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Abstract: Grassland pastures are crucial for the global food supply through their milk and meat 

production; hence, forage species monitoring is essential for cattle feed. Therefore, knowledge of 

pasture above-ground canopy features help understand the crop status. This paper finds how to 

construct machine learning models to predict above-ground canopy features in Brachiaria pasture 

from ground truth data (GTD) and remote sensing at larger (satellite data on the cloud) and smaller 

(unmanned aerial vehicles (UAV)) scales. First, we used above-ground biomass (AGB) data ob-

tained from Brachiaria to evaluate the relationship between vegetation indices (VIs) with the dry 

matter (DM). Next, the performance of machine learning algorithms was used for predicting AGB 

based on VIs obtained from ground truth and satellite and UAV imagery. When comparing more 

than twenty-five machine learning models using an Auto Machine Learning Python API, the results 

show that the best algorithms were the Huber with R2 = 0.60, Linear with R2 = 0.54, and Extra Trees 

with R2 = 0.45 to large scales using satellite. On the other hand, short-scale best regressions are K 

Neighbors with an R2 of 0.76, Extra Trees with an R2 of 0.75, and Bayesian Ridge with an R2 of 0.70, 

demonstrating a high potential to predict AGB and DM. This study is the first prediction model 

approach that assesses the rotational grazing system and pasture above-ground canopy features to 

predict the quality and quantity of cattle feed to support pasture management in Colombia. 

Keywords: above-ground biomass; precision agriculture; UAV; remote sensing; machine learning 

prediction 

 

1. Introduction 

Grasslands, after forests, are the largest terrestrial carbon sink and cover 31.5% of the 

earth’s total landmass [1–3]. Grasslands are classified as natural (formed in natural cli-

matic conditions), semi-natural (developed through human management), and improved 

grasslands (pastures developed through plowing and sowing). Although not usable by 

humans, managed grasslands and other rangelands have higher biodiversity and contrib-

ute to agricultural production through livestock grazing [4,5]. In this study, we focus on 

pasture quality because of its importance for animal performance and profitability; its 

quality worldwide will assist in accurately estimating greenhouse gas emissions [4]. Bra-

chiaria pastures are widely grown in Latin America. For instance, in Brazil, Brachiaria 

pastures are predominantly formed by grasses of Brachiaria (syn. Urochloa), which are 

known for their greater adaptation to acid soils and high fertilization. The vegetation 

properties of Brachiaria, such as canopy and ground cover, are spatially variable, and the 
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growth pattern is temporally variable in response to temperature, precipitation, and radi-

ation [6–8]. 

In this context, the knowledge of overgrazing and adjusting the stocking rates are 

necessary to avoid soil degradation, comprising the forage’s harvest efficiency [9–11]. The 

traditional measurement of pasture quality attributes is mainly reliant on laboratory-

based analysis. However, these methods are constrained by destructive, laborious, and 

time-consuming. In addition, the sampling data suffer from species heterogeneity and 

consistency, entailing large sampling areas, and at times skews the accuracy of the col-

lected data unless the spatial distribution and consistency are appropriately recorded. 

Therefore, using high-resolution remote sensing technologies to provide accurate and 

timely information is essential for farm management and decision-making. 

During the last few years, the use of geospatial tools for remote sensing of crop man-

agement has been growing at a larger scale [12]. The ability to use aerial and satellite-

based remote sensing to quantify the vegetation characteristics of pastures through leaf 

area index and AGB has been refined [13,14]. Nevertheless, their application is not new in 

estimating AGB, specifically using VIs as predictors [13]. Plant reflectivity and remote 

sensing have a strong relationship using the vegetation indices (VIs) for the importance 

of vegetation emissivity in the near and mid-infrared regions [15]. One of the most repre-

sentative indices is the Normalized Difference Vegetation Index (NDVI) [16]. These VIs 

are discussed in most agriculture studies using remote sensing [17]. Thus, remote sensing 

can help study the vegetation and above-ground canopy features in forage crops, opti-

mizing the pasture production for livestock feed [18]. 

However, the studies are limited to frequent cloud coverage and low spatial and tem-

poral resolution compared with other platforms. Henceforth, the combination of land ob-

servation satellites such as Landsat-8 and Sentinel-2 (S2), with their high resolution, ex-

tends the possibility for large-scale monitoring and prediction of crop-related characteris-

tics more accurately in heterogenous landscapes [15]. However, while the satellite sensors 

seem to be the only option for large-scale phenological observations, they are limited to a 

single satellite field view [16]. Therefore, near-surface remote sensing such as unmanned 

aerial vehicles (UAV), commonly called drones, provide high precision monitoring of 

phenological observations at fine scales as they work in high-density cloud conditions to 

deploy on command, thus offering a better option in the grassland image collection 

[19,20]. However, they include limitations, such as pricing, battery autonomy, or low spec-

tral resolution. 

New applications in different fields need to realize the relationship between remote 

sensing variables and ground truth data (GTD), such as using advanced image processing 

methods, e.g., machine learning models [21]. Until now, the use of machine learning ap-

proaches has been prevailing as the availability of software increases. Nevertheless, as the 

level of information to be extracted increases, the knowledge of the ability to utilize the 

machine learning approaches are also required. Machine learning models to predict GTD 

variables vary from a simple (linear regression (LR)) [22] to a complex model (artificial 

neural networks (ANN) or random forest regression (RFR)) [23]. Different studies demon-

strate that MLR, RFR, ANN, and support vector machine (SVM) are the predominant ma-

chine learning models in AGB prediction, showing satisfactory results in diverse crops 

[24,25]. 

Nevertheless, the selection of the model is influenced by the features to be extracted, 

sample size, and the data quality that requires a more sophisticated approach for pro-

cessing the models. Comprehensive knowledge of pasture monitoring helps farmers 

make faster grazing management decisions inside the farm or location [26]. The use of 

remote sensing-driven vegetative variables as input data generates a yield estimation 

model based on machine learning was reported in many crops, such as rice and corn [26]. 

However, only a limited number of studies have reported the application of machine 

learning models in estimating the above-ground biomass in grasslands [27]. Therefore, 

the objectives of the study are to predict the AGB in Brachiaria pastures by comparing the 
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efficiency of satellite and UAV remote sensing variables and evaluating the machine 

learning models (from the simplest to the most complex). 

2. Materials and Methods 

2.1. Study Area 

The study area was selected based on the interest in growing Brachiaria pastures for 

livestock feed. This study was conducted at the La Campina farm, Santander de Quilichao, 

Department of Cauca, Colombia. La Campina is located at 1005 m above sea level, char-

acterized by a tropical climate with an annual rainfall of 1992 mm, and an average daily 

temperature of 28 °C. The soil type is inceptisol, characterized by a clay loam texture, pH 

of 5.22, and soil organic matter of 78.84 g kg−1. The levels of phosphorus (P) were catego-

rized as 10.22 mg kg−1, and exchangeable cations calcium, aluminum (Al), magnesium 

(mg), and potassium (K) were categorized as 5.67 cmol kg−1, 0.12 cmol kg−1, 2.39 cmol kg−1, 

and 0.36 cmol kg−1, respectively [19]. Before sowing the pasture, 600 kg ha−1 of rock phos-

phate (calphos) was applied for optimal grass establishment. 

The study site was divided into thirteen paddocks or plots, ranging from 0.24 to 0.54 

hectares. The data were collected on a rotational basis, where thirteen cows, thirteen 

calves, and one bull were moved from one paddock to another on a rotational basis. The 

plots were delimited, avoiding tall vegetation and trees (Figure 1a). 

 

Figure 1. Study area. (a) The green polygons show each paddock or plot with its codes, excluding 

the tree regions (hole area). The map is in geographic WGS84 coordinate; (b) an example of each 

plot with the five samples taken; (c) the 0.25 × 0.25 m frames used to take each sample. 

2.2. Ground Truth Data (GTD) 

We collected five representative-sample points (Figure 1b) from each plot between 

June and December 2021, using a 0.25 m × 0.25 m frame (Figure 1c). The collection dates 

were matched with the grazing rotation calendar. 
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The features collected include height, soil plant analysis development (SPAD), fresh 

matter (FM), and dry matter content (DM). The height was measured in centimeters (cm) 

from the ground to the last formed leaf, excluding the inflorescences. The SPAD values 

(correlated with plant chlorophyll density) were measured using the SPAD-502 plus chlo-

rophyll device. The FM was gauged with the total number of leaves, petioles, and stems 

with a diameter of less than 5 mm in an available forage using a 0.25 m × 0.25 m frame. 

Later, the forage samples were weighed, air dried in an oven at 60 °C for 72 h, and used 

to determine the DM content (Figure 2). The GTD variables and the tools used to collect 

the data are described in Table 1. 

Table 1. GTD variables and the equipment used for data collection. 

Variable Equipment Unit 

Height Flexometer cm 

SPAD SPAD-502Plus SPAD values 

Fresh mater (FM) 
Gauging with a 0.25 m × 0.25 m frame 

Precision balance (accuracy: +/− 0.5 g). 
gr FM/0.25 m × 0.25 m 

Dry matter (DM) con-

tent production  

Precision balance (accuracy: +/− 0.5 g). 

Sample drying oven 
gr DM/0.25 m × 0.25 m 

 

Figure 2. Image examples of manual measurements and sample collection in the field. (a) SPAD 

values measured in the plot G10; (b) height measurement collected in the plot G03; (c) forage fresh 

matter production measures in the plot G10; (d) weighing fresh matter; (e) oven drying of samples; 

and (f) weighing dry matter. 

2.3. UAV Imagery 

The UAV DJI Phantom 4 Multispectral (P4M) is used to collect high-resolution mul-

tispectral images for vegetation change analysis. The P4M is equipped with a multispec-

tral camera, a real-time kinematic (RTK) GNSS system, an inertial measurement unit 

(IMU), a barometer, and a compass [22]. The P4M multispectral mini sensors have six 

imaging sensors, five spectral channels or bands (blue, green, red, red edge, and near-

infrared), and one RGB sensor (Table 2). Additionally, a DJI RTK-2 GNSS base equipment 

was used to improve the georeferencing of UAV images, with a horizontal accuracy of 

0.01 m and a vertical accuracy of 0.015 m. 
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Table 2. Spectral characteristics of the remote sensors used in the project. 

Bands 

Sentinel-2A Sentinel-2B Phantom 4 Multispectral 

Central Wave-

length (nm) 

Bandwidth 

(nm) 

Central Wave-

length (nm) 

Bandwidth 

(nm) 

Central Wave-

length (nm) 

Bandwidth 

(nm) 

Coastal aerosol 442.7 21 442.2 21 - - 

Blue (B) 492.4 66 492.1 66 450 32 

Green (G) 559.8 36 559 36 560 32 

Red (R) 664.6 31 664.9 31 650 32 

Vegetation red 

edge 1 (RE1) 
704.1 15 703.8 16 - - 

Vegetation red 

edge (RE) 
740.5 15 739.1 15 730 32 

Vegetation red 

edge 2 (RE2) 
782.8 20 779.7 20 - - 

NIR 832.8 106 832.9 106 840 32 

Narrow NIR 864.7 21 864 22 - - 

Water vapor 945.1 20 943.2 21 - - 

SWIR–Cirrus 1373.5 31 1376.9 30 - - 

SWIR 1 1613.7 91 1610.4 94 - - 

SWIR 2 2202.4 175 2185.7 185 - - 

The automatic fly mission was performed using DJI Ground Station Pro Application 

(DJI GS Pro, Shenzhen, China). For each image acquisition, the camera was triggered us-

ing the DJI flight controller for 75 percent frontal and side overlap. The altitude for image 

acquisition was set at the height of 70 m above ground level (around 3.7 cm per pixel) and 

a time acquisition of 10:00 UTC-05:00 during the same GTD dates. Additionally, a Mica-

Sense reflectance panel was used to make a radiometric calibration before each flight (Fig-

ure 3). Finally, using the photogrammetric software Agisoft Metashape Pro, the acquired 

images were processed to create orthomosaic and DTM using the structure from motion 

(SfM) algorithm [23]. 

 

Figure 3. Example of UAV flight planning in the study area, describing the different UAV imagery 

steps, devices, and results. (a) The Phantom 4 Multispectral drone; (b) the flight mission in Campi-

nas farm; (c) the Micasense reflectance panel used for radiometric calibration; (d) the DJI RTK-2 

station to improve the georeferencing accuracy, and (e) orthomosaic with 3.7 cm per pixel. 
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2.4. Satellite Imagery 

Copernicus S2 supports crop monitoring with a better spatial (10 m) and temporal (5 

d with satellites S2A and S2B) resolution in comparison with other open programs such 

as Landsat or MODIS [24]. 

The S2 satellites onboard have a multispectral sensor capturing 13 spectral channels 

or bands from visible and near-infrared (VNIR) to short-wave infrared (SWIR) (Table 2). 

Sen2Cor is a Level-2A processor for Sentinel-2 whose purpose is to perform the cor-

rection on top of atmospheric Level-1C data to deliver Bottom of Atmosphere (BOA) or 

corrected surface reflectance images in a cartographic geometry (WGS84 Universal Trans-

verse Mercator (UTM) coordinate system) [25]. In addition, the images were collected with 

30 percent cloud coverage and on the exact dates as GTD collection. Finally, the S2 Level-

2A multispectral images were aggregated and exported using Google Earth Engine (GEE) 

Python API. 

2.5. Multispectral Indices in Remote Sensing 

We computed the VIs using the UAV and Satellite imagery by plot and GTD dates. 

In both monitoring systems, we computed the following VIs: the Normalized Difference 

Red Index (NDRE), NDVI, Green NDVI (GNDVI), Blue NDVI (BNDVI), Normalized pig-

ment chlorophyll ratio index (NPCI), Green–Red Vegetation Index (GRVI), and Normal-

ized Green–Blue Difference Index (NGBDI). Additionally, the Normalized Canopy 

Height (CH), the Canopy Volume (CV), and the Canopy Cover percentage (CC_%) were 

computed using only UAV images. These VIs and canopy metrics used in this study were 

shown to embrace crop growth and management and hence selected [28,29]. The other 

VIs and canopy parameters used in this study, based on different remote sensors, were 

described in Equations (1)–(9) (Table 3). 

Table 3. VIs and canopy parameters using satellite and UAV remote sensors. 

Remote Sensor Index Equation–Description 

Satellite-S2 and 

UAV-P4M 

NDRE 𝑁𝐷𝑅𝐸 =
𝑁𝐼𝑅−𝑅𝐸

𝑁𝐼𝑅+𝑅𝐸
 (1) 

NDVI 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
 (2) 

GNDVI 𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−G

𝑁𝐼𝑅+G
 (3) 

BNDVI 𝐵𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−B

𝑁𝐼𝑅+B
 (4) 

NPCI 𝑁𝑃𝐶𝐼 =
RE−B

RE+B
 (5) 

GRVI 𝐺𝑅𝑉𝐼 =
𝐺−𝑅

𝐺+𝑅
 (6) 

NGBDI 𝑁𝐺𝐵𝐷𝐼 =
𝐺−B

𝐺+B
 (7) 

P4M 

NDREI 𝑁𝐷𝑅𝐸𝐼 =
RE−𝑅

RE+𝑅
 (8) 

CH Canopy height taken from the DEM by plot 

CV 
𝐶𝑉 = ∑ 𝐶𝑎𝑛𝑜𝑝𝑦 𝐶𝑜𝑣𝑒𝑟𝑖 ∗ 𝐶𝐻𝑖

𝑛
𝑖  (9) 

where i, is the pixel associated with the plot 

CC_% 
Canopy cover is the percent ground cover of the 

canopy within the pixel surface area  

2.6. Satellite and UAV Image Processing 

We use the GEE and geemap [30] Python packages for satellite image processing. The 

GEE is an easy-to-use geospatial analysis platform in the cloud. The packages allow users 

to extract the data from the different spectral bands collected from satellite imagery at 

different processing levels. For our project, we programmed the VIs equations (employing 

the S2 bands) to obtain the median values by plot, using the Python libraries in the cloud 
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Jupyter notebook. Compared to traditional image processing, the GEE platform enables 

users to avoid downloading big-size image files, thus taking less time to process. 

The orthomosaic and the digital elevation model (DEM) of UAV-derived images 

were generated through Agisoft Metashape Pro Python API (Version 1.7). The software 

automatically generates and exports five bands of orthomosaics (from the P4M) and DEM 

in GeoTIFF raster format. These photogrammetric rasters extract the UAV-derived VIs 

and canopy metrics through the CIAT’s Pheno-i software pipeline [31], developed in Py-

thon, using different APIs. The Pheno-i software computes and extracts VIs and canopy 

metrics (Table 3) statistics by plotting mean, variance, median, standard deviation, sum, 

minimum and maximum. Additionally, users have the privilege of performing the radio-

metric calibration and tracking the visualizations of time series data captured during the 

pasture development. 

2.7. Modeling and Validation 

For the exploratory data analysis (EDA), the first step was constructing the datasets 

and merging the GTD with satellite and UAV data. Later, the dataset was standardized 

with a Z-score. It is a crucial process to improve the performance of machine learning 

algorithms, as these models assume that the entire features are centered around zero and 

variances at the same level of importance [32]. Furthermore, the Pearson correlation was 

computed to measure the strength of the linear relationship between the variables, the 

dependent or target variable, and each possible predictor [33]. Additionally, we reduced 

the multicollinearity between the features using the different complex machine learning 

models [34]. The independent variables were derived from the remote sensing data (sat-

ellite and UAV). Thus, the most common vegetation and canopy indices from the satellite 

imagery and orthomosaic were computed, such as the NDVI, NDRE, CH, and others (Ta-

ble 3), to each plot during GTD dates according to Table 4. In the case of satellite data, we 

extracted the median pixel values of each vegetation index by each paddock because the 

pixel size is bigger (10 m) than the UAV pixel orthomosaic (3.7 cm). Therefore, we used 

more statistical indicators for UAV data, such as the mean, variance, median, standard 

deviation, sum, or minimum and maximum pixel in each plot extracted from the ortho-

mosaic. We used the CIAT Pheno-i app, developed in Python, for the UAV indices com-

putations and extractions. 

Table 4. Data acquisition date and time of satellite, GTD, and UAV remote sensing. The GTD dates 

with an asterisk (*) are data without satellite remote sensing. 

Month Satellite Remote Sensing GTD UAV Remote Sensing 

July 2021 

5/7/2021   6/7/2021 

15/7/2021 13/7/2021 * 13/7/2021 

20/7/2021 22/7/2021 22/7/2021 

25/7/2021 27/7/2021 * 27/7/2021 

August 2021 

4/8/2021 6/8/2021 6/8/2021 

9/8/2021 10/8/2021 * 10/8/2021 

19/8/2021 17/8/2021 17/8/2021 

24/8/2021 24/8/2021  

29/8/2021 31/8/2021 *  

September 2021 
8/9/2021 7/9/2021 * 7/9/2021 

13/9/2021 15/9/2021 15/9/2021 

October 2021 

3/10/2021 5/10/2021 5/10/2021 

18/10/2021 19/10/2021 19/10/2021 

23/10/2021 22/10/2021 * 22/10/2021 

28/10/2021 26/10/2021–29/10/2021 26/10/2021–29/10/2021 

November 2021 

2/11/2021 2/11/2021 2/11/2021 

7/11/2021  5/11/2021 

12/11/2021 12/11/2021 * 12/11/2021 
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17/11/2021 16/11/2021 * 17/11/2021 

22/11/2021 23/11/2021 * 23/11/2021 

27/11/2021 26/11/2021 * 26/11/2021 

December 2021 

2/12/2021 3/12/2021 3/12/2021 

7/12/2021 7/12/2021 7/12/2021 

12/12/2021 10/12/2021 * 10/12/2021 

22/12/2021 23/12/2021 23/12/2021 

For the easy construction and final deployment of machine learning models, we used 

the PyCaret, an open-source low code Python library that automates machine learning 

(AutoML) models with only a few lines of code. The library manages twenty-five different 

algorithms for regression, such as Extreme Gradient Boosting, Multiple LR (MLR), RFR, 

and eighteen other algorithms for classification. Furthermore, the PyCaret library evalu-

ates and compares the models mentioned based on specific metrics, such as coefficient of 

determination (R2), Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root 

Mean Squared Error (RMSE) [35]. The features defined for dataset training are described 

in Table 3. The setup() configuration of PyCaret considered for both UAV and RS the DM 

feature as a target variable of the model, and 70% of the data were presented to the ma-

chine learning model as the training and validation dataset with 10-fold cross-validation. 

Then, after simulating the model predictions, 30% of the data is used for verifying the 

model’s actual performance. In the case of UAV, the setup arguments were: ‘df_standard-

ize’ as a standardized dataset, GT features were removed such us height mean’, ‘spad mean’, 

‘FM, a fixed seed for later reproducibility and removed the data for multicollinearity and 

outliers. In the case of RS, the arguments of setup were: ‘df_sat_standardize’ as a standard-

ized dataset, GT features were removed such us height mean’, ‘spad mean’, ‘Fresh Matter, 

train size of 70% for train and validation and 30% for test and fixed seed for later repro-

ducibility. Using this information, we found a good model from the three possible models 

with the best R2 and lowest RMSE. 

The general summary of the project pipeline, data, and algorithms of the research are 

described in Figure 4. 

 

Figure 4. Workflow of the project. 



Remote Sens. 2022, 14, 5870 9 of 19 
 

 

3. Results 

3.1. Data Collection and Feature Extraction 

As explained in the methods section, the GTD was collected in five-point samples per 

plot. Then, the sampling median was used in the GTD dataset to have each plot by date 

as one register. The G2 plot had a high density of trees, and the G9 plot had different 

pasture species hence omitted from the evaluation. 

Satellite data were unavailable during the days with high cloud density and were 

marked with asterisks in the GTD in Table 4. The Exploratory data analysis (EDA) for 11 

variables of GTD and satellite remote sensing data are shown in Table 5. Pearson correla-

tion showed significant correlations between dry matter content and most of the variables 

analyzed (11 variables and 50 observations were collected when matching GTD and sat-

ellite data according to Table 4) (Figure 5). Each date, 3 to 6 observations were collected 

(an observation means a plot measurement matched with satellite or UAV, and GTD data 

by date) (Table 4). A strong correlation between DM content and NDRE (𝑟 = 0.73), GRVI 

(𝑟 = 0.71), and moderate correlation (0.50 ≤ 𝑟 < 0.70) with the rest of the indices were 

found (Figure 5). 

Table 5. EDA built with GTD and satellite remote sensing. 

 Mean Height 
Mean Spad 

Value 
FM DM NDVI NDRE GNDVI BNDVI NPCI GRVI NGBDI 

Count 50 50 50 50 50 50 50 50 50 50 50 

Mean 59.92 35.54 75.3 17.94 0.69 0.47 0.60 0.72 0.03 0.19 0.40 

Std 12.37 2.47 51.44 13.10 0.12 0.10 0.09 0.10 0.09 0.10 0.15 

Min 35.50 29.32 7 1 0.39 0.26 0.39 0.49 −0.18 0 0.07 

25% 51.75 34.32 35.25 7 0.65 0.41 0.55 0.67 0 0.10 0.35 

50% 56.75 35.24 73.50 15 0.70 0.48 0.61 0.73 0.05 0.18 0.41 

75% 67.50 36.43 97.25 23.75 0.79 0.54 0.65 0.79 0.08 0.26 0.51 

MAX 87.50 43.54 259 57 0.89 0.69 0.77 0.86 0.31 0.37 0.69 

 

Figure 5. Correlation graph between GTD and satellite remote sensing variables. The lighter color 

intensity shows a higher correlation near one, and the darker color intensity shows near −0.8 (nega-

tive correlation). 
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In the case of UAV, the multispectral orthomosaic images were obtained at a spatial 

resolution of 3.7 cm per pixel. Through CIAT Pheno-i, we derived 85 variables from UAV 

as input data to extract the descriptive statistical information for each VIs, such as mean, 

variance, median, standard deviation (Std), sum (SUM), minimum (min), and maximum 

(MAX). The final dataset of 119 observations was extracted when matching GTD and UAV 

data according to the dates in Table 4 and then used to construct the models. Based on the 

Pearson correlation, the variables with the highest correlation were selected for our model. 

In this step, we reduced the dimensionality by removing the multicollinearity of the fea-

tures from 85 to 29 variables. The strongest correlation was found with the SUM of VIs 

and anopy features according to Figure 6. A significant correlation (above 0.70) was found 

between DM content and GRVI_SUM (𝑟 = 0.75) and CC_% (𝑟 = 0.73) and a moderate 

correlation (0.50 ≤ 𝑟 < 0.70) with CV_SUM, CH_SUM, NDREI_SUM, NDVI_SUM, etc. 

The final dataset was split into train/validation and test data: 78 observations and 29 fea-

tures, and 36 registers and 29 features, respectively (Table 6). In addition, five observations 

were removed by outliers. The Pearson correlation between variables of the dataset is de-

scribed in Figure 6. 

Table 6. EDA built with GTD and UAV remote sensing. 

 Height 

Mean 
FM DM 

NDRE_SU

M 

NDVI_SU

M 

GNDVI_SU

M 

BNDVI_SU

M 

NDREI_SU

M 

NPCI_SU

M 

GRVI_SU

M 
CH_SUM CV_SUM CC_% 

Count 119 119 119 119 119 119 119 119 119 119 119 119 119 

Mean 60.53 77.2 18.6 420,927.42 1,466,032.4 1,257,027.79 1,492,980.23 1,270,941.96 1,315,352 439,031.41 206,662,592 2,864,893.9 71.95 

Std 13.16 50.0 12.7 304,137.5 882,413.25 805,422.5 902,604.36 778,299.06 800,439.84 326,952.07 1,006,215,635 1,425,754.2 30.26 

min 31 7 1 −10,497.21 38,395.09 8998.37 48,829.48 32,792.05 45,411.16 −46,849.21 62,336,892 84,975.65 2.86 

25% 52.5 34 7 171,590.09 788,830.62 606,270.28 744,283.75 644,213.4 643,933.18 166,891.06 1,376,615,300 1,863,291.5 54.48 

50% 58.5 79 18 387,353.7 1,378,350.9 1,237,617.5 1,503,455 1,170,034.8 1,312,272 412,287.44 2,075,830,500 2,861,639.2 81.48 

75% 67.75 103 27 596,129.93 2,035,956.4 1,810,215.5 2,134,584 1,786,781.65 1,869,522.8 631,205 2,765,231,300 3,877,652.6 97.16 

MAX 94 259 57 1,320,618.1 3,201,275.5 2,863,656.2 3,129,947.2 2,819,485.2 2,773,591 1,179,194.1 3,793,030,100 5,368,477.5 104.0 

 

Figure 6. Correlation graph between GTD and UAV remote sensing variables. The lighter color in-

tensity shows a higher correlation near one, and the darker color intensity shows near −0.4 (negative 

correlation). 
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3.2. Machine Learning Model Selection 

After feature selection, the satellite and UAV remote sensing data were used as inde-

pendent variables for validating above-ground biomass prediction models. We used sat-

ellite data, Huber, Linear, and Extra Trees Regressor models to predict the dependent var-

iables. Table 7 illustrates the characteristics of each of the three models based on GTD and 

satellite remote sensing. The results indicate that only Huber (0.60) and Linear Regressors 

(0.54) were potentially valuable, as the R2 value of Extra Trees is small. Similarly, for the 

testing dataset, Huber (0.59) and Multiple Linear Regressor (0.63) models achieved better 

results. 

Table 7. Metrics of the best models chosen. 

Dataset Model Train R2 Test R2 MAE RMSE 

GTD and Satellite (S2) 

Huber Regressor 0.60 0.59 0.30 0.38 

Multiple Linear Regression 0.54 0.63 0.34 0.43 

Extra Trees Regressor 0.45 0.36 0.37 0.44 

GTD and UAV (P4M) 

K-Nearest Neighbor Regressor 0.76 0.62 0.35 0.41 

Extra Trees Regressor 0.75 0.68 0.36 0.42 

Bayesian Ridge 0.70 0.61 0.37 0.45 

Regarding GTD and UAV remote sensing, all three models achieved better results 

than those of GTD and satellite remote sensing data, with a significant improvement in R2 

values and lower RMSE. DM content is predicted using the GTD and UAV remote sensing 

data and presented in Table 7. All three regression models demonstrated good accuracy 

for training and testing with the R2 value of 0.76, 0.62 for the k-Nearest Neighbor (kNN) 

Regressor, 0.75, 0.68 for the Extra Trees Regressor, and 0.70, 0.61 for Bayesian Ridge with 

10-fold cross-validation. 

The models were trained with the data acquired from the VIs of UAV and satellite-

based remote sensing with GTD. The effectivenesses of these models were decided based 

on the potential to predict the above-ground biomass of Brachiaria. Of the twenty-five 

possible models, only three models were selected as the best fit, whose selection strategies 

are explained in the following sections. 

3.3. Selection of Machine Learning Models Using SATELLITE Data—Description, Analysis, 

and Tuning 

Huber Regressor is a robust estimator that employs a loss function that is not influ-

enced by outliers and large residual values. In this study, we considered a stop loop when 

the iterations exceed 100 with the tolerance of 1 × 10−5 . The parameter is 𝛼 = 0.0001 

and 𝜖 = 1.35. To build the model, we considered the six most important features where 𝑛 

is as marked in Figure 7a with approximately 46 iterations. Let 𝑋 ∈ 𝑅𝑛, where 𝑦̂ is the 

predicted value, the coefficient vector 𝑤 = (𝑤1, 𝑤2, ⋯ , 𝑤𝑛), 𝑋 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛),  and the 

loss function is formulated by Equation (10) [36]. 

min
𝑤,𝜎

∑ (𝜎 + 𝐻1.35 (
𝑋𝑖𝑤𝑖−𝑦𝑖

𝜎
) 𝜎) + 0.0001‖𝑤‖2

26
𝑖=1   (10) 

Applying tuning to the model, the hyperparameters defined were slightly changed 

as 𝛼 = 0.005, 𝜖 = 1.2. By applying the parameters, the tuning increased the R2 value of 

both training and testing data to 0.61 and 0.59, respectively (Figure 7e), and reduced the 

errors of MAE and RMSE. The loss function to minimize the error is formulated by Equa-

tion (11). 

min
𝑤,𝜎

∑ (𝜎 + 𝐻1.2 (
𝑋𝑖𝑤−𝑦𝑖

𝜎
) 𝜎) + 0.005‖𝑤‖2

26
𝑖=1   (11) 

In Huber regression, the data points negatively affecting the regression model were 

excluded as outliers. Consequently, the values located far outside the expected 
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distribution, two above 20% and three values above the threshold value of 8%, were ex-

cluded (Figure 7b). The learning curve of the Huber Regressor shows the relationship be-

tween the cross-validation score and the training instances. The data points fit the curve 

very closely, indicating overfitting issues due to the relatively small training dataset (50 

observations on the actual data frame). Thus, higher observations in the dataset are better 

for generalizing the data more effectively (Figure 7c). The analysis of the residuals for the 

Huber regression is fundamental. In this case, we have 34 observations for the training set 

and a histogram with a shape of a normal distribution near to 𝜇𝑒𝑟𝑟𝑜𝑟 = 0 and 16 observa-

tions for the test set with points randomly dispersed along the residual axis, with no sat-

isfactory results. With the availability of more data, it could be possible to analyze the 

variance of the residuals along the horizontal axis and a Q-Q Plot (Observed Quantile vs. 

Theoretical Quantile) and verify if the residuals are normally distributed (Figure 7d). 

 
 

(a) (b) 

  

(c) (d) 

 

(e) 
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Figure 7. Huber regression model based on GTD and satellite remote sensing. (a) Feature or variable 

importance (independent variables) using the model, (b) Cook distance for outlier detection, (c) 

learning curve plot, (d) residual plot in the first fold as training and testing, (e) prediction error 

scatterplot with testing data identifying y as the observed values and ŷ as the predicted values. 

The second model, Multiple Linear Regression (MLR), was conducted to predict the 

DM content of Brachiaria with GTD and VIs of satellite remote sensing as parameters. 

This regression is one of the most studied linear methods in which the target is expected 

to be a linear combination of the features (VIs). Let 𝑋 ∈ 𝑅𝑛, ŷ be the predicted value and 

the coefficient vector, 𝑤 = (𝑤1, 𝑤2, ⋯ , 𝑤𝑛). Then, the linear regression fits a linear model 

with the coefficients to minimize the residual sum of the squares between the features of 

the dataset and the targets predicted by the linear approximation [37]. Without loss of 

generality, the minimization problem is given by Equation (12). 

min
𝑤

‖𝑋 ∗ 𝑤 − 𝑦‖2
2 (12) 

We considered the same six features used in the Huber regression for the third model, 

the Extra Trees Regressor. This model demonstrated the accuracy of the R2 for training 

(0.45) and testing (0.36), which is 0.16 below the best model. The Extra Trees Regressor is 

a modification of the classic decision trees method. The algorithm aggregates the result of 

different decorrelated decision trees with random splits for each top feature, similar to RF 

[38]. 

3.4. Selection of Machine Learning Model Using UAV Data—Description, Analysis,  

and Tuning 

The training set achieved the best prediction accuracy of DM content with the kNN 

Regressor (R2 of 0.76). In this case, we considered Minkowski’s metric [39] with 78 samples 

and five neighbors of uniform weights, as shown in Equation (13). 

𝑀𝑖𝑛𝑘𝑜𝑤𝑠𝑘𝑖 = (∑ (|𝑥𝑖 − 𝑦𝑖|)
𝑞𝑘

𝑖=1 )
1

𝑞⁄
  (13) 

The testing data achieved an R2 of 0.62 using kNN Regressor (Figure 8e) with a dif-

ference of 13 points in the training dataset and higher RMSE. To fit the data in the training 

data test extremely well, the kNN regressor ignores the data points exceeding the thresh-

old of 15% as outliers (Figure 8a). The learning curve with training and cross-validation 

accuracies of kNN is indicated in Figure 8b. As the learning curve is highly sensitive to 

the variance, a k-folds method has been used to reduce the gap in the cross-validation 

score (10 folds) by increasing the number of observations (78 on the actual data frame) 

(Figure 8c). In the case of the kNN Regressor, the number of observations used for training 

(78) and testing (36) of the model was relatively small to visualize the normally distributed 

(a bell-shaped curve) histogram and Q-Q Plot (Observed Quantile vs. Theoretical Quan-

tile) (Figure 8d). Figure 8c shows that the model does not have overfitting but lacks data. 

It indicates the convergence between the training and the cross-validation scores. With 

more data, this validation curve can better converge at some point score. 

As described in Section 3.3, we used the Extra Trees Regressor to predict the DM 

content of Brachiaria using the GTD and VIs of UAV images. For this model, 29 features 

were considered. Based on the R2 values (R2 of 0.75, just 0.0045 below the kNN Regressor), 

we surmise that the Extra Trees Regressor is the second-best model to predict the DM 

content. However, this model had an overfitting issue when reviewing the learning curve 

in different training instances. 

The third model selected is the Bayesian Ridge Regression, which is assumed as a 

probabilistic model to determine the coefficients [40]. The model obtained an R2 of 0.70, 

which is 0.0548 below the best model (kNN Regressor). 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 8. K Neighbors regression model to predict the above-ground Brachiaria using the GTD and 

UAV remote sensing features. (a) Cook distance for outlier detection, (b) learning curve plot, (c) 

validation curve plot, (d) residual plot in the first fold as training and testing, (e) prediction error 

scatterplot with testing data identifying y as the observed values and ŷ as the predicted values. 
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4. Discussion 

Grasslands, the world’s most extensive terrestrial ecosystem, provide the cheapest 

feed source for the livestock industry. However, the disturbances such as fire and grazing 

contribute to climate change. Therefore, it is necessary to introduce climate-smart grasses 

to alleviate feed shortages and mitigate the impacts of climate change. Brachiaria grass is 

a “climate-smart forage” that produces highly palatable, nutritious biomass and helps 

mitigate climate change factors, including carbon sequestration, ecological restoration, 

and reducing greenhouse gases. Hence it has been ranked one of the top-ranked pastures 

for improving the milk and meat production of livestock, as a result enhancing the liveli-

hoods of smallholder farmers. Adequate grazing and pasture management plays an influ-

ential role in livestock production, above- and below-ground biomass production, and 

regulation of soil carbon. 

Furthermore, different grazing strategies impact the grazing system. The sustainabil-

ity of the grasslands is guaranteed with a rotational grazing system, where the herds are 

set to grazing and non-grazing (rest) periods to initiate the regrowth, increase the vegeta-

tion, replenish the carbohydrate reserve, and forage-harvest efficiency of livestock [41]. 

Therefore, it is worth monitoring the AGB features in the Brachiaria pasture to understand 

the crop nature. 

Stating the importance of Brachiaria in climate management and livestock produc-

tion, aerial and satellite remote sensing approaches will help predict the forage biomass 

[42] and provide a framework for a decision management system for farmers and stake-

holders [43]. 

In this study, we developed machine learning prediction models to estimate above-

ground canopy features using the GTD and remote sensing data (satellite and UAV im-

ages) as independent variables. Based on the VIs obtained from S2 images, their R2 (0.78 

to 0.85) showed a higher potential to predict the DM content in Brachiaria pastures. Our 

results coincide with the previous study that demonstrates machine learning models 

(MLR and RFR) predict the DM content in Brachiaria pastures [44]. Several studies have 

been reported on constructing machine learning models (LR, partial least square (PLS), 

and RFR) based on UAV-based RGB imagery, hyperspectral, and S2 imagery for predict-

ing above-ground biomass and crop yield. However, the approach used in these studies 

was performed on the croplands with limited time points [45–47]. One of the significant 

contributions of this study is using only remote sensing data and applying different ma-

chine learning classification methods to build a systematic protocol for estimating DM 

content and above-ground biomass both at small scale (UAV imagery) and large scale 

(satellite imagery) for six months. One of our objectives is to give a possible solution to 

build a preliminary model to estimate biomass in places where the farmer does not have 

the resources to collect drone data. Moreover, the use of S2 helps to estimate biomass in a 

large-scale field, where collecting drone data can take more time and resources. Thus, we 

acquire a preliminary model to take a decision about the estimation of biomass for the 

different uses. Previous studies on evaluating grasslands in a pre-Alpine region showed 

that using the RFR machine learning model reveals an R2 of 0.67 with UAV [48]. However, 

the limitation is that not all the crop regions are the same (different weather and latitude 

conditions), and it is essential to evaluate more machine learning models for better pre-

diction. In the case of other crops, a study estimated oat biomass using VIs and UAV, and 

machine learning models such as PLS, SVM, RF, and ANN obtained a maximum R2 of 0.50 

to 0.60 [49]. Another study from China reported that the ANN model predicted the bio-

mass of maize better than other machine learning models, MRL, SVM, and RF, at a maxi-

mum R2 of 0.94 [17], revealing that more data with complex machine learning models will 

result in better accuracy. Thereby, the farmers can have a technical approach to estimate 

DM content on a large scale (satellite imagery) or small scale (UAV imagery) in different 

crops. Additionally, the machine learning models allow the generation of predictive mod-

els from large datasets used to study the content sampling, either the entire plot or a few 

regions around it. 
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In this study, we analyzed the performance of automated machine learning (Au-

toML) in relation to DM content, specifically to predict the above-ground biomass in Bra-

chiaria pastures to select the fittest regression models. We selected the top three highest 

R2 and lowest RMSE models. However, it depends on the dataset to establish the best 

regression models over others. It is the reason why we use PyCaret to show an Auto Ma-

chine Learning selection model based on these metrics. With respect to the GTD and sat-

ellite remote sensing datasets, the regression model Huber (R2 = 0.60) yields a higher 

power compared to Linear (R2 = 0.54) and Extra Trees (R2 = 0.45). In the case of the GTD 

and UAV remote sensing datasets, the best regression models were the kNN Regressor 

(R2 of 0.76), Extra Trees Regressor (R2 of 0.75), and Bayesian Ridge (R2 of 0.70). Our study 

evaluated the VIs obtained from satellite (S2), UAV images, and GTD parameters against 

more than twenty-five models to obtain the best fit. In both cases, the Extra Tree Regressor 

significantly estimates the DM content. The high variance in the 10-fold cross-validation 

score causes the overfitting of the learning curve. Hence it is important to consider the R2 

and RMSE. The generalized results can be obtained by incorporating more data with the 

stratified k-folds sampling method, where this technique is used when the size of the da-

taset is not very large. It is important to explain that the learning curve showed overfitting 

issues during the model building. The dataset used for training was relatively small; 

hence, convergence was not observed between the training and cross-validation score. 

On the other hand, the advancement in cloud computing, such as GEE, supports 

user-friendly and cost-effective solutions to analyze the five V’s of big data (volume, va-

riety, velocity, veracity, and value), extraction, prediction or classification, and automa-

tion of decision support systems [50,51]. In addition, remote sensing cloud services such 

as GEE facilitate crop condition assessment at different time windows or conditions to 

improve the sustainability and effectiveness of plant health [52]. The opportunity to mon-

itor and estimate Brachiaria pasture parameters with free satellite data such as S2 in the 

cloud using GEE or other cloudy remote sensing platforms will give the possibility to es-

tablish future research to benefit researchers and farmers. Therefore, in the first instance, 

we recommend using satellite data for large scales to estimate the different AGB features. 

If the study requires more accuracy or has more time and economic resources, we suggest 

testing other geospatial methods, such as using UAVs. 

5. Conclusions 

In this study, we proposed a machine learning-based predictive model to estimate 

the above-ground biomass in Brachiaria pastures using satellite and UAV imagery. We 

integrated Python programming for image data processing, Pheno-i to extract the fea-

tures, machine learning models to predict the above-ground biomass, and Jupyter note-

books to create an interactive computational environment to develop the study further. 

The results demonstrate that Huber Regressor and Linear regression models satisfac-

torily select the GTD parameters and satellite images to predict the above-ground biomass 

in Brachiaria pastures. In feature variable screening and prediction, these models show 

significant potential. Similarly, kNN, Extra Trees Regressor, and Bayesian Ridge models 

successfully select the GTD parameters and UAV image features, demonstrating excellent 

predictive performance with high accuracy. The UAV images using the VIs and canopy 

features have great potential to predict the above-ground biomass in Brachiaria. Com-

pared to satellite (S2) images, the UAV images had a more accurate prediction of above-

ground biomass. The potential application of S2 and UAV images together contributes to 

the increased knowledge for predicting and monitoring the quality of permanent grass-

lands through large areas in Colombia. Regardless of the accuracy of these models’ out-

puts in both satellite and UAV images, to a certain extent, the machine learning models 

predicted AGB closer to the GTD. To our knowledge, this is the first study to use a model-

based approach to provide a decision management system to determine the rotational 

grazing system, thus estimating the length of grazing and resting period, boosting pasture 

yield for profitable livestock production. To date, Sentinel-2 data are available free of cost 
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and provide high spatial and temporal resolution data. In future studies, we want to eval-

uate our models in multiple farms and pastures, establishing a DM estimation pipeline 

method using only remote sensing. 
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