:

r(t + 1) =

(
1− 1

wmax

M

∑
m=1

N

∑
n=1

γ(βm,n)

)
·min

(
1,

Tu(Bu)

Ru

)
· ∏

m,n
βm,n>0

min
(

1,
ρmax

ρm,n(βm,n)

)
(3)

The first multiplicative term in r(t + 1) captures the total bandwidth assigned to the u-th
UE in all the cells/RATs, so the lower the amount of bandwidth assigned the higher the
reward, and this reflects a better fulfilment of the optimization target in Equation (2). The
second term multiplicative represents a penalty introduced when the achieved throughput
Tu(Bu) is lower than the minimum requirement Ru, corresponding to the first constraint in
Equation (2). The last multiplicative term introduces a penalty for each cell/RAT in which
the UE has transmitted traffic (i.e., βm,n > 0) and the cell is overloaded, thus capturing the
second constraint in Equation (2). Note that the values of γ(βm,n), ρm,n(βm,n) and Tu(Bu)
correspond to the averages obtained during the time window ∆T between discrete times t
and t + 1.

3.2. Policy Learning Process

The training process is used to dynamically learn the decision-making policy π that
the DQN agent uses when selecting the different actions as a function of the current state.
For this purpose, the DQN agent executes the DQN algorithm of [16] but particularized to
the state, action and reward signals presented above.

In general, reinforcement learning (RL) algorithms aim at finding the optimal policy

π* that maximizes the discounted cumulative future reward (i.e.,
∞
∑

j=0
τkr(t + j + 1), where

τ is the discount rate ranging 0 ≤ τ ≤ 1). In value-based RL algorithms, such as DQN, this
is done by obtaining the optimum action-value function Q*(s,a), which is a scalar value
representing the maximum expected discounted cumulative reward starting at time t from
state s, taking the action a and following the policy π. This can be expressed in a recursive
form by the Bellman equation as:

Q∗(s, a) = E[r(t + 1) + τ·max
a′

Q∗
(
s(t + 1), a′

)
|s(t) = s, a(t) = a, π] (4)

Given Q*(s,a), the optimum policy is defined by greedily selecting the action a with
the highest value for each state s, that is:

π∗ = argmax
a

Q∗(s, a) (5)

To determine the optimum action-value function, DQN approximates Q*(s,a) by a
deep neural network (DNN) with weights θ, denoted as Q(s,a, θ), which is progressively
updated during the training process. This DNN takes as input the state s and provides as
output the value for each possible action a in accordance with the weights θ, which define
the interconnections between the different neurons. For updating Q(s,a,θ), the DQN agent
is composed of the following elements:

• Evaluation DNN Q(s,a,θ): this is the main approximation of the optimum action-value
function Q*(s,a). It is used to determine the decision-making policy π for selecting the
actions, as:

π = argmax
a

Q(s, a, θ) (6)
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• Target DNN Q(s,a, θ-): this is another DNN with the same structure as the evalua-
tion DNN but with weights θ-. It is used to obtain the Time Difference (TD) target
r(t + 1)+τ max

a′
Q(s(t + 1), a′, θ−) that is used for making successive updates of the

evaluation DNN during the training. Moreover, this DNN is updated every P time
steps (i.e., time windows) with the weights of the evaluation DNN, i.e., θ- = θ.

• Experience dataset D: this is a dataset of length l that stores the experiences of the
DQN agent. The stored experience at time t is represented by the tuple < s(t), a(t),
r(t + 1), s(t + 1) >, which captures the state at t, the action taken, and the resulting
reward and new state at time t + 1. The stored experiences are randomly selected
during the training process to update the weights θ.

At initialization, the weights of both the evaluation and target DNNs are randomly
selected. Then, they are updated as a result of the training process of the DQN agent, which
is divided in two parts: the data collection and the update of weights θ.

Data collection consists in gathering experiences and storing them in the experience
dataset D. For each time t, the DQN agent observes the state of the environment s(t)
for a given UE and, accordingly, it triggers an action a(t) based on an ε-Greedy policy
that chooses actions according to the policy π in Equation (6) with probability 1− and a
random action with probability ε. Then, the reward r(t + 1) is collected and the experience
tuple < s(t), a(t), r(t + 1), s(t + 1) > is stored in the dataset. When the dataset is full
(i.e., l experiences are stored), old experiences are removed from the dataset to save new
ones. It is worth mentioning that during a number of InitialCollectSteps of the data
collection, the actions are selected completely randomly by forcing ε = 1 in order to explore
several states and start filling the dataset with experiences.

The process of updating the weights θ of the evaluation DNN is executed in every
time window in parallel to the data collection and it makes use of the experiences stored in
the experience dataset. Specifically, for each update a mini-batch U(D) of J past experiences
is firstly selected randomly from the dataset. The selected experiences are denoted as
ej, j = 1, . . . , J, and the components of tuple ej are denoted as < sj,aj,rj,sj* >. Then, the
update is performed based on the mini-batch gradient descent process. First, it computes the
average mean squared error (MSE) loss L(θ) over all the J experiences in the mini-batch as:

L(θ) = E
ej∈U(D)

[(rj + τ.max
a′

Q
(
sj
∗, a′, θ−

)
−Q

(
sj, aj, θ

)
)2)] (7)

Then, the mini-batch gradient descent of L(θ), denoted as ∇L(θ), is obtained by differ-
entiating L(θ) with respect to θ, which yields:

∇L(θ) = E
ej∈U(D)

[(rj + τ·max
a′

Q
(
sj
∗, a′, θ−

)
−Q

(
sj, aj, θ

))
·∇θQ

(
sj, aj, θ

)]
(8)

Then, the weights of the evaluation DNN Q(s,a,θ) are updated as:

θ ← θ + α·∇L(θ) (9)

where α is the learning rate.
After each update of θ, the resulting Q(s,a,θ) is used for triggering new actions. More-

over, after P updates of θ, the weights of the target DNN are updated as θ- = θ.
The training operation of the DQN-agent associated to the u-th UE is summarized in

Algorithm 1, which includes the data collection (lines 3–12) and the update of the weights
θ of the evaluation DNN (lines 13–21 of Algorithm 1). The training duration in time steps
is given by parameter MaxNumberOfTrainingSteps.
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Algorithm 1. DQN training for the u-th UE

1 Initialize DNN counter p = 0.
2 For t = 0 . . . MaxNumberOfTrainingSteps
3 Collect state s(t) (see Section 3.2)
4 Generate random ε’ (ε’ = 1 for the initial steps).
5 If ε’<ε

6 Choose randomly action a(t).
7 Else
8 Obtain action according to π.
9 End if
10 Obtain reward r(t + 1) and s(t + 1) as a result of action a(t).
11 If D is full (l samples are stored), remove the oldest one.
12 Store experience < s(t), a(t), r(t+1), s(t+1) > in D.
13 Randomly sample a minibatch of experiences U(D) from D of length J.
14 Compute the loss function L(θ).
15 Compute the mini-batch gradient descent ∇L(θ).
16 Update weights θ of evaluation DNN.
17 If p = P
18 Update the weights of target DNN θ- = θ and set p = 0.
19 Else
20 p = p + 1
21 End if
22 End for

4. Results

This section evaluates the performance of the proposed solution by means of system
level simulations. After describing the considered scenario for the training and evaluation
as well as the relevant parameters for both stages in Section 4.1, the evolution of training
process in order to obtain the policy is presented in Section 4.2. Section 4.3 describes the
considered benchmarking strategies for assessing the performance of the proposed MC
strategy. Then, Sections 4.4–4.6 provide the obtained performance results considering
different situations, namely UEs following different trajectories, UEs in fixed positions and
situations in which the number of MC-capable UEs is increased.

4.1. Scenario Description

The considered scenario is a square area of 500 m × 500 m, composed by four 5G NR
cells and two LTE cells. As explained in Section 2.1, Cm,n denotes the n-th cell of the m-th
RAT, being m = 1 for LTE and m = 2 for 5G NR. Therefore, the LTE cells are identified as
C1,1 and C1,2 and the 5G NR cells are C2,1, C2,2, C2,3, C2,4. The relevant parameters of the
cells are presented in Table 1. Figure 2 illustrates the position of the different cells. The
positions of the LTE and 5G NR cells were selected to illustrate a scenario in which 4 5G NR
microcells are deployed in a denser area associated with a traffic hotspot, complementing
the deployment of 2 LTE macrocells for wider coverage footprint.

The scenario assumes a non-homogeneous traffic distribution with UEs that support
MC and other UEs that generate additional background traffic. The UEs that support MC
follow specific trajectories moving at 1m/s along the scenario and have an active session
during the whole simulation duration with a required bit rate Ru = 50 Mb/s. These UEs
can connect to up to Nmax = 2 cells from any of the two RATs.

The background traffic generation assumes Poisson session arrivals with aggregate
generation rate 0.6 sessions/s and exponentially distributed session duration with average
120 s. As a result, the number of background UEs vary randomly during a simulation and
the average number is 0.6·120 = 72 background UEs. A background UE remains static
during a session. Fifty percent of the background UEs are randomly located inside a square
hotspot of 250 m × 250 m centered at the middle of the scenario (see Figure 2). The rest
of background UEs are randomly distributed in the whole scenario. Background UEs
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connect to the RAT/cell with the highest Signal to Interference and Noise Ratio (SINR). To
capture the different bit rates achievable in the two technologies, when a background UE
is connected to LTE, its serving cell allocates the needed resource blocks to achieve a bit
rate of 2.5 Mb/s, and when it is connected to 5G NR, the allocation is to achieve a bit rate
of 40 Mb/s.
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The DQN model was developed in Python using the TF-agents library [32]. The DQN
model parameters are detailed in Table 2. They were selected after conducting different
tests of the algorithm with different configurations, then choosing a suitable configuration
with satisfactory behavior in terms of, for example, reward performance, convergence,
and stability. The presented results correspond to the performance obtained by the DQN
algorithm with the MC configuration policy learnt by the DQN agent after a total of 1E6
policy updates according to the procedure of Section 3.2.

Table 1. Cell configuration parameters.

Cell Configuration Parameters

Parameter Value

Type of RAT LTE 5G NR

Cells position [x, y] m [62, 250]
[437, 250]

[187, 125] [187, 375]
[312, 125] [312, 375]

Frequency 2100 MHz 26 GHz

Subcarrier separation 15 kHz 60 kHz

Nominal channel bandwidth 20 MHz 50 MHz

Number of available PRBs 100 66

Base station transmitted power 49 dBm 21 dBm

Base station antenna gain 5 dB 26 dB

Base station height 25 m 10 m

UE antenna gain 5 dB 10 dB

Overload threshold ρmax 0.95 0.95

UE noise figure 9 dB

UE height 1.5 m

Path loss model Urban Macrocell (UMa) model of Section
7.4 of [33]

Urban Microcell (UMi) model of Section
7.4 of [33]

wmax 95.04 MHz (corresponds to the case when MC is done with 2 cells of 5G NR)
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Table 2. DQN algorithm configuration parameters.

DQN Algorithm Parameters

Parameter Value

Initial collect steps 5000

MaxNumberOfTrainingSteps 1 × 106

Experience Replay buffer maximum length (l) 1 × 105

Mini-batch size (J) 256

DNN updating period (P) 2500 s

Discount factor (τ) 0.9

Learning rate (α) 0.0003

ε value (ε-Greedy) 0.1

DNN architecture
Input layer: 17 nodes

Two hidden layers: 100 and 50 nodes
Output layer: 58 nodes

Time window (∆T) 1 s

Granularity ∆β 0.1

4.2. Training Evolution

The training process of the DQN algorithm is performed by considering a MC-capable
UE moving along the scenario following trajectories according to random walk and with
required bit rate Ru = 50 Mb/s, while at the same time background UEs also generate traffic
as explained previously. The DQN agent decides the MC connectivity configuration of
the UE and, based on the obtained rewards, the decision-making policy is progressively
updated as explained in Section 3.2. Figure 2 intends to graphically represent the scenario
used for conducting the training and evaluation processes. At the beginning of the training
the UE is located in the coordinates [X1 = 50, Y1 = 450]. Then, it moves with speed of
1 m/s following a random walk model in which it changes the direction (between ±π

4 )
with probability pdir = 1/20 at each time step. The green arrows in Figure 2 exemplify
this process.

The training is executed until reaching the maximum number of training steps Max
Number Of Training Steps = 106. To illustrate how the trained policy evolves when
increasing the number of training steps, we obtained the learnt policy every 2500 training
steps of the training process. Then, this policy was applied to an evaluation scenario
in which an illustrative MC-capable UE follows the blue trajectory in Figure 2, starting
from point [X1 = 50, Y1 = 300] and following a straight trajectory at 1 m/s up to the point
[X2 = 450, Y2 = 300]. As a result, we measured the average reward obtained when applying
the policy along this trajectory. Figure 3 presents the evolution of this average reward for
the policies learnt every 2500 training steps.

The results show that at the beginning the average reward increases significantly,
meaning that the training process is able to progressively learn better policies. Then, the
reward tends to stabilize at around 40 × 104 training steps, which gives an indication of the
number of training steps needed to learn the policy. After this time, the reward fluctuations
are only around 2%, which reflects the stability of the algorithm.
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4.3. Benchmarking Strategies

Aiming to evaluate the performance of the policy obtained with our proposed DQN-
based method against different strategies, two reference approaches were considered:

Optimum strategy: for a given UE, based on the set of candidate cells Au = {Cm,n}
and Nmax values, this strategy performs an exhaustive search process among all possible
MC configurations at each time step and obtains the MC configuration that provides the
highest reward. It is worth mentioning that it would not be a practical strategy for its
implementation in real scenarios, mainly due to the large execution time for assessing all
the possible MC configurations, so it is just considered as an upper bound of the DQN
algorithm performance.

SINR-based strategy: in this strategy, at every time step all the traffic of the UE is
served by the cell with the highest SINR value. This strategy reflects the classical approach
of cellular systems in which the UE is served only by one cell, which is the one that provides
the best quality (i.e., the highest SINR value). This criterion is considered for example
in the specification [34] for the cell selection procedure, as well as in the measurement
report triggering criteria of [35] to determine when one cell becomes better than another
one, so that this can be used when deciding a handover. In addition, different works have
also considered an SINR-based criterion for determining the cell a UE is connected to in a
cellular system, such as [36,37]. It is worth mentioning that the SINR-based strategy can
be implemented making use of handover procedures for changing the cell that the UE is
connected to.

4.4. Performance Evaluation of the DQN-Based Strategy
4.4.1. Performance for Different Trajectories

In order to assess the benefits brought by the proposed DQN-based MC strategy, this
subsection compares the performance obtained by the proposed approach against the two
reference strategies mentioned before, the optimum strategy, and the SINR-based strategy.
To conduct this evaluation, the DQN-based MC strategy makes use of the policy learnt
after completing the training process explained in Section 4.2. This policy is applied to
the simulation of a UE of interest following 100 different straight trajectories of duration
400 s with different starting points and directions covering the entire evaluation scenario
area. In each time window, the MC configuration according to the policy is applied and
the resulting reward and throughput is measured. The same evaluation is executed when
applying the two other reference strategies with the same trajectories.

Figure 4 shows the average reward obtained for each one of the trajectories with all the
considered strategies. It is observed that the DQN-based strategy achieves a performance
very close to the optimum one in all the studied cases, with differences less than 1% in
some of the trajectories, which confirms the good behavior of the proposed approach. In
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turn, if we analyze the reward of the 100 trajectories and obtain the average for all of them,
the DQN-based approach outperforms the SINR-based approach in around 13.1% but the
improvement can be as big as 50% in certain trajectories (e.g., trajectory 95). This main
advantage of the DQN-based strategy with respect to the classical SINR-based strategy
is due to smartly splitting the traffic of the UE among the cells to avoid overload and
enhance the obtained bit rate. From an implementation perspective, while the SINR-based
approach can be implemented relying on handover procedures, the DQN approach requires
the support of the MC feature and that the base stations handling the involved cells are
interconnected through the Xn interface in case of 5G NR or the X2 interface in case of LTE.
Both requirements are now commonplace in live 4G/5G networks, which rely on the MC
feature for supporting the widely used 5G NSA operation.
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Regarding comparison with the optimum strategy, the error obtained with the DQN-
based approach was computed as the percentage of difference between the reward of both
strategies. The average of this error for all the trajectories was 4.32%. Similarly, the 5th
percentile of the error was 0.35% and the 95th percentile was 7.94%. This reflects that the
DQN-based approach achieves a performance quite close to the optimum but without
having to exhaustively search for all the possible MC configurations.

In order to assess the throughput performance, Figure 5 shows plots for each strategy
of the cumulative distribution function (CDF) of the instantaneous throughput (Tu) values
obtained by the UE of interest with all the considered trajectories. Again, it is observed
that the DQN-based strategy achieves a close performance to the optimum strategy and
clearly outperforms the SINR-based strategy. In particular, with the DQN-based approach
the UE throughput achieved 90% of the time is higher or equal to 37 Mb/s, while with
the SINR-based approach this value is only 18 Mb/s. Similarly, the DQN-based approach
is able to provide the throughput of 50 Mb/s during around 50% of the time, while the
SINR-based approach only provides it 35% of the time.

Aiming to further assess the behavior of the DQN-based strategy, we carried out a
more detailed analysis focusing on a specific trajectory of a given UE starting in the point
[X1 = 485, Y1 = 181] and following a straight trajectory at 1 m/s up to the point [X2 = 85,
Y2 = 181]. For this specific trajectory, the SINR-based average reward was 0.634 while for
the DQN approach this average reward rose to 0.835 which represents a gain of around
31%. Figure 6 presents a more specific and detailed analysis of this trajectory during a
period of 25 s between the points (X1 = 285, Y1 = 181) and (X2 = 260, Y2 = 181). In particular,
Figure 6a represents the evolution of the SINR experienced by the UE in the LTE and 5G
NR cells during this period. Since one of the NR cells has a higher SINR value, this will
be the selected cell with the SINR-based strategy during the whole analyzed period. In
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contrast, the DQN-based strategy is able to split the traffic through the LTE and 5G NR
cells in accordance with the experienced conditions in terms of signal and load. In this
case, Figure 6b shows the evolution of the values of βm,n selected by the algorithm. During
the first 15 s the DQN-based strategy splits the traffic just using both LTE cells, i.e., β1,2
and β1,1 values are different from 0, even when those cells do not have the highest SINR
values. For the remaining seconds, the traffic of the UE is delivered by using different
MC configurations; for example, LTE-NR by adjusting the values of β1,2 and β2,4. As a
result, Figure 6c shows the evolution of the reward with both strategies during the analyzed
period, and it can be observed that the DQN-based strategy clearly outperforms the SINR-
based one. In fact, if we consider average reward values for both strategies, the obtained
with the SINR-based strategy is around 0.27, while the obtained with the DQN approach is
0.62, which is more than twice. It is worth mentioning that during the analyzed situation,
the optimal strategy also provides a relatively low reward of 0.71. This is due to the traffic
dynamics of the background UEs that lead to a high load in the cells during the analyzed
time period. This high load does not allow ensuring the required bit rate with any of the
combinations, which reduces the reward.
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Figure 5. CDF of the throughput achieved by the UE of interest.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 20 
 

 

the UE throughput achieved 90% of the time is higher or equal to 37 Mb/s, while with the 
SINR-based approach this value is only 18 Mb/s. Similarly, the DQN-based approach is 
able to provide the throughput of 50 Mb/s during around 50% of the time, while the SINR-
based approach only provides it 35% of the time. 

 
Figure 5. CDF of the throughput achieved by the UE of interest. 

Aiming to further assess the behavior of the DQN-based strategy, we carried out a 
more detailed analysis focusing on a specific trajectory of a given UE starting in the point 
[X1 = 485, Y1 = 181] and following a straight trajectory at 1 m/s up to the point [X2 = 85, Y2 
= 181]. For this specific trajectory, the SINR-based average reward was 0.634 while for the 
DQN approach this average reward rose to 0.835 which represents a gain of around 31%. 
Figure 6 presents a more specific and detailed analysis of this trajectory during a period 
of 25 s between the points (X1 = 285, Y1 = 181) and (X2 = 260, Y2 = 181). In particular, Figure 
6a represents the evolution of the SINR experienced by the UE in the LTE and 5G NR cells 
during this period. Since one of the NR cells has a higher SINR value, this will be the 
selected cell with the SINR-based strategy during the whole analyzed period. In contrast, 
the DQN-based strategy is able to split the traffic through the LTE and 5G NR cells in 
accordance with the experienced conditions in terms of signal and load. In this case, Fig-
ure 6b shows the evolution of the values of βm,n selected by the algorithm. During the first 
15 s the DQN-based strategy splits the traffic just using both LTE cells, i.e., β1,2 and β1,1 
values are different from 0, even when those cells do not have the highest SINR values. 
For the remaining seconds, the traffic of the UE is delivered by using different MC config-
urations; for example, LTE-NR by adjusting the values of β1,2 and β2,4. As a result, Figure 
6c shows the evolution of the reward with both strategies during the analyzed period, and 
it can be observed that the DQN-based strategy clearly outperforms the SINR-based one. 
In fact, if we consider average reward values for both strategies, the obtained with the 
SINR-based strategy is around 0.27, while the obtained with the DQN approach is 0.62, 
which is more than twice. It is worth mentioning that during the analyzed situation, the 
optimal strategy also provides a relatively low reward of 0.71. This is due to the traffic 
dynamics of the background UEs that lead to a high load in the cells during the analyzed 
time period. This high load does not allow ensuring the required bit rate with any of the 
combinations, which reduces the reward. 

   
(a) (b) (c) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 14 18 22 26 30 34 38 42 46 50

CD
F

Throughput (Mb/s)

Optimum Strategy SINR-based Strategy  DQN-based Stategy

-10
-5
0
5

10
15
20
25
30
35

200 205 210 215 220 225

dB

Time (sec)

C_1,2 (LTE) C_1,1 (LTE) C_2,4 (NR) C_2,3 (NR)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

200 205 210 215 220 225

β
va

lu
e

Time (sec)

C_1,2 (LTE) C_1,1 (LTE) C_2,4 (NR) C_2,3 (NR)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

200 205 210 215 220 225

Re
w

ar
d

Time (sec)

SINR-based strategy DQN-based strategy

Figure 6. (a) SINR evolution of the LTE and NR cells in the analyzed period; (b) evolution of βm,n in
the detected cells by the UE during the analyzed period and (c) reward in the analyzed period.

4.4.2. Statistics on the MC Configuration

As explained previously, the goal of the proposed algorithm was to find the MC
configuration that maximizes the reward under any experienced conditions by the UE. If
we look at the evolution of βm,n in the detected cells by the UE during the analyzed period
in Figure 6b we see that at some particular moments the DQN-based algorithm decided to
send all the user traffic through a single cell. This means that during these moments, the
algorithm decided that, based on the current state, not doing MC would result in a better
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performance, and this is confirmed through the reward observed in Figure 6c. Based on
this, in the following we assess the decisions made by the algorithm in relation to when to
apply MC and which are the technologies involved.

If we consider that the evaluation scenario has two LTE cells (C1,1 and C1,2) and four
5G NR cells (C2,1, C2,2, C2,3, C2,4), with Nmax = 2, this means that the MC configuration
can be done with five possible connection modes, namely no MC with LTE; no MC with NR;
MC with LTE-LTE; MC with LTE-NR and MC with NR-NR. Figure 7 presents the percentage
of time that the algorithm selected each one of these modes for the same 100 trajectories
studied in Section 4.4.1. It is observed that during around 56% of the time the algorithm
decided not to do MC and to connect instead to only one cell of LTE or one cell of 5G NR.
In contrast, during the remaining 44% of the time it decided to do MC, particularly being
the combination LTE-NR, the most used approach selected in around 38% of the time. This
is logic given that LTE cells have a bigger coverage area than the NR cells, but these have
more bandwidth. Therefore, this connection mode could be helpful at the time of fulfilling;
for example, the UE data rate requirements while the UE is moving. Given the statistics
presented in Figure 7 and after observing previously that the DQN-based solution performs
much better that the SINR-based one, the importance of deciding the correct connection
mode and the multi-connectivity configuration when required is clear.
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4.5. Performance for Different Fixed Positions

In the context of 5G, it is also pertinent to analyze situations in which the users/devices
remain stationary at fixed positions, since some services have this characteristic (e.g., Fixed
Wireless Access, smart cities with sensors or cameras at lamp posts). We carried out
an evaluation performance of the DQN-based strategy considering the same scenario
explained in Section 4.1 but this time the evaluation UE remained in a fixed position. In
order to explore a variety of situations, we studied the performance of the UE for 400 s
in 19 × 19 = 361 different positions all around the 500 × 500 m scenario, selected from a
grid of locations in steps of 25m in both horizontal and vertical directions. We compared
the results against the optimal and SINR-based strategies. Figure 8 shows the CDF of the
instantaneous values of throughput (Tu) and reward for all the considered positions. It is
shown that, like in the evaluation with trajectories, the performance for fixed positions is
close to the optimum one and clearly outperforms the SINR-based strategy. In fact, when
analyzing some particular fixed positions, the DQN-based strategy is able to outperform
the reward of the SINR-based one in up to 65%.
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Figure 8. (a) CDF of average reward for the UE of evaluation; (b) CDF of throughput of the
evaluated UE.

Aiming to explain more in detail the situations where the DQN-based strategy can
come up with more different decisions than the SINR-based approach, we focused on a
specific period of time of one of the evaluated fixed positions where the UE was located
in the coordinates (X = 300, Y = 350). For this position, the UE experienced SINR values
in the 5G NR (C2,2) and LTE (C1,2) cells equal to 45.7 dB and 33.8 dB respectively. Due to
these perceived values, the SINR-based strategy selected the 5G NR cell during the entire
period. In contrast, as shown in Figure 9a, the DQN-based strategy considered the current
cell loads, and decided to split the traffic among the two cells. In the case of fixed positions,
splitting the traffic becomes important because, if the higher-SINR-detected cell is serving
other users, at some point it can get overloaded. However, by considering other aspects
such as load as the DQN-based strategy does, it is possible to avoid this type of issue
while improving the throughput obtained by the UE/device of interest. This effect can be
seen clearly in Figure 9b. For the 20-s analyzed period the obtained average throughput
with the SINR-based strategy is 15.3 Mb/s while by using our proposed approach for
the same period, the average throughput reaches 40.72 Mb/s, which represents a gain of
around 166%. This result reinforces the idea about the importance of optimizing the MC
configuration of the UEs.
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Figure 9. (a) Evolution of βm,n in the analyzed period; (b) obtained throughput in the
analyzed period.

Considering the results for all the different fixed positions, it was seen that the error
of the DQN-based approach with respect to the optimum was, on average, 3.76%, the
5th percentile was 0.08% and the 95th percentile was 13.3%. Similarly, considering all the
results obtained with the 100 trajectories of Section 4.4 and the fixed positions of Section 4.5,
the average error was 3.9% and the distribution provides a 5th percentile of 0.09% and a
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95th percentile of 12.5%. This reflects the close to optimum behavior obtained with the
proposed approach.

4.6. Performance Evaluation in Scenarios with Multiple MC-Capable UEs

This section considers the performance of the DQN-based solution when there are
multiple MC-capable UEs coexisting in the same evaluation environment and applying the
learnt DQN-based policy.

The study consisted of five different simulations, each one with a distinct number
of MC-capable UEs, ranging from 5 to 25, all of them with a Ru = 25 Mb/s. During the
simulation time each UE moved following a different trajectory and generated traffic during
the whole evaluation time, equal to 400 s. The background traffic had a generation rate
of 0.2 sessions/s and an exponentially distributed session duration with an average 120s,
resulting in an average of 24 background UEs during a simulation.

The results presented in Figure 10 were obtained by averaging the performance for
the different UEs in each evaluation with the SINR-based strategy and with the proposed
DQN-based strategy. Figure 10a depicts the performance of our solution in terms of reward.
It can be seen that the gain of DQN-based strategy with respect to SINR-based strategy
increases from 11.2% for 5 UEs up to 31.7% for 25 UEs.
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Figure 10. (a) Average reward values as a function of the number of MC-capable UEs; (b) average
throughput values as a function of the number of MC-capable UEs.

Regarding the throughput performance, a similar assessment was done and the results
are presented in Figure 10b. They show that the proposed method outperforms the SINR-
based approach for all the considered numbers of users., with a gain of around 33% for
the case with 25 UEs. Notice how by applying our solution it tends to keep the obtained
throughput very close to the requirement of Ru = 25 Mb/s.

5. Conclusions and Future Work

This paper proposes the use of Deep Q-Network for splitting the traffic of a UE among
cells when using multi-connectivity depending on the current traffic and radio conditions
experienced by the UE in the involved cells. The proposed strategy was evaluated and
compared against the optimum case and against a classical SINR-based approach in differ-
ent evaluation scenarios, involving UEs following trajectories and stationary UEs. Results
show the capability of the DQN agent to learn a quasi-optimal policy, providing a reward
that on average is only 3.9% lower than the reward of the optimum strategy. It was also
seen that the DQN-based approach clearly outperforms the SINR-based approach with
reward differences that can be up to 50% for certain trajectories. In turn, for the case of
fixed positions, results show that the DQN-based strategy can achieve throughput gains
of up to 166%with respect to the SINR-based strategy at certain times. The statistics re-
garding the different connection modes used by the DQN strategy confirm the capability
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of the algorithm to optimize the decision on when to use MC or not, to maximize the
performance. Moreover, a performance analysis of the DQN-based strategy was conducted
when applied to different numbers of MC-capable users coexisting in the same evaluation
environment. The results from this study reveal a significant better performance for all the
MC-capable users when applying the solution, which reinforces and confirms the relevance
of optimizing the MC configuration.

Overall, our results reflect a promising performance of the proposed DQN-based
approach that opens the door for continuing the work around some future research lines.
Particularly, the solution could be extended to incorporate other types of traffic with service
requirements other than the bit rate considered here. For example, Ultra Reliable and
Low Latency Communications (URLLC) services can be considered to exploit MC for
enhancing reliability, e.g., by duplicating packets through multiple cells. The exploitation
of the proposed mechanisms in other scenarios in which MC can be used with other UEs
acting as relays can also be tackled as future work.
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