

TRABAJO FINAL DE GRADO

Título del TFG: Development of a drone-based miniaturized payload for the
LoRa communications experiment proof-of-concept

Titulación: Grado en Ingeniería Aeroespacial e Ingeniería de
Telecomunicaciones

Autor: Diego Iván Tirado Hernández

Director: Hyuk Park y Lara Fernández Capon

Fecha:

Título del TFG: Development of a drone-based miniaturized payload for the
LoRa communications experiment proof-of-concept

Autor: Diego Iván Tirado Hernández

Director: Hyuk Park y Lara Fernández Capon

Fecha:

Resumen

El detector de teledetección e interferencia con radiometría y análisis de
vegetación (RITA), es una carga útil de 1U que volará a bordo de Alainsat-1,
un CubeSat de 3U. Entre otras cargas útiles, realizará una prueba de concepto
de un módulo personalizado LoRa para las comunicaciones espacio-tierra
entre el satélite y una red terrestre de sensores del Internet de las Cosas.

La prueba de concepto del experimento de comunicaciones LoRa se ha
realizado utilizando varios nodos de tierra IoT y una carga útil miniaturizada
basada en un dron. Las comunicaciones se han realizado utilizando dos
protocolos MAC compatibles con un escenario IoT: ALOHA puro y CSMA/CA
con RTS/CTS. En ambos protocolos, la información útil que se envía son los
datos contenidos en el paquete de datos. En este paquete se almacenan los
datos obtenidos por el sensor capacitivo de humedad del suelo y el sensor de
temperatura.

Para realizar la prueba de concepto del experimento de comunicaciones LoRa,
se han realizado dos campañas de medidas. En la primera campaña de
medidas se ha comprobado el correcto funcionamiento de los módulos y
sensores LoRa. En la segunda campaña de medidas, se han realizado varios
experimentos en los que se han probado los protocolos ALOHA puro y
CSMA/CA con RTS/CTS. Para poder probar diferentes experimentos con
distintas configuraciones de los protocolos, se ha diseñado una estructura de
código general en la que tanto los nodos de tierra como la carga útil del dron
son controlados por un comando enviado por el usuario. Por tanto, la elección
del protocolo a utilizar, así como los parámetros configurables de cada
protocolo se envían a través de un comando remoto.

Finalmente, se analizan los resultados obtenidos en ambos protocolos y se
concluye cuál de los dos tiene mejores prestaciones frente a un escenario de
comunicaciones IoT.

Final degree project 4

TFG title: Development of a drone-based miniaturized payload for the LoRa
communications experiment proof-of-concept

Author: Diego Iván Tirado Hernández

Director: Hyuk Park and Lara Fernández Capon

Date:

Overview

The remote sensing and interference detector with RadIometry and vegeTation
Analysis (RITA), is a payload of 1U that will fly onboard Alainsat-1 a 3U
CubeSat. Among other tests and experiments, it will perform a proof of concept
of a LoRa custom module for space-to-Earth communications between the
satellite and a terrestrial network of Internet of Things sensors.

The LoRa communications experiment proof-of-concept has been performed
using several ground IoT nodes and a miniaturized drone-based payload. The
communications have been performed using two MAC protocols which are
compatible with an IoT scenario: pure ALOHA and CSMA/CA with RTS/CTS.
In both protocols, the useful information to be sent is the data contained in the
Data Packet. In this packet, the data obtained by the capacitive soil moisture
sensor and the temperature sensor are stored.

In order to perform LoRa communications experiment proof-of-concept, two
measurement campaigns have been realized. In the first measurement
campaign, the correct functioning of the LoRa modules and sensors has been
tested. In the second measurement campaign, several experiments have been
performed in which pure ALOHA and CSMA/CA protocols have been tested. In
order to test different experiments with different configurations of the protocols,
a general code structure has been designed where both the ground nodes and
the drone payload are controlled by a command sent by the user. Therefore,
the choice of the protocol to be used as well as the configurable parameters of
each protocol are sent through a remote command.

Finally, the results obtained in both protocols are analyzed and it is concluded
which of the two has better performance against a IoT communications
scenario.

Acknowledgments

First, I would like to thank my co-tutor Lara Fernandez Capon, who has helped
and guided me to make this project possible. I would also like to thank Adriano
José Camps Carmona and Hyuk Park for making possible my collaboration in the
RITA project at the NanoSat Lab.

Finally, a special mention to my family, friends, and couple for their support
throughout this double degree.

Final degree project 6

TABLE OF CONTENTS

RESUMEN ... 3

OVERVIEW .. 4

ACKNOWLEDGMENTS .. 5

TABLE OF CONTENTS ... 6

CHAPTER 1: INTRODUCTION ... 14

1.1. Introduction .. 14

1.2. LoRa communications experiment proof-of-concept objectives 18

CHAPTER 2: STATE OF THE ART OF TECHNOLOGY USED OR APPLIED 20

2.1. Nanosatellites IoT Communication Technologies ... 20
2.1.1. Introduction ... 20
2.1.2. LEO satellite constellation .. 21
2.1.3. LPWAN technologies for satellite communications .. 22

2.2. LoRa .. 24
2.2.1. LoRa Network Architecture ... 25
2.2.2. LoRa Physical Layer Parameters ... 26
2.2.3. Physical Layer Frame Format .. 27

2.3. Media Access Control layer .. 29

2.4. Random-Access protocols ... 33
2.4.1. Pure ALOHA ... 34
2.4.2. Carrier Sense Multiple Access ... 37

2.4.2.1. Carrier Sense Multiple Access with Collision Avoidance 40

CHAPTER 3: APPLIED METHODOLOGY FOR SOFTWARE AND HARDWARE
DEVELOPMENT .. 45

3.1. General architecture of the LoRa communications proof-of-concept experiment 45

3.2. Methodology applied in the software design ... 47
3.2.1. Arduino Software IDE ... 47
3.2.2. General design of the code developed for the experiment 51

3.2.2.1. Control commands for the experiment .. 51
3.2.2.2. Overall code design ... 53
3.2.2.3. Pure ALOHA design .. 65
3.2.2.4. CSMA/CA design .. 73
3.2.3. Calculation of the adjustable parameters of both protocols 85

3.1.1.1. ALOHA protocol parameters ... 85
3.1.1.2. CSMA/CA protocol parameters ... 87

3.3. Methodology applied in the hardware design .. 91
3.3.1. Ground node design ... 91

3.3.1.1. CubeCell modifications required ... 98

3.3.1.2. Design of the stripboard integrated into the CubeCell 100
3.3.1.3. Sensor calibration .. 103
3.3.1.4. Connections between devices .. 104
3.3.2. Drone-based miniaturized payload design for LoRa communications 108

CHAPTER 4: FIRST MEASUREMENT CAMPAIGN 111

4.1. First Measurement Campaign .. 111

4.2. Analysis of the results of the experiment ... 112

CHAPTER 5: SECOND MEASUREMENT CAMPAIGN 115

5.1. Second Measurement Campaign Specifications ... 115
5.1.1. Location chosen for the experiment ... 116
5.1.2. Specifications of the different experiments performed 116
5.1.3. Distribution and location of the ground nodes .. 117
5.1.4. Assembly of the payload on the drone and flight path 118

5.2. Sensor data results ... 120

5.3. Results of the pure ALOHA experiment .. 121
5.3.1. Analysis of packages transmitted and received ... 121
5.3.2. Analysis of packages received during the waiting time 123
5.3.3. Analysis of successful communications ... 124

5.4. Results of the CSMA/CA experiment ... 127
5.4.1. Analysis of packages transmitted and received ... 127
5.4.2. Analysis of packages received during waiting times .. 131
5.4.3. Analysis of successful communications ... 135

5.5. Analysis and comparison of the performance of both experiments........................ 138

CHAPTER 6: CONCLUSIONS AND FUTURE DEVELOPMENT 141

CHAPTER 7: BIBLIOGRAPHY ... 143

CHAPTER 8: APPENDICES .. 146

8.1. Work plan ... 146
8.1.1. Work packages ... 146
8.1.2. Gantt diagram ... 147

8.2. Annex A .. 148
8.2.1. Analysis of packages transmitted and received ... 148
8.2.2. Analysis of packages received during the waiting time 150
8.2.3. Analysis of successful communications ... 151

8.3. Annex B .. 154
8.3.1. Analysis of packages transmitted and received ... 154
8.3.2. Analysis of packages received during waiting times .. 158
8.3.3. Analysis of successful communications ... 159

8.4. Code .. 162

Final degree project 8

LIST OF FIGURES

Fig. 1.1: Section view of the 3U satellite, with the MWR and LoRa antennas
in yellow, and the RITA payload shown in the foreground [12] 16
Fig. 1.2: Block diagram of the payload components [12] 16
Fig. 2.1: Expected transmission ranges versus Bandwidth of LoRa and
other technologies .. 25
Fig. 2.2: LoRa Network architecture [Source: 16] 26
Fig. 2.3: LoRa frame structure [19] .. 27
Fig. 2.4: Taxonomy of multiple-access protocols [21] 29
Fig. 2.5: Vulnerable time for pure ALOHA protocol [21] 35
Fig. 2.6: Procedure for pure ALOHA protocol .. 36
Fig. 2.7: Space/time model of a collision in CSMA [21] 37
Fig. 2.8: Vulnerable time in CSMA [21] .. 38
Fig. 2.9: Behavior of 1-persistent method [21] ... 38
Fig. 2.10: Behavior of nonpersistent method [21] 39
Fig. 2.11: Behavior of p-persistent method [21] 39
Fig. 2.12: Procedure for CSMA/CA protocol .. 41
Fig. 2.13: RTS/CTS Communication with NAV [22] 43
Fig. 2.14: CSMA/CA and NAV ... 44
Fig. 3.1: Main outline of the communication between the different devices
 45
Fig. 3.2: Devices used in ground nodes. .. 46
Fig. 3.4: Adjustable parameters of the LoRa physical layer 48
Fig. 3.5: Callback functions .. 49
Fig. 3.6: “void setup” configuration ... 50
Fig. 3.7: Pure ALOHA command architecture and values of the different
variables and sending structure of the package 52
Fig. 3.8: CSMA/CA command structure ... 52
Fig. 3.9: Beacon packet structure .. 53
Fig. 3.10: Data Packet structure .. 54
Fig. 3.11: ACK packet structure ... 54
Fig. 3.12: RTS packet structure ... 55
Fig. 3.13: CTS packet structure ... 55
Fig. 3.14: Different categorizations of states, packets, and protocols of the
ground nodes code (red) and the drone payload code (blue). 56
Fig. 3.15: Simplified structure of the “void loop()” function of the ground
nodes code ... 57
Fig. 3.16: Simplified structure of the “void OnRxDone()” function of the
ground nodes code ... 58
Fig. 3.17: Structure of the “Flag Determination” on the “void OnRxDone()”
function of the ground nodes code ... 59
Fig. 3.18: Structure of the “void OnTxDone()” function of the ground nodes
code 59
Fig. 3.19: Simplified structure of the “void OnRxTimeout()” function of the
ground nodes code ... 60
Fig. 3.20: Structure of the “void OnTxTimeout()” function of the ground
nodes code ... 60
Fig. 3.21: Simplified structure of the “void loop()” function of the drone
payload code .. 61

Fig. 3.22: Simplified structure of the “void OnRxDone()” function of the
drone payload code .. 62
Fig. 3.23: Structure of the “Flag Determination” on the “void OnRxDone()”
function of the drone payload code .. 63
Fig. 3.24: Structure of the “void OnTxDone()” function of the drone payload
code 63
Fig. 3.25: Simplified structure of the “void OnRxTimeout()” function of the
drone payload code .. 64
Fig. 3.26: Structure of the “void OnTxTimeout()” function of the drone
payload code .. 65
Fig. 3.27: Structure of the different states of the pure ALOHA protocol in the
void loop() function of the drone payload. .. 66
Fig. 3.28: Case where a beacon is received in the “void OnRxDone()”
function in the ground nodes code. .. 67
Fig. 3.29: Structure of the different states of the pure ALOHA protocol in the
“void loop()” function in the ground nodes code. 68
Fig. 3.30: Structure of the processes of the pure ALOHA protocol in the void
OnRxDone() function of the drone payload. ... 69
Fig 3.31: Case where a ACK packet is received in the “void OnRxDone()”
function in the ground nodes code. .. 70
Fig. 3.32: Case where a Data Packet is received in the “void OnRxDone()”
function in the ground nodes code ... 71
Fig. 3.33: “void OnRxTimeout()” function of the ground nodes code 72
Fig. 3.34: Wrong packet case on the ground nodes code 73
Fig. 3.35: Structure of the different states of the CSMA/CA protocol in the
void loop() function of the drone payload. .. 74
Fig. 3.36: Case where a beacon is received in the “void OnRxDone()”
function in the ground nodes code. .. 75
Fig. 3.37: Structure of the void loop() function of the ground nodes code.
 76
Fig. 3.38: Case where a RTS is received in the “void OnRxDone()” function
in the ground nodes code. .. 76
Fig. 3.39: Case where a CTS is received in the “void OnRxDone()” function
in the ground nodes code. .. 77
Fig. 3.40: Case where a ACK is received in the “void OnRxDone()” function
in the ground nodes code. .. 77
Fig. 3.41: Case where a Data Packet is received in the “void OnRxDone()”
function in the ground nodes code. .. 78
Fig. 3.42: “void OnRxTimeout()” function of the ground nodes code........ 79
Fig. 3.43: Structure of the case where a RTS packet is received in the “void
OnRxDone()” function of the drone payload. .. 80
Fig 3.44: Structure of the case where a Data Packet is received in the void
OnRxDone() function of the drone payload. ... 82
Fig. 3.45: Wrong packet case in the CSMA/CA protocol on the ground
nodes code ... 84
Fig. 3.46: Further location of nodes and drone in the experiment scenario
 86
Fig. 3.47: Outline of the CSMA/CA communication 90
Fig. 3.48: Capacitive Soil Moisture Sensor v1.2 92

Final degree project 10

Fig. 3.49: Missing voltage regulator in the capacitive soil moisture sensor.
 93
Fig. 3.50: capacitive soil moisture sensor schematic [24] 93
Fig. 3.51: Comparison of the different locations of the via hole in the
capacitive soil moisture sensor... 94
Fig. 3.52: Solution to the unresponsive problem in the capacitive soil
moisture sensor .. 94
Fig. 3.53: Temperature Accuracy vs. Temperature [25] 95
Fig. 3.54: HDC1080 sensor ... 96
Fig. 3.55: First design proposed for the ground node 97
Fig. 3.56: CubeCell HTCC-AB01 Pinout Diagram [26] 98
Fig. 3.57: Schematic of the AO7801 chip [26] ... 99
Fig. 3.58: Resistance BR01 to remove [26] ... 99
Fig. 3.59: Experimental 𝑉𝐴𝑂𝑚𝑎𝑥 measurements of the capacitive soil
moisture sensor .. 101
Fig. 3.60: Final model of the stripboard integrated into the CubeCell 102
Fig. 3.61: Connections of the stripboard integrated into the CubeCell ... 103
Fig. 3.62: Code for reading soil moisture and temperature sensors 104
Fig. 3.63: Corrupt data and data loss of the SD reading 105
Fig. 3.64: Battery regulator with the 3,7 V LiPo battery 106
Fig. 3.65: Connections between different devices. 107
Fig. 3.66: Assembly process of the different nodes 107
Fig. 3.67: Drone 3D Robotics Iris+ with the payload design 108
Fig. 3.68: Connection diagram of the different devices in the payload design
 109
Fig. 3.69: Miniaturized drone-based payload for LoRa communications and
GNSS-R ... 110
Fig. 4.1: Receiver and transmitter of the first experiment. 111
Fig. 5.1: Map of the scenario where the measurement campaign is
performed ... 116
Fig. 5.2: Different characteristics of the experiments 117
Fig. 5.3: Location of the different groups with the respective nodes 118
Fig. 5.4: Drone Condor with assembled payload. 119
Fig. 5.5: Flight path of the experiment ... 119
Fig. 5.7: Sensor data results .. 120
Fig. 5.8: Pure ALOHA – Average percentage of Data Packets received
versus Data Packet sent by the nodes (%). ... 122
Fig. 5.9: Pure ALOHA – Percentage of ACK received versus ACK sent by
the drone (%).. 123
Fig. 5.10: Pure ALOHA – Percentage of the average packages received
during the waiting time. .. 124
Fig. 5.11: Pure ALOHA – Average percentage of ACK received versus data
packets sent. .. 125
Fig. 5.12: Pure ALOHA – Average percentage of successful
communications versus failed communications after Kmax attempts 126
Fig. 5.13: Pure ALOHA – Average percentage of attempts needed for a
successful communication. .. 126
Fig. 5.14: CSMA/CA – Average percentage of RTS received versus RTS
sent by the nodes ... 128

Fig. 5.15: CSMA/CA – Average percentage of CTS received versus CTS
sent by the drone .. 129
Fig. 5.16: CSMA/CA – Average percentage of Data Packet received versus
Data Packet sent by the nodes... 130
Fig. 5.17: CSMA/CA– Average percentage of ACK received versus ACK
sent by the drone .. 130
Fig. 5.18: CSMA/CA – Average percentage of times the CTS has been
received against times the wait time has expired 132
Fig. 5.19: CSMA/CA – Average percentage of packages received during the
waiting time to receive the CTS .. 133
Fig. 5.20: CSMA/CA – Average percentage of times the Data Packet has
been received against times the wait time has expired 134
Fig. 5.22: CSMA/CA – Average percentage of ACK received versus RTS
sent. 135
Fig. 5.23: CSMA/CA – Average percentage of successful communications
versus failed communications after Kmax attempts 136
Fig. 5.24: CSMA/CA – Average percentage of attempts needed for a
successful communication ... 137
Fig.5.25: Comparison of communication success in experiments 1 and 6
 138
Fig. 5.26: Comparison of communication success in experiments 3 and 4
 139

Final degree project 12

LIST OF TABLES

Table 2.1: Main LPWAN technologies comparison [Source:16] 24
Table 3.1: Time On Air of the different packets in the CSMA/CA protocol.
 88
Table 3.2: Important characteristics of the HDC1080 sensor [25] 95
Table 3.3: Conversion time in function of the resolution of the HDC1080
sensor [25] ... 96
Table 3.4: Maximum analog output voltage (𝑉𝐴𝑂𝑚𝑎𝑥) of the capacitive soil
moisture sensors .. 100
Table 4.1: Soil moisture measurements .. 112
Table 4.2: Realistic soil moisture values [28] ... 114

LIST OF ACRONYMS

IOT Internet Of Things

LORA Long Range

LPWAN Low Power Wide Area Network

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CSMA/CD Carrier Sense Multiple Access with Collision Detection

RTS Request To Send

CTS Clear To Send

SIFS Short InterFrame Space

DIFS Distributed coordination function InterFrameSpace

ACK ACKnowledgement

NAV Network Allocation Vector

SF Spreading Factor

CR Coding Rate

BW Bandwidth

CF Carrier Frequency

TP Transmission Power

FEC Forward Error Correction

CRC Cyclic Redundancy Check

LLC Logical Link Control

OSI Open Systems Interconnect

SDR Software Defined Radio

MAC Media Access Control

LEO Low Earth Orbit

MEO Medium Earth Orbit

GEO Geosynchronous Equatorial Orbit

HEO High Earth Orbit

PO Polar Orbit

SSO Sun Synchronous Orbit

RTT Round Trip Time

COTS Commercial Off-The-Shelf

TOA Time On Air

RFI Radio Frequency Interference

FMPL Flexible Microwave Payload

GNSS-R Global Navigation Satellite System Reflectometry

FSPL Free Space Path Loss

3GPP Third Generation Partnership Project

QPSK Quadrature Phase Shift Keying

MNO Mobile Network Operator

CSS Chip Spread Spectrum

Final degree project 14

CHAPTER 1: INTRODUCTION

1.1. Introduction

In the early days of space exploration, satellites were large objects that cost large
amounts of money and took many years to build in the 1950s, the Soviet Union
initiated the Sputnik satellite project, the first artificial satellite to orbit the Earth.
This event marked the beginning of a competition between two powerful countries
that resulted in a technological development in aerospace sciences. The
satellites created later were satellites designed for very specific missions. Each
mission had its own subsystems to meet the requirements of a given project.
Today, numerous satellites are in orbit to provide us with different applications
such as positioning systems, Earth observation and communications. Among all
applications, telecommunications have been the most widespread and used
application. This is because with the use of satellites we are able to cover the
entire surface of the Earth, providing connectivity to remote or isolated areas that
are practically impossible to cover by other means.

Traditionally, designing and developing a satellite is difficult, complex, expensive
and takes long periods of time to develop. However, decades later a new
paradigm was established that significantly reduced the size of some satellites.
In 1999, the CubeSat [1] standard emerged, which allowed access to space,
offering satellite development opportunities to institutions that did not have
access. The basic design of a CubeSat consists of a 10 cm cube, called 1U,
which contains the primary subsystems for proper operation. They are used to
study the behavior of different technologies in a space environment and a wide
range of services such as communications or Earth observation.

Within these communication satellites, Internet Of Things (IoT) has had a lot of
momentum in the past years. The IoT is a burgeoning paradigm that points out a
novel direction of future internet, in which devices are provided with Internet
connection and some software intelligence. These capabilities allow for IoT
devices to be controlled remotely, enabling access to an ecosystem of various
services. Moreover, through those easy accesses, various kinds of IoT devices
such as, environmental monitoring sensors, smart household electrical
appliances, actuators, vehicles, among others, are able to exchange data with
IoT networks and provide unlimited services to a multitude of users: individual
users, enterprise users, government users, military users, etc.

IoT devices can be classified according to communication ranges: short-range
and Low Power Wide Area Network (LPWAN) [2]. Compared to short-range
connections based on Zigbee or Bluetooth, LPWANs have a longer
communications range still with low power consumptions, and are more suitable
for rural or industrial scenarios, such as smart grid and environmental monitoring.
The main LPWAN technologies are Sifgox [3], NarrowBand-IoT (NB-IoT) [4], and
LongRange (LoRa) [5]. Each of these devices communicates independently with

Final degree project 15

a gateway or base station, which in turn connects to the network, to make data
available. This required infrastructure is feasible to deploy in rural areas.
However, in remote areas, where the placement of gateways requires the
deployment of considerable infrastructure, satellites are used to communicate
with these devices [2]. In addition, the demand for connectivity is increasing
worldwide. It is estimated that the IoT communications market will have an impact
on the economy of close to three to eleven trillion dollars per year by 2025 [6]. In
this scenario, satellite technology seems to offer a critical solution to the global
connectivity problem. However, traditional satellites are expensive, so cheaper
satellite solutions have become the focus of growing interest. By bringing together
the need for greater coverage of IoT networks and new technologies that offer
smaller and cheaper satellites, a constellation of CubeSat satellites orbiting in the
Earth's low orbits can be the best answer to the global connectivity that IoT
demands.

Space-to-Earth communications are a challenge due to long distances,
attenuations and satellite movement. For that reason, it is necessary to study the
different LPWAN technologies and determine which one is the most appropriate
for use in this type of communication. In addition, these wireless communications
must be controlled with medium access layer mechanisms, to ensure the proper
coordination of frame transmissions, together with the logic for retransmissions
and the recovery of data in case of collisions. Among LPWANs, LoRa is a novel
technology that has gained great interest in recent years for satellite
communications. Several studies have evaluated the limitations of the technology
in space-to-Earth communications [2], in addition to studying the different MAC
protocols for LoRa modulation. The most frequently used one is LoRaWAN,
proposed by the LoRa Alliance, and it uses an extensive network of gateways
denominated the Things Network. However, it has been demonstrated that this
MAC protocol has certain capacity limitations [7]. Aside from LoRaWAN, other
different protocols have been studied to enhance the capacity and the range of
LoRa networks [8][9]. However, all these papers considered an architecture in
which nodes are always in range of the gateway. In a scenario where the satellite
is the gateway, the different IoT devices are always not within reach of the
gateway, which is why it is necessary to consider MAC protocols suited to a
scenario where the gateway is not accessible at every moment and where
multiple devices try to access the medium simultaneously. In general, the most
suitable protocols for IoT satellite communication scenarios were identified in the
article [10], where a state-of-the-art study of the proposed protocols is presented
providing different types of metrics. Two of the protocols proposed in [10] have
been selected to perform the proof of concept in this thesis: pure ALOHA and
CSMA/CA with RTS/CTS.

The Remote sensing and Interference detector with RadIomeTry and vegetation
Analysis (RITA) payload, carried out by the NanoSat Lab an organization of the
“Universitat Politecnica de Catalunya” (UPC), is one of the Remote Sensing
payloads selected by the 2nd GRSS Student Grand Challenge in 2019 to fly on
board of a 3U satellite that is being developed at the National Space Science and
Technology Center (NSSTC), United Arab Emirates University [11]. The main
objectives of RITA are to perform microwave radiometry measurements at L-

Final degree project 16

band, vegetation analysis using a hyper-spectral camera, Radio-Frequency
Interference (RFI) detection and classification, and a technology demonstration
of sensor networks using a custom LoRa transceiver. Radiometry
measurements, RFI detection, and the LoRa experiment will be performed using
a Software Defined Radio (SDR) with a frontend designed as a modified version
of the Flexible Microwave Payload 1 (FMPL-1) used in the 3Cat-4 mission.

Fig. 1.1: Section view of the 3U satellite, with the MWR and LoRa antennas in
yellow, and the RITA payload shown in the foreground [12]

The LoRa IoT module [12] embarked as part of the RITA payload will be a proof-
of-concept payload to verify the communications space-to-Earth with an SDR-
based LoRa modulation and a radiofrequency Front-End for signal conditioning.
In the figure 1.2 it can be observed the bock diagram of the RITA payload
components.

Fig. 1.2: Block diagram of the payload components [12]

Final degree project 17

To test LoRa communications using different MAC protocols and compare which
one is the most suitable, multiple LoRa modules with sensors will be placed in a
target area, and these sensors will communicate with the LoRa module of the
RITA payload using the HelTec CubeCell Dev-Board HTCC-AB01 transceiver.

In the scenario, the RITA satellite orbits the Earth in a LEO orbit and
communicates with the different ground nodes located around the Earth. These
ground nodes are located with different spatial densities depending on the
environmental disaster to be measured [13]. Given the low altitude of satellites in
LEO orbit, they are not seen statically from the Earth. In fact, from a fixed point
on Earth, a satellite in LEO is only seen for 8 to 10 minutes, depending on the
latitude and longitude, where the node is located. This creates a disruption from
the nodes' point of view, as they do not know when a satellite is available to
transmit data packets. Therefore, the satellite transmits a periodic beacon every
8 minutes, which reaches all nodes within range. This beacon ensures that all
nodes are aware that a satellite is ready to receive or transmit data. In addition to
the beacon, acknowledgment packets (ACK) and control packets (CTS) are also
sent.

The structure of this project is divided into 6 chapters, this first chapter is an
introduction to the work.The second chapter is the State of the Art of technology
used or applied. This chapter explains the technologies used in this project,
including IoT technology, LoRa technology and MAC protocols. The third chapter
details the applied methodology for software and hardware development. This
chapter is separated into two main parts. Firstly, it explains how the software has
been implemented using flowcharts. Secondly, it is described how the hardware
has been developed for both the ground nodes and the miniaturized drone-based
payload. The fourth chapter explains how the first measurement campaign was
conducted and what results and conclusions were obtained. In this campaign
LoRa communications were tested using LoRa modules and one of the sensors
used was also tested. The fifth chapter is structured in five parts. The first part
describes how the second measurement campaign was performed. Secondly,
the results of the soil moisture and temperature sensors are analyzed. Thirdly
and fourthly, the results obtained in the pure ALOHA and CSMA/CA experiments
are analyzed, respectively. Fifth, both protocols are analyzed and compared.
Finally, the sixth chapter contains the conclusions obtained in this project and
discusses possible improvements and future developments.

Final degree project 18

1.2. LoRa communications experiment proof-of-concept
objectives

The main idea of this thesis is to perform a proof of concept of the different media
access protocols for LoRa communications using a miniaturized drone-based
payload and several IoT ground nodes includingmtwo types of sensors
(capacitive soil moisture sensor and temperature sensor) and the HelTec
CubeCell Dev-Board HTCC-AB01 transceiver, which can communicate using the
LoRa physical layer. In this experiment, two types of MAC protocols suitable to
IoT environments will be tested to communicate with the miniaturized drone-
based payload and the obtained results will be analyzed. The main objectives are
the followings.

The first objective of the thesis is to design and implement pure ALOHA and
CSMA/CA protocols in a single code on the HelTec CubeCell Dev-Board HTCC-
AB01 transceiver. In the experiment, both protocols will be tested separately, so
it is necessary to design a code which can switch between protocols when
desired. This will be done through a command which will be sent by the user. This
command contains the necessary information of the protocol to be used and
reaches both the IoT devices and the gateway, which will be implemented in a
drone that will perform the function of the satellite. Once the command reaches
the drone's payload, it sends a beacon to initiate communications with the chosen
protocol.

The second objective of the thesis is to design the IoT ground nodes and the
drone-based miniaturized payload to be assembled on a drone. To perform the
proof-of-concept, it is necessary to simulate the IoT ground nodes with various
sensors and the payload concerning the LoRa communications of the RITA
satellite. A soil moisture sensor and a temperature sensor, will be considered in
the design of the IoT ground nodes. The data collected by these sensors shall be
sent as data packets in the different protocols. In the design of the drone-based
miniaturized payload, a lightweight and space-efficient design should be
considered. Since the RITA payload is equipped with a software-defined radio for
microwave radiometry and RFI detection, a hyperspectral camera and a LoRa
transceiver (which will work together to produce more accurate vegetation-related
measurements), the drone payload should also consider space for both
experiments and test them simultaneously as in a realistic case. For that reason,
the design of the drone payload considers two systems. The system for the LoRa
communications experiment and the system for the GNSS-R experiment were
performed by a member of the NanoSat Lab.

The third objective is to test the implemented protocols in a measurement
campaign in which the miniaturized drone-based payload will be assembled on a
drone and fly around a given area where the different ground nodes will be
located. The ground nodes will be clustered with different densities and different
experiments will be performed with the implemented protocols where the
efficiency will be tested as a function of channel saturation. The ground nodes
will capture the data and process it to determine which protocol has the best
performance.

Final degree project 19

Initially, one of the parts of this thesis only proposed the implementation of the
two MAC layer protocols in the transceivers of the ground nodes to communicate
with the RITA LoRa module. However, due to certain setbacks, a CubeCell LoRa
transceiver has finally been used as a payload of the drone to be able to make
communications with the IoT nodes. Therefore, the code of the drone-based
payload has also had to be designed and implemented to be able to carry out the
campaign of measures and not delay the delivery of this final degree project.

Final degree project 20

CHAPTER 2: State of the art of technology used or
applied

2.1. Nanosatellites IoT Communication Technologies

2.1.1. Introduction

The Internet of Things (IoT) is a revolutionary technology that aims to connect
devices (or ''things'') placed all over the world for different applications such as
environmental monitoring, security, among others. To perform all these
applications, it is necessary to have devices that store this information and are
able to transmit it. Therefore, these devices require the ability to transmit and
receive information. In addition, they also require connectivity to a network such
as the Internet or other private networks. In some cases where these devices are
used, they are in rural or remote areas which are difficult to access. For this
reason, these devices have been designed to be low-powered and thus reduce
the interaction with maintenance. IoT devices are often powered by batteries or
solar panels if the application of use allows it. Some more modern devices are
capable of generating power from the environment, achieving up to several years
of autonomy. However, this low-power profile limits the power transmitted to
communicate. This causes the communication range and data rate to be affected.
Considering these limitations, different IoT technologies have emerged over the
years to meet these requirements. Different standards have appeared. Some
examples are IEEE 802.15.4, Bluetooth Low Energy (BLE), and ZigBee.
However, if the application of using the devices must be placed in rural or remote
areas, it is necessary to deploy an expensive infrastructure for the devices to be
connected to it in order to be connected to a network.

To minimize infrastructure costs in rural areas and maximize the reach of different
devices, different IoT technologies have emerged. Some of them are classified
as low-power wide area networks (LPWANs), which are optimal for IoT
applications, as they only require sending small amounts of information over long
distances. These new LPWAN technologies have emerged in both licensed and
unlicensed frequency bands. Among them, Sigfox, LoRa, and NB-IoT are the
current leaders.

LPWANs can cover between 1 km and 10 km in urban areas and between 10 km
and 20 km in rural areas [14]. The way in which the different devices
communicate is as follows. Each device communicates independently with a
gateway or base station that is connected to the network. This communication is
bidirectional, so both devices (devices and gateway) receive and transmit
information. However, the uplink is defined as the messages sent from the
devices to the gateway. On the other hand, a downlink is defined as messages
from the gateway to the devices. Since the gateway is the central node between
all devices and they are able to communicate over long distances, infrastructure
costs are reduced in rural areas. However, the deployment of this infrastructure
in remote areas such as the poles or oceans remains costly and very complex.

Final degree project 21

Therefore, the design of an alternative infrastructure capable of covering such
remote areas remains necessary. A feasible solution for such scenarios is a
constellation of low earth orbit (LEO) satellites [6]. By using a LEO satellite
constellation, it is possible to achieve global coverage, thus managing to cover
the most remote areas. In the next section, technical aspects of the LEO satellite
constellation are discussed. Then, LPWAN technologies to be embarked in
CubeSat platforms for satellite communications are discussed. In this section,
different LPWAN technologies are presented, and it is demonstrated why LoRa
technology is the selected technology to be applied in this project.

2.1.2. LEO satellite constellation

This section categorizes the different types of orbits and presents the
characteristics that favor satellites in low Earth orbits (LEO) over other types of
orbits such as geostationary orbits (GEO).

Orbit types can be classified in several ways, by central body, inclination,
eccentricity, direction or synchronicity. However, orbit types are usually classified
by altitude. Within this categorization we find the low Earth orbit (LEO), medium
Earth orbit (MEO), geosynchronous orbit (GEO) and high Earth orbit (HEO). All
these orbits fall into the geocentric orbit family, as all these satellites orbit the
Earth.

LEO orbits are circular or elliptical orbits at an altitude between 200 km and 2000
km. The orbital period depends on the latitude and varies between 88 minutes
and 127 minutes. On the other hand, the velocity reached by these satellites is
27000 km/h, completing a total of 16 orbits around the Earth. For this reason, the
maximum time that a satellite is above the local horizon for a terrestrial observer
is up to 20 min. This time is used to transfer data to ground stations. This type of
satellites, being in a low orbit, have a minimum atmospheric resistance that
causes the gradual deterioration of the equipment and its permanence in space
is limited. Satellites can have orbits inclined between 0 and 90 degrees with
respect to the equatorial plane. There are two types of orbits derived from LEO
orbits. Polar orbits (PO) and sun synchronous orbits (SSO). A polar orbit is a type
of low Earth orbit in which the satellites pass approximately over the poles of the
planet. The approximate inclination is 90 degrees, although a deviation of 20 to
30 degrees is also accepted as a polar orbit. Sun synchronous orbits (SSO) is a
type of polar orbit. Objects in this orbit are synchronized with the Sun, so they
pass over a region of the Earth at the same local time every day.

Satellites in MEO orbit are located between 2000 km and 35786 km. Satellites
orbiting in this zone are mostly used for geographic positioning, such as GPS,
Galileo and GLONASS. The most commonly used altitude is 20200 km, with an
orbital period of 12 hours.

Satellites in GEO orbit are located at an altitude of 35786 km. The ideal satellites
for this zone are those destined for telecommunications, since the orbital period
of the satellite is the same as that of the Earth's rotation and it is more difficult for

Final degree project 22

them to lose the signal. The geosynchronous equatorial orbit is a type of GEO
orbit whose inclination is 0º, that is, the satellite's position is always maintained
on the equator of the celestial plane.

Finally, the satellites in HEO orbit are at a level above 35786 km altitude. The
orbital periods in this zone are longer than 24 hours. For this reason, satellites
located in this zone have an apparent backward movement. Since their velocity
is lower than that of the Earth's rotation, visually the satellite moves in the
opposite direction to the common objects in the sky.

Depending on the type of orbit a satellite follows, there are certain advantages
and disadvantages. Some of the advantages of LEO orbits over GEO orbits are
mentioned in the following paragraph.

LEO satellite constellation technology has unique advantages compared to GEO
systems. The first advantage is that a LEO satellite constellation has a shorter
propagation delay because it has a lower altitude orbit compared to GEO
satellites. The propagation delay is quantified by the round-trip time (RTT). A
satellite in LEO orbit has an RTT less than 100 ms, meanwhile, a satellite in GEO
orbit has an RTT greater than 600 ms [15]. Therefore, a constellation of LEO
satellites has less latency than a constellation of GEO satellites. The second
advantage is related to lower propagation losses due to a shorter distance
between the ground devices and the satellite. However, satellites in LEO orbit
have some disadvantages. Satellites in this type of orbit suffer from
communication disruptions, as they are not always visible to a ground-based
device. This is why a constellation of satellites orbiting the earth is necessary to
ensure global and uninterrupted coverage between satellite handovers.

Therefore, satellite constellations in LEO orbit offer greater advantages than
constellations in GEO orbit. In order to cover certain remote areas of the Earth
and have global coverage, it would be necessary to design a LEO satellite
constellation with a certain configuration. Employing a LEO constellation of
CubeSats using LPWAN gateways would provide coverage to all those IoT
devices located in remote areas at a reasonable cost. To enable different IoT
devices to communicate with satellites, certain limitations must be considered
that are not taken into account in the vast majority of terrestrial communications.
In space-to-ground communications, channel losses and Doppler frequency
shifts in the signal carrier must be considered. These losses are modeled with
the Free Space Path Loss (FSPL) model, as line-of-sight is achieved between
the satellite and the terrestrial IoT device. In addition, signals can also be
attenuated by effects such as atmospheric absorption and other weather
conditions such as rain and clouds. Therefore, it is necessary to evaluate the
feasibility of onboard LPWAN technologies on satellites.

2.1.3. LPWAN technologies for satellite communications

The most widely used LPWAN technologies are Sigfox, NarrowBand-IoT (NB-
IoT), and LoRa. In order to evaluate the different technologies presented above,

Final degree project 23

a comparison of the characteristics of the Physical Access Control/Media
(PHY/MAC) layer is considered. Among these characteristics used in LEO space-
to-Earth communications are modulation-coding techniques, frequency band,
maximum data rate, etc.

Sigfox is an LPWAN network operator offering an end-to-end IoT connectivity
solution based on its patented technologies. Sigfox deploys its own base stations
equipped with software-defined cognitive radios and connects them to back-end
servers via an IP-based network. End devices connect to these base stations
using binary phase shift keying (BPSK) modulation on an ultra-narrow (100 Hz)
sub-GHZ ISM band carrier. Sigfox uses unlicensed ISM bands, for example, in
Europe an 868 MHz band is used, in North America 915 MHz, and in Asia 433
MHz. By employing the ultra-narrow band, Sigfox uses the frequency bandwidth
in an efficient manner and suffers from very low noise levels, leading to very low
power consumption and high receiver sensitivity with a maximum throughput
ranging from 100 to 600 bps. On the other hand, in some of these bands the
transmitted power can be up to 22 dBm, and due to the modulation used the
received power sensitivity is -126 dBm. In addition, Sigfox technology is able to
compensate for frequency drift of up to ±30 Hz [16]. In addition, the MAC layer
protocol is tolerant to the delay experienced when communicating through LEO
satellites. However, the deployment of the base stations is the exclusive
responsibility of Sigfox, so it is not possible for other companies to embark
gateways on their satellites.

NB-IoT, referred to as cellular LPWAN, has been developed by the Third
Generation Partnership Project (3GPP) and is being integrated as part of 4G and
5G networks. This technology uses narrowband quadrature phase shift keying
(QPSK) modulation in a licensed band, with a maximum transmit power of 23
dBm and a sensitivity of -125 dBm. The data rate of NB-IoT technology is 26 kbps
from the base station to the devices and 66 kbps from the devices to the base
statites with eventually peaks at up to 250 kbps. The PHY/MAC layer protocol of
the NB-IoT technology is affected by both delay and Doppler. Therefore, this
protocol cannot be used without being adapted for space and Earth
communications. In addition, base stations are deployed by mobile network
operators (MNOs), so it is yet another limitation of the use of this LPWAN
technology.

LoRa is a long-range wireless communications system which uses a patented
Chirp Spread Spectrum (CSS) modulation, which is more resilient than others to
interference and jamming. LoRa uses unlicensed ISM bands as Sigfox and has
several parameters that must be configured in the transceivers. These
configurable parameters are transmitted power, bandwidth (BW), spreading
factor (SF), and coding rate (CR). The transmitted power can be up to 22 dBm,
and the sensitivity can be up to -125 dBm, offering a data rate of up to 27 kbps.
LoRa technology can be used with several different MAC layer protocols, being
LoRaWAN the most established. There are several manufacturers offering both
LoRa modules and gateways as COTS components. Therefore, it is entirely
feasible to propose a satellite gateway solution based on LoRa technology. In
fact, multiple studies and experiments have been carried out demonstrating the

Final degree project 24

great features of LoRa technology in space communications. Below is a summary
table of the properties of each of the above LPWAN technologies.

Table 2.1: Main LPWAN technologies comparison [Source:16]

Looking at the above table and considering the above mentioned for each of the
LPWAN technologies, the technology with the highest compatibility for satellite
communications is LoRa modulation. In addition, there are several manufacturers
which offer LoRa modules, making it much easier to deploy gateways compared
to NB-IoT and Sigfox. For these reasons, LoRa is the technology studied and
used in this project. In the following section, we will go into more detail about
LoRa technology.

2.2. LoRa

LoRa defines a physical layer technology developed by Cycleo in 2010, a
company that two years later was acquired by Semtech. This technology is
suitable for applications that transmit little data at low bit rates. One of the
properties of LoRa is that data can be transmitted over longer distances
compared to technologies such as Wi-Fi, Bluetooth, or ZigBee. The figure below
shows some access technologies that can be used for wireless data transmission
and their transmission ranges versus bandwidth.

Final degree project 25

Fig. 2.1: Expected transmission ranges versus Bandwidth of LoRa and other
technologies

LoRa, is a modulation technique based on spread spectrum techniques and a
variation of chirp spread spectrum (CSS). The LoRa chirp spread spectrum
(CSS) modulation uses frequency chirps with a linear variation of frequency over
time in order to encode information. Because it uses spread spectrum modulation
techniques, it uses the entire channel bandwidth to transmit a signal. This makes
the signal robust to channel noise.

Other key features that make LoRa stand out from other IoT technologies [18]
are the following. First, LoRa modulation is bandwidth and frequency scalable.
Frequency hopping can be used in narrow band and wideband direct sequence
applications. Second, it has a low power consumption. Third, has low noise
levels, making it highly resistant to interference, and difficult to detect or jam.
Fourth, LoRa is doppler resistant. Frequency offsets between the transmitter and
the receiver are equal to the timing offsets due to the linearity of the chirp. Fifth,
LoRa enhanced network capacity. LoRa allows multiple spread signals to be
transmitted at the same time and on the same channel without any degradation.
This is due to the use of orthogonal spreading factors. Finally, LoRa can be used
for ranging and localization. LoRa has the ability to linearly discriminate frequency
and time errors. It is an ideal modulation for radar applications and is therefore
suitable for ranging and location applications such as real-time location services.

2.2.1. LoRa Network Architecture

A typical LoRa network includes three types of devices: End-devices (IoT
Devices), Gateway/Base Station and Network Server, as shown in the figure 2.2.

Final degree project 26

Fig. 2.2: LoRa Network architecture [Source: 16]

Communication is bidirectional, defining the uplink and the downlink as follows.
The uplink messages are messages sent by the end devices (IoT devices) to the
Network Server relayed by one or more gateways. On the other hand, the
downlink messages are messages sent by the Network Server to a single end
device, which are relayed by a single gateway.

2.2.2. LoRa Physical Layer Parameters

In order to achieve the best performance in a given scenario, different parameters
can be configured: Bandwidth (BW), Spreading Factor (SF), Code Rate (CR),
Transmission Power (TP), and Carrier Frequency (CF).

With the aim of improve the spectral efficiency and the network capacity, the
LoRa modulation presents six orthogonal spreading factors (SF7, SF8, ..., SF12),
that result in six different data rates. For an available bandwidth, a higher
spreading factor reduces the bit rate and reduces the battery life by increasing
the transmission time. A given propagation factor (SF) and bandwidth (BW) gives
a bit rate defined by (2.1):

𝐵𝑖𝑡𝑅𝑎𝑡𝑒 = 𝑆𝐹 ·
𝐵𝑊

2𝑆𝐹
 (2.1)

In LoRa modulation the BW is configurable, and it can be set to 125, 250, or 500
kHz. Higher BW gives a higher data rate, but a lower sensitivity because of
integration of additional noise. In the other hand, a lower BW gives a higher
sensitivity, but a lower data rate.

Final degree project 27

CR is the Forward Error Correction (FEC) rate used by the LoRa modem that
offers protection against bursts of interference, and can be set to either 4/5, 4/6,
4/7 or 4/8. A higher CR offers more protection but increases time on air. This CR
provides a code gain that for the LoRa modulation is not specified. In fact, the
sensitivity depends only on the SF and the BW. Therefore, since CR does not
influence sensitivity, CR will not be considered in the link budget discussed in the
following sections.

These three modulation parameters determine the capacity (C) in bps of the
channel, which is computed as shown in (2.2):

𝐶 = 𝑆𝐹 ·
𝐶𝑅

[
2𝑆𝐹

𝐵𝑊]

(2.2)

As can be seen in (2.2), the capacity increases with an increase in BW, a
decrease in SF and a decrease in redundancy. The transmitted power can be up
to 22 dBm, however, depending on the implemented hardware it can be
significantly improved. Finally, the carrier frequency (CF) is the center frequency
that can be programmed in 61 Hz steps between 137 MHz and 1020 MHz [17].
Depending on the LoRa chip, this range may be limited to 860 MHz and 1020
MHz.

2.2.3. Physical Layer Frame Format

Although arbitrary frames can be transmitted in LoRa modulation, Semtech has
specified a physical frame format in which the bandwidth and spreading factor
are constant for a frame [19] as can be seen in the figure 2.3:

Fig. 2.3: LoRa frame structure [19]

The LoRa frame starts with a preamble. The preamble begins with a sequence
of upchirps (signal at which the frequency increases) covering the entire
frequency band. The last two upchirps encode the sync word, which is a value
used to differentiate LoRa networks using the same frequency bands. After the
preamble comes an optional header indicating the size of the payload, the code
rate used for the end of the transmission and if there is a cyclic redundancy check
(CRC) at the end of the payload. It also contains a CRC so that the receiver can

Final degree project 28

discard packages with non-valid headers. After the header the payload is sent.
Finally, in the end of the frame payload, an optional CRC is sent.

The transmission time of a signal varies depending on the different parameters
of the LoRa modulation. This time is called time on air (ToA). The ToA is the time
it takes for a signal to be transmitted, so it is the time during which the channel is
busy.The formula used to calculate the ToA of the packet is as follows.

 𝑇𝑝𝑎𝑐𝑘𝑒𝑡 = 𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (2.3)

 𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 = (𝑛𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 4,25) · 𝑇𝑠𝑦𝑚 (2.4)

𝑇𝑠𝑦𝑚 =
2𝑆𝐹

𝐵𝑊
 (2.5)

 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑛𝑝𝑎𝑦𝑙𝑎𝑜𝑑 · 𝑇𝑠𝑦𝑚 (2.6)

 𝑛𝑝𝑎𝑦𝑙𝑎𝑜𝑑 = 8 + max (𝑐𝑒𝑖𝑙 (
8·𝑃𝐿−4𝑆𝐹+28+16·𝐶𝑅𝐶−20𝐼𝐻

4·(𝑆𝐹−2𝐷𝐸)
) · (𝐶𝑅 + 4), 0) (2.7)

Where 𝑇𝑠𝑦𝑚 indicates symbol duration in ms; PL indicates Payload size in bytes;

SF indicates spreading factor; BW indicates bandwidth; CRC indicates Cyclic
Redundancy Check used for error detection of LoRaWAN packet, it can be either
enabled (1 - default) or disabled (0); Header ('H') can be implicit or explicit; Low
Data Rate Optimize (DE) can be enabled (1) or disabled (0); CR indicates Coding
Rate; 𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 is the preamble duration; 𝑛𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 is the number of symbols in

the preamble; 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is the payload and header duration; and 𝑛𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is the

number of symbols in the payload period.

In this work, ToA is calculated using a tool provided by The Things Network [20],
which measures ToA as a function of payload bytes, spreading factor (SF), region
and bandwidth.

Final degree project 29

2.3. Media Access Control layer

In a scenario where multiple nodes try to access the physical medium
simultaneously, it may cause several packets to collide, losing the information
they contain. To avoid corruption or destruction of information transmitted through
IoT nodes, access to the shared media in an orderly and equitably way will be
managed through the Media Access Control protocols and the Logical Link
Control (LLC), which constitute the 2nd layer of the Open Systems
Interconnection model (OSI).

Many MAC protocols have been devised to handle access to a shared link, there
are categorized into three groups, as shown in Figure 2.4:

Fig. 2.4: Taxonomy of multiple-access protocols [21]

Based on the strategy adopted to distribute the channel among the nodes, they
can be divided into three groups: Random Access, Controlled Access, and
Channelization.

❖ Random Access

In random access or contention methods, no node is superior to others and has
no control over others. Access to the medium in these types of protocols is
completely random, so any node can access the media without any preference.
In this group, we can find the protocols ALOHA, CSMA, CSMA/CD and
CSMA/CA. The last protocols will be explained the section 2.4, and specifically
the first and the last will be explained in more detail because they have been
selected to perform the experiment.

❖ Controlled Access
In these protocols, a node can only transmit when it has been permitted by the
other nodes of the network. The devices rotate a testimony that indicates who
has permission to transmit. In this group we can find the following protocols:

Final degree project 30

• Reservation: in this type of method a station needs to make a reservation
before sending any data. The time is divided into intervals and in each
interval a reservation frame precedes the data frames sent in that interval.

• Polling: this type of method works with topologies in which one device is
designated as a primary station and the other devices are secondary
stations. All data exchanges must be made through the primary device
which controls the link while the secondary devices follow its instructions.

• Token passing: in this type of method the nodes of a network are
organized in a logical ring where there is a predecessor and a successor.
The predecessor is the node that is logically before the node in the ring
while the successor is the node that is after the node in the ring. The
transmission permission is passed between the different nodes logically
between the predecessor node, the current node, and the successor node
when the current node has no more data to send.

❖ Channelization
Channelization or channel partition is a multiple-access method in which the
available bandwidth of a link is shared in different ways (frequency, time, and
code) among different nodes. Depending on the channel partition we can find
three different protocols:

• FDMA: the protocol that divides the available bandwidth into frequencies
is called frequency-division multiple access (FDMA), where each band is
reserved for a specific node, and it belongs to the node all the time. In
FDMA, the available bandwidth of the common channel is divided into
bands that are separated by guard bands.

• TDMA: the protocol that divides the channel into time is called time-
division multiple access (TDMA), where each node is allocated a time slot
during which it can send data. In TDMA, the bandwidth is just one channel
that is time-shared between different stations.

• CDMA: the protocol that divides the channel using the properties of
orthogonal codes is code-division multiple access (CDMA), where each
node is assigned a code and communicates with other nodes without
timesharing through a unique channel that carries all transmissions
simultaneously and occupies the entire bandwidth of the link.

Previously, three groups on how to share access to the physical medium along
with the characteristics and protocols of each have been explained. However,
when we take into account the IoT scenario and a scenario where the satellites
are CubeSat, we must consider certain limitations of the performance of MAC
protocols that are not present in traditional satellite communications. Some
CubeSat limitations are related to the processing capabilities of the hardware and
available storage. Other limitations due to the IoT scenario are a large number of
devices (IoT nodes) trying to communicate with the nanosatellite or constellation
of nanosatellites in motion.

Final degree project 31

First, given the hardware limitations of CubeSats, it is not possible to consider
using MAC protocols that perform complex processes and saturate the hardware.
The optimal and ideal for the IoT scenario is the use of a MAC protocol that
performs simple processes. One of the protocols that fit these characteristics is
the ALOHA-based protocols due to its simplicity in terms of implementation and
the low hardware requirements [29].

Second, the IoT scenario is different from a traditional satellite communication
scenario due to channel congestion. In a satellite communications scenario, the
patterns are usually one-to-one or one-to-lots. In the IoT scenario, the CubeSat
will behave as a getaway, so it will receive, process, and send different packets
to the different IoT nodes around the Earth’s surface (lots-to-one). In addition, the
CubeSat does not always know the location of these nodes and the moment in
which they want to communicate with it. As an added complexity, these metrics
will be changing continuously due to the movement of the satellite around an
orbit.

Therefore, due to the different limitations presented in the IoT scenarios, the
protocols traditionally used for satellite communications based on fixed
assignments cannot be considered for our scenario. That is why we must choose
among the protocols that best fit an IoT scenario. The existing MAC protocols
usually used for IoT satellite communications can be categorized as follows [30]:

❖ Random access asynchronized protocols

Random access asynchronized protocols are protocols where access to media
is performed randomly and require an acknowledgment (ACK) to confirm the
correct reception of the transmitted data. The four protocols that receive this
categorization are the followings:

• Aloha: this protocol is the base of the following ones and the simplest. The
network devices can always send the packets without any additional
complexity added to them. If the transmitted data packet has been
correctly received, the satellite responds with an ACK. In case the node
does not receive any ACK, it re-transmits the packet after a random time-
out.

• Enhanced Aloha (E-Aloha): this protocol proposes a solution to packets
that are transmitted with the same periodicity with a contention window
larger than the transmission time of the packets. Nodes can select
randomly the time at which they transmit within that time window. With the
help of this time window, nodes that have the same periodicity to send
packets, vary the instant at which they transmit.

Final degree project 32

• Spread Spectrum Aloha (SS-Aloha): the SS-Aloha protocol uses
spread-spectrum techniques to separate the channels in which each of the
packets are sent and increase the amount of information sent.

• Enhanced Spread Spectrum Aloha (E-SSA): this protocol uses the
same technique as SS-Aloha, but it also uses a Recursive Successive
Interference Cancelation algorithm, thanks to it there is no need for ACK.

❖ Random access synchronized protocols

Random access synchronized protocols are protocols where the channel is
divided into slots of equal duration of the packet transmission time. The nodes
can only transmit at the beginning of one of these slots. One of the keys of this
protocol is the synchronization among the nodes of the network and ACK to
confirm the correct reception. The five protocols that receive this categorization
are the followings:

• Slotted Aloha (S-Aloha): this protocol is like Aloha and is the base of the
following ones. The medium of S-Aloha is slotted, so the devices that want
to transmit must wait until one slot begins and then start the transmission.

• Contention Resolution Diversity Slotted Aloha (CRDSA): this protocol
uses the same technique as S-Aloha and adds a Successive Interference
Cancelation (SIC) mechanism in the receiver, so it can cancel
interferences cancellation with the packets.

• Irregular Repetition Slotted Aloha (IRSA): this protocol has many
similarities with protocol CRDSA; however, protocol IRSA has multiple
transmissions of the packet.

• Coded Slotted Aloha (CSA): in this protocol, the packets are divided into
sub-packets of the same length which include error correction codes that
allow an ACK to not be needed. Then, the receiver applies a maximum-a-
posteriori (MAP) decoder, to be able to recover subpackets that are lost.
Additionally, the receiver also implements an interference cancellation
scheme to receive from multiple senders.

• Multi-slots Coded Aloha (MuSCA): this protocol implements a 1/4 Turbo
code as an error correction code that does not need ACK.

❖ Medium sensing protocols

Medium sensing protocols are protocols where the nodes sense the medium
before transmitting. In the case where the medium is busy, it performs a random
back-off and senses the medium again. Otherwise, if the medium is available, the
packet is transmitted. Only Carrier Sense Multiple Access with Collision
Avoidance (CSMA/CA) is in this category. This protocol will be explained in the
following sections.

Final degree project 33

❖ Reservation protocols

Reservation protocols divide the medium into different slots and reserve certain
slots of the medium for certain nodes. In these protocols, nodes must be aware
of which slots are reserved and which ones are free. Also, this protocol requires
precise time synchronization. Only R-Aloha is in this category:

• R-Aloha: this protocol defines frames, which are further divided into
several slots. Nodes can transmit randomly in any of these slots within a
frame. If an ACK is received, the slot is reserved for the node due to the
success of the communication.

❖ Hybrid protocols

Hybrid protocols are a mix of different protocols that cannot be classified in
previous categories. The two protocols that receive this categorization are the
followings:

• Fixed Competitive Time Division Multiple Access (FC-TDMA): in this
protocol, the channel is divided into frames and each of these frames
contains a configurable number of slots. The satellite predicts how many
slots are necessary for the next communication based on the collisions
that occurred in the previous one.

• Random Frequency Time Division Multiple Access (FTDMA): in this
protocol packets are transmitted with a random carrier frequency within a
range. They require ACK to confirm the correct reception of the packet.

Previously, the five categories in which MAC protocols oriented to satellite
communications in IoT scenarios can be divided have been explained. All these
protocols consider a high density of nodes around the Earth’s surface as is the
case presented for this project [21]. Among all the possible protocols presented,
only two have been chosen to be implemented and tested in the LoRa
communications experiment proof-of-concept. Pure Aloha and CSMA/CA have
been the protocols selected because they trade-off between complexity and
performance. Both protocols have been explained in detail in the following
section.

2.4. Random-Access protocols

In random-access or contention methods, no station is superior to another station,
and none is assigned control over another. In each instance, a station that has
data to send uses a procedure defined by the protocol to decide on whether to

Final degree project 34

send or not. This decision depends on the state of the medium after sensing it.
The medium can be busy (if there is another communication in the process) or
idle (if the medium is free).

In random-access protocols, there is no scheduled time for a station to transmit
and the transmissions are random among the stations. Another feature of this
protocol is that no rules specify which station should send next, so each station
has the right to the medium without being controlled by any other station.
However, if more than one station tries to send a packet there will be an access
conflict, which will cause a collision destroying or modifying the information. To
avoid an access conflict each station follows a defined protocol which dictates the
steps to follow to avoid this collision or what to do if it has it.

The random-access methods below are the protocols used for the LoRa
communications experiment proof-of-concept. The first to be explained in detail
will be the oldest of all, pure Aloha. This method uses a procedure called multiple
access (MA). This method was improved by adding a procedure that forced the
station to sense the medium before transmitting. This is how the Carrier Sense
Multiple Access (CSMA) method came about. This method later evolved into two
parallel methods: carrier sense multiple access with collision detection
(CSMA/CD), which tells the station what to do when a collision is detected, and
carrier sense multiple access with collision avoidance (CSMA/CA), which tries to
avoid the collision. This second variant will be explained in detail in the following
sections.

2.4.1. Pure ALOHA

Pure ALOHA is the earliest random-access method, was developed at the
University of Hawaii in early 1970. The original ALOHA protocol is called pure
ALOHA and is the simplest of the MAC protocols. In pure ALOHA when a node
has a packet to send access the media and sends the information without any
restriction. However, since there is only one channel to share, there is the
possibility of collision between frames from different stations.

To minimize the probability of collision, pure ALOHA proposes an algorithm
based on the retransmission and use of an extra confirmation packet, this packet
is the Acknowledgment (ACK). This packet confirms the correct reception of the
packet information sent by the node that must transmit information to the
receiving station. In the case of our study, the satellite. When the transmitting
node sends a packet, it then starts a counter known as "Wait Time". Wait time is
a timer that ends after a predetermined time. During this time, the node that has
transmitted the information packet is waiting to receive the ACK, thus confirming
that the transmitted packet has been received correctly. If the ACK is received
before this time reaches zero it would be considered a success. If the ACK does
not arrive after a time-out period, the station assumes that the frame (or the
acknowledgment) has been destroyed and resends the packet. The waiting time
is calculated as the maximum possible round-trip propagation delay, which is

Final degree project 35

twice the amount of time required to send a frame between the two most widely
separated stations. Is calculates as follows (2.8):

 𝑇𝑤𝑎𝑖𝑡 = 2 ∙ 𝑇𝑝 (2.8)

The wait time calculation is directly related to the vulnerable time calculation,
which is the length of time in which there is a possibility of collision. For this
calculation, we assume that nodes send fixed-length frames with each frame
taking 𝑇𝑓𝑟 seconds to send. In the figure 2.5, we can find a graphic representation

of vulnerable time.

Fig. 2.5: Vulnerable time for pure ALOHA protocol [21]

As we can see in Figure 2.5, there are three fictitious nodes (A, B and C) that
transmit information during a given and equal frame time for all (𝑇𝑓𝑟). If node A

transmits after 𝑡 − 𝑇𝑓𝑟 there will be a collision with the transmitted packet of node

B and both packets will be modified or destroyed. The same happens if node C
transmits before 𝑡 + 𝑇𝑓𝑟. Therefore, the vulnerable time during which a collision

may occur in pure ALOHA is two times the frame transmission time. Since in our
scenario each package has a different frame time due to its size, we will calculate
the wait time as twice the maximum propagation time.

Since a collision is due to two or more stations trying to transmit at the same time,
it would not make sense for them to re-transmit at once. This would again cause
the same collision uninterruptedly. To solve this problem, pure ALOHA sets a
random time where the node must wait before re-transmitting its frame. This
random time is known as backoff time (𝑇𝐵) and this randomness will help avoid
more collisions. The backoff time (𝑇𝐵) is a random value that normally depends
on 𝐾 (the number of attempted unsuccessful transmissions). The determination
of backoff time depends on the implementation, for this project it is selected a
Binary Exponential Backoff formula which consists of taking a random number

Final degree project 36

between 𝑅 = [0, 2𝐾 − 1] (where 𝐾 is the number of retransmission attempts)
multiplied by the maximum propagation time (𝑇𝑝).

Pure ALOHA has a second method to prevent congesting the channel with
retransmitted frames. If after the packet has been retransmitted a certain number
of times (𝐾𝑚𝑎𝑥) the ACK has not been received, the communication is given as
failed and the node stops trying to transmit the packet to try later.

Fig. 2.6: Procedure for pure ALOHA protocol

In the Figure 2.6 we can find the procedure for pure ALOHA protocol, where:

- 𝐾: the number of attempted unsuccessful transmissions
- 𝐾𝑚𝑎𝑥: maximum number of retransmission attempts

- 𝑇𝑝: Maximum propagation time

- 𝑇𝑊(𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒) = 2 · 𝑇𝑝

- 𝑇𝐵(𝐵𝑎𝑐𝑘𝑜𝑓𝑓 𝑡𝑖𝑚𝑒) = 𝑅 · 𝑇𝑃
- 𝑅(𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟) = [0,2𝐾 − 1]

Final degree project 37

2.4.2. Carrier Sense Multiple Access

Carrier Sense Multiple Access (CSMA) is a MAC protocol that improves the
performance of ALOHA protocol by adding the limitation of sensing the channel
to know if it is busy or idle before transmitting. The chance of collision can be
reduced if a station senses the medium before trying to use it. That’s why CSMA
is based on the "listen before talk" principle.

Despite the addition of this new strategy, a collision-free channel is not possible.
This is due to propagation delay. When a node sends a frame there is a certain
time until the first bit of the packet reaches another node and senses it. In other
words, there may be the casuistry that a node senses the medium as idle when
there is actually another node that has already transmitted the frame,
nevertheless that frame has not yet reached the node. In the figure 2.7 we can
see a representation of this casuistry:

,

Fig. 2.7: Space/time model of a collision in CSMA [21]

As we can see in the figure 2.7, both the frame of node B and the frame of node
C collide and both packets are destroyed. This has happened given that node B
has transmitted in the instant 𝑡1 when it has sensed the medium as free. However,

node C in instant 𝑡2 has also sensed the free medium when it is not because the
frame of node B has not yet reached node C due to the propagation delay.

Vulnerable time

Therefore, the vulnerable time in CSMA is conditioned by the propagation time
(𝑇𝑝). This is the time needed for a signal to propagate from one end of the medium

to the other. When a station sends a frame and any other station tries to send a
frame during this time, a collision will occur. The figure 2.8 show this scenario:

Final degree project 38

Fig. 2.8: Vulnerable time in CSMA [21]

In the above image the worst case is proposed, where a node receives the frame
of the farthest node. The leftmost node (A) sends a frame at time 𝑡1, which

reaches the rightmost node (D) at time 𝑡1 + 𝑇𝑝. The gray area shows the

vulnerable area in time and space.

Persistence Methods

The implementation of a new sensing technique in CSMA protocols is an elegant
technique that prevents collisions. In this subsection, the different methods used
to sense the channel and the method used in our case will be explained.

In total there are three different methods to sense the channel. Each uses a
different technique and defines what to do in case the channel is idle or busy.
These three methods are the 1-persistent method, the nonpersistent method, and
the p-persistent method.

• 1-Persistent: in this method, after the station finds the medium idle, it
sends its frame immediately. This method has the highest chance of
collision because two or more stations may find the line idle and send their
frames at the same time. In the figure 2.9 we can find a visual
representation of the method and its flow diagram.

Fig. 2.9: Behavior of 1-persistent method [21]

• Nonpersistent: in the nonpersistent method, a node that has a frame to
send senses the line. If by sensing the medium it finds the free channel,
then it will send the package immediately. However, if the channel is not
free it will wait a random time to re-sense the channel and determine its

Final degree project 39

status. A positive point of this method is the reduction of collision
possibilities. This is because it is unlikely that two nodes will wait the same
amount of time after the channel is busy and retransmit at the same time.
However, a negative point has the reduction of the efficiency of the
network. This is because at certain times the channel remains idle when
there are nodes that have packets to send.

Fig. 2.10: Behavior of nonpersistent method [21]

• p-Persistent: this method is used if the channel has time slots with a slot
duration equal to or greater than the maximum propagation time. The p-
persistent approach combines the advantages of the other two methods.
It reduces the chance of collision and improves efficiency. After the station
finds the line idle, with probability 𝑝, the station sends its frame. With
probability 𝑞 = 1 − 𝑝, the station waits for the beginning of the next time
slot and checks the state of the medium again. In case the line is idle, it
goes to step 1. However, if the line is busy, it acts as though a collision
has occurred and uses the backoff procedure.

Fig. 2.11: Behavior of p-persistent method [21]

Final degree project 40

2.4.2.1. Carrier Sense Multiple Access with Collision Avoidance

Carrier sense multiple access with collision avoidance (CSMA/CA) relays on two
extra packets: Request To Send (RTS) and Clear To Send (CTS). Moreover, two
interframe wait are established to solve the vulnerable time: DFC InterFrame
Space (DIFS) and Short InterFrame Space (SIFS).

Before explaining in detail the algorithm of the CSMA/CA protocol, its different
and new components will be explained: RTS, CTS, SIFS and DIFS.

• Request To Send (RTS): it is a control packet which requests access to
the medium in order to start transmission. Once this packet is sent, the
node waits for the CTS. The information contained in the RTS packet is
the identifier of the node and the duration the channel will be occupied,
known as Network Allocation Vector (NAV).

• Clear To Send (CTS): is a control packet which is sent by the receiving
station (the satellite in our case) after having received an RTS from a node.
When the node receives the CTS, the channel is reserved, and the
transmission of useful information begins. The information contained in the
CTS packet is the identifier of the node who sent the RTS and the duration
the channel will be occupied (NAV).

• Short InterFrame Space (SIFS): is set by the maximum delay of a
transmitted packet to reach the most distant node and it is performed
before the transmission of each packet once started the process.

• DFC InterFrame Space (DIFS): is the sum of this delay time plus an extra
time defined by the binary exponential formula already explained and it is
only performed at the beginning of the process.

The flow chart describing the CSMA/CA algorithm can be seen in Figure 2.12:

Final degree project 41

Fig. 2.12: Procedure for CSMA/CA protocol

At the beginning of the transmission, the node senses the channel to know its
status. If the channel is busy, it will sense the medium again once a random time
has passed. If while sensing the channel the node receives an RTS or CTS, it
must wait a certain time specified in the NAV of each packet. If instead, the
channel is idle, then wait a DIFS time to avoid possible collisions within the
vulnerability time. Once the DIFS time has passed, the node transmits an RTS,
and the timeout begins.

The RTS packet sent by the node is received at the receiving station (the satellite
in our case) if there has been no collision. The satellite waits for a SIFS time and
then transmits a CTS which contains the node identifier. If the CTS packet is
received by the node before the wait time ends, it means the reservation of the
channel is correctly achieved and the communication process can start. If it is
not, the transmitting node initiates a backoff process already explained at pure

Final degree project 42

ALOHA. Once the backoff process is done, the node returns to sense the medium
again.

Therefore, if the CTS has been received correctly, the data packet is transmitted
after waiting for a SIFS time and a waiting time starts again. When the satellite
receives the data packet, it waits for a SIFS and sends the ACK which contains
the identifier of the node with which it is communicating. If the node receives the
ACK before the wait time is finished, the communication is given as successful.
However, if the ACK is not received after the wait time, a reception attempt must
be added and the backoff process initiated. If the number of receiving attempts is
greater than the allowed number (𝐾𝑚𝑎𝑥), the communication is considered a
failure and the node stops trying.

Network Allocation Vector

The network allocation vector (NAV) is an essential time of this protocol to avoid
collisions. The NAV is a time that determines how much time the channel will be
occupied by the node that is communicating with the reception station. The NAV
time is within the content of the RTS and CTS packets, being the largest NAV
time for the RTS.

During the communication process in CSMA/CA, nodes exchange different type
of packets. The RTS is the first of them, which is sent once the channel has been
sensed and detected as free. The other nodes that are sensing the channel detect
this RTS packet and make the reading of its NAV. This information allows them
to identify how long the channel will be occupied, so they are disabled until the
NAV counter has expired. The same happens when a CTS is received while the
nodes sense the channel. These will detect the NAV containing the package and
wait a stipulated time until the channel is sensed again, where it should
supposedly be idle given that the previous communication process has finished.

The way to calculate NAV times are defined by the following equations (2.9 and
2.10):

 𝑁𝐴𝑉(𝑅𝑇𝑆) = 3 · 𝑆𝐼𝐹𝑆 + 𝑇𝑝𝐶𝑇𝑆

+ 𝑇𝑝𝐷𝑃
+ 𝑇𝑝𝐴𝐶𝐾

 (2.9)

 𝑁𝐴𝑉(𝐶𝑇𝑆) = 2 · 𝑆𝐼𝐹𝑆 + 𝑇𝑝𝐷𝑃
+ 𝑇𝑝𝐴𝐶𝐾

 (2.10)

Where:

- 𝑇𝑝𝐶𝑇𝑆
 : Clear To Send propagation time

- 𝑇𝑝𝐷𝑃
: Data Packet propagation time

- 𝑇𝑝𝐴𝐶𝐾
: ACK propagation time

Final degree project 43

The justification for the above formulations is drawn from the figure 2.13, where
the necessary time-out of the NAV RTS and the NAV CTS can be observed [22]:

Fig. 2.13: RTS/CTS Communication with NAV [22]

Collision During Handshaking

This phenomenon called "collision during handshaking" occurs when there is a
collision during the sending of RTS or CTS. Two nodes may detect the medium
as idle and transmit at the same time. If this happens, these two packets will likely
collide. However, since no mechanism in CSMA/CA detects collisions, the
transmitter will assume that there has been a collision if after a wait time it has
not received the CTS from the receiving station. In this case, the backoff process
starts to retransmit the packet again if it detects the channel free.

When the receiving station sends a CTS, it sends the confirmation that the node
can start to transmit since the channel has been reserved for this communication.
If after a certain time the receiving station does not receive the data packet of the
node it listens again new RTS of other nodes to send new CTS and reserve the
channel to new communications.

Hidden-Station Problem

One of the reasons why NAV is found in both the RTS and CTS packages is
because of the Hidden-Station Problem. This casuistry can be seen in Figure
2.14, where the frame exchange timeline of the communication between different
nodes and the receiving station is shown.

Final degree project 44

Fig. 2.14: CSMA/CA and NAV

As can be seen, the RTS sent by node A is received by the receiving station (B)
but not by the stations farther away from A (C, D, etc.). However, the receiving
station (B) is within reach of the other nodes, and therefore the CTS packet sent
to node A is received by the other nodes. In this way, nodes that are out of reach
of this node are aware that communication is in process and starts a timeout
defined by the NAV of the CTS.

In IoT satellite communications often encounter this problem. This is because the
nodes are located around the Earth’s surface and not all are within reach of each
other. But the satellite is within range of all nodes. Then, when the satellite sends
the CTS the rest of nodes are aware that a communication is in process.

Final degree project 45

CHAPTER 3: Applied methodology for software and

hardware development

In this chapter, the methodology applied to perform the experiment will be
explained. This chapter is divided into three parts where the general architecture
of the experiment is first explained, followed by the software-related part, and
finally the hardware-related part.

Section 3.1 provides an overview of the experiment where the equipment used is
introduced and how they work simultaneously using the implemented software.

Section 3.2 explains the implementation of the pure ALOHA and CSMA/CA
protocols. The control method using commands to manage the different
experiments will be explained. Finally, the different adjustable parameters of the
protocols will be calculated.

Finally, the section 3.3 explains the hardware used as well as the methodology
followed to make modifications, calibrations, and connections that the hardware
requires to perform the proof-of-concept.

3.1. General architecture of the LoRa communications proof-
of-concept experiment

To perform the LoRa communications proof-of-concept experiment has required
the use of several devices working simultaneously, as well as a correct
implementation of the protocols to be tested in them. The main outline of the
communication between the different devices can be seen in Figure 3.1.

Fig. 3.1: Main outline of the communication between the different devices

Final degree project 46

First, performing the proof of concept required various IoT ground nodes and a
drone-based payload that functioned as a receiving station.

The IoT ground nodes are formed by the connection between various devices,
being the heart of all of them the HelTec CubeCell Dev-Board HTCC-AB01
transceiver. The other devices forming the ground nodes are the moisture sensor
(Soil Moisture sensor v1.2); the temperature sensor (HDC1080); a Raspberry Pi
which is used to read the data received from the CubeCell through the UART;
and finally, a regulator next to a lithium battery to power the different equipment.
In addition, it was necessary to add an integrated stripboard to the CubeCell for
ADC dynamic range adjustment. To take advantage of the space and the direct
connection to the CubeCell, the HDC1080 has been inserted into the stripboard.
A total of 20 nodes were planned for the measurement campaign, however due
to hardware limitations 13 IoT nodes were finally used. The equipment used is
shown below in the Figure 3.2.

Fig. 3.2: Devices used in ground nodes.

The payload that will be assembled in the drone is formed by various devices,
the CubeCell being again the main equipment. In the payload of the drone, there
is also a Raspberry Pi which is responsible for saving the data captured through
the UART, and a DC-DC converter which feeds the Raspberry Pi through the
voltage provided by the drone batteries using a XT60 cable. It should be noted
that the design of the drone-based payload for the LoRa communications proof-
of-concept experiment has been made to be used simultaneously with the GNSS-
R experiment. Therefore, the payload that we will see in the following sections
brings together different equipment for both experiments. Figure 3.3 shows the
equipment used for the LoRa communications proof-of-concept experiment.

Final degree project 47

Fig. 3.3: Devices used in miniaturized drone-based payload

Secondly, both the software implemented at IoT ground nodes and the
implemented in the drone has been carried out through CubeCells. These
transceivers can communicate using LoRa and are compatible with Arduino, so
all the code for both protocols has been programmed using C++. For the
experiment, it was necessary to program the algorithm followed by the pure
ALOHA and CSMA/CA protocols at the ground nodes and at the receiving station.
For both cases, a single code has been flashed on the CubeCell, so both
protocols are in the same code. The choice of which protocol to use along with
its different features is controlled through a third CubeCell which sends a
command to the ground nodes and the drone payload. This command marks the
start of a new experiment using the currently chosen protocol along with different
protocol attributes. Both the ground nodes and the payload of the drone are
initiated by listening to the medium, once they receive the command of which
protocol to execute the communications begin. Given the nature of the IoT
satellite communications scenario, the principle of all communications begins
with the transmission of a beacon from the drone to the rest of the ground nodes,
which will be listening the medium until it is received.

3.2. Methodology applied in the software design

One of the key points of the experiment has been the correct implementation of
MAC protocols. In the first section, the working environment will be explained in
addition to the facilities it offers. In the second section, we will explain in detail
the steps taken to implement the code in both the ground nodes and the CubeCell
of the drone payload. Finally, the third section will explain how the different
adjustable parameters of both protocols have been calculated.

3.2.1. Arduino Software IDE

As explained in previous sections, the CubeCell HTCC-AB01 transceiver is an
suitable module for LoRa/LoRaWAN node applications. This module is also
perfectly compatible with Arduino, so it can be programmed from the Arduino IDE
in a language similar to C++.

Final degree project 48

In addition to downloading the Arduino IDE, it is also necessary to download the
SiLabs CP2104 Driver to establish a serial connection between the computer and
the CubeCell board [23]. Once you have installed the Arduino IDE, you need to
finish configuring certain additional preferences. In the section "Additional Boards
Manager URLs" it is necessary to enter the three JSON files for the CubeCell and
the Arduino IDE to operate correctly [23].

Once the working environment has been adjusted, we see below the facilities
provided by the downloaded libraries on which we base the software of the
experiment. Since the Arduino IDE has been compatible with CubeCell, several
examples have been downloaded which can be loaded on the HTCC-AB01
board. Among these examples, we find a section related to LoRa
communications. These basic LoRa examples include: LoRaReceiver,
LoRaSender, LoRaSender_ReadBattery, pingpong and TxPowerTest.

Considering the scenario of the experiment, where the nodes and the satellite
perform both sender and receiver actions, the communication architecture that
best fits our case is a "pingpong" architecture. Within this architecture are various
functions to perform reception and transmission functions using LoRa. Within this
example, the software of the experiment has been developed.

In the architecture of the example "pingpong" the first thing we find is the
adjustable parameters of the LoRa physical layer. See Figure 3.4:

Fig. 3.4: Adjustable parameters of the LoRa physical layer

Among the 5 most important adjustable parameters we have:

• RF_FREQUENCY: The frequency is determined by the region and by the
working frequency of the module to be used. In the case of this work, the
module used is the Semtech SX1261. It operates between the ISM bands
allowed in Europe, which are 433 MHz and 868 MHz. Particularly, in this
work, it operates at 868 MHz.

• TX_OUTPUT_POWER: The maximum transmission power can be set to
14 dBm at 868 MHz and 22 dBm at 915 MHz, these values are the
maximum according to the data sheet of the Semtech SX1261 modules,

Final degree project 49

which is used in the HelTec CubeCell Dev-Board HTCC-AB01 transceiver
of this project. Nevertheless, the chosen transmission power is determined
by the working environment in which we are. In our case, the experiment
is carried out in an environment where the distances between nodes do
not exceed 800 meters. So, it has been decided to adjust the transmission
power to 0 dBm.

• LORA_BANDWIDTH: The bandwidth in LoRa modulation is configurable
between different values, the most typical being 125 kHz, 250 kHz and
500 kHz. According to the Semtech SX1261 module datasheet, this
parameter determines the maximum center frequency offset that the
modules are capable of compensating. The modules can compensate up
to 25% of the BW, so the larger the BW the greater the Doppler frequency
shift compensation. However, the larger the BW the higher the noise
power. In [16] it is determined that the best BW that compensates the
Doppler effect in LEO orbits, reduces the noise power and reduces the
transmission time is 125 KHz.

• LORA_SPREADING_FACTOR: To improve bit rate and capacity, it is
preferable to use a small SF. In [16] a link budget analysis is performed
using different attributes of the LoRa. In this study it is determined that with
the use of the radiofrequency Front End of the RITA payload, the lowest
SF to have communications at practically any LEO orbit elevation is a SF
of 8.

• LORA_CODINGRATE: The CR is also configurable, and can be set to
4/5, 4/6, 4/7 or 4/8, having 1, 2, 3 or 4 bytes of redundancy respectively.
In [16] it is determined that the best CR in terms of capacity corresponds
to a CR of 4/5.

After adjusting the different LoRa parameters, the four callback functions
belonging to the RadioEvents constructor are presented. These functions are
shown in the Figure 3.5:

Fig. 3.5: Callback functions

In the first instance the creation of the Driver for the SX1272 RF Transceiver is
shown. Below, there are the callback functions (defined in the “radio.h” file) which
have the following functionalities.

Final degree project 50

• Void OnTxDone (void): is the function in which the program is directed
after any packet sent.

• Void OnTxTimeOut (void): is the function to which the program is
directed if there is no connection between the micro-controller and the
radio.

• Void OnRxDone (…): is the function in which the program is directed
when a packet is received. As we can see in figure 3.4, the function
initializes various variables which will be used later. First there is the
uint8_t *payload, which saves the information of the captured packet at the
reception. Second, the uint16_t size, which determines the number of byes
of the package received. Third, the int16_t rssi, which shows us the
received signal strength. Finally, the int8_t snr, which indicates the signal
to noise ratio.

• Void OnRxTimeout (void): It is the function to which the program is
directed if it has not detected any packets after a certain time of reception.

Apart from these four functions, two other basic and mandatory functions of any
Arduino program are used. These are the "void setup()" and "void loop()"
functions. With the help of the void loop() and void setup() functions in our sketch,
we give the instructions to the Arduino microcontroller. Everything inside the
configuration “void setup()” will run once. The contents of the “void loop()” will run
in the loop while the Arduino controller remains on.

• Void setup(): the first function is the first to be executed and initializes the
program. First, there is the baud with which a serial connection is
established between the PC and the Arduino (Serial.begin(115200)). In
addition, various functions of RadioEvents are also declared and the Radio
is configured with the various variables of LoRa.

Fig. 3.6: “void setup” configuration

Final degree project 51

• Void loop(): this function loops the program. In the next section the details
of the algorithm programmed to run in a loop will be explained.

During all communications, having a time reference is important, either to
compare different timestamps or to control the time elapsed since an event. To
do this, Arduino has its own function (millis()) which returns the number of
milliseconds passed since the Arduino board began running the program.

3.2.2. General design of the code developed for the experiment

In this section, it is first explained how the experiment is controlled through
commands. Subsequently, the general design of the code is analyzed where it is
seen how it is structured in the Arduino IDE. Subsequently, the design and
implementation of the pure ALOHA algorithm is detailed along with the different
types of packets that are part of the protocol. Finally, the design and
implementation of the CSMA/CA algorithm with its different packets and
characteristics are explained.

3.2.2.1. Control commands for the experiment

In the scenario of the experiment, we encountered a situation in which we want
to test the performance of the pure ALOHA and CSMA/CA protocols with different
IoT ground nodes and a receiving station which is in the drone payload. To control
both sides, both the ground nodes and the drone, it has been necessary to
program a third code that sends a command to decide the type of experiment to
be performed. Figure 3.1. shows the communication scheme that is carried out
to start any experiment.

When all the devices are powered, both the drone payload and all the IoT ground
nodes remain in listening mode, waiting to receive the command that tells them
which protocol to execute and with which parameters. The different types of
packets are defined as a union between an array of uint8_t, and a struct
containing an attribute for each of the packet fields. These are organized in such
a way that alignment problems are avoided, and useful information is separated.
The structures of the pure ALOHA and CSMA/CA command packets will be
explained below.

In the following image, we can see the structure of the packet that is transmitted
to activate the pure ALOHA protocol. The first component is the flag (uint16_t) of
the package so that the devices know how to identify the type of package they
are receiving. TimeNextPacket (uint16_t) is used to determine the rate of packet
submission. ExperimentTime (uint32_t) is used to determine the duration of the
experiment. The WAIT_TIME_ALOHA (uint16_t) and TRY_ACK_MAX (uint16_t)
are adjustable parameters of the pure ALOHA protocol itself. The

Final degree project 52

WAIT_TIME_ALOHA determines the waiting time to receive an ACK after
sending the Data Packet. The TRY_ACK_MAX is used to determine the
maximum number of retries to receive the ACK. Finally, T_BEACON (uint32_t) is
used to determine the sending rate of the beacon. This information reaches both
the ground nodes and the drone, which processes the packet and readjusts its
variables. Below is how the structure is filled with the different attributes. It is then
sent using the "Radio.Send" function, which sends the full byteArray of the
package. The numerical value of the other paragraphs will be explained later in
section 3.2.3.

Fig. 3.7: Pure ALOHA command architecture and values of the different
variables and sending structure of the package

The CSMA/CA command maintains the same structure. However, it occupies a
total of 24 bytes since it includes 6 adjustable parameters of the CSMA/CA
protocol in addition to the flag, TimeNextPacket, ExperimentTime and
T_BEACON, which are basic in both command packages.

Fig. 3.8: CSMA/CA command structure

Final degree project 53

Once the command is received by the different devices, the execution of the
protocol begins and the exchange of packets between devices does not stop until
the time of the given experiment elapses.

3.2.2.2. Overall code design

In this section, the types of packets used in both protocols will be detailed.
Subsequently, an overview of the code implemented in both the CubeCell of the
ground nodes and the payload of the drone will be observed.

In the previous section, the type of structure that packages follow has been
detailed. These are formed by the union between an array of uint8_t and a struct
containing the attributes of each of the packets. These are organized in a
structured way to avoid alignment problems. Below are introduced the different
types of packages used with the attributes of each.

▪ Beacon: this packet type is used in both protocols. It has a dimension of 8

bytes and consists of the following attributes. The flag, which determines the
type of packet. The satellite_id, which determines the identifier of the satellite.
The timestamp, which indicates the relative time.

Fig. 3.9: Beacon packet structure

▪ Data Packet: this type of packet is used in both protocols. It has a size of 30
bytes and consists of the following attributes. The flag, which determines the
type of packet it is. The satellite_id, which is obtained once the beacon is
received from the satellite. The packet_type, which is 0 if it is a pure ALOHA
protocol packet, or 1 if it is from the CSMA/CA protocol. The node_id, which
determines the identification of the node. The packet_id, which determines
the number of packets sent. The timestamp, which indicates the relative time
of the node. The pos_x, pos_y, and pos_z, which determine the position of
the node. The temperature and soilmoisture attributes are the values obtained
from the measurements of the sensors.

Final degree project 54

Fig. 3.10: Data Packet structure

▪ ACK: this type of packet is used in both protocols. It has a size of 18 bytes
and consists of the following attributes. The flag, which determines the type
of packet it is. The satellite_id, which determines the identifier of the satellite.
The packet_type, which is 0 if it is a pure ALOHA protocol packet, or 1 if it is
from the CSMA/CA protocol. The node_id, which determines which node the
ACK packet is being sent to. The packet_id, which determines the number of
packets sent. The timestamp, which indicates the relative time of the drone.
Finally, the free_slots, which are not really used in this protocol but are added
for later integrations.

Fig. 3.11: ACK packet structure

▪ RTS: this type of packet is only used in the CSMA/CA protocol. It has a size
of 18 bytes and consists of the following attributes. The flag, which determines

Final degree project 55

the type of packet it is. The satellite_id, which is obtained once the beacon is
received from the satellite. The packet_type, which is 0 if it is a pure ALOHA
protocol packet, or 1 if it is from the CSMA/CA protocol. The node_id which
determines the identification of the node. The packet_id, which determines
the number of packets sent. The timestamp, which indicates the relative time
of the node. Finally, the NAV_RTS, which determines the waiting time
necessary to re-sense the medium in the CSMA/CA protocol.

Fig. 3.12: RTS packet structure

▪ CTS: this type of packet is only used in the CSMA/CA protocol. It has a size

of 18 bytes and consists of the following attributes. The flag, which determines
the type of packet it is. The satellite_id, which determines the identifier of the
satellite. The packet_type, which is 0 if it is a pure ALOHA protocol packet, or
1 if it is from the CSMA/CA protocol. The node_id, which determines which
node the ACK packet is being sent to. The packet_id, which determines the
number of packets sent. The timestamp, which indicates the relative time of
the drone. Finally, the NAV_CTS, which determines the waiting time
necessary to re-sense the medium in the CSMA/CA protocol.

Fig. 3.13: CTS packet structure

Final degree project 56

One of the essential attributes of all packages is the flag. Once a packet is
received and addressed to the void OnRxDone() the packet type is determined
from the flag. To categorize these packages a "typedef enum" list has been
created with the different types. Categorizing them in this way serves to then use
a state machine. In the same way, the diverse types of transmission or reception
status have also been categorized, as well as the distinct types of protocols. The
Figure 3.14 shows the different categorizations of states, packets, and protocols
in the code of the ground nodes (red) and the drone payload (blue). As can be
seen, different states are used and in the case of the drone code only a list is
created with two types of packets (RTS and Data Packet), which are expected to
be received during communications using the protocols. The different states of
the protocols are detailed below.

Fig. 3.14: Different categorizations of states, packets, and protocols of the
ground nodes code (red) and the drone payload code (blue).

As detailed in previous sections, each code works with 6 different functions: void
setup(), void loop(), void OnRxDone(), void OnTxDone(), void OnRxTimeout()
and void OnTxTimeout(). The following lines and figures detail the architecture of
each of these functions.

Overall code design – Ground nodes: In this section, the structure that follows
each of these functions in the ground nodes will be explained.

▪ void setup(): In addition to the configuration of the adjustable parameters of

the LoRa physical layer, certain variables are also configured that are specific
to each node, such as the identifier and the position. Finally, the state with
which the loop will start is configured. Within the different states mentioned
above in Figure 3.14, the starting state is the "RX" state.

▪ void loop(): this function varies between states with a switch. The first state
to which switches is the "RX". This is because the setup has been configured
to always be the first to run. Thus, the node remains in listening mode

Final degree project 57

whenever it is switched on for the first time. This allows a correct reception of
the protocol command. The figure 3.15 shows a self-explanatory diagram.
The code for each case will be explained below.

Fig. 3.15: Simplified structure of the “void loop()” function of the ground nodes
code

▪ void OnRxDone(…): the following function is executed when some kind of

package has been received. The first step is to determine the type of package
with the "Flag Determination". This previous step is necessary as it
categorizes the package type and decides the protocol to run. The first packet
that all devices receive is the command packet, which determines the protocol
that the user specifies along with other attributes of the protocol itself. The
type of protocol to run is saved in the "protocol" variable. It is then determined
whether the beacon sending the drone payload has been received. Since a
command packet has been received and "min_one_beacon_received" is set
as false at first, it goes to the "RX" state again to wait for the beacon that will
send the drone payload.

After receiving the next package, which should be the beacon, the program
executes again the "void OnRxDone()" function and the "Flag Determination"
determines what type of package it is. If it is a Beacon, the boolean
"min_one_beacon_received" becomes true and the Packet variable equals
P_BEACON. This variable will then be used to switch between the distinct
types of packages on the state machine.

Next, it is determined which type of protocol must be executed based on the
"protocol" variable, which has been determined earlier with the command
packet. Once either protocol is initiated, the next step is the same for both. In
this step, it is determined whether the time of the experiment configured in the
command packet has elapsed. This is achieved by comparing the current time
of the node (millis()), with the time in which the command was received
(t_envio_com) plus the time set for the duration of the experiment. If the
elapsed time is less than the sum of these variables, the switch(Packet) is

Final degree project 58

executed, which varies between the different packets depending on which has
been received. After the switch, it is checked if the "wrong_packet" boolean
has been activated in any of the above cases. This happens in pure ALOHA
when for example an ACK is expected and a DataPacket is received. In
CSMA/CA it can occur when an RTS is received when a CTS is expected.
How this process works will be detailed later along with the explanation of the
protocols.

On the other hand, if the elapsed time exceeds the sum of the two variables,
the experiment ends. At the end of the experiment, two Booleans become
false. "ProtocolAloha" is a boolean used later, and
"min_one_beacon_received" is set to false to return to the initial state. All
nodes wait 10 seconds before re-listening the channel to receive the next
command. This is done to avoid receiving any packets sent from another
unsynchronized node after the experiment time has finished.

Figure 3.16 below shows the simplified structure of the “void OnRxDone()”
function. In addition, Figure 3.17 has been added, which shows in more detail
the functions performed by the "Flag Determination".

Fig. 3.16: Simplified structure of the “void OnRxDone()” function of the ground
nodes code

Final degree project 59

Fig. 3.17: Structure of the “Flag Determination” on the “void OnRxDone()”
function of the ground nodes code

▪ void OnTxDone(): the following function is executed once a package has

been sent. As can be seen in the figure 3.18, it is determined which type of
protocol is running based on the boolean "ProtocolAloha". When the
command is received with the protocol type to execute, this boolean becomes
true if it is pure ALOHA and false if it is CSMA/CA.

Fig. 3.18: Structure of the “void OnTxDone()” function of the ground nodes code

Final degree project 60

▪ void OnRxTimeout(): the following function is executed when a certain time

has passed in reception and no packets have been received. In these cases,
this function is directed towards the case of the protocol being executed. Each
case will be detailed later when the protocols are explained.

Fig. 3.19: Simplified structure of the “void OnRxTimeout()” function of the
ground nodes code

▪ OnTxTimeout(): the following function is executed if there is no connection

between the micro-controller and the radio. This function should not be
executed at any time if there is no problem.

Fig. 3.20: Structure of the “void OnTxTimeout()” function of the ground nodes
code

Overall code design – Drone payload: In this section, the structure that follows
each of these functions in the drone payload will be explained.

▪ void setup(): in addition to the configuration of the adjustable parameters of

the LoRa physical layer, the identifier of the satellite is also configured. Finally,
the state with which the loop will start is configured. Within the different states
mentioned above in Figure 3.14, the starting state is the "RX_START" state.

▪ void loop(): this function varies between states with a switch. The first state

to which switches is the "RX_START". This is because the setup has been
configured to always be the first to run. Thus, the node remains in listening
mode whenever it is switched on for the first time. This allows a correct
reception of the protocol command. The figure 3.21 shows a self-explanatory
diagram. The code for each case will be explained below.

Final degree project 61

Fig. 3.21: Simplified structure of the “void loop()” function of the drone payload
code

▪ void OnRxDone(): the following function is executed when some kind of

package has been received. The first step is to determine the type of package
with the "Flag Determination". This previous step is necessary as it
categorizes the package type and decides the protocol to run. The first packet
that all devices receive is the command packet, which determines the protocol
that the user specifies along with other attributes of the protocol itself. The
type of protocol to run is saved in the "protocol" variable. After selecting the
protocol with the switch, it is determined whether the beacon has been sent
to the ground nodes to initiate communications. Since a command packet has
been received and "min_one_beacon_sended" is set as false at first, it goes
to the "TX_ALOHA" or “TX_CSMA_CA” state to send the beacon. Figure 3.22
also shows how before executing the different transmission states, the
"beacon_sended" boolean is configured as false. Later, it is detailed how this
boolean intervenes in the different states.

After sending the beacon, the program listens to the channel until it receives
the next packet. Once it receives the next packet, the program executes again
the "void OnRxDone()" function and the "Flag Determination" determines what
type of package it is (saved in Packet). Remaining in the same protocol, now
the "min_one_beacon_sended" boolean is true, so the next step is taken.

In this step, it is determined whether the time of the experiment configured in
the command packet has elapsed. This is achieved by comparing the current
time of the node (millis()), with the time in which the command was received
(t_envio_com) plus the time set for the duration of the experiment. If the
elapsed time is less than the sum of these variables, the switch (Packet) is
executed, which varies between the different packets depending on which has
been received. After the switch, it is checked if the "wrong_packet" boolean

Final degree project 62

has been activated in any of the above cases. This happens in pure ALOHA
when for example an ACK is expected and a Data Packet is received. In
CSMA/CA it can occur when an RTS is received when a CTS is expected.
How this process works will be detailed later along with the explanation of the
protocols.

On the other hand, if the elapsed time exceeds the sum of the two variables,
the experiment ends. At the end of the experiment, the different Booleans of
each protocol become false to set everything up as in a startup. Then, the
drone payload waits 10 seconds before re-listening the channel to receive the
next command. This is done to avoid receiving any packets sent from another
unsynchronized node after the experiment time has finished.

Figure 3.22 below shows the simplified structure of the “void OnRxDone()”
function of the drone payload code. In addition, Figure 3.23 has been added,
which shows in more detail the functions performed by the "Flag
Determination".

Fig. 3.22: Simplified structure of the “void OnRxDone()” function of the drone
payload code

Final degree project 63

Fig. 3.23: Structure of the “Flag Determination” on the “void OnRxDone()”
function of the drone payload code

▪ void OnTxDone(): the following function is executed once a package has

been sent. As can be seen in the figure 3.24, the protocol is changed through
the switch. In case it is the pure ALOHA protocol, after transmitting any packet
it always listens to the channel permanently. However, if the protocol is
CSMA/CA, it listens to the channel permanently only if the Boolean CTS is
false. If it is true, it listens to the channel for a certain time (wait time).

Fig. 3.24: Structure of the “void OnTxDone()” function of the drone payload
code

Final degree project 64

▪ void OnRxTimeout(): the following function is executed when a certain time

has passed in reception and no packets have been received. In this case, this
function is only used for responses in the CSMA/CA protocol. When a CTS is
sent, the receiving station waits for a certain time to receive the Data Packet
from the node to which the CTS has been sent. This mechanism is
implemented to prevent the receiving station from waiting for an infinite
amount of time for a package that never arrives. During this waiting time, RTS
packets may be received from other nodes. These are recorded and
continued with the listening until the waiting time ends or the Data Packet is
received.

As can be seen in the figure 3.25, the first step is to determine whether the
elapsed time is longer than the duration proposed for the experiment. If the
entire time of the experiment has not yet passed, a message is printed which
says that the Data Packet has not been received after the waiting time.
Subsequently, three Booleans are configured as false. The first of these,
waiting_data_packet is set as false since the waiting time to receive the data
packet has elapsed. Secondly, the CTS is configured as false to configure the
program as in the initial state. Finally, new_waiting_time is set to false. This
term will be explained in the following sections where the processes followed
by the CSMA/CA protocol are detailed.

Fig. 3.25: Simplified structure of the “void OnRxTimeout()” function of the drone
payload code

▪ OnTxTimeout(): the following function is executed if there is no connection

between the micro-controller and the radio. This function should not be
executed at any time if there is no problem.

Final degree project 65

Fig. 3.26: Structure of the “void OnTxTimeout()” function of the drone payload
code

Before explaining the design of each protocol, it will be explained how each
packet that is sent or received has been recorded. Also, it is explained how it has
been done to synchronize the times of all nodes with the relative time of the drone
payload.

First, all messages that are printed are recorded with a particular label as the first
component. Subsequently, the data are sorted by separating them with a ";" in an
orderly manner. This makes processing easier and permits to separate data into
columns and apply filters.

Secondly, to synchronize all nodes with the relative time of the drone payload the
variable "Dif_t" has been used. This variable indicates the time difference
between the ground node and the drone payload. It is calculated on the ground
nodes when the beacon is received using the following formula (3.1):

𝐷𝑖𝑓_𝑡 = 𝑡𝑖𝑒𝑚𝑝𝑜_𝑒𝑥𝑝 − (𝐿𝑜𝑟𝑎𝐵. 𝐿𝑜𝑟𝑎_𝐵𝑆. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑡_𝑝𝑟𝑜𝑝_𝑏𝑒𝑎) (3.1)

In the experiment, all ground nodes are switched on before the drone, so they all
have a larger relative time. These times are calculated at the moment the beacon
is received using the millis() function, which returns in milliseconds the time the
program loaded on the computer has been running. The received beacon
contains the relative time in which it was sent from the drone. To this is added
the propagation time since it does not propagate immediately. With the
subtraction indicated in the formula, the temporal difference between the node
and the drone is obtained. Having the value of this variable, for each message
that is registered as sent or received, the timestamp calculated as the relative
time of the node (millis()) minus Dif_t will be printed. In this way, a temporary
control of the flow of packets between all nodes is achieved.

3.2.2.3. Pure ALOHA design

The following section will explain in detail how the pure ALOHA protocol has been
implemented. Throughout this section you will see two different codes, the code
of the algorithm implemented on the ground nodes, and the code of the receiving
station, in our case the drone. To explain the implementation of the algorithm of

Final degree project 66

the pure ALOHA protocol, an ideal case will be presented where the event line is
fulfilled in an orderly manner. During the explanation, the different casuistics will
be explained for the different cases.

Communications are initiated when the beacon is received. Figure 3.27 shows
the procedure used to send the beacon from the drone. The TX_ALOHA state is
configured after receiving the pure ALOHA protocol command, at this moment
the nodes will be listening to the channel waiting to receive the beacon. As can
be seen in the figure 3.27, the first step is to check that the experiment time is not
finished, then a variable called "time_lapse" is calculated. The result of this
variable is determined by the subtraction of the current time (t_actual = millis())
minus the time in which the last beacon was sent (t_send_beacon). This is done
to then compare if the elapsed time (time_lapse) is greater than the beacon
sending periodicity time (t_beacon). If this happens (which is not the case for the
first send), the boolean beacon_sended and ACK are set to false. Then, the
boolean beacon_sended is detected to be false and the beacon is sent. With this
sending, two booleans are activated (min_one beacon_sended and
beacon_sended) and the relative time in which it was sent is saved in the
t_send_beacon variable. Once the beacon is sent, the program is directed to the
“void OnTxDone()” function shown in Figure 3.24. This function sets the next state
of the loop to RX_START. In this state, the drone remains listening to the channel
until it receives the next package.

Fig. 3.27: Structure of the different states of the pure ALOHA protocol in the
void loop() function of the drone payload.

Final degree project 67

The nodes are listening to the channel until they receive the beacon. Once it is
received, the “void OnRxDone()” function is executed. Since a Beacon has been
received, the Packet equals P_BEACON in the Flag Determination and the switch
selects this case. Figure 3.28 explains in detail what happens when a beacon is
received at the ground nodes. First, it is recorded that a beacon has been
received, then the relative time of the node is saved in the time variable
tiempo_exp, which is then used to calculate Dif_t. Finally, the Boolean
min_one_beacon_received is set to true as the first beacon has been received.
The status is then changed to TX_ALOHA to send the Data Packet.

Fig. 3.28: Case where a beacon is received in the “void OnRxDone()” function
in the ground nodes code.

Once the nodes have received the beacon, the next step is to send the Data
Packet. This action is carried out in the "void loop()", specifically in the
TX_ALOHA state. The Figure 3.29 shows the procedure used to send the data
package in the TX_ALOHA case. After sending it, the send is recorded. Finally,
the relative time of the node is saved using "tiempo_envio". This variable
indicates the moment in which the data packet was sent. Once the data packet
has been sent, the program execute the “void OnTxDone()” function (Figure
3.18), the state changes to RX_ALOHA and the loop is executed again.

Final degree project 68

Fig. 3.29: Structure of the different states of the pure ALOHA protocol in the
“void loop()” function in the ground nodes code.

The data packet sent by the node reaches the drone if there has been no collision.
In that case, the “void OnRxDone()” function of the drone payload code is
executed as shown in Figure 3.30. First, the received packet type is detected
using the Flag Determination. Subsequently, the ALOHA protocol is switched.
Then, since at least one beacon has already been sent,
min_one_beacon_sended is true. In the next step, it is checked that the
experiment time is not finished. Finally, it is switched to the case where a packet
of data has been received. First, it is checked that the data package corresponds
to the satellite/drone by comparing the satellite_id contained in the data package
with the SAT_ID. If they match, the data packet is logged and the ACK boolean
is set to true.

Final degree project 69

Fig. 3.30: Structure of the processes of the pure ALOHA protocol in the void
OnRxDone() function of the drone payload.

State changes to TX_ALOHA and “void loop()” function of the drone payload is
executed again (Figure 3.27). In the TX_ALOHA state, the ACK boolean is
detected to be true and the ACK is sent. The packet is logged and the boolean is
set as false again.

After sending the data packet, the ground nodes begin to listen to the channel
waiting to receive the ACK sent by the drone. The medium is heard for a time
determined by the variable t_wait_time_ALOHA. The value of this variable is sent
through the command, and its numeric value will be calculated in section 3.2.3.
When the medium is heard for a certain time, four things can happen. The first is
to receive the expected ACK. The second, receive an ACK directed to another
node. The third, receive a data packet from another node. The fourth is that the
waiting time elapses, and no package is received. In the first three cases, the
program goes to the “void OnRxDone()” function as a packet has been received.
In the latter case, the program executes the “void OnRxTimeout()” function.
Figures 3.16 and 3.19, previously seen, gave an overview of the architecture of
the functions “void OnRxDone()” and “void OnRxTimeout()” of the code of the
ground nodes. Each of the individual cases that may occur depending on the
package received is explained below.

Final degree project 70

The first case corresponds to the process of receiving the correct ACK. As can
be seen in Figure 3.31, when an ACK is received, the first thing that is checked
is if there is a bug related to the reception of the beacon, since it could be that
the ACK is received without the first beacon having arrived. Next, check whether
the node_id contained in the ACK package corresponds to the node. If so, the
ACK package has been received and the communication is considered as
successful. After recording the ACK, two variables used in the BackOff process
are configured (try_rec_ACK and T_b). Both are set to zero, configuring them as
well as the initial state for the next communication attempt. Finally, the node has
a waiting time equal to the t_wait_time_ALOHA before transmitting again. This is
done to prevent the same node from occupying the channel just after receiving
the ACK. Also, it is added the time determined by the user that indicates the
periodicity of sending Data Packets.

The second case corresponds to the process of receiving the wrong ACK. This
occurs when an ACK packet is received where the node identifier does not
correspond to the node. In these cases, the erroneous ACK packet is recorded
and the wrong_packet Boolean is configured as true.

Fig 3.31: Case where a ACK packet is received in the “void OnRxDone()”
function in the ground nodes code.

The third case corresponds to receiving a data packet from another node during
the waiting time. In these cases, the data packet is recorded and the
wrong_packet Boolean is set as true. Figure 3.32 shows the outline of the
procedure to be followed in these cases.

Final degree project 71

Fig. 3.32: Case where a Data Packet is received in the “void OnRxDone()”
function in the ground nodes code

The fourth case occurs when the waiting time is exceeded, and no package is
received. In such cases, the program executes the function "void
OnRxTimeout()". As can be seen in Figure 3.33, the first step is to check whether
the experiment time has not finished. The X11 message is then recorded,
indicating that the ACK packet has not been received after the waiting time. The
back-off process of the pure ALOHA protocol is then performed. First a reception
attempt is added, then it is verified that the ACK reception attempts have not been
exceeded. If the reception attempts have been exceeded, the message X09 is
recorded, and the variables try_rec_ACK and T_b are configured. Both are set to
zero, configuring them as well as the initial state for the next communication
attempt. If the reception attempts have not been exceeded, the back-off time is
calculated as the multiplication of the waiting time by a random number R. The
program then waits for a time T_b until the state is changed to TX_ALOHA. In
this way, the communication process is restarted by sending the Data Packet and
then trying to receive the ACK.

Final degree project 72

Fig. 3.33: “void OnRxTimeout()” function of the ground nodes code

Finally, it remains to clarify what happens when a wrong packet is received and
the Boolean wrong_packet is activated after passing through the Switch. This
process is controlled by an "if", so it is only executed if the wrong_packet Boolean
is true. First, the Boolean wrong_packet is set as false again. Next, the timer
variable is calculated. This variable is calculated as the subtraction between the
node’s current time minus the time the data packet was sent. If this result is not
equal to or greater than the waiting time, calculate it again until it is. Once the
waiting time has been exceeded, and the ACK has not been received the
communication cannot be given as successful. In this case, the Back-off process
explained above is performed again. Finally, the TX_ALOHA state is
reconfigured. In this way, the communication process is restarted by sending the
Data Packet and then trying to receive the ACK.

Final degree project 73

Fig. 3.34: Wrong packet case on the ground nodes code

3.2.2.4. CSMA/CA design

The following section will explain in detail how the CSMA/CA protocol has been
implemented. Throughout this section you will see two different codes, the code
of the algorithm implemented on the ground nodes, and the code of the receiving
station, in our case the drone. To explain the implementation of the algorithm of
the CSMA/CA protocol, an ideal case will be presented where the event line is
fulfilled in an orderly manner. During the explanation, the different casuistic will
be explained for the different cases.

Final degree project 74

Communications are initiated when the beacon is received. Figure 3.35 shows
the procedure used to send the beacon from the drone. The TX_CSMA_CA state
is configured after receiving the CSMA/CA protocol command, at this moment the
nodes will be listening to the channel waiting to receive the beacon. As can be
seen in the figure 3.35, the first step is to check that the experiment time is not
finished, then a variable called "time_lapse" is calculated. The result of this
variable is determined by the subtraction of the current time (t_actual = millis())
minus the time in which the last beacon was sent (t_send_beacon). This is done
to then compare if the elapsed time (time_lapse) is greater than the beacon
sending periodicity time (t_beacon). If this happens (which is not the case for the
first send), the boolean beacon_sended, CTS and ACK are set to false. Then,
the boolean beacon_sended is detected to be false and the beacon is sent. With
this sending, two booleans are activated (min_one beacon_sended and
beacon_sended) and the relative time in which it was sent is saved in the
t_send_beacon variable. Once the beacon is sent, the program is directed to the
“void OnTxDone()” function shown in Figure 3.24. This function sets the next state
of the loop to RX_START. In this state, the drone remains listening to the channel
until it receives the next package.

Fig. 3.35: Structure of the different states of the CSMA/CA protocol in the void
loop() function of the drone payload.

Final degree project 75

The nodes are listening to the channel until they receive the beacon. Once it is
received, the “void OnRxDone()” function is executed. Since a Beacon has been
received, the Packet equals P_BEACON in the Flag Determination and the switch
selects this case. Figure 3.36 explains in detail what happens when a beacon is
received at the ground nodes. First, it is recorded that a beacon has been
received, then the relative time of the node is saved in the time variable
tiempo_exp, which is then used to calculate Dif_t. Next, the Boolean
sensing_channel is configured as true to sense the channel. RTS and
send_datapacket booleans are configured as false. Finally, one of the variables
used for the backoff is set to 0, thus restarting the number of attempts to receive
the ACK. The status is then changed to RX_CSMA_CA to sense the channel.

Fig. 3.36: Case where a beacon is received in the “void OnRxDone()” function
in the ground nodes code.

Once the nodes receive the beacon, the loop state changes to RX_CSMA_CA.
First, it is checked that the experiment time is not finished. Next, it is checked if
the Boolean sensing_channel is true to decide which action to execute. Since the
Boolean is true because it has just been activated previously, the channel is
sensed for a certain time. The way to sense the channel corresponds to the
nonpersistent method explained above. If during this time, no packets are
received, the program executes the “void OnRxTimeout()” function. However, if
a packet is received, the program executes the “void OnRxDone()” function. If a
packet is received, it implies that there is communication between some other
node and the drone, so the node will have to wait for a certain time to sense the
channel again. Figure 3.37 shows the structure of the "void loop()" function.

Final degree project 76

Fig. 3.37: Structure of the void loop() function of the ground nodes code.

If a packet has been detected while sensing the medium, the node acts in the
following ways depending on the received packet:

• RTS: if the received packet is an RTS packet, the following steps are
followed. First, the received packet is recorded. Then, a waiting time
defined by the NAV of the RTS package is configured. After this waiting
time, the RX_CSMA_CA state is reconfigured to sense the channel again.

Fig. 3.38: Case where a RTS is received in the “void OnRxDone()” function in
the ground nodes code.

Final degree project 77

• CTS: if the received packet is an CTS packet, the following steps are
followed. First, the received packet is recorded. Then, a waiting time
defined by the NAV of the CTS package is configured. After this waiting
time, the RX_CSMA_CA state is reconfigured to sense the channel again.

Fig. 3.39: Case where a CTS is received in the “void OnRxDone()” function in
the ground nodes code.

• ACK: if the received packet is an ACK packet, the following steps are
followed. First, the received packet is recorded. Then, a random waiting
time defined by the nonpersistent method is configured. The method to
calculate this value of time will be explained in section 3.2.3. After this
waiting time, the RX_CSMA_CA state is reconfigured to sense the channel
again.

Fig. 3.40: Case where a ACK is received in the “void OnRxDone()” function in
the ground nodes code.

Final degree project 78

• Data Packet: if the received packet is a Data Packet, the following steps
are followed. First, the received packet is recorded. Then, a random
waiting time defined by the nonpersistent method is configured. The
method to calculate this value of time will be explained in section 3.2.3.
After this waiting time, the RX_CSMA_CA state is reconfigured to sense
the channel again

Fig. 3.41: Case where a Data Packet is received in the “void OnRxDone()”
function in the ground nodes code.

If after sense the channel, no packet is received, it means that the channel is free.
In that case, you can start the communication by sending the first RTS packet.
Figure 3.42 shows the case where the sensing time has elapsed, and no package
has been received. In that case, the sensing_channel boolean is set to false and
the RTS boolean is set to true. The status is then changed to TX_CSMA_CA to
send the RTS. The procedure for sending the RTS in the TX_CSMA_CA state
can be seen in Figure 3.37. First, it is checked if the boolean RTS is true, given
that it is just configured as true the following process is executed. First a waiting
time determined by the DIFS is performed. Then the RTS packet is sent and the
sent packet is recorded. Finally, three Booleans are configured and the time in
which the packet has been sent is saved in the variable tiempo_envio. The first
Boolean to configure is the RTS. This is set as false given that the package has
already been sent. The second boolean to be configured is expectingCTS. This
is set to true since the next packet expected to be received is the CTS. Finally,
the third boolean that is configured is the sensing_channel. This is set as false
given that the next step is to listen to the channel to receive the CTS, not to sense
the medium.

Final degree project 79

Fig. 3.42: “void OnRxTimeout()” function of the ground nodes code

In the drone, when an RTS packet is received, the next step is to send the CTS.
However, several processes are performed before sending it. The schema of
receiving an RTS packet in the drone can be seen in Figure 3.43. The first step
is to check that the package is addressed to the drone by comparing the
identifiers. The received RTS packet is then recorded and the status of the
waiting_data_packet boolean is checked, which is false in this case. Then the
CTS boolean is configured as true and the TX_CSMA_CA state is configured.

The program executes the “void loop()” function again as shown in Figure 3.35.
After checking that the CTS Boolean is true, a waiting time determined by the
SIFS is performed and then the CTS packet is sent in addition to configuring the
waiting_data_packet Boolean as true. The program then executes the “void
OnTxDone()” function as shown in figure 3.24. In this function, since the CTS is
true, it sets the RX state. Again, figure 3.35 shows how this state is executed in
the “void loop()” function. First, it is checked whether the boolean new_wait_time

Final degree project 80

is false. If it is false, the time at which the medium is started to listen is saved in
the variable t_start_wait_time. The waiting time to receive the data packet is done
given that the channel has been reserved for that communication. So, the drone
expects to receive the data packet from the node. It will only wait for a time
defined by the wait_time. It is possible that during this waiting time some RTS
packet will be received, however the drone should ignore it and continue to wait
for the data packet for the remaining time of the wait_time.

Fig. 3.43: Structure of the case where a RTS packet is received in the “void
OnRxDone()” function of the drone payload.

In the ground nodes, after sending the RTS package five cases may occur:

The first case is that the RTS package does not reach the drone correctly. It could
also collide with another RTS packet sent from another node because both nodes
have detected the free channel. In this case the node timeout ends and the “void
OnRxTimeout()” function is executed. As can be seen in Figure 3.42, the process
to follow is as follows. First it is checked that the experiment time is not finished.
It then checks whether the channel should be sensed (which is not the case).
Next, the state of the expectingCTS boolean is checked, which has been set to
true when sending the RTS. Therefore, the X30 message is printed saying that
the CTS package has not been received after the waiting time. In addition, a
reception attempt is added to the try_rec_ACK variable. Finally, the backoff
process is performed if the number of ACK reception attempts has not been
exceeded. Before setting the state to RX_CSMA_CA, the sensing_channel
boolean is set to true.

The second case is that an RTS sent from another node is received. The process
to follow if an RTS is received from another node can be seen in Figure 3.38. In
this case, the first step is to identify whether the channel should be sensed, which
is not true. After that, the package received is recorded and a new variable related
to the waiting time is calculated, new_waiting_time. This variable calculates the
remaining wait time after receiving a package other than the correct CTS. It is
calculated using the following formula:

Final degree project 81

𝑛𝑒𝑤_𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 = 𝑡_𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒 − (𝑚𝑖𝑙𝑙𝑖𝑠() − 𝑡_𝑠𝑡𝑎𝑟𝑡_𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒) (3.2)

It is calculated as the subtraction between the total waiting time minus a second
component. This second component is calculated as the time difference between
the current time and the time when the waiting time was started. By performing
this subtraction, we obtain the remaining time which we must continue to wait to
receive the CTS. It is important to wait for the CTS, as it is the package that
reserves the channel. Next, the new_wait_time boolean is configured as true. The
result of new_waiting_time is then checked to be not less than zero or zero. If so,
the new_wait_time boolean is set to false and the wrong_packet boolean to true.
How this last boolean affects is explained below. If new_waiting_time is greater
than 0, the state RX_CSMA_CA is set and the “void loop()” function is run again
and the channel is heard during the time determined by the new_waiting_time.

The third case is that the node receive a CTS directed to another node. The
process to follow if a CTS is sent to another node can be seen in Figure 3.39. In
this case, the node ID is simply compared to the node ID contained within the
CTS package and if they are not equal the X16 message is printed and the
wrong_packet boolean is set to true.

The fourth case is where the waiting time ends and no packets are received. In
these cases the program executes the “void OnRxTimeout()” function as shown
in Figure 3.42. In this case, after checking whether the time of the experiment has
ended or if the channel should be felt, it is checked if the Boolean expectingCTS
is true, which is true. In this case, a message is recorded that the CTS has not
been received after the waiting time and new_wait_time and expectingCTS are
configured as false. Subsequently, the backoff process is performed in addition
to configuring the sensing_channel boolean as true. Finally, the RX_CSMA_CA
state is configured to sense the channel and retry.

The fifth case is where the CTS packet sent by the drone is received correctly
and corresponds to the node identifier. This case can be seen in Figure 3.39. In
these cases, the received CTS packet is recorded and the send_datapacket
boolean is configured as true. Finally, the TX_CSMA_CA state is configured to
send the data packet to the drone. Figure 3.37 shows the process for sending the
data packet. The first step is to wait a certain time by SIFS. The data packet is
then sent and recorded. The time at which the packet was sent is then saved in
the time variable tiempo_envio. Also, the following booleans are configured as
false: send_datapacket, expectingCTS, sensing_channel and new_wait_time.
Finally, the program executes the “void OnTxDone()” function which can be seen
in Figure 3.18, and reconfigures the RX_CSMA_CA state to listen to the channel
waiting to receive the ACK.

Again, in the drone, after sending the CTS and initiating the waiting time, three
different cases can occur.

The first case is that the node receives an RTS sent from another node. The
procedure can be seen in figure 3.43. In this procedure, the state of the

Final degree project 82

waiting_data_packet boolean is checked. Since it is true, the following process is
executed. First, new_waiting_time is calculated as explained above. This time is
then ensured not to be less than or equal to 0. Finally, the new_wait_time boolean
is set to true and the state is changed to RX. The channel is then heard again
during the time determined by new_waiting_time. For the remaining time, the data
packet may be received.

In this function, the first thing to be checked is that the experiment time is not
finished. Then, the X13 message is printed, which informs that the data packet
has not been received after the waiting time. The following booleans are
configured as false: waiting_data_packet, CTS, new_wait_time. Since the data
packet has not been received after the waiting time, the channel is no longer
reserved, and the drone listens to the medium again waiting to receive RTS from
other nodes.

The third case is where the data packet is received before the waiting time ends.
The procedure to be performed in this case can be seen in the figure 3.44. First,
it checks that the satellite’s identifier is the same. The received data packet is
then recorded and the following three Booleans are configured. The
waiting_data_packet boolean and CTS are configured as false. The ACK boolean
is configured as true, so that the ACK can be sent. Finally, the state is changed
to TX_CSMA_CA and the “void loop()” function is executed again. Figure 3.35
shows the procedure for sending the ACK. As can be seen, before sending the
ACK a waiting time determined by the t_wait_time is performed.

Fig 3.44: Structure of the case where a Data Packet is received in the void
OnRxDone() function of the drone payload.

Final degree project 83

After sending the ACK, the ground node receives it. This case can be seen in
Figure 3.40, where the steps to follow after receiving an ACK are detailed. As can
be seen, after checking two Booleans (sensing_channel and expecingCTS), the
identifiers of the ACK packet are compared with that of the node. If they match,
the X20 message is printed, and various variables are configured. First,
try_rec_ACK and T_b are set to zero, as it was in an initial state. Second, the
sensing_channel and wrong_packet booleans are configured as true and false,
respectively. Finally, the node has a waiting time equal to the SIFS before
transmitting again. This is done to prevent the same node from occupying the
channel just after receiving the ACK. Also, it is added the time
(t_to_next_packetC) determined by the user that indicates the waiting time before
restarting a communication after receiving the ACK. The RX_CSMA_CA state is
configured and the “void loop()” function is run again to restart the process.

Finally, it remains to clarify what happens when a wrong packet is received and
the Boolean wrong_packet is activated after passing through the Switch. This
process is controlled by an "if", so it is only executed if the wrong_packet Boolean
is true. This event can be seen when a data packet is received from another node.
Or, when the node receives an ACK or CTS that doesn’t match the node ID. Also,
when the node receives an ACK and was expecting a CTS. Finally, it can also be
given when the new_waiting_time calculation in the case of receiving an RTS
gives 0 or less. In these cases, the boolean wrong_packet is set to true and the
procedure in Figure 3.45 is executed. First, the Boolean wrong_packet is set as
false again. Next, the timer variable is calculated. This variable is calculated as
the subtraction between the node’s current time minus the time the data packet
was sent. If this result is not equal to or greater than the waiting time, it is
calculated again until it is. Once the waiting time has elapsed, it is checked what
type of package was expected. This is done by looking at the state of the
expectingCTS boolean. If the boolean is false, it means that an ACK was
expected. If true, the package expected to be received was a CTS. In both cases,
the backoff process explained above is performed again. In this process, the
sensing_channel boolean is configured as true. Finally, the state RX_CSMA_CA
is configured, and the medium is sensed again.

Final degree project 84

Fig. 3.45: Wrong packet case in the CSMA/CA protocol on the ground nodes
code

Final degree project 85

3.2.3. Calculation of the adjustable parameters of both protocols

This section details the formulas and numerical values of each of the variables of
both protocols. To do this, it is necessary to consider the formulas detailed above
in paragraphs 2.4.1 and 2.4.2, where the pure ALOHA protocol and the CSMA/CA
protocol were explained. Also, it is necessary to consider the LoRa Time On Air
of each package sent for certain numerical calculations.

3.1.1.1. ALOHA protocol parameters

In the pure ALOHA protocol it is only necessary to calculate two values, the
waiting time and the backoff time, which also depends on the waiting time. Here
is how these two times are calculated:

 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐) (3.2)

 𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓 = 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 · 𝑅 (3.3)

 𝑅 = [0, … , 2𝐾 − 1] (3.4)

To calculate the waiting time in the pure ALOHA protocol (𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡), the

maximum transmission time (𝑇𝑡𝑥), the maximum propagation time (𝑇𝑝𝑟𝑜𝑝) and the

processing time of the transceiver (𝑇𝑝𝑟𝑜𝑐), in our case the CubeCell, must be

taken into account. The 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 is multiplied by two to account for the round

trip of the package. When sending the package, must be considered the
processing time to send it, the transmission time, and the propagation time. Once
the packet reaches the destination, must be considered the processing time to
send the packet back, the transmission time, and the propagation time.
Therefore, it is multiplied by two, thus obtaining the waiting time once a package
is sent.

The maximum propagation time (𝑇𝑝𝑟𝑜𝑝) is determined by the distance between

the furthest node and the drone, divided by the propagation speed. In the case of
the experiment, the nodes are not more than 400 meters apart from the starting
point. If the drone raises until the maximum allowable distance (120 meters), the
distance between the drone and the furthest node is 417,61 meters. The figure
3.46 shows the scenario.

Final degree project 86

Fig. 3.46: Further location of nodes and drone in the experiment scenario

Considering that the maximum distance is 417,61 meters and the transmission
speed is the same as the speed of light, the propagation time is 1,39 ms. Making
approximations we establish that the 𝑇𝑝𝑟𝑜𝑝 is 1,4 ms for the calculation of the

𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡.

The transmission time of the package is determined by the Time On Air. To
calculate the time the package is transmitting, the LoraWAN airtime calculator is
used [20]. To perform this calculation, it is necessary to enter four variables. The
first variable is the size in bytes of the message to send, the second the spreading
factor, the third the frequency band used, and finally the fourth is the bandwidth.
The only variable that changes between the different types of packets to be sent
is the number of bytes of each packet’s content. The rest of the variables remain
the same. In the spreading factor, as previously mentioned, an SF8 is used. In
the frequency band of the region, the European (EU868) must be configured.
Finally, the bandwidth is set to 125 KHz. In previous sections, we have been able
to detail the content of the different types of packages. Specifically, the packets
involved in the pure ALOHA protocol are only the Data Packet and the ACK
packet. The Data Packet consists of 30 bytes, while the ACK package consists
of 18 bytes. By inserting these values into the LoraWAN airtime calculator, we
get that the ToA of the Data Packet is 164,4 ms and the ToA of the ACK is 133,6
ms. Therefore, the maximum transmission time (𝑇𝑡𝑥) for the pure ALOHA protocol

is 164,4 ms.

Finally, to calculate the processing time (𝑇𝑝𝑟𝑜𝑐) of the CubeCell, different tests

were performed to determine how long it takes to switch to the transmission state
once a packet is received. In the vast majority of tests, the results obtained
ranged between 5 and 10 ms. Therefore, being the most pessimistic case, the
processing time of the transceiver is 10 ms.

Taking into account the numerical values of the different variables, the result of
the 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 is as follows:

Final degree project 87

 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (164,4 𝑚𝑠 + 1,4 𝑚𝑠 + +10 𝑚𝑠) = 351,6 𝑚𝑠 (3.5)

On the other hand, the backoff time (𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓) is calculated as the multiplication

of 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 by R, where R is a random value between 0 and 2𝐾 − 1 (where K is

the number of retries to receive the ACK).

3.1.1.2. CSMA/CA protocol parameters

In the CSMA/CA protocol it is necessary to perform several previous calculations
before defining the value of the different variables involved. The different
variables involved and calculated below
are: 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡, 𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓, 𝑆𝐼𝐹𝑆, 𝐷𝐼𝐹𝑆, 𝑁𝐴𝑉𝑅𝑇𝑆, 𝑁𝐴𝑉𝐶𝑇𝑆, 𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 and 𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔

The waiting time is calculated in practically the same way as in the pure ALOHA
protocol. The only difference of the waiting time in the CSMA/CA protocol is that
the SIFS time must be added. The SIFS time is the timeout performed before
sending any packets. Therefore, the formula for calculating the waiting time in the
CSMA/CA protocol is as follows:

 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐) + 𝑆𝐼𝐹𝑆 (3.6)

Where the values of 𝑇𝑡𝑥, 𝑇𝑝𝑟𝑜𝑝 and 𝑇𝑝𝑟𝑜𝑐 are calculated in the same way as before.

The SIFS value is set by the maximum delay of a transmitted packet to reach the
most distant node. This implies that SIFS is the sum of transmission time,
propagation time, and processing time. All these variables have been calculated
previously, so the value of SIFS is as follows:

 𝑆𝐼𝐹𝑆 = 𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐 (3.7)

𝑆𝐼𝐹𝑆 = 1,4 𝑚𝑠 + 164,4 𝑚𝑠 + 10 𝑚𝑠 = 175,8 𝑚𝑠

Therefore, the 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 value in the CSMA/CA protocol is:

𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (164,4 𝑚𝑠 + 1,4 𝑚𝑠 + +10 𝑚𝑠) + 175,8 𝑚𝑠 = 527,4 𝑚𝑠 (3.8)

The way to calculate the backoff time (𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓) is the same as in the pure ALOHA

protocol. The backoff time (𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓) is calculated as the multiplication of

𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 by R, where R is a random value between 0 and 2𝑛 − 1 (where n is

Final degree project 88

the number of retries to receive the ACK). The backoff time is also used to
calculate the DIFS time value. This value is calculated as the sum of SIFS plus
the backoff time:

 𝐷𝐼𝐹𝑆 = 𝑆𝐼𝐹𝑆 + 𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓 (3.9)

How the 𝑁𝐴𝑉𝑅𝑇𝑆 and 𝑁𝐴𝑉𝐶𝑇𝑆 values are calculated is detailed below. The
theoretical formulas of how to calculate these variables are shown in section
2.4.2.1. However, due to the limitations of the equipment, processing times in
addition to transmission time should also be considered.

𝑁𝐴𝑉𝑅𝑇𝑆 = 3 · (𝑆𝐼𝐹𝑆 + 𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑐) + 𝑇𝑝𝑟𝑜𝑝𝐶𝑇𝑆 + 𝑇𝑝𝑟𝑜𝑝𝐷𝑃 + 𝑇𝑝𝑟𝑜𝑝𝐴𝐶𝐾 (3.10)

𝑁𝐴𝑉𝐶𝑇𝑆 = 2 · (𝑆𝐼𝐹𝑆 + 𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑐) + 𝑇𝑝𝑟𝑜𝑝𝐷𝑃 + 𝑇𝑝𝑟𝑜𝑝𝐴𝐶𝐾 (3.11)

The different transmission times are calculated again using the LoRaWAN airtime
calculator. The following table compiles the different times:

Table 3.1: Time On Air of the different packets in the CSMA/CA protocol.

Type of packets

Packet
Size

(bytes)
Time On Air

(ms)

Beacon 8 102,9

ACK 18 133,6

Data
Packet 30 164,4

RTS 18 133,6

CTS 18 133,6

Therefore, the 𝑁𝐴𝑉𝑅𝑇𝑆 and 𝑁𝐴𝑉𝐶𝑇𝑆 values are calculated as follows:

𝑁𝐴𝑉𝑅𝑇𝑆 = 3 · (175,8 + 1,4 + 10) + 133,6 + 164,4 + 133,6 = 993,2 𝑚𝑠 (3.12)
𝑁𝐴𝑉𝐶𝑇𝑆 = 2 · (175,8 + 1,4 + 10) + 164,4 + 133,6 = 672,4 𝑚𝑠 (3.13)

Finally, it is explained how the time values related to the sense of the channel
have been calculated (𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 and 𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔). The sensing type used in this

protocol follows the nonpersistent method scheme. In this method, if the channel
is busy, wait a random amount of time and sense the channel again. If the channel
is free, it transmits immediately. This random time between sensing and sensing

Final degree project 89

(𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔) has been defined as a random variable between one and two times

the SIFS time. This random time is executed when an ACK or data packet is
received while the channel is being sensed. So, the approximate time for the
channel to be free again, hovers between one and two times the SIFS time.

𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 = [𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐 , … , 2 · (𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐)] (3.14)

𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 = [𝑆𝐼𝐹𝑆, … , 2 · 𝑆𝐼𝐹𝑆] = [175,8, … , 351,6] 𝑚𝑠 (3.15)

The time during which the channel is sensed is determined by the variable
𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔. If the sense were instantaneous, it is highly likely that the node detected

the free channel. This is because there are times when nothing is being
transmitted. This is the cause of SIFS time between transmissions. That is why it
should be considered a time large enough not to detect the free channel when it
is not. The figure 3.47 shows the outline of the CSMA/CA communication showing
the propagation times of each package.

Final degree project 90

Fig. 3.47: Outline of the CSMA/CA communication

As can be seen, if one node senses the channel while another is silent waiting
for SIFS to transmit, it will detect that the channel is free. To avoid this, it has
been determined that the channel sensing time will be the same as the wait time.
This is because the wait time is also the time between transmissions after
receiving the ACK. Therefore, the sensing time is calculated as:

𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔 = 2 · (164,4 𝑚𝑠 + 1,4 𝑚𝑠 + 10 𝑚𝑠) + 175,8 𝑚𝑠 = 527,4 𝑚𝑠 (3.16)

Final degree project 91

3.3. Methodology applied in the hardware design

This section explains the methodology applied to develop the whole structure of
the LoRa communications experiment proof-of-concept. To enable
communications between IoT nodes and the drone, it has been necessary to
develop the structure of several ground nodes with different devices. On the other
hand, it has also been necessary to develop and design a drone-based
miniaturized payload that hosts the hardware of this experiment and the GNSS-
R experiment developed by other NanoSat Lab members.

3.3.1. Ground node design

This section details all the steps taken to realize the structure of IoT ground
nodes. To carry out the experiment, the design and construction of 22 nodes were
proposed. This number is determined by the number of CubeCells we have. We
certainly had a total of 23 CubeCells. However, one of them is required to use for
the drone payload, so it cannot be counted to generate another node. Due to
hardware limitations which will be detailed later, only 13 nodes have been used.

The structure of each node is formed by a waterproof IP67 box, and inside are
distributed the different devices. The main element is the CubeCell, which
performs all communication. In the node are also two sensors which take
temperature and humidity data. The data obtained by these sensors are stored
in the content of the Data Packet and sent to the drone within the different
communication processes. To record the different types of packets sent and
received by the Cubecell, a RaspberryPi is used which reads the CubeCell UART.
In addition, the RaspberryPi is used to power the CubeCell and moisture sensor.
The other sensor is fed through the CubeCell, later the connections will be
detailed. Finally, inside the node there is also a battery regulator and a battery to
power the RaspberryPi.

The humidity and temperature sensors used are the "Capacitive Soil Moisture
Sensor v1.2" sensor and HDC1080 sensor, respectively. Below are some
technical details of these sensors:

▪ Capacitive Soil Moisture Sensor v1. 2:

Capacitive Soil Moisture Sensor v1. 2 is an analog capacitive soil moisture sensor
which measures the volumetric content of water inside the soil. The way to
measure the different levels of soil moisture is done through the capacitive
sensing. The capacitive sensing is based on measuring the capacitance between
two electrodes inserted inside the ground, the capacitance between the
electrodes will depend on the soil moisture, so for a very wet soil the capacitance
will be very low and for a very dry soil the capacitance will be very high. To
measure the differences between different types of terrain, capacitive sensors
have a timer chip that is used to generate a square wave. This wave is modified
according to the capacitance obtained. This difference in waves is compared by

Final degree project 92

the sensor, resulting in a small output differential voltage varying between 1.2V-
3V that can be measured by a microprocessor. The CubeCell has an ADC pin,
which will read the different voltages recorded and convert them to percentages.
The "Sensor calibration" section details the procedure. It should be noted that the
soil moisture sensor has an operating current of 5mA.

One of the advantages of using capacitive sensors is that they are made of a
material that is resistant to corrosion. This offers superior service life compared
to other types of sensors, such as resistive soil moisture sensors, which are made
of corrosive material. Figure 3.48, shows the capacitive soil moisture sensor used
in the experiment and the different pins it has:

Fig. 3.48: Capacitive Soil Moisture Sensor v1.2

As can be seen in the figure 3.48, the sensor has 3 pins: GND, VCC and AOUT.
The first two are for feeding the sensor, the last one is the analog output pin.
Concerning the power, according to the technical specifications, the operating
voltage is between 3.3 and 5.5 VDC. This power would be sufficient if the original
sensor chip timer (TLC555C), which has a minimum supply voltage of 2V, was
used. However, because the manufacturer of the purchased sensors has used a
different chip timer (NE555) to reduce structural costs, a minimum supply voltage
of 4.5V is required.

Apart from having another timer chip compared to the original, the capacitive soil
moisture sensor v1. 2 also have two other structural problems.

The first problem is related to the lack of the 662K voltage regulator. This
component regulates any input voltage at 3.3V. Since the output voltage of the
analog signal depends on the supply voltage, sensor measurements can be
affected if the sensor is not powered by a constant voltage. If the 3.7-volt lithium-
ion battery were used, we would have this problem. This is because the battery
charge is discharged over time, causing the supply voltage to vary. This changing
supply voltage would also confuse the output voltage of the sensor and thus the
humidity readings. To solve this problem, many capacitor soil moisture sensors
have a 662K voltage regulator on board. But some manufacturers have chosen
to forget this regulator in order to save a few cents and have simply bridged the
solder pads instead. The figure 3.49 shows the comparison of two sensors, one
where the voltage regulator is correctly implemented and another where it is not:

Final degree project 93

Fig. 3.49: Missing voltage regulator in the capacitive soil moisture sensor.

This problem can be solved if the humidity sensor is fed at a constant voltage.
Therefore, the 5V pin of the Raspberry Pi is used to feed it as will be explained in
the following sections.

The next problem is related to the lack of grounding connectivity of a 1MΩ
resistance. The figure 3.50 shows the schematic of the humidity sensor. The
outline part of the circuit is used to convert the waveform signal from the sensor
into a constant voltage that can be read by other hardware.

Fig. 3.50: capacitive soil moisture sensor schematic [24]

As can be seen, there is a 1MΩ resistor that should be connected to the analog
output on one side and to ground on the other. However, the check with the
multimeter shows that this is not the case for the ground side. The reason why
this connection is not being made is to locate a via hole where it should not be
located. In the figure 3.51 it can be seen the different locations of the via hole.

Final degree project 94

Fig. 3.51: Comparison of the different locations of the via hole in the capacitive
soil moisture sensor

The image above corresponds to the sensor whose schematic is correct and
works correctly. For the working sensor, the multimeter confirms the connection
of the resistor to ground by the copper path. In the other hand, as can be seen in
the image below, the same via hole is located a little further outside, which
interrupts the connection of the 1MΩ resistor to ground. In practice, this means
that the sensor becomes extremely unresponsive and the measured value
changes only very slowly.

This problem can be solved quickly by welding a cable between the 1MΩ resistor
and the ground pin of the connector. The following image shows how this problem
should be solved:

Fig. 3.52: Solution to the unresponsive problem in the capacitive soil moisture
sensor

Final degree project 95

▪ HDC1080 Temperature sensor:

The HDC1080 is a digital temperature and humidity sensor with excellent
accuracy and very low consumption. This sensor is compatible with
Arduino/CubeCell thanks to the I2C communication protocol.

In this sensor, the only measurement that will be taken is the temperature. The
most important characteristics are the following:

Table 3.2: Important characteristics of the HDC1080 sensor [25]

Feature Value

Temperature accuracy ±0.2ºC

Temperature resolution 11-bit and 14-bit

Sleep mode consumption 100nA

Consumption mode measuring 1.3µA

Supply voltage 2.7V to 5V

Communication I2C

Temperature range -40ºC to 125ºC

As can be seen in the above table, the accuracy of the HDC1080 sensor is not
uniform. So, it can vary by ±0.2ºC. The figure 3.53 shows the accuracy range as
a function of temperature:

Fig. 3.53: Temperature Accuracy vs. Temperature [25]

Final degree project 96

Depending on the temperature of the region where IoT ground nodes are located,
the temperature accuracy may vary. However, the experiment to be performed
will be done in an environment with a standard temperature (25-30 ºC), so the
accuracy of the measurements will be quite accurate.

One of the most interesting features of the HDC1080 sensor is its low
consumption. The sensor is able to operate with low energy consumption thanks
to its two operating modes: sleep mode and measuring mode. When the sensor
turns on, it automatically enters sleep mode consuming an average of 100nA. In
this mode, the sensor waits for any command that comes through the I2C protocol
to wake up. When it receives a command to perform a measurement, it switches
from sleep mode to measuring mode. Once the measurement is completed, the
sensor returns to sleep mode. Thanks to all this done automatically, very low
consumption is achieved. This makes it a very suitable device when low energy
consumption is required, as is the case with IoT projects.

Related to consumption, it is also important to look at the response times that the
sensor has. The response time determines how long it takes to take the
measurement and return to low-power sleep mode. Response times depend on
the resolution the sensor is working with and the ADC clock cycles. The following
table shows the response times of the sensor to obtain the temperature
measurement according to the ADC resolution:

Table 3.3: Conversion time in function of the resolution of the HDC1080 sensor
[25]

Resolution Time (ms)

11-bit 3,65 ms

14-bit 6,35 ms

The longer the sensor response time, the higher the consumption. When the
sensor is measuring, the consumption is 1300nA, thirteen times more than in
sleep mode. So resolution is a parameter to consider in IoT nodes that require
low power consumption.

Finally, the following image shows the electrical diagram of the HDC1080 sensor:

Fig. 3.54: HDC1080 sensor

Final degree project 97

As can be seen in the figure 3.54, the sensor consists of 4 pins. The connection
between the sensor and the CubeCell is explained later in the section
“Connection between devices”.

- GND: reference to 0V
- SCL: clock signal I2C
- SDA: data signal I2C
- VCC: supply voltage (between 2.7V and 5.5V)

After explaining and detailing some of the technical details of the humidity sensor
and temperature sensor, below is a picture of the first proposal of the ground
node. It shows all the elements already integrated:

Fig. 3.55: First design proposed for the ground node

In the above image, three groups of elements can be seen. The first one is the
CubeCell with the antenna located outside the box to improve the link budget.
The CubeCell has an integrated stripboard to make the different connections
without damaging the pins of the device. In addition, the temperature sensor is
located on top of the integrated CubeCell stripboard. Secondly, we can see the
Raspberry Pi with the SD and the various connections. The battery regulator and
battery are located behind the Raspberry Pi. Finally, the third device seen in
Figure 3.55 is the capacitive soil moisture sensor. This sensor is designed to be

Final degree project 98

nailed to the ground where the measurement is to be taken. For this reason, it is
necessary to make a hole in the box to be able to pass the sensor and the wiring.

The final design of the ground node has slight modifications compared to Figure
3.55. One of the modifications that has most affected the initial design has been
the way of recording the CubeCell data. Initially, it was designed to be recorded
in the SD of the Raspberry Pi. However, the reading of the data through the
Raspberry Pi presented many losses and there were certain limitations with some
of the models used. Finally, the data is read through the CubeCell-PC connection,
where they are recorded on the PC by reading the CubeCell UART. The details
of these changes are explained later in the "connection between devices" section
and the final model of the ground node is presented.

3.3.1.1. CubeCell modifications required

The most important equipment of the ground nodes is the CubeCell HTCC-AB01,
which is part of the "CubeCell" series. It is a wireless communication card based
on the ASR605x chip that integrates an MCU with a LoRa module. Without this
equipment communications would not be possible. However, proper
communication is not the only objective of the work. The CubeCell must
communicate with the different sensors and read the data they provide. In order
to make this possible, CubeCell hardware had to be modified.

First, the CubeCell Pinout Diagram HTCC-AB01 is shown in Figure 3.56:

Fig. 3.56: CubeCell HTCC-AB01 Pinout Diagram [26]

The ASR6501 chip has only one ADC pin input. This pin is used by default for
battery voltage reading. In the following image we can see the schematic of the
chip AO7801, which contains the head of the ADC hooked to the D1.

Final degree project 99

Fig. 3.57: Schematic of the AO7801 chip [26]

In order to read other analog signals, it is necessary to remove the BR1
resistance, so the ADC header would be free. The following image shows that
resistance is the one that must be extracted to enable ADC.

Fig. 3.58: Resistance BR01 to remove [26]

By extracting this resistance, it is possible to make the analog reading from the
ADC. However, a problem arises with the maximum voltage that can be entered
by the ADC pin. The CubeCell ADC has an internal reference voltage of 1,2V.
This means that the ADC input cannot exceed 2,4V due to electrical
specifications. Previously, we have been able to detail that the analog output of
the humidity sensor is between 1,2 and 3V. Therefore, it is not possible to connect
the analog output of the humidity sensor to the CubeCell ADC pin. That is why
an external voltage divider has been implemented in the integrated stripboard
into the CubeCell that is seen in the next section.

Final degree project 100

3.3.1.2. Design of the stripboard integrated into the CubeCell

This section explains the design of the stripboard integrated into CubeCell. The
reason why an additional element was designed to integrate it into the CubeCell
is to protect the equipment and facilitate the process of connecting the different
devices between them. In the model design, the HDC1080 sensor is integrated.
The HDC1080 sensor needs certain connections with the CubeCell, so having it
fixed and anchored to it prevents further wiring. In addition, it is also necessary
to include two resistors in order to make a voltage divider that reduces the
maximum voltage offered by the capacitive soil moisture sensor. The value of
these two resistors depends on the maximum analog output value. According to
specifications, the maximum analog output voltage is 3V. However, this value
depends on the supply voltage. In the final model, the sensors are powered with
5V via the Raspberry Pi. To determine the maximum analog output voltage
(𝑉𝐴𝑂𝑚𝑎𝑥

), we used the 13 sensors to be used in the measurement campaign and

measured their maximum analog output when powered at 5V. The following
results were obtained:

Table 3.4: Maximum analog output voltage (𝑉𝐴𝑂𝑚𝑎𝑥

) of the capacitive soil

moisture sensors

Number of capacitive soil moisture
sensor

Maximum analog output voltage
(𝑉𝐴𝑂𝑚𝑎𝑥

)

1 4,11

2 4,13

3 4,15

4 4,08

5 4,03

6 4,06

7 4,12

8 4,07

9 4,04

10 4,05

11 4,11

12 4,08

13 4,15

Final degree project 101

Fig. 3.59: Experimental 𝑉𝐴𝑂𝑚𝑎𝑥
 measurements of the capacitive soil moisture

sensor

Therefore, the maximum analog output value is 4,15V. The voltage value should
be reduced using a voltage divider because the maximum input value of the
CubeCell ADC pin is 2,4V. We use the following expression to find two
commercial resistances that meet the criteria:

𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1 + 𝑅2
· 𝑉𝑖𝑛 (3.17)

Whereas 𝑉𝑜𝑢𝑡 = 2,4𝑉 and 𝑉𝑖𝑛 = 4,15V, the expression is as follows:

 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑅2

𝑅1 + 𝑅2
 →

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

(𝑅1 + 𝑅2) = 𝑅2 (3.18)

 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
𝑅1 +

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
𝑅2 = 𝑅2 →

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
𝑅1 = 𝑅2(1 −

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
) (3.19)

𝑅1 =
𝑅2 (1 −

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
)

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

=
𝑅2 (1 −

2,4
4,15

)

2,4
4,15

=
35 · 𝑅2

48
= 0,729 · 𝑅2 (3.20)

So, 𝑅1 = 0,729 · 𝑅2. Considering the commercial resistance values, 𝑅2 = 51𝐾Ω is
chosen:

 𝑅1 = 0,729 · 51𝐾Ω = 37187,5Ω (3.21)

Final degree project 102

The closest commercial value is 39KΩ. Taking these two values into account, the
result of 𝑉𝑜𝑢𝑡 is:

𝑉𝑜𝑢𝑡 =

51𝐾Ω

39𝐾Ω + 51𝐾Ω
· 4,15𝑉 = 2,35𝑉 (3.22)

Value practically adjusted to the maximum 2,4V that allows the ADC pin.
Adjusting it to the maximum voltage is necessary to not lose ADC dynamic range
margin. After determining the values of the resistors to perform the voltage
divider, the stripboard integrated to the CubeCell is explained below.

The final model of the integrated CubeCell board was designed with a stripboard
and has all the necessary elements. It has integrated the HDC1080 sensor and
the two previously determined commercial resistors. To make the required 13
models, many members of the NanoSat Lab helped the process of welding the
tracks and welding the different elements and cables. The final result is shown in
Figure 3.60 below:

Fig. 3.60: Final model of the stripboard integrated into the CubeCell

As can be seen in the image above, the HDC1080 sensor remains on the outside
of the stripboard, while the two resistors of the voltage divider remain on the
inside. The different connections are as follows:

Final degree project 103

Fig. 3.61: Connections of the stripboard integrated into the CubeCell

The HDC1080 sensor is located on the outside of the board, which has 4 pins:
VDD, GND, SCL and SCA. In image 3.61 it can be seen how the CubeCell pins
have been written on the edges of the stripboard. To connect the HDC1080
sensor simply connect these 4 pins to the VDD, GND, SCL and SDA pins of the
CubeCell. The GND and VIN pins have two cables which are used to power the
CubeCell via the Raspbery Pi. The serial port TX and RX cables are also directed
to the Raspberry Pi. On the inside of the stripboard, you can see the voltage
divider, where 𝑅1 = 39𝐾Ω and 𝑅2 = 51𝐾Ω. The green cable that reaches R1 is
directly connected to the analog output of the capacitive soil moisture sensor.

3.3.1.3. Sensor calibration

This section explains the procedure performed to configure the HDC1080 sensor,
calibrate the capacitive soil moisture sensor, and the code implemented to make
the sensors read.

The HDC180 sensor does not require calibration as it is a digital sensor and is
ready to operate when it is connected. However, it is necessary to include a
library in the code (#include "HDC1080.h") and initialize it in the “void setup()”
function (hdc1080.begin(0x40)).

To calibrate the capacitive soil moisture sensor, it is necessary to measure the
CubeCell ADC analog signal in two scenarios. The first scenario is where the
sensor is in a dry environment. To do this, the measurement is taken while the
sesnor is in the air without anything being in contact with it. The second scenario
is where the sensor is in a wet environment. For this, an environment where
humidity is 100%, such as water, was chosen. The sensor was placed in a glass
of water, protecting the circuit part. The measurements were taken with the help
of CubeCell. A program that does the analog reading of the ADC
(analogRead(ADC)) was loaded. The data obtained by the sensors was then
recorded. For a dry environment the measurement of the sensor was 3250, while

Final degree project 104

for a wet environment it was 1900. These two values have been saved within the
ground node code as two const int: AirValue and WaterValue. However, the result
we want to obtain is the percentage of soil moisture. For that reason, the following
code was implemented:

Fig. 3.62: Code for reading soil moisture and temperature sensors

As can be seen in the figure 3.62, the first line is for reading the temperature
sensor. In the second, simply save this information within the content of the Data
Packet to send. From the fourth line, the procedure to make the reading of the
capacitive soil moisture sensor is observed. First, the ADC is read as previously
discussed. Then, the percentage of the measurement is obtained using the
"map()" function of Arduino, which Re-maps a number from one range to another.
The data entered are those from AirValue and WaterValue, which were obtained
in the calibration process. Finally, the measurement is checked to be within the
range and saved within the content of the Data Packet.

3.3.1.4. Connections between devices

This section details the different limitations encountered, the connections
between the different devices, and shows the final model of the IoT ground node.
Initially, the experiment was intended to have a total of 22 independent nodes,
each located at a different site. However, due to hardware limitations, it has not
been possible to perform that number of nodes. The variations or limitations in
the hardware that have been found are the following three:

Firstly, we have IP67 boxes of different sizes, so it will not be possible to make
all nodes independent. In some nodes, given the size of the IP67 box, the
equipment has been located in duplicate to optimize space. On the other hand,
given the limited number of IP67 boxes available, space was only available for
18 CubeCells. So, the first limitation leaves us with only 18 ground nodes.

Final degree project 105

Second, the greatest limitation and variation is related to how CubeCell data is
captured. In an initial scenario, CubeCell data would be captured by Raspberry
Pi using UART communication. From the CubeCell all this information would be
sent through the TX serial port and in the Raspberry Pi would be captured through
the RX serial port. An added limitation is that we only had 15 Raspberry Pi with
different models. To test the different models of Raspberry Pi that we had different
tasks were done. The first one was to flash all the SDs that we had using the
Raspberry Pi Imager program by selecting the RASPBERRY PI OS LITE (32-
BIT) operating system. An OS without Graphical User Interface (GUI) was chosen
in order to optimize the programming process of each Raspberry Pi. The next
task was to program a code to read the UART of the Raspberry Pi automatically
when it was switched on. In this way, it would not be necessary to load the code
manually on all Raspberry Pi every time the port was read. In this process, it was
important to enable serial communication of the Raspberry Pi to receive the
messages and determine on which serial port the data was received (ttyAMA0 or
ttyS0). It was also important to set the baud rate of communication. The third and
final task was to test the reading of the 15 Raspberry Pi with the CubeCell
connected.

The results of this process showed that 8 out of the 13 Raspberry Pi were either
recording corrupted data on the SD card, losing data or not recording at all. In
some, corrupted data and significant data loss were obtained. Meanwhile, in
Raspberry Pi model 3 there were large data losses. This was checked by looking
at the files where the data was stored. The following image shows the case where
there is corrupt data:

Fig. 3.63: Corrupt data and data loss of the SD reading

On devices that failed to make a correct reading of the SD, serial ports were
changed. After making these changes and re-testing, no changes were obtained.
The rest of the nodes worked correctly, except for the Raspberry Pi model 3 which
occasionally had large data losses that were not tolerable. Noting that there were

Final degree project 106

only 5 nodes that saved the data correctly, it was decided to change the structure
of how the CubeCell data was going to be captured.

The change caused the CubeCells data to be read using serial communication
between the computer and CubeCell. In this way, simply with a USB to micro-
USB cable, the reading could be done through the program "CoolTerm". In this
program, it is only necessary to configure the baud rate and the COM port. On
the other hand, if the reading was done from a computer that had Linux, it was
only necessary to read the port ttyAMA0 or ttyS0 and save the data in a file to be
able to process it. With these changes, all 15 nodes were made to work correctly.

Third, there is the limitation of battery regulators available. There are only 13
battery regulators next to the 3.7V LiPo battery. The following image shows both
elements joined together with kapton:

Fig. 3.64: Battery regulator with the 3,7 V LiPo battery

Therefore, after all the limitations mentioned above, it was only possible to make
13 nodes. The process of connecting and mounting between the different devices
and in the different IP67 boxes is detailed below.

Different types of cables and methods have been used to connect the different
equipment. Firstly, the connection of the LiPo battery with the battery controller
was made by welding the cables directly as can be seen in the figure 3.64. This
has been done since the battery regulator adapter was not the same as the
battery connector. The connection between the battery controller and the
Raspberry Pi was then made via a USB to micro-USB cable. Subsequently, the
Raspberry Pi powers the capcaitive soil moisture sensor at 5V, on the other hand,
it is connected to the ground of the CubeCell to reference the same ground in the
system. The analog output of the soil moisture sensor is the input of the "ADC
Dynamic Range Adjustment" implemented in the stripboard. The output of this
last module ends in the ADC pin of the CubeCell. On the other hand, there is the
connection of the temperature sensor HDC1080, which is in the stripboard
integrated to the CubeCell. Finally, the CubeCell is connected to the computer to
read the data using a USB to micro-USB cable. The figure 3.65 shows the
connection scheme between the different devices:

Final degree project 107

Fig. 3.65: Connections between different devices.

These connections had to be made for the different nodes in different IP67 boxes.
Some elements within the IP67 boxes were subject with kapton, the CubeCell
being one of them. The distribution of the elements was also important due to the
limited space on the individual nodes. In addition, the CubeCell’s USB micro
harness was positioned in such a way that it was facing upwards so that the
micro-USB cable could be easily connected. The following image shows on the
left all the nodes with the different IP67 boxes that we had. An individual node is
shown at the top right of the image. At the bottom right is an individual node
closed and with the USB outbound to connect to the computer.

Fig. 3.66: Assembly process of the different nodes

Final degree project 108

3.3.2. Drone-based miniaturized payload design for LoRa

communications

This section explains the drone-based miniaturized payload used for the
experiment. This payload is designed to be easily integrated into the drone used
for the experiment. For the measurement campaign experiment, the Drone
Condor, a drone from the company MDrone, is used. Initially, however, the drone
to be used was the 3D Robotics Iris+ drone, a drone belonging to NanoSat Lab.
The reasons why the 3D Robotics Iris+ drone was not used for the measurement
campaign are explained below. Subsequently, the design of the payload used in
the Drone Condor is explained.

Initially, the 3D Robotics Iris+ drone was the drone to be used for the LoRa
communication proof-of-concept experiment. Different payload designs were
realized and tested. All of these designs included space for the GNSS-R
experiment and the LoRa communications experiment. However, this drone was
not used for the measurement campaign. The main reason is that this drone is
not prepared to carry a payload for long periods. It was purchased in 2014 and
was only designed to carry a small camera. Several tests showed that it was able
to lift payloads of 800g for a limited time, but the autonomy was reduced. The
autonomy of the drone considering the camera and supports is 15 minutes [27].
When tested with higher loads, the autonomy was reduced to 8-10 minutes, which
is insufficient time for LoRa communications tests. In addition, in order to reduce
the weight of the drone, the supports were replaced by hollow steel bars, which
reduced the overall weight. Finally, it was tested in June during the GNSS-R
measurement campaign with a payload reaching 650g in weight. After 8 minutes
of flight, the drone overheated due to the overload and high temperatures. This
caused the loss of control and the drone fell, damaging the support structure and
part of the payload. After this experiment, it was decided to hire the services
offered by MDrone who fly drones for different tests and experiments. By using a
drone with better characteristics carried by professionals, the safety of the
equipment is ensured, and more durable tests are guaranteed. The figure 3.67
shows the 3D Robotics Iris+ drone with the payload designed for previous
experiments.

Fig. 3.67: Drone 3D Robotics Iris+ with the payload design

Final degree project 109

On the other hand, the MDrone Condor Drone is a much more powerful and
versatile drone, capable of carrying up to 5kg. It has an autonomy of 85 minutes
of flight without load and 25 minutes with a 5 Kg load. The payload designed for
this experiment includes equipment from two experiments, the GNSS-R
experiment and the LoRa communications experiment. Given that in a realistic
case, both equipment must operate simultaneously in RITA, it is appropriate to
test them together in the same test and check that there is no interference
between the two experiments.

The necessary equipment to install on the drone is: a DC-DC converter, a
CubeCell, a Raspberry Pi and a monopole antenna. The DC-DC converter is
used to power the Raspberry Pi at 5V from the 12V of the drone batteries with an
XT60 cable. The CubeCell is the module that handles all communications. This
uses a monopole antenna with better characteristics than those used in the
ground nodes in order to improve the downlink properties. Finally, the Raspberry
Pi is used to capture the data from the CubeCell through the serial port as
explained in the previous section. In this case, a Raspberry Pi Zero was chosen,
which has smaller dimensions than those used in the ground nodes. Both the DC-
DC converter and the Raspberry Pi Zero are shared elements of the two
experiments. The DC-DC is shared because without it it would not be possible to
power the Raspberry Pi. On the other hand, the Raspberry Pi runs two codes
separately and stores the data in different files on the same SD. The Raspberry
Pi runs the code for the GNSS-R experiment and another code to capture the
data through the TX serial port of the CubeCell. Figure 3.68 shows the connection
diagram of the different devices involved:

Fig. 3.68: Connection diagram of the different devices in the payload design

Final degree project 110

In addition to the devices discussed above, the GNSS-R experiment requires
other elements. The final design of the payload using 3D printing with the
equipment already assembled is shown below:

Fig. 3.69: Miniaturized drone-based payload for LoRa communications and
GNSS-R

Final degree project 111

CHAPTER 4: First Measurement Campaign

The objectives and results of the first measurement campaign are detailed below.
In this campaign, LoRa communications were tested using two CubeCell
modules. In addition, the correct operation of the "Capacitive Soil Moisture V1.2"
sensor was also tested by taking different measurements of the soil moisture.

4.1. First Measurement Campaign

The first measurement campaign was performed on the 26th of May 2022. In this
first measurement campaign, there were two objectives. First, to check the
correct functioning of the LoRa communications using two CubeCell modules.
Secondly, to take measurements of the capacitive soil moisture sensor and
analyze the results.

The first objective was successfully achieved. A different code was programmed
into each device for communications between the two devices. The first CubeCell
was placed inside an IP67 box powered with 5 V through a power bank. In
addition, the structure of the IP67 box had two holes. One of them was to extract
the CubeCell antenna and the other one was to extract the humidity sensor in
order to take measurements. This first CubeCell was programmed as a
transmitter. Its function was to collect the measurements from the humidity sensor
and store them inside the package to be sent. It then sent the packet at a rate of
1 second. In the scenario of this experiment, there is only one transmitter, so
there is no collision between the packets sent. The second CubeCell was
connected to the computer. This CubeCell was programmed as a receiver, so
ideally it received all the packets sent by the transmitter. Afterward, they were
stored using the CoolTerm program, which reads the COM port at the indicated
baud rate. The figure 4.1 shows both the receiver and the transmitter of this
experiment.

Fig. 4.1: Receiver and transmitter of the first experiment.

Final degree project 112

Second, to achieve the second objective, several measurements were taken with
the capacitive soil moisture sensor. As can be seen in Figure 4.1, there are
several wires covered with insulating tape. Under this material is the voltage
divider to reduce the voltage of the analog output of the moisture sensor to 2,4V.
In addition, the USB cable coming from the power bank was bifurcated into two,
in order to power both the CubeCell and the humidity sensor. In this experiment,
measurements were taken on different terrains to then check if the results were
consistent. The following section shows the results obtained.

4.2. Analysis of the results of the experiment

In this experiment, different soil moisture measurements were taken in different
soils. Below are some of the data captured in different soils. Each photo on the
right represents the soil condition of the measurement. As can be seen in Table
4.1, the different measurements and soil states are shown gradually, from more
sandy to more clayey.

Table 4.1: Soil moisture measurements

Soil moisture measurement Soil conditions

As we can see, the soil moisture is
approximately 31%. This type of soil is
sandy.

As we can see, the soil moisture is about
40%. This type of soil is sandy loam soil.

Final degree project 113

As we can see, the soil moisture is
approximately 66%. This type of soil is
loam soil.

As we can see, the soil moisture is about
81%. This type of soil is loam - clay soil.

As we can see, the soil moisture is
approximately 91%. This type of soil is
clayey soil.

Table 4.1 shows the measurements taken in the different soils. As can be seen,
the measurements are not accurate since they give values of 30% moisture for
sandy soil and 90% moisture for clay soil. The lack of precision is due to the way
the sensors are calibrated. This problem can be solved by recalibrating the
sensors taking into account the different soils and expected soil moisture values.
However, the measurements provided are consistent and logical since the
moisture data match the state of the soil. When the soil is arid and sandy, it shows
low moisture, while when the soil is wet and clayey, it shows high moisture. The
table 4.2 shows the available moisture values according to soil texture.

Final degree project 114

Table 4.2: Realistic soil moisture values [28]

Soil moisture values

Soil texture Soil moisture value

Sandy 9%

Sandy - Loam 23%

Loam 34%

Loam - Clayey 30%

Clayey 38%

Clayey with good structure 50%

The values in Table 4.2 show the realistic soil moisture values. If the sensors
have been properly calibrated and the soil moisture has been correctly measured,
the values given in Table 4.1 should correspond to these values. However, the
values obtained in the experiment are far from these values, so that it is
necessary to re-calibrate the sensors in order to be able to make good
measurements in the second measurement campaign.

Final degree project 115

CHAPTER 5: Second Measurement Campaign

In Chapter 5, the second measurement campaign is explained. In this
measurement campaign, the LoRa communications proof-of-concept experiment
was performed with several IoT ground nodes and the miniaturized drone-based
payload. In order to show the results, several plots have been elaborated showing
the performance of each of the experiments in function of their properties. To
extract these graphs, it has been necessary to process the information collected
from the individual nodes. Since the data collected are separated by ";" and by
rows, the data processing has been lighter since Excel has been used to separate
the data and filters have been used to count the types of packets sent or received.

The first section explains how the measurement campaign was managed. This
first section explains the site chosen for the experiment, the distribution of the
nodes, the assembly and flight path of the drone, and the specifications of the
different experiments performed. The second section analyzes the results
obtained by the sensors. The third section contains all the results obtained from
the experiments using the pure ALOHA protocol. On the other hand, the fourth
section collects all the results obtained from the experiments using the CSMA/CA
protocol. Finally, the fifth section analyzes and compares both experiments.

5.1. Second Measurement Campaign Specifications

The second measurement campaign was conducted on August 4th. In this
second measurement campaign, the LoRa communications proof-of-concept
experiment was performed with several IoT ground nodes and the miniaturized
drone-based payload. In this measurement campaign, communications were
performed using the different protocols implemented: pure ALOHA and
CSMA/CA. The objective of this campaign is to capture data from the different
nodes and the drone payload and then process the performance of each of the
protocols.

Through the commands sent by a CubeCell, the type of experiment to be
performed is controlled with the different configurable parameters:
ExperimentTime, TimeNextPacket and T_BEACON. In addition, the values of the
different protocol parameters are also sent. However, these are not modified at
any time since they have been previously calculated.

The ExperimentTime determines the duration of the experiment, in most cases
the experiments do not last more than 10 min. On the other hand, the
TimeNextPacket determines the waiting time between each new communication
attempt after receiving the ACK.

Final degree project 116

5.1.1. Location chosen for the experiment

The place chosen to perform the experiment is a field of vineyards far from the
center of Barcelona. Specifically, it was carried out in Vilafranca del Penedès,
near the "La Torreta de Castellví". Different permits were requested to fly the
drone in this field. Firstly, the permissions managed by the company MDrone to
raise the drone to a certain height. Secondly, the permission to occupy the
vineyard field of a known farmer. The location where the experiment is conducted
is important as there are different terrain textures, so the GNSS-R experiment
could measure variations. As for the LoRa communications experiment, the
diversity of ground textures is also interesting to take different measurements with
the moisture sensors. Since it is performed in a vineyard field, there are certain
regions that are wetter than others. Below is the map where the measurement
campaign was carried out:

Fig. 5.1: Map of the scenario where the measurement campaign is performed

5.1.2. Specifications of the different experiments performed

In this section, the different experiments performed are specified. The
measurement campaign was organized to perform different experiments with
configurable variables. The first variable of the experiment is the determination of
the type of MAC protocol to be executed. The second variable to be configured
is the time of the experiment. Given that we have limited time since the LoRa
experiment is not the only one performed during the measurement campaign, the
times of the different experiments were less than 10 minutes. Nevertheless, it is
enough time to collect information and process it.

A total of 6 experiments were performed, which were executed in three rounds.
In each round, two different experiments were executed using firstly the pure

Final degree project 117

ALOHA protocol and secondly the CSMA/CA protocol. In all experiments, the
beacon sending periodicity was set to 80 seconds. Since the experiments were
not going to last more than 10 minutes, it was decided to reduce the
retransmission time, previously set to 8 minutes. From the experiments
performed, data were taken from 4 of them to analyze and compare data. The
specifications of each experiment can be seen in Figure 5.2.

Fig. 5.2: Different characteristics of the experiments

As can be seen, the "t_to_next_packet" varies between the different experiments.
In the first ALOHA experiment the t_to_next_packet is 15 ms. This is a minimum
wait, so the channel gets saturated. In the second ALOHA experiment, the
t_to_next_packet is 15 seconds, so the channel is not as saturated as in the
previous case. The same happens with the CSMA/CA experiments. In the first
experiment, the t_to_next_packet is 15 seconds, while in the second experiment
it is 1ms.

5.1.3. Distribution and location of the ground nodes

As explained in previous sections, the ground nodes were designed to be
connected to the computer to capture the data from the CubeCell. Since most
computers only have 3 USB ports, it was necessary to use several USB HUBs
for the computers brought for the experiment. During the experiment, 5 NanoSat
Lab teammates helped to manage the position and control of the nodes. They
were divided into three groups. Group 1, controlled nodes 2, 5, 6, 8, 9, 10, 12, 14
and 15 during the first experiment. Group 3 controlled nodes 1 and 7 in addition
to managing the GNSS-R experiment. Finally, group 2 consisted only of myself.
In my case, I controlled node 4 and controlled the CubeCell which sent the

Final degree project 118

commands to the rest of the nodes and the drone. Figure 5.2 shows how the
different groups are separated by approximately 80 meters.

For the rest of the experiments, the distribution of nodes by clusters varied. For
experiment 3, there were two clusters of nodes. The first cluster was formed by
nodes 2, 4, 9, 10, 12 and 13. The second cluster was only formed by node 6.
Finally, for experiments 4 and 6, the same node density and the following node
clusters were used. The first cluster is formed by nodes 1, 8, 9, 14 and 15. The
second cluster is formed only by node 4.

To initiate communications the command must be sent from an intermediate point
in order for the command to be received by all nodes and the drone. For this
reason, it is necessary to be located in an intermediate point between both
groups. The departure point of the drone is where group 3 is located because it
is necessary to configure the Raspberry Pi for the GNSS-R experiment before
the beginning of the flight.

The figure 5.3 shows where the different groups were located with their respective
nodes:

Fig. 5.3: Location of the different groups with the respective nodes

5.1.4. Assembly of the payload on the drone and flight path

The Drone Condor has an adaptable and flexible system to place different types
of payloads of different sizes and weights very easily. The lower design of the
payload includes different holes through which four M3 screws can be anchored.
Also has lateral anchors through which flanges can be passed to securely fasten
the payload. The figure 5.4 shows the drone with the payload assembled.

Final degree project 119

Fig. 5.4: Drone Condor with assembled payload.

Below is one of the flight paths of the experimental drone. The flight path was
controlled by a pilot authorized by MDrone. The drone was flown at an altitude of
120 m and performed a flight path defined by the GNSS-R experiment. The flight
path is based on traversing the vineyard field perpendicularly as shown in Figure
5.5. For the LoRa communications experiment, the path taken by the drone is not
significant, since the communication with the different nodes is performed in the
same way regardless of the path taken.

Fig. 5.5: Flight path of the experiment

Final degree project 120

5.2. Sensor data results

This section analyzes the results obtained by the sensors in the multiple
experiments. To take the measurements of the sensors, the capacitive soil
moisture sensor needs to be properly connected to the Raspberry Pi to be
powered and to be able to extract results once it is placed in the soil. On the other
hand, the temperature sensor obtains results when the CubeCell is powered, so
this sensor is always operational. In experiments 1 and 2 measurements of the
capacitive soil moisture sensors were taken, while in the rest of the experiments
these devices were not nailed in the soil, so the measurements have no value.
The following graphs show the values obtained from the capacitive humidity
sensors and temperature sensors in experiment 1. It should be noted that node
6 in experiment 1 was not located in the same place because group 2 was moving
during the experiment. That is why node 6 is not taken into account for the
following plot.

Fig. 5.7: Sensor data results

Figure 5.7 shows the average of the measurements taken by both sensors at the
different ground nodes. The measurements are the average of the
measurements and the bracket is the variance between them. The temperature
sensors show different results between them considering that all the nodes are
in the same region. However, it should be considered that due to the high
temperatures on the day of the measurement campaign, some nodes were
placed under the shade of trees to protect the computers of the different members
of the team. It can be observed that the temperature of nodes 12 and 13 are the
same, this is due to the fact that both sensors are located inside the same IP67
box. The same occurs when the temperatures of nodes 14 and 15 are analyzed.

Final degree project 121

Regarding the values of the capacitive soil moisture sensors, it can be seen that
after the recalibration of the first measurement campaign, they now show more
coherent results regarding the soil moisture values in table 4.2 of chapter 4.

5.3. Results of the pure ALOHA experiment

In this section, the results obtained in the pure ALOHA experiments are
discussed. The results are then divided into 3 sections. The first section analyzes
the success rate of the packets sent. Since the channel is saturated, many of the
sent packets collide. The second section analyzes the packets received during
waiting time. The third section analyzes the results obtained from successful
communications. In this last section, different graphs are shown regarding the
reception of the ACK after sending the Data Packet and the percentage of
successful communications obtained according to the characteristics of the
experiment performed. All the graphs of the results correspond to the average of
all the nodes involved in the specific experiment. More information on the
particular behavior of each node can be found in Annex A.

Since two pure ALOHA experiments have been performed, both experiments are
compared with each other and the differences due to the different properties of
each one are observed. Experiment 1, has a t_to_next_packet of 15 ms, so the
channel is more saturated than experiment 3, which has a t_to_next_packet of
15 s.

5.3.1. Analysis of packages transmitted and received

Given that the pure ALOHA protocol is a MAC protocol that accesses the medium
randomly, it is normal that the higher the density of nodes and the higher the
transmission rate, the greater the saturation of the channel and the greater the
packet loss. Two subsections are shown below where the percentage of packets
transmitted and received is analyzed. In the first subsection, the percentage of
data packets received versus data packets sent by the nodes is analyzed. In the
second subsection, the percentage of ACK received versus ACK sent by the
drone is analyzed.

Percentage of Data Packet received versus Data Packet sent by the nodes

The figure 5.8 show the results obtained from experiments 1 and 3. The value
that can be seen in the following graphs is the average of the values of all the
nodes of the experiment.

Final degree project 122

Fig. 5.8: Pure ALOHA – Average percentage of Data Packets received versus
Data Packet sent by the nodes (%).

As can be seen, in experiment 1 the average is 18.67%. On the other hand, in
experiment 3 the average is 64.20%. In experiment 1 there is a higher density of
nodes. In addition, the packet sending rate after receiving the ACK is 1000 times
lower than in experiment 3. Since the channel is much more saturated, many of
the transmitted data packets do not reach the drone because they collide with the
rest of the packets. In experiment 3, since the node waits 15 seconds before
restarting a communication after receiving the ACK, the medium is much less
saturated, allowing a larger number of data packets to be received by the drone.
After receiving the ACK, the node initiates a wait to restart communications.
During this wait, other nodes are more likely to be able to receive the ACK since
the node density is lower. In addition, the nodes remain synchronized, since after
the 15-second wait of the first node to receive the ACK, it is very likely that the
rest of the nodes are still in their waiting time (t_to_next_packet) before restarting
communications. Therefore, the longer the wait between the restart of
communications after receiving the ACK, the greater the synchronization
between the different nodes and the higher the percentage of data packets
received by the drone.

Percentage of ACK received versus ACK sent by the drone

The figure 5.9 show the results obtained from experiments 1 and 3. The
information that is observed is generated with the average in percentage of the
ACKs received by the nodes versus the ACKs sent by the drone.

Final degree project 123

Fig. 5.9: Pure ALOHA – Percentage of ACK received versus ACK sent by the
drone (%).

In this case, the packet sent is the ACK, which is sent by the drone. And the
above plots show the percentage of ACK packets received by the different nodes
compared to the total sent by the drone. In experiment 1, the average percentage
of ACK packets received is 19.32%. On the other hand, in experiment 3 the
average percentage of ACK packets received is 92.64%. Because the
t_to_next_packet is much larger in experiment 3, the channel is much less
saturated than in experiment 1, allowing a large number of ACK packets to reach
the indicated node without colliding with other packets.

5.3.2. Analysis of packages received during the waiting time

Since the pure ALOHA protocol is a MAC protocol that accesses the medium
randomly (RA), it is normal that the higher the density of nodes and the higher
the transmission rate, the higher the saturation of the channel. This section
analyzes the packets received during the waiting time to receive the ACK. During
the waiting time, it is likely that other packets will be received instead of the ACK
or that nothing is received at all. Four cases are possible. The first case is where
a data packet is received from another node that has initiated communication with
the drone. The second case is that an erroneous ACK is received which has been
transmitted to another node. The third case is that no packet is received during
the timeout period. Finally, the fourth case is that the correct ACK is received.
The figure 5.10 show the average percentage of packets received during the
waiting time to receive the ACK of the nodes experiment 1 and 3.

Final degree project 124

Fig. 5.10: Pure ALOHA – Percentage of the average packages received during
the waiting time.

For experiment 1, it can be seen that 58.34% of the packets received are data
packets from other nodes which have initiated communications at the time when
the waiting time was performed. On the other hand, in 32.58% of the cases, no
packet is received by the node. As a result, the waiting time ends without any
data being received. In 5.46% of the cases, an erroneous ACK is received which
is destined for another node. Finally, in only 3.62% of cases is the correct ACK
received.

In experiment 3, the data are much more favorable. In 59.23% of the cases, the
correct ACK is received, so the percentage of successful communications in
experiment 3 is much larger due to a lower node density and a longer wait
between communication initiations after receiving the ACK. The next dominant
case is the case where no packet is received. Finally, in 7.95% of the cases, an
erroneous packet is received and in 3.35% of the cases, an erroneous ACK is
received.

5.3.3. Analysis of successful communications

In this section, the results obtained in experiments 1 and 3 are analyzed. In the
first experiment, it has been observed in the previous results how the channel
saturation is evident. On the other hand, the channel saturation in experiment 3
is lower, allowing the different transmitted packets not to collide and reach their
destination. Next, three subsections are presented where different graphs of the
experiments are analyzed. The first subsection shows the percentage of ACKs
received versus Data Packets sent. The second subsection shows the
percentage of successful communications versus failed communications after
𝐾max attempts. In all experiments, the maximum number of retransmissions to
receive the ACK is 5. Finally, the third subsection shows the percentage of
attempts needed for successful communications.

Final degree project 125

Percentage of ACK received versus data packets sent

If there were no collisions and all packets arrived before the end of the waiting
time, all sent data packets would receive an ACK. However, in a scenario where
there is a certain density of nodes and the channel is saturated, this does not
occur. The average percentage of ACK packets received versus data packets
transmitted is shown below.

Fig. 5.11: Pure ALOHA – Average percentage of ACK received versus data
packets sent.

As can be seen in the previous figures, the percentage of ACK packets received
versus Data Packets sent is higher in experiment 3. In experiment 1, on average
only 3.62% of the cases, the ACK is received. On the other hand, in experiment
3, the ACK is received in 58.91% of the cases. This is due to the reasons
discussed above. The lower the density of the nodes and the longer the waiting
time between retransmissions after receiving the ACK (t_to_next_packet), the
higher the probability that the packet reaches the destination without collision.

Percentage of successful communications versus failed communications
after Kmax attempts

The following subsection shows the results obtained after analyzing the number
of times where the communication has been declared successful and the number
of times where the communication is considered a failure. A communication is
considered successful if the ACK has been received before exceeding the
maximum number of attempts allowed to receive it. On the other hand, a
communication is considered a failure when it exceeds this limit. The figure 5.12
show the results obtained from both experiments.

Final degree project 126

Fig. 5.12: Pure ALOHA – Average percentage of successful communications
versus failed communications after Kmax attempts

As can be seen, the percentage of successful communications with 5
retransmission attempts is higher than the values in the previous subsection. In
the case of experiment 1, in 16.21% of the cases, successful communication is
achieved. On the other hand, in experiment 3, in 91.42% of the cases, successful
communication is achieved.

Percentage of attempts needed for successful communications

After sending a Data Packet, it waits for a period until the ACK is received. If after
this time the ACK has not arrived, an attempt to receive the ACK is added and
the backoff process is performed. After waiting the backoff time, the Data Packet
is sent again. In this subsection the number of attempts required to receive the
ACK is shown as a percentage. The figure 5.13 show the results obtained in both
experiments.

Fig. 5.13: Pure ALOHA – Average percentage of attempts needed for a
successful communication.

Final degree project 127

As can be seen in the previous figures, the ACK is usually received on the first
attempt. In experiment 1, in 40.64% of the cases the ACK is received on the first
attempt. This is due to the fact that after a successful communication the node
only waits 15 ms to initiate the next communication, so it is very likely that the
medium is still free and therefore the next transmission is successful. The
medium is free because most of the nodes are waiting for the backoff time after
failing to receive the ACK. However, when the backoff time of the rest of the
nodes is over, they retransmit the Data Packet and interrupt the node's
communications. On the other hand, it can be seen that in 26.52% of the cases
the ACK is received on the fifth attempt. Since the margin of the backoff time is
larger the higher the number of attempts, the probability that all nodes calculate
the same backoff time is reduced. Therefore, the probability of successful
transmission after the backoff is higher.

In the second experiment, the ACK is received on the first attempt in 81.78% of
the cases. Since the retransmission waiting time after receiving the ACK is 15
seconds, the nodes are naturally synchronized. When the first node receives the
ACK, it waits 15 seconds until it restarts communications. The rest of the nodes
in these seconds manage to communicate with the drone and receive the ACK,
so they also wait 15 seconds. Once all the nodes have communicated and are
waiting, the first node retransmits the Data Packet when the rest of the nodes are
still waiting. For this reason, there is a high percentage of ACK reception on the
first attempt.

5.4. Results of the CSMA/CA experiment

In this section, the results obtained in the experiments using the CSMA/CA
protocol are analyzed. The results are then divided into 3 sections. The first
section analyzes the success rate of the packets sent. The second section
analyzes the packets received during waiting time. The third section analyzes the
results obtained from successful communications. In this last section, different
graphs are shown regarding the reception of the ACK after the communication
process. All the graphs of the results correspond to the average of all the nodes
involved in the specific experiment. More information on the particular behavior
of each node can be found in Annex B.

Since two CSMA/CA experiments have been performed, both experiments are
compared with each other and the differences due to the different properties of
each one are observed. Experiment 6, has a t_to_next_packet of 1 ms, so the
channel is more saturated than experiment 4, which has a t_to_next_packet of
15 s. In this case, both experiments have the same node density.

5.4.1. Analysis of packages transmitted and received

This section shows the graphs obtained by comparing the number of packets sent
versus the number of packets received. The CSMA/CA protocol initiates
communications after sensing the medium. If it detects that the medium is free,

Final degree project 128

then it sends the first RTS packet. Subsequently, this packet reaches the drone,
which replies with a CTS, thus reserving the channel. Since it is possible for
different nodes to detect the free medium at the same time, most collisions can
occur in the process of reserving the channel. Once the channel is reserved by
the CTS, the rest of the communications are based on sending the Data Packet
from the node and the drone responds with the ACK. Next, four subsections are
shown where the percentage of transmitted and received packets is analyzed. A
column referring to the average generated among all the nodes in the experiment
is also shown. In the first subsection, the percentage of RTS received versus RTS
sent by the nodes is analyzed. In the second subsection, the percentage of CTS
received versus CTS sent by the drone is analyzed. In the third subsection, the
percentage of Data Packet received versus Data Packet sent by the nodes is
analyzed. In the fourth subsection, we analyze the percentage of ACK received
versus ACK sent by the drone.

Percentage of RTS received versus RTS sent by the nodes

The figure 5.14 show the results obtained from experiments 4 and 6. The values
that can be seen are the average of the values of all the nodes of the experiment.

Fig. 5.14: CSMA/CA – Average percentage of RTS received versus RTS sent
by the nodes

As can be seen in the figures above, the average percentage of RTSs received
in experiment 6 is 45.64%. This may be due to two reasons. The first reason is
that the RTS packet does not reach the drone before the waiting time expires.
The second reason is that the sending of the RTS packet collides with other
packets. This is the most likely case since it is possible that several nodes detect
the free medium at the same time and transmit the RTS packet. In addition, it
should be noted that in experiment 6 the waiting time after receiving the ACK
(t_to_next_packet) is 1 ms, so the channel is saturated at any moment and the
probability of collision is higher.

In experiment 4, it can be seen how the average percentage of RTS received is
82.25%. In experiment 4, the waiting time after receiving the ACK

Final degree project 129

(t_to_next_packet) is 15 s, so the channel is much less saturated and the
probability of collision between packets is lower.

Percentage of CTS received versus CTS sent by the drone

The figure 5.15 show the results obtained from experiments 4 and 6. The values
that can be seen are the average of the values of all the nodes of the experiment.

Fig. 5.15: CSMA/CA – Average percentage of CTS received versus CTS sent
by the drone

As can be seen in the figures above, the average percentage of CTS received in
experiment 6 is 80.65%. Once the drone sends the CTS packet, it is likely to
collide with some RTS packet sent by some other node. In experiment 4, it can
be observed how the average percentage of CTS received is 97.31%. The
probability of collision between packets in this experiment is lower because the
t_to_next_packet is 15 seconds, so the channel is not as saturated as in
experiment 6.

Percentage of Data Packet received versus Data Packet sent by the nodes

The figure 5.16 show the results obtained from experiments 4 and 6. The values
that can be seen are the average of the values of all the nodes of the experiment.

Final degree project 130

Fig. 5.16: CSMA/CA – Average percentage of Data Packet received versus
Data Packet sent by the nodes

As can be seen in the figures above, the average percentage of Data Packets
received in experiment 6 is 94.51%. On the other hand, the average percentage
of Data Packets received in experiment 4 is 99.31%. It can be seen that very few
Data Packets are not received by the drone. This is because once the drone
sends the CTS to the node, the channel is reserved for this node. If the CTS
packet is received while the nodes are sensing the channel, they must wait for a
timeout defined by the NAV_CTS. On the other hand, if the CTS is received by
other nodes after sending the RTS (since they have detected the free channel),
the backoff process is initiated and the medium is re-sensed.

Percentage of ACK received versus ACK sent by the drone

The figure 5.17 show the results obtained from experiments 4 and 6. The values
that can be seen are the average of the values of all the nodes of the experiment.

Fig. 5.17: CSMA/CA– Average percentage of ACK received versus ACK sent
by the drone

As can be seen in the figures above, the average percentage of ACKs received
in experiment 6 is 95.43%. On the other hand, the average percentage of ACKs

Final degree project 131

received in experiment 4 is 97.13%. The other small percentage corresponds to
packets that did not arrive before the end of the waiting time.

5.4.2. Analysis of packages received during waiting times

This section analyzes the packets received during the waiting time. There are a
total of three waiting times in the communication process using the CSMA/CA
protocol. The first one takes place when the RTS packet is sent. The node waits
for a certain time to receive the CTS. The second timeout is performed on the
drone after sending the CTS. The drone waits for a certain time to receive the
Data Packet. If after that time it has not received the Data Packet it returns to
active listening for other RTS packets from other nodes. Finally, the third timeout
is performed on the nodes after sending the Data Packet. During the first waiting
time, other RTS packets are likely to be received instead of the correct CTS.
However, the node ignores these packets and continues waiting to receive the
CTS during the remaining waiting time. In the second timeout, it is also possible
that other RTS packets are received instead of the Data Packet, however, the
drone ignores them and continues to wait to receive the Data Packet for the
remaining time. In the third timeout, the node waits for a certain amount of time
to receive the ACK. If after this waiting time the ACK packet has not been
received, the backoff process is initiated and the average is re-sensed to restart
the communication process.

The results obtained in both experiments are shown below, divided into 4
subsections. The first subsection analyzes the percentage of times the CTS was
received versus the number of times the waiting time expired. The second
subsection analyzes the percentage of packets received during the CTS waiting
time. The third subsection analyzes the percentage of times the Data Packet has
been received versus the times the waiting time has expired. Finally, the fourth
subsection analyzes the percentage of times the ACK has been received versus
the number of times the waiting time has expired.

Percentage of times the CTS has been received against times the wait time
has expired

In the figure 5.18, the results obtained from experiments 4 and 6 are shown. The
values that can be seen are the average of the values of all the nodes of the
experiment.

Final degree project 132

Fig. 5.18: CSMA/CA – Average percentage of times the CTS has been
received against times the wait time has expired

For experiment 6 it can be observed that in 29.34% of the cases the CTS has
been received. On the other hand, for experiment 4, in 76.42% of the cases, the
CTS is successfully received. In the remaining cases, three things may have
happened. The first one is that the RTS has not arrived correctly to the drone
since it has collided with an RTS packet from another node. Second, the CTS
sent by the drone collided with an RTS packet from another node. The third is
that the waiting time expires, and the CTS does not arrive on time. Since in
experiment 4 the waiting time between sending packets after receiving the ACK
(t_to_next_packet) is longer than in experiment 6, the channel is less congested
and there are not so many collisions. For this reason, the data from experiment
4 are more favorable.

Percentage of packages received during the waiting time to receive the CTS

This subsection analyzes the types of packets received during the waiting time of
the different nodes. Five cases are possible. The first case is where an RTS is
received from another node that has initiated communication with the drone. The
second case is where an erroneous CTS is received. The third case is when a
Data Packet sent by another node is received. The fourth case is that an
erroneous ACK is received which has been transmitted to another node. Finally,
the fifth case is that no packet is received during the waiting time.

The figure 5.19 show the average percentage of packets received during the
waiting time period. These graphs do not take into account the CTS packets
received, so only the cases discussed above are considered.

Final degree project 133

Fig. 5.19: CSMA/CA – Average percentage of packages received during the
waiting time to receive the CTS

In experiment 6, we have previously seen that in only 29.34% of the cases the
CTS is received before the waiting time expires. In the remaining 70.66% of
cases, the following packages are received. On average, in 33.83% of the cases,
an RTS is received from another node. In 33.08% of the cases, no packet is
received. In 26.26% of cases, an erroneous CTS is received and addressed to
another node. In 3.11% of the cases, a Data Packet is received from another
node which is addressed to the drone. Finally, in 3.69% of the cases, an
erroneous ACK is received that corresponds to another node.

On the other hand, in experiment 4, we have previously seen that in 76.42% of
the cases the CTS is received before the waiting time expires. In the remaining
23.58% of the cases, the next packets are received. On average, in 49.64% of
the cases, no package is received. In 30.89% of the cases, an RTS is received
from another node. In 10.30% of the cases, an erroneous CTS is received which
is addressed to another node. In 3.75% of the cases, a Data Packet is received
from another node which is addressed to the drone. Finally, in 5.42% of the
cases, an erroneous ACK is received that corresponds to another node.

Percentage of times the Data Packet has been received against times the
wait time has expired

The figure 5.20 show the results obtained from experiments 4 and 6. The values
that can be seen are the average of the values of all the nodes of the experiment.

Final degree project 134

Fig. 5.20: CSMA/CA – Average percentage of times the Data Packet has been
received against times the wait time has expired

For experiment 6, it can be observed that in 76.32% of the cases the Data Packet
has been successfully received by the drone. On the other hand, for experiment
4, in 96.64% of the cases, the Data Packet is successfully received. In the
remaining cases, two things may have happened. First, the Data Packet did not
arrive correctly at the drone because it collided with an RTS packet from another
node. The second, is that the waiting time expired and the Data Packet did not
reach the drone in time. Since in experiment 4 the waiting time between sending
packets after receiving the ACK (t_to_next_packet) is longer than in experiment
6, the channel is less congested and there are not so many collisions. For this
reason, the data from experiment 4 are more favorable.

Percentage of times the ACK has been received against times the wait time
has expired

In the figure 5.21, the results obtained from experiments 4 and 6 are shown. The
values that can be seen are the average of the values of all the nodes of the
experiment.

 Fig. 5.21: CSMA/CA – Average percentage of times the ACK has been
received against times the wait time has expired

Final degree project 135

For experiment 6 it can be observed that in 87.41% of the cases the ACK has
been successfully received by the drone. On the other hand, for experiment 4, in
96.46% of the cases, the ACK is successfully received. In the rest of the cases,
the waiting time ends, and the ACK is not received. For these cases, it is most
likely that the waiting time has expired without any other packet being received.
However, there is a possibility that some node after sensing the medium before
this communication started, and after having had a very long DIFS time, sends
the RTS just at the time when the ACK is sent and then both packets collide.
Since in experiment 4 the waiting time between sending packets after receiving
the ACK (t_to_next_packet) is longer than in experiment 6, the channel is less
congested and there are not so many collisions. For this reason, the data from
experiment 4 are more favorable compared to experiment 6.

5.4.3. Analysis of successful communications

In this section, the results obtained in experiments 6 and 4 are analyzed. In
experiment 6, it has been observed in the previous results that the channel
saturation is higher than in experiment 4. In the following, three subsections are
presented where different plots of the experiments are analyzed. The first
subsection shows the percentage of ACKs received versus RTSs sent. The
second subsection shows the percentage of successful communications versus
failed communications after Kmax attempts. In all experiments, the maximum
number of retransmissions to receive the ACK is 5. Finally, the third subsection
shows the percentage of attempts needed for successful communications.

Percentage of ACK received versus RTS sent (%Success)

If there were no collisions and all packets arrived before the end of the waiting
time, all sent RTSs would receive an ACK after the CSMA/CA protocol
communication process. However, in a scenario where there is a certain density
of nodes and the channel is saturated, this does not happen. The value that can
be seen in the following graphs is the average of the values of all the nodes of
the experiment.

Fig. 5.22: CSMA/CA – Average percentage of ACK received versus RTS sent.

Final degree project 136

As can be seen in the figure 5.22, the percentage of ACK packets received versus
RTS sent is higher in experiment 4. In experiment 6, on average, ACK is received
in only 24.93% of the cases. On the other hand, in experiment 4, the ACK is
received in 73.24% of the cases. This is because the longer the waiting time
between retransmissions after receiving the ACK (t_to_next_packet), the higher
the probability that the packet reaches the destination without collision.

Percentage of successful communications versus failed communications
after Kmax attempts

The following subsection shows the results obtained after analyzing the number
of times the communication has been declared successful and the number of
times the communication is considered a failure. A communication is considered
successful if the ACK has been received before exceeding the maximum number
of attempts allowed to receive it. On the other hand, a communication is
considered a failure when it exceeds this limit. The value that can be seen in the
following graphs is the average of the values of all the nodes of the experiment.

Fig. 5.23: CSMA/CA – Average percentage of successful communications
versus failed communications after Kmax attempts

As can be seen, the percentage of successful communications with 5
retransmission attempts is higher than the values in the previous subsection. This
is due to the fact that the greater the number of attempts to receive the ACK, the
greater the probability of successful communication. In the case of experiment 6,
successful communication is achieved in 77.46% of the cases. On the other hand,
in experiment 4, successful communication is achieved in 97.10% of the cases.

Attempts needed for a successful communication

After sending an RTS, the nodes wait for a certain period to receive the CTS. If
after that time the CTS has not been received, a reception attempt is added and
the backoff process is performed. After waiting the backoff time, the
communication starts again. If, on the other hand, the CTS is received, the node
sends the Data Packet and starts a waiting time again. If, after this waiting time,
the ACK packet has not been received, a reception attempt is added and the

Final degree project 137

backoff process is executed. This subsection shows the number of attempts
required to receive the ACK in percentage. The value that can be seen in the
following graphs is the average of the values of all the nodes of the experiment.

Fig. 5.24: CSMA/CA – Average percentage of attempts needed for a successful
communication

As can be seen in the previous figures, the ACK is usually received on the first
attempt in practically all nodes. In experiment 6, in 40.47% of the cases, the ACK
is received on the first attempt. This is due to the fact that after a successful
communication the node waits only 1 ms to initiate the next communication, so it
is very likely that the medium is still free and therefore the next transmission may
be successful. The medium may be free because most of the nodes are waiting
for the backoff time after failing to receive the ACK. Or, they are waiting for a time
determined by the NAV to re-sense the medium and start the communication
process. However, when the backoff time or the NAV of the rest of the nodes is
over, they sense the medium to detect whether it is free or not. If several nodes
sense the medium at the same time, it is likely that several will detect that it is
free, which may cause collisions when sending the RTS. As can be seen in the
graphs, in 19.08% of the cases, the ACK is received on the second attempt. In
13.18% of the cases, the ACK is received on the third attempt. In 15.71% of
cases, the ACK is received on the fourth attempt. And finally, in 11.57% of the
cases, the ACK is received on the fifth attempt.

In the second experiment, the ACK is received on the first attempt in 85.91% of
the cases. Since the retransmission time after receiving the ACK is 15 seconds,
the nodes are naturally synchronized. When the first node receives the ACK, it
waits 15 seconds to restart communications. The rest of the nodes in these
seconds manage to communicate with the drone and receive the ACK, so they
also wait 15 seconds. Once all the nodes have communicated and are waiting, it
is probable that the first node will sense the free medium and send the RTS when
the rest of the nodes are still in the waiting process. For this reason, there is a
high percentage of ACK reception on the first attempt.

Final degree project 138

5.5. Analysis and comparison of the performance of both
experiments

In the following, the performance of both protocols in the different experiments is
analyzed. In addition, the experiments whose waiting times after receiving the
ACK are the same are analyzed together. In other words, experiments 1 and 6
are analyzed and compared first. And second, experiments 3 and 4 are analyzed
and compared.

Experiment 1 corresponds to the pure ALOHA protocol with a t_to_next_packet
of 15 ms. Experiment 6 corresponds to the CSMA/CA protocol with a
t_to_next_packet of 1 ms. Next, a comparison of the results obtained from the
different experiments is shown and it is analyzed which protocol performs better
in the case where the channel is saturated. The figure 5.25 shows the percentage
of average of all the nodes involved in each experiment. Specifically, it shows the
percentage of ACK received versus Data Packet / RTS sent. In the same graph,
also shows the percentage of successful communications versus failed
communications after Kmax attempts.

Fig.5.25: Comparison of communication success in experiments 1 and 6

In both experiments, the channel is saturated because after each successful
transmission the node transmits again with practically no delay. In the case of the
pure ALOHA experiment, it can be seen that in only 3.62% of the cases is it
possible to receive the ACK after sending the Data Packet. On the other hand, in
the CSMA/CA experiment, in 24.93% of the cases, the ACK is received after
sending the RTS. If the maximum number of attempts (Kmax) is taken into
account, the pure ALOHA experiment has a 16.21% probability of successful
communication. On the other hand, the CSMA/CA experiment has a 77.46%
chance of successful communication.

In the pure ALOHA protocol, when the channel is saturated, it is very likely that
the packets sent collide with others. To have a successful communication, it is
necessary that the Data Packet is correctly received in the drone and that the
ACK arrives in time to the node without colliding with any other packet. In the

Final degree project 139

case of the CSMA/CA protocol, the nodes must sense the medium before
transmitting, which means that there are not so many collisions since many of the
nodes wait for a NAV to initiate communications if they detect that there is a
communication taking place. However, a collision-free space is not possible.
Especially in an environment where the channel is saturated.

The comparison between experiment 3 and experiment 4 is shown below. In both
experiments the channel is much less saturated because the waiting time
between the start of a new communication after receiving the ACK is a thousand
times bigger. In this case, the t_to_next_packet is 15 seconds, so a node stops
accessing the channel during this time after a successful communication.

Fig. 5.26: Comparison of communication success in experiments 3 and 4

As can be seen in the previous figure, in the case of the pure ALOHA experiment,
58.91% of the cases of receiving the ACK after sending the Data Packet can be
observed. On the other hand, in the CSMA/CA experiment, in 73.24% of the
cases it is possible to receive the ACK after sending the RTS. If the maximum
number of attempts (Kmax) is taken into account, the pure ALOHA experiment
has a 91.42% probability of successful communication. On the other hand, the
CSMA/CA experiment has a 97.1% probability of having a successful
communication. In this case, the probability of successful communication is much
higher.

Since the retransmission waiting time after receiving the ACK is 15 seconds, the
nodes are naturally synchronized. When the first node receives the ACK, it waits
15 seconds until it restarts communications. The rest of the nodes in this time are
more likely to communicate with the drone and receive the ACK since the node
density is lower. Once they receive the ACK, they wait 15 seconds, reducing
again the density of nodes. Once all the nodes have communicated and are in
the waiting time to restart communications, the first node that started the wait
retransmits the Data Packet with a high probability of having a free channel. For
this reason, there is a high percentage of reception of the ACK when sending the
Data Packet or RTS. For CSMA/CA, there is the added complexity that the nodes

Final degree project 140

sense the medium before transmitting, so the probability of collision is drastically
reduced. Finally, if we consider the successful communications after 5 attempts,
it can be seen how both protocols have an excellent performance, highlighting
the 97.1% provided by the CSMA/CA protocol with a waiting time between
retransmissions of 15 seconds.

Final degree project 141

CHAPTER 6: Conclusions and future development

In this project, the LoRa communications experiment proof-of-concept has been
performed using several ground IoT nodes and a miniaturized drone-based
payload. The communications have been performed using two MAC protocols
that are compatible with an IoT scenario: pure ALOHA and CSMA/CA with
RTS/CTS. In both protocols, the useful information to be sent is the data
contained in the Data Packet. In this packet, the data obtained by the capacitive
soil moisture sensor and the temperature sensor are stored.

Chapter 1 provides an introduction to the aims and objectives of the project.
Chapter 2 (SoA) determines the technology used in this experiment. This chapter
defines the MAC protocols to be used and corroborates why LoRa technology
has better properties than other LPWAN technologies. Chapter 3 explains the
methodology applied to develop the experiment, both in the software and
hardware parts. In chapter 4, the results obtained in the first measurement
campaign in which data were taken from the capacitive soil moisture sensor are
analyzed. Finally, Chapter 5 explains how the second measurement campaign
was performed and details the results obtained.

In this project, all the objectives mentioned in section 1.2 have been achieved
despite all the inconveniences and setbacks. It should be noted that initially this
project was only designed to perform the ground nodes design and software
implementation and test it with the RITA LoRa module. However, since the RITA
LoRa module was not prepared for the campaign, the gateway code of both
protocols had to be implemented in the structure designed for the drone. To
accomplish all these objectives has been necessary to implement the pure
ALOHA protocol and the CSMA/CA protocol together in the same code controlled
by a command in the CubeCell transceiver of the IoT devices and the drone. In
addition, it has been necessary to design the COTS structure of the ground nodes
and the payload of the drone. Finally, both the software implementation and the
hardware design have been tested in a measurement campaign where data have
been stored and subsequently analyzed in order to determine which protocol
obtains the best performance according to its characteristics. In the following
paragraphs, some conclusions obtained after this study and possible
improvements for the future development of the work are presented.

The first conclusion obtained after the measurement campaign is that both the
LoRa communications experiment and the GNSS-R experiment can be executed
simultaneously in the same payload with shared equipment without interference
or problems.

In an IoT environment, it is required that all devices used should be low-power,
including sensors. The following is an analysis of whether the sensors used in
the campaign fulfill these objectives. The HDC1080 temperature sensor has a
power consumption of 1.3µA during measurements, while in the sleeping mode
it has a minimum power consumption of 100 nA. On the other hand, the capacitive
soil moisture v1.2. sensor has a power consumption in measurements of 5 mA
and has no sleeping mode state. Since the ground nodes are designed to be low-

Final degree project 142

power IoT devices, the soil moisture sensor is not compliant with the low-power
requirements, which is why in future implementations this sensor should be
replaced by a low-power digital sensor. On the other hand, the temperature
sensor meets the requirements of low power consumption for IoT nodes,
therefore it is concluded that the temperature sensor HDC1080 is suitable for this
type of scenario.

In chapter 5 the different data obtained in the experiments performed using the
pure ALOHA and CSMA/CA protocols have been analyzed. A total of two
experiments have been performed for each protocol. The first one with a short
time between packet transmissions after receiving the ACK (t_to_next_packet)
and the second one where the t_to_next_packet is three orders of magnitude
bigger.

In conclusion, it has been observed that with a small t_to_next_packet (between
1 ms and 15 ms in the experiments) the channel is highly saturated, which causes
a high probability of collision between packets. On the other hand, when the
t_to_next_packet is larger (15 seconds), the channel is not so saturated, and the
probability of collision is reduced. In these cases, the nodes are naturally
synchronized. This is because once a node receives the ACK, it initiates a wait
determined by the t_to_next_packet, ceasing to occupy the channel and thus
reducing the density of nodes trying to communicate with the drone. The rest of
the nodes are more likely to receive the ACK, and as they receive the ACK, they
also start the waiting time leaving the channel free for the next node to
communicate with the drone. Therefore, it is concluded that the higher the
t_to_next_packet and the lower the density of nodes in the scenario, the lower
the percentage of collisions between packets and the higher the percentage of
successful communications. In addition, if the possible Kmax attempts are
considered, the percentage of successful communications increases.

By comparing the results obtained by each protocol, it can be concluded that for
any type of scenario, the best performance is offered by the CMSA/CA protocol.
In a scenario where the channel is saturated, the performance of the CSMA/CA
protocol outperforms that of the pure ALOHA protocol. On the other hand, in a
scenario where the channel is not highly saturated, the percentages of successful
communications are similar, but it is still preferable to use the CSMA/CA protocol
for communications.

As a future development in this project, it would be convenient to make the IoT
ground nodes independent and achieve remote telemetry recording without the
nodes being connected to the computer. In addition, a future proof-of-concept
should be performed where the IoT ground nodes are tested in a more realistic
case. In this experiment, the nodes should be placed more widely spaced and
with different densities using other types of low-power sensors for IoT
environments.

Final degree project 143

CHAPTER 7: Bibliography

[1] CubeSat. Cubesat. Accessed: Nov. 2019. [Online]. Available:

http://www.cubesat.org/

[2] Mekki, K.; Bajic, E.; Chaxel, F.; Meyer, F. A comparative study of LPWAN

technologies for large-scale IoT deployment. ICT Express 2019, 5, 1–7.

[3] Sigfox. Sigfox: The Global Communicator Service Provider. Available on:

https://www.sigfox.com/en

[4] 3GPP. Release 13. Available on: https://www.3gpp.org/release-13

[5] LoRa Alliance. Available on: https://lora-alliance.org/

[6] Qu, Z.; Zhang, G.; Cao, H.; Xie, J. LEO Satellite Constellation for Internet of

Things. IEEE Access 2017, 5, 18391–18401.

[7] Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.;

Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag.

2017, 55, 34–40.

[8] Ochoa, M.N.; Suraty, L.; Maman, M.; Duda, A. Large Scale LoRa Networks:

From Homogeneous to Heterogeneous Deployments. In Proceedings of the

2018 14th International Conference on Wireless and Mobile Computing,

Networking and Communications (WiMob), Limassol, Cyprus, 15–17 October

2018; pp. 192–199.

[9] Lee, J.; Jeong, W.C.; Choi, B.C. A Scheduling Algorithm for Improving

Scalability of LoRaWAN. In Proceedings of the 2018 International Conference

on Information and Communication Technology Convergence (ICTC), Jeju

Island, Korea, 17–19 October 2018; pp. 1383–1388.

[10] T. Ferrer, S. Cespedes, and A. Becerra, “Review and Evaluation of MAC

Protocols for Satellite IoT Systems Using Nanosatellites,” Sensors, vol. 19, p.

1947, Apr 2019.

[11] A. Perez, P. Fabregat, M. Badia, M. Sobrino, C. Molina, J.F. Munoz-Martin,

L. Fernandez, L. Rayon, and J. Ramos; RITA: Requirements and preliminary

design of an L-band microwave radiometer, optical imager, and RFI

detection payload for a 3U CubeSat. IGARSS 2020 - 2020 IEEE

https://www.sigfox.com/en
https://www.3gpp.org/release-13
https://lora-alliance.org/

Final degree project 144

International Geoscience and Remote Sensing Symposium. Available on:

10.1109/IGARSS39084.2020.9324458

[12] A. Perez-Portero; P. Fabregat; M. Badia; M. Sobrino; C. Molina; L. Fernandez;

L. Rayón; A. Rodríguez; J. F. Munoz-Martin; RITA: a 1u multi-sensor payload

for the grsssat contributing soil moisture, vegetation analysis and RFI

detection. IEEE, 1-4 (2021)

[13] L. Fernandez et al., "SDR-Based Lora Enabled On-Demand Remote

Acquisition Experiment On-Board the Alainsat-1," 2021 IEEE International

Geoscience and Remote Sensing Symposium IGARSS, 2021, pp. 8111-

8114, doi: 10.1109/IGARSS47720.2021.9553020.

[14] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, ‘‘A comparative study of LPWAN

technologies for large-scale IoT deployment,’’ ICT Express, vol. 5, no. 1, pp.

1–7, Mar. 2019. [Online]. Available on:

http://www.sciencedirect.com/science/article/pii/S2405959517302953

[15] M. De Sanctis, E. Cianca, G. Araniti, I. Bisio, and R. Prasad, ‘‘Satellite

communications supporting Internet of remote Things,’’ IEEE Internet Things

J., vol. 3, no. 1, pp. 113–123, Feb. 2016.

[16] Lara Fernandez; Joan Adria Ruiz-De-Azua; Anna Calveras; Adriano Camps;

Assessing LoRa for Satellite-to-Earth Communications Considering the

Impact of Ionospheric Scintillation. IEEE Access (Volume 8), 165570 - 165582

(2020). Available on: 10.1109/ACCESS.2020.3022433

[17] M. Bor and U. Roedig, “LoRa transmission parameter selection,” 2017.

[18] LoRa Modulation Bases. Available on:

https://www.mouser.com/pdfdocs/an120022.pdf

[19] A. Augustin, J. Yi, T. Clausen, and W. M. Townsley, “A study of LoRa: Long

range & low power networks for the internet of things,” Sensors, vol. 16, no.

9, p. 1466, 2016.

[20] LoRaWAN airtime calculator. Available on:

https://www.thethingsnetwork.org/airtime-calculator/

[21] Forouzan, B.A. Data communications and networking. 5th ed. New York:

McGraw-Hill, 2013. ISBN 0071254420.

http://www.sciencedirect.com/science/article/pii/S2405959517302953
https://doi.org/10.1109/ACCESS.2020.3022433
https://www.mouser.com/pdfdocs/an120022.pdf
https://www.thethingsnetwork.org/airtime-calculator/

Final degree project 145

[22] Supriya S. Sawwashere; S.U. Nimbhorkar; RTS/CTS Frame Synchronization

to Minimize the Hidden Node Problem in Wireless Network.

https://www.researchgate.net/publication/275885844_RTSCTS_Frame_Syn

chronization_to_Minimize_the_Hidden_Node_Problem_in_Wireless_Networ

k

[23] Serial connection. Available on: https://heltec-automation-

docs.readthedocs.io/en/latest/general/establish_serial_connection.html

[24] Capacitive Soil Moisture sensor schematic. Available on:

https://how2electronics.com/wp-content/uploads/2019/11/Capacitive-Soil-

Moisture-Sensor-Schematic-1.png

[25] Texas Instrument. HDC1080 DataSheet. Available on:

https://www.ti.com/lit/ds/symlink/hdc1080.pdf

[26] Heltec. HelTec CubeCell Dev-Board HTCC-AB01 frequently asked questions.

Available on: https://heltec-automation-

docs.readthedocs.io/en/latest/cubecell/frequently_asked_questions.html

[27] Manual 3DRobotics Iris +. Available on:

https://www.manualpdf.es/3dr/iris/manual?p=3

[28] Soil moisture values. Available on: https://www.traxco.es/blog/tecnologia-del-

riego/humedad-en-suelos-de-diferente-textura

[29] Peyravi, H. Medium Access Control Protocols for Space and Satellite

Communications; Kent State University Kent, OH, USA, 2004.

[30] Fernandez, L.; Ruiz-de-Azua, J.A.; Calveras, A.; Camps, A. On-Demand

Satellite Payload Execution Strategy for Natural Disasters Monitoring Using

LoRa: Observation Requirements and Optimum Medium Access Layer

Mechanisms. Remote Sens. 2021, 13, 4014.

https://doi.org/10.3390/rs13194014.

https://www.researchgate.net/publication/275885844_RTSCTS_Frame_Synchronization_to_Minimize_the_Hidden_Node_Problem_in_Wireless_Network
https://www.researchgate.net/publication/275885844_RTSCTS_Frame_Synchronization_to_Minimize_the_Hidden_Node_Problem_in_Wireless_Network
https://www.researchgate.net/publication/275885844_RTSCTS_Frame_Synchronization_to_Minimize_the_Hidden_Node_Problem_in_Wireless_Network
https://heltec-automation-docs.readthedocs.io/en/latest/general/establish_serial_connection.html
https://heltec-automation-docs.readthedocs.io/en/latest/general/establish_serial_connection.html
https://how2electronics.com/wp-content/uploads/2019/11/Capacitive-Soil-Moisture-Sensor-Schematic-1.png
https://how2electronics.com/wp-content/uploads/2019/11/Capacitive-Soil-Moisture-Sensor-Schematic-1.png
https://www.ti.com/lit/ds/symlink/hdc1080.pdf
https://heltec-automation-docs.readthedocs.io/en/latest/cubecell/frequently_asked_questions.html
https://heltec-automation-docs.readthedocs.io/en/latest/cubecell/frequently_asked_questions.html
https://www.manualpdf.es/3dr/iris/manual?p=3
https://www.traxco.es/blog/tecnologia-del-riego/humedad-en-suelos-de-diferente-textura
https://www.traxco.es/blog/tecnologia-del-riego/humedad-en-suelos-de-diferente-textura
https://doi.org/10.3390/rs13194014

Final degree project 146

CHAPTER 8: Appendices

8.1. Work plan

8.1.1. Work packages

This work is divided into different work packages that have been performed over
the last months. A summary of the work done in these work packages is
presented below, followed by a Gannt diagram showing the time consumed in
each of the work packages.

▪ WP1: Research. In this first work package research on the technologies to

be applied in the project and the objectives to be achieved is performed.

▪ WP2: design of the payload of the 3D IRIS+ drone.

▪ WP3: Modifications and calibrations of the sensors. In this work package the

hardware for the first measurement campaign is unified and the IP67 box for
the experiment is assembled.

▪ WP4: Code implementation for the first measurement and test campaign

and tests.

▪ WP5: First measurement campaign and analysis of the results.

▪ WP6: Implementation of the pure ALOHA protocol.

▪ WP7: Implementation of the CSMA/CA protocol.

▪ WP8: Design and assembly of the ground nodes.

▪ WP9: Implementation of the command code to control the experiments to be

performed.

▪ WP10: Testing with the nodes and the drone payload.

▪ WP11: Second measurement campaign.

▪ WP12: Analysis of the results. In this work package the results obtained in

both experiments are processed, analyzed and graphed.

▪ WP13: Documentation. Write the different sections of this work.

Final degree project 147

8.1.2. Gantt diagram

Final degree project 148

8.2. Annex A

This appendix shows particular information about the behavior of the nodes in
experiment 1 and 3 using the pure ALOHA protocol.

8.2.1. Analysis of packages transmitted and received

Fig. 8.1: Experiment 1 – pure ALOHA – 15 ms: Percentage of Data Packets
received versus Data Packet sent by the nodes (%).

Fig. 8.2: Experiment 3 – pure ALOHA – 15 s: Percentage of Data Packets
received versus Data Packet sent by the nodes (%).

Final degree project 149

Fig. 8.3: Experiment 1 – pure ALOHA – 15 ms: Percentage of ACK received

versus ACK sent by the drone (%).

Fig. 8.4: Experiment 3 – pure ALOHA – 15 s: Percentage of ACK received

versus ACK sent by the drone (%).

Final degree project 150

8.2.2. Analysis of packages received during the waiting time

.

Fig. 8.5: Experiment 1 – pure ALOHA – 15 ms: Percentage of packages
received during the waiting time.

Fig. 8.6: Experiment 3 – pure ALOHA – 15 s: Percentage of packages received

during the waiting time.

Final degree project 151

8.2.3. Analysis of successful communications

Fig. 8.7: Experiment 1 – pure ALOHA – 15 ms: Percentage of ACK received
versus data packets sent.

Fig. 8.8: Experiment 3 – pure ALOHA – 15 s: Percentage of ACK received
versus data packets sent.

Final degree project 152

Fig. 8.9: Experiment 1 – pure ALOHA – 15 ms: Percentage of successful
communications versus failed communications after Kmax attempts

Fig. 8.10: Experiment 3 – pure ALOHA – 15 s: Percentage of successful
communications versus failed communications after Kmax attempts

Final degree project 153

Fig. 8.11: Experiment 1 – pure ALOHA – 15 ms: Percentage of attempts
needed for a successful communication.

Fig. 8.12: Experiment 3 – pure ALOHA – 15 s: Percentage of attempts needed

for a successful communication.

Final degree project 154

8.3. Annex B

This appendix shows particular information about the behavior of the nodes in
experiment 4 and 6 using the CSMA/CA protocol.

8.3.1. Analysis of packages transmitted and received

Fig. 8.13: Experiment 6 – CSMA/CA – 1 ms – Percentage of RTS received
versus RTS sent by the nodes

Fig. 8.14: Experiment 4 – CSMA/CA – 15 s – Percentage of RTS received
versus RTS sent by the nodes

Final degree project 155

Fig. 8.15: Experiment 6 – CSMA/CA – 1 ms – Percentage of CTS received
versus CTS sent by the drone

Fig. 8.16: Experiment 4 – CSMA/CA – 15 s – Percentage of CTS received
versus CTS sent by the drone

Final degree project 156

Fig. 8.17: Experiment 6 – CSMA/CA – 1 ms – Percentage of Data Packet
received versus Data Packet sent by the nodes

Fig. 8.18: Experiment 4 – CSMA/CA – 15 s – Percentage of Data Packet
received versus Data Packet sent by the nodes

Final degree project 157

Fig. 8.19: Experiment 6 – CSMA/CA – 1 ms – Percentage of ACK received
versus ACK sent by the drone

Fig. 8.20: Experiment 4 – CSMA/CA – 15 s – Percentage of ACK received
versus ACK sent by the drone

Final degree project 158

8.3.2. Analysis of packages received during waiting times

Fig. 8.21: Experiment 6 – CSMA/CA – 1 ms – Percentage of packages received

during the waiting time to receive the CTS

Fig. 8.22: Experiment 4 – CSMA/CA – 15 s – Percentage of packages received

during the waiting time to receive the CTS

Final degree project 159

8.3.3. Analysis of successful communications

Fig. 8.23: Experiment 6 – CSMA/CA – 1 ms: Percentage of ACK received
versus RTS sent.

Fig. 8.24: Experiment 4 – pure ALOHA – 15 s: Percentage of ACK received
versus RTS sent.

Final degree project 160

Fig. 8.25: Experiment 6 – CSMA/CA – 1 ms: Percentage of successful
communications versus failed communications after Kmax attempts

Fig. 8.26: Experiment 4 – CSMA/CA – 15 s: Percentage of successful
communications versus failed communications after Kmax attempts

Final degree project 161

Fig. 8.27: Experiment 6 – CSMA/CA – 1 ms: Percentage of attempts needed for

a successful communication

Fig. 8.28: Experiment 4 – CSMA/CA – 15 s: Percentage of attempts needed for

a successful communication

Final degree project 162

8.4. Code

The code is uploaded on GitHub. In GitHub you can find 4 files (.ino).
ALOHA_COM.ino and CSMA_CA_COM.ino are the commands used to initialize
the experiments with pure ALOHA and CSMA/CA in addition to sending the
characteristics of each one. CODE_Of_THE_DRONE.ino is the code
implemented in the CubeCell of the drone. And Ground_Code_Node_1.ino is the
code implemented in the different nodes of the experiment. Each node is loaded
with the same code only varying certain attributes of the node, such as the
identifier and the position.

https://github.com/diegoth99/TFG_CODE.git

