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Resumen 
 
El detector de teledetección e interferencia con radiometría y análisis de 
vegetación (RITA), es una carga útil de 1U que volará a bordo de Alainsat-1, 
un CubeSat de 3U. Entre otras cargas útiles, realizará una prueba de concepto 
de un módulo personalizado LoRa para las comunicaciones espacio-tierra 
entre el satélite y una red terrestre de sensores del Internet de las Cosas.  
 
La prueba de concepto del experimento de comunicaciones LoRa se ha 
realizado utilizando varios nodos de tierra IoT y una carga útil miniaturizada 
basada en un dron. Las comunicaciones se han realizado utilizando dos 
protocolos MAC compatibles con un escenario IoT: ALOHA puro y CSMA/CA 
con RTS/CTS. En ambos protocolos, la información útil que se envía son los 
datos contenidos en el paquete de datos. En este paquete se almacenan los 
datos obtenidos por el sensor capacitivo de humedad del suelo y el sensor de 
temperatura.  
 
Para realizar la prueba de concepto del experimento de comunicaciones LoRa, 
se han realizado dos campañas de medidas. En la primera campaña de 
medidas se ha comprobado el correcto funcionamiento de los módulos y 
sensores LoRa. En la segunda campaña de medidas, se han realizado varios 
experimentos en los que se han probado los protocolos ALOHA puro y 
CSMA/CA con RTS/CTS. Para poder probar diferentes experimentos con 
distintas configuraciones de los protocolos, se ha diseñado una estructura de 
código general en la que tanto los nodos de tierra como la carga útil del dron 
son controlados por un comando enviado por el usuario. Por tanto, la elección 
del protocolo a utilizar, así como los parámetros configurables de cada 
protocolo se envían a través de un comando remoto.  
 
Finalmente, se analizan los resultados obtenidos en ambos protocolos y se 
concluye cuál de los dos tiene mejores prestaciones frente a un escenario de 
comunicaciones IoT.  
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Overview 
 

 
The remote sensing and interference detector with RadIometry and vegeTation 
Analysis (RITA), is a payload of 1U that will fly onboard Alainsat-1 a 3U 
CubeSat. Among other tests and experiments, it will perform a proof of concept 
of a LoRa custom module for space-to-Earth communications between the 
satellite and a terrestrial network of Internet of Things sensors.  
 
The LoRa communications experiment proof-of-concept has been performed 
using several ground IoT nodes and a miniaturized drone-based payload. The 
communications have been performed using two MAC protocols which are 
compatible with an IoT scenario: pure ALOHA and CSMA/CA with RTS/CTS. 
In both protocols, the useful information to be sent is the data contained in the 
Data Packet. In this packet, the data obtained by the capacitive soil moisture 
sensor and the temperature sensor are stored.  
 
In order to perform LoRa communications experiment proof-of-concept, two 
measurement campaigns have been realized. In the first measurement 
campaign, the correct functioning of the LoRa modules and sensors has been 
tested. In the second measurement campaign, several experiments have been 
performed in which pure ALOHA and CSMA/CA protocols have been tested. In 
order to test different experiments with different configurations of the protocols, 
a general code structure has been designed where both the ground nodes and 
the drone payload are controlled by a command sent by the user. Therefore, 
the choice of the protocol to be used as well as the configurable parameters of 
each protocol are sent through a remote command.  
 
Finally, the results obtained in both protocols are analyzed and it is concluded 
which of the two has better performance against a IoT communications 
scenario.  
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CHAPTER 1: INTRODUCTION 
 

1.1. Introduction 
 
In the early days of space exploration, satellites were large objects that cost large 
amounts of money and took many years to build in the 1950s, the Soviet Union 
initiated the Sputnik satellite project, the first artificial satellite to orbit the Earth. 
This event marked the beginning of a competition between two powerful countries 
that resulted in a technological development in aerospace sciences. The 
satellites created later were satellites designed for very specific missions. Each 
mission had its own subsystems to meet the requirements of a given project. 
Today, numerous satellites are in orbit to provide us with different applications 
such as positioning systems, Earth observation and communications. Among all 
applications, telecommunications have been the most widespread and used 
application. This is because with the use of satellites we are able to cover the 
entire surface of the Earth, providing connectivity to remote or isolated areas that 
are practically impossible to cover by other means. 
 
Traditionally, designing and developing a satellite is difficult, complex, expensive 
and takes long periods of time to develop. However, decades later a new 
paradigm was established that significantly reduced the size of some satellites. 
In 1999, the CubeSat [1] standard emerged, which allowed access to space, 
offering satellite development opportunities to institutions that did not have 
access. The basic design of a CubeSat consists of a 10 cm cube, called 1U, 
which contains the primary subsystems for proper operation. They are used to 
study the behavior of different technologies in a space environment and a wide 
range of services such as communications or Earth observation. 
 
 
Within these communication satellites, Internet Of Things (IoT) has had a lot of 
momentum in the past years. The IoT is a burgeoning paradigm that points out a 
novel direction of future internet, in which devices are provided with Internet 
connection and some software intelligence. These capabilities allow for IoT 
devices to be controlled remotely, enabling access to an ecosystem of various 
services. Moreover, through those easy accesses, various kinds of IoT devices 
such as, environmental monitoring sensors, smart household electrical 
appliances, actuators, vehicles, among others, are able to exchange data with 
IoT networks and provide unlimited services to a multitude of users: individual 
users, enterprise users, government users, military users, etc. 
 
IoT devices can be classified according to communication ranges: short-range 
and Low Power Wide Area Network (LPWAN) [2]. Compared to short-range 
connections based on Zigbee or Bluetooth, LPWANs have a longer 
communications range still with low power consumptions, and are more suitable 
for rural or industrial scenarios, such as smart grid and environmental monitoring. 
The main LPWAN technologies are Sifgox [3], NarrowBand-IoT (NB-IoT) [4], and 
LongRange (LoRa) [5]. Each of these devices communicates independently with 
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a gateway or base station, which in turn connects to the network, to make data 
available. This required infrastructure is feasible to deploy in rural areas. 
However, in remote areas, where the placement of gateways requires the 
deployment of considerable infrastructure, satellites are used to communicate 
with these devices [2]. In addition, the demand for connectivity is increasing 
worldwide. It is estimated that the IoT communications market will have an impact 
on the economy of close to three to eleven trillion dollars per year by 2025 [6]. In 
this scenario, satellite technology seems to offer a critical solution to the global 
connectivity problem. However, traditional satellites are expensive, so cheaper 
satellite solutions have become the focus of growing interest. By bringing together 
the need for greater coverage of IoT networks and new technologies that offer 
smaller and cheaper satellites, a constellation of CubeSat satellites orbiting in the 
Earth's low orbits can be the best answer to the global connectivity that IoT 
demands.  
 
Space-to-Earth communications are a challenge due to long distances, 
attenuations and satellite movement. For that reason, it is necessary to study the 
different LPWAN technologies and determine which one is the most appropriate 
for use in this type of communication.  In addition, these wireless communications 
must be controlled with medium access layer mechanisms, to ensure the proper 
coordination of frame transmissions, together with the logic for retransmissions 
and the recovery of data in case of collisions.  Among LPWANs, LoRa is a novel 
technology that has gained great interest in recent years for satellite 
communications. Several studies have evaluated the limitations of the technology 
in space-to-Earth communications [2], in addition to studying the different MAC 
protocols for LoRa modulation. The most frequently used one is LoRaWAN, 
proposed by the LoRa Alliance, and it uses an extensive network of gateways 
denominated the Things Network. However, it has been demonstrated that this 
MAC protocol has certain capacity limitations [7]. Aside from LoRaWAN, other 
different protocols have been studied to enhance the capacity and the range of 
LoRa networks [8][9].  However, all these papers considered an architecture in 
which nodes are always in range of the gateway. In a scenario where the satellite 
is the gateway, the different IoT devices are always not within reach of the 
gateway, which is why it is necessary to consider MAC protocols suited to a 
scenario where the gateway is not accessible at every moment and where 
multiple devices try to access the medium simultaneously. In general, the most 
suitable protocols for IoT satellite communication scenarios were identified in the 
article [10], where a state-of-the-art study of the proposed protocols is presented 
providing different types of metrics. Two of the protocols proposed in [10] have 
been selected to perform the proof of concept in this thesis: pure ALOHA and 
CSMA/CA with RTS/CTS. 
 
 
The Remote sensing and Interference detector with RadIomeTry and vegetation 
Analysis (RITA) payload, carried out by the NanoSat Lab an organization of the 
“Universitat Politecnica de Catalunya” (UPC), is one of the Remote Sensing 
payloads selected by the 2nd GRSS Student Grand Challenge in 2019 to fly on 
board of a 3U satellite that is being developed at the National Space Science and 
Technology Center (NSSTC), United Arab Emirates University [11]. The main 
objectives of RITA are to perform microwave radiometry measurements at L-
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band, vegetation analysis using a hyper-spectral camera, Radio-Frequency 
Interference (RFI) detection and classification, and a technology demonstration 
of sensor networks using a custom LoRa transceiver. Radiometry 
measurements, RFI detection, and the LoRa experiment will be performed using 
a Software Defined Radio (SDR) with a frontend designed as a modified version 
of the Flexible Microwave Payload 1 (FMPL-1) used in the 3Cat-4 mission.  

 

 

 
 

Fig. 1.1: Section view of the 3U satellite, with the MWR and LoRa antennas in 
yellow, and the RITA payload shown in the foreground [12] 

 

The LoRa IoT module [12] embarked as part of the RITA payload will be a proof-
of-concept payload to verify the communications space-to-Earth with an SDR-
based LoRa modulation and a radiofrequency Front-End for signal conditioning. 
In the figure 1.2 it can be observed the bock diagram of the RITA payload 
components.  

 

Fig. 1.2: Block diagram of the payload components [12] 
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To test LoRa communications using different MAC protocols and compare which 
one is the most suitable, multiple LoRa modules with sensors will be placed in a 
target area, and these sensors will communicate with the LoRa module of the 
RITA payload using the HelTec CubeCell Dev-Board HTCC-AB01 transceiver.  

 

In the scenario, the RITA satellite orbits the Earth in a LEO orbit and 
communicates with the different ground nodes located around the Earth. These 
ground nodes are located with different spatial densities depending on the 
environmental disaster to be measured [13]. Given the low altitude of satellites in 
LEO orbit, they are not seen statically from the Earth. In fact, from a fixed point 
on Earth, a satellite in LEO is only seen for 8 to 10 minutes, depending on the 
latitude and longitude, where the node is located. This creates a disruption from 
the nodes' point of view, as they do not know when a satellite is available to 
transmit data packets. Therefore, the satellite transmits a periodic beacon every 
8 minutes, which reaches all nodes within range. This beacon ensures that all 
nodes are aware that a satellite is ready to receive or transmit data. In addition to 
the beacon, acknowledgment packets (ACK) and control packets (CTS) are also 
sent. 

 

The structure of this project is divided into 6 chapters, this first chapter is an 
introduction to the work.The second chapter is the State of the Art of technology 
used or applied. This chapter explains the technologies used in this project, 
including IoT technology, LoRa technology and MAC protocols. The third chapter 
details the applied methodology for software and hardware development. This 
chapter is separated into two main parts. Firstly, it explains how the software has 
been implemented using flowcharts. Secondly, it is described how the hardware 
has been developed for both the ground nodes and the miniaturized drone-based 
payload. The fourth chapter explains how the first measurement campaign was 
conducted and what results and conclusions were obtained. In this campaign 
LoRa communications were tested using LoRa modules and one of the sensors 
used was also tested. The fifth chapter is structured in five parts. The first part 
describes how the second measurement campaign was performed. Secondly, 
the results of the soil moisture and temperature sensors are analyzed. Thirdly 
and fourthly, the results obtained in the pure ALOHA and CSMA/CA experiments 
are analyzed, respectively. Fifth, both protocols are analyzed and compared. 
Finally, the sixth chapter contains the conclusions obtained in this project and 
discusses possible improvements and future developments.  
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1.2. LoRa communications experiment proof-of-concept 
objectives 

 
 
The main idea of this thesis is to perform a proof of concept of the different media 
access protocols for LoRa communications using a miniaturized drone-based 
payload and several IoT ground nodes includingmtwo types of sensors 
(capacitive soil moisture sensor and temperature sensor) and the HelTec 
CubeCell Dev-Board HTCC-AB01 transceiver, which can communicate using the 
LoRa physical layer. In this experiment, two types of MAC protocols suitable to 
IoT environments will be tested to communicate with the miniaturized drone-
based payload and the obtained results will be analyzed. The main objectives are 
the followings. 
 
The first objective of the thesis is to design and implement pure ALOHA and 
CSMA/CA protocols in a single code on the HelTec CubeCell Dev-Board HTCC-
AB01 transceiver. In the experiment, both protocols will be tested separately, so 
it is necessary to design a code which can switch between protocols when 
desired. This will be done through a command which will be sent by the user. This 
command contains the necessary information of the protocol to be used and 
reaches both the IoT devices and the gateway, which will be implemented in a 
drone that will perform the function of the satellite. Once the command reaches 
the drone's payload, it sends a beacon to initiate communications with the chosen 
protocol. 
 
The second objective of the thesis is to design the IoT ground nodes and the 
drone-based miniaturized payload to be assembled on a drone. To perform the 
proof-of-concept, it is necessary to simulate the IoT ground nodes with various 
sensors and the payload concerning the LoRa communications of the RITA 
satellite. A soil moisture sensor and a temperature sensor, will be considered in 
the design of the IoT ground nodes. The data collected by these sensors shall be 
sent as data packets in the different protocols. In the design of the drone-based 
miniaturized payload, a lightweight and space-efficient design should be 
considered. Since the RITA payload is equipped with a software-defined radio for 
microwave radiometry and RFI detection, a hyperspectral camera and a LoRa 
transceiver (which will work together to produce more accurate vegetation-related 
measurements), the drone payload should also consider space for both 
experiments and test them simultaneously as in a realistic case. For that reason, 
the design of the drone payload considers two systems. The system for the LoRa 
communications experiment and the system for the GNSS-R experiment were 
performed by a member of the NanoSat Lab. 
 
The third objective is to test the implemented protocols in a measurement 
campaign in which the miniaturized drone-based payload will be assembled on a 
drone and fly around a given area where the different ground nodes will be 
located. The ground nodes will be clustered with different densities and different 
experiments will be performed with the implemented protocols where the 
efficiency will be tested as a function of channel saturation. The ground nodes 
will capture the data and process it to determine which protocol has the best 
performance. 
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Initially, one of the parts of this thesis only proposed the implementation of the 
two MAC layer protocols in the transceivers of the ground nodes to communicate 
with the RITA LoRa module. However, due to certain setbacks, a CubeCell LoRa 
transceiver has finally been used as a payload of the drone to be able to make 
communications with the IoT nodes. Therefore, the code of the drone-based 
payload has also had to be designed and implemented to be able to carry out the 
campaign of measures and not delay the delivery of this final degree project. 
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CHAPTER 2: State of the art of technology used or 
applied 

 

2.1. Nanosatellites IoT Communication Technologies  

 

2.1.1. Introduction  

 
The Internet of Things (IoT) is a revolutionary technology that aims to connect 
devices (or ''things'') placed all over the world for different applications such as 
environmental monitoring, security, among others. To perform all these 
applications, it is necessary to have devices that store this information and are 
able to transmit it.  Therefore, these devices require the ability to transmit and 
receive information. In addition, they also require connectivity to a network such 
as the Internet or other private networks. In some cases where these devices are 
used, they are in rural or remote areas which are difficult to access. For this 
reason, these devices have been designed to be low-powered and thus reduce 
the interaction with maintenance. IoT devices are often powered by batteries or 
solar panels if the application of use allows it. Some more modern devices are 
capable of generating power from the environment, achieving up to several years 
of autonomy. However, this low-power profile limits the power transmitted to 
communicate. This causes the communication range and data rate to be affected.  
Considering these limitations, different IoT technologies have emerged over the 
years to meet these requirements. Different standards have appeared. Some 
examples are IEEE 802.15.4, Bluetooth Low Energy (BLE), and ZigBee. 
However, if the application of using the devices must be placed in rural or remote 
areas, it is necessary to deploy an expensive infrastructure for the devices to be 
connected to it in order to be connected to a network.  
 
To minimize infrastructure costs in rural areas and maximize the reach of different 
devices, different IoT technologies have emerged. Some of them are classified 
as low-power wide area networks (LPWANs), which are optimal for IoT 
applications, as they only require sending small amounts of information over long 
distances. These new LPWAN technologies have emerged in both licensed and 
unlicensed frequency bands. Among them, Sigfox, LoRa, and NB-IoT are the 
current leaders.  
 
LPWANs can cover between 1 km and 10 km in urban areas and between 10 km 
and 20 km in rural areas [14]. The way in which the different devices 
communicate is as follows. Each device communicates independently with a 
gateway or base station that is connected to the network. This communication is 
bidirectional, so both devices (devices and gateway) receive and transmit 
information. However, the uplink is defined as the messages sent from the 
devices to the gateway. On the other hand, a downlink is defined as messages 
from the gateway to the devices. Since the gateway is the central node between 
all devices and they are able to communicate over long distances, infrastructure 
costs are reduced in rural areas. However, the deployment of this infrastructure 
in remote areas such as the poles or oceans remains costly and very complex. 
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Therefore, the design of an alternative infrastructure capable of covering such 
remote areas remains necessary. A feasible solution for such scenarios is a 
constellation of low earth orbit (LEO) satellites [6]. By using a LEO satellite 
constellation, it is possible to achieve global coverage, thus managing to cover 
the most remote areas. In the next section, technical aspects of the LEO satellite 
constellation are discussed. Then, LPWAN technologies to be embarked in 
CubeSat platforms for satellite communications are discussed. In this section, 
different LPWAN technologies are presented, and it is demonstrated why LoRa 
technology is the selected technology to be applied in this project.  
 
 

2.1.2. LEO satellite constellation 

 
This section categorizes the different types of orbits and presents the 
characteristics that favor satellites in low Earth orbits (LEO) over other types of 
orbits such as geostationary orbits (GEO). 
 
Orbit types can be classified in several ways, by central body, inclination, 
eccentricity, direction or synchronicity. However, orbit types are usually classified 
by altitude. Within this categorization we find the low Earth orbit (LEO), medium 
Earth orbit (MEO), geosynchronous orbit (GEO) and high Earth orbit (HEO). All 
these orbits fall into the geocentric orbit family, as all these satellites orbit the 
Earth. 
 
LEO orbits are circular or elliptical orbits at an altitude between 200 km and 2000 
km. The orbital period depends on the latitude and varies between 88 minutes 
and 127 minutes. On the other hand, the velocity reached by these satellites is 
27000 km/h, completing a total of 16 orbits around the Earth. For this reason, the 
maximum time that a satellite is above the local horizon for a terrestrial observer 
is up to 20 min. This time is used to transfer data to ground stations. This type of 
satellites, being in a low orbit, have a minimum atmospheric resistance that 
causes the gradual deterioration of the equipment and its permanence in space 
is limited. Satellites can have orbits inclined between 0 and 90 degrees with 
respect to the equatorial plane. There are two types of orbits derived from LEO 
orbits. Polar orbits (PO) and sun synchronous orbits (SSO). A polar orbit is a type 
of low Earth orbit in which the satellites pass approximately over the poles of the 
planet. The approximate inclination is 90 degrees, although a deviation of 20 to 
30 degrees is also accepted as a polar orbit. Sun synchronous orbits (SSO) is a 
type of polar orbit. Objects in this orbit are synchronized with the Sun, so they 
pass over a region of the Earth at the same local time every day. 
  
Satellites in MEO orbit are located between 2000 km and 35786 km. Satellites 
orbiting in this zone are mostly used for geographic positioning, such as GPS, 
Galileo and GLONASS. The most commonly used altitude is 20200 km, with an 
orbital period of 12 hours. 
 
Satellites in GEO orbit are located at an altitude of 35786 km. The ideal satellites 
for this zone are those destined for telecommunications, since the orbital period 
of the satellite is the same as that of the Earth's rotation and it is more difficult for 
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them to lose the signal. The geosynchronous equatorial orbit is a type of GEO 
orbit whose inclination is 0º, that is, the satellite's position is always maintained 
on the equator of the celestial plane. 
 
Finally, the satellites in HEO orbit are at a level above 35786 km altitude. The 
orbital periods in this zone are longer than 24 hours. For this reason, satellites 
located in this zone have an apparent backward movement. Since their velocity 
is lower than that of the Earth's rotation, visually the satellite moves in the 
opposite direction to the common objects in the sky. 
 
Depending on the type of orbit a satellite follows, there are certain advantages 
and disadvantages. Some of the advantages of LEO orbits over GEO orbits are 
mentioned in the following paragraph. 
 
LEO satellite constellation technology has unique advantages compared to GEO 
systems. The first advantage is that a LEO satellite constellation has a shorter 
propagation delay because it has a lower altitude orbit compared to GEO 
satellites. The propagation delay is quantified by the round-trip time (RTT). A 
satellite in LEO orbit has an RTT less than 100 ms, meanwhile, a satellite in GEO 
orbit has an RTT greater than 600 ms [15]. Therefore, a constellation of LEO 
satellites has less latency than a constellation of GEO satellites. The second 
advantage is related to lower propagation losses due to a shorter distance 
between the ground devices and the satellite. However, satellites in LEO orbit 
have some disadvantages. Satellites in this type of orbit suffer from 
communication disruptions, as they are not always visible to a ground-based 
device. This is why a constellation of satellites orbiting the earth is necessary to 
ensure global and uninterrupted coverage between satellite handovers. 
 
Therefore, satellite constellations in LEO orbit offer greater advantages than 
constellations in GEO orbit. In order to cover certain remote areas of the Earth 
and have global coverage, it would be necessary to design a LEO satellite 
constellation with a certain configuration. Employing a LEO constellation of 
CubeSats using LPWAN gateways would provide coverage to all those IoT 
devices located in remote areas at a reasonable cost. To enable different IoT 
devices to communicate with satellites, certain limitations must be considered 
that are not taken into account in the vast majority of terrestrial communications. 
In space-to-ground communications, channel losses and Doppler frequency 
shifts in the signal carrier must be considered. These losses are modeled with 
the Free Space Path Loss (FSPL) model, as line-of-sight is achieved between 
the satellite and the terrestrial IoT device. In addition, signals can also be 
attenuated by effects such as atmospheric absorption and other weather 
conditions such as rain and clouds. Therefore, it is necessary to evaluate the 
feasibility of onboard LPWAN technologies on satellites. 
 

 

2.1.3. LPWAN technologies for satellite communications 

 

The most widely used LPWAN technologies are Sigfox, NarrowBand-IoT (NB-
IoT), and LoRa. In order to evaluate the different technologies presented above, 
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a comparison of the characteristics of the Physical Access Control/Media 
(PHY/MAC) layer is considered. Among these characteristics used in LEO space-
to-Earth communications are modulation-coding techniques, frequency band, 
maximum data rate, etc. 
 
Sigfox is an LPWAN network operator offering an end-to-end IoT connectivity 
solution based on its patented technologies. Sigfox deploys its own base stations 
equipped with software-defined cognitive radios and connects them to back-end 
servers via an IP-based network. End devices connect to these base stations 
using binary phase shift keying (BPSK) modulation on an ultra-narrow (100 Hz) 
sub-GHZ ISM band carrier. Sigfox uses unlicensed ISM bands, for example, in 
Europe an 868 MHz band is used, in North America 915 MHz, and in Asia 433 
MHz. By employing the ultra-narrow band, Sigfox uses the frequency bandwidth 
in an efficient manner and suffers from very low noise levels, leading to very low 
power consumption and high receiver sensitivity with a maximum throughput 
ranging from 100 to 600 bps. On the other hand, in some of these bands the 
transmitted power can be up to 22 dBm, and due to the modulation used the 
received power sensitivity is -126 dBm. In addition, Sigfox technology is able to 
compensate for frequency drift of up to ±30 Hz [16]. In addition, the MAC layer 
protocol is tolerant to the delay experienced when communicating through LEO 
satellites. However, the deployment of the base stations is the exclusive 
responsibility of Sigfox, so it is not possible for other companies to embark 
gateways on their satellites. 
 
NB-IoT, referred to as cellular LPWAN, has been developed by the Third 
Generation Partnership Project (3GPP) and is being integrated as part of 4G and 
5G networks. This technology uses narrowband quadrature phase shift keying 
(QPSK) modulation in a licensed band, with a maximum transmit power of 23 
dBm and a sensitivity of -125 dBm. The data rate of NB-IoT technology is 26 kbps 
from the base station to the devices and 66 kbps from the devices to the base 
statites with eventually peaks at up to 250 kbps. The PHY/MAC layer protocol of 
the NB-IoT technology is affected by both delay and Doppler. Therefore, this 
protocol cannot be used without being adapted for space and Earth 
communications. In addition, base stations are deployed by mobile network 
operators (MNOs), so it is yet another limitation of the use of this LPWAN 
technology. 
 
LoRa is a long-range wireless communications system which uses a patented 
Chirp Spread Spectrum (CSS) modulation, which is more resilient than others to 
interference and jamming. LoRa uses unlicensed ISM bands as Sigfox and has 
several parameters that must be configured in the transceivers. These 
configurable parameters are transmitted power, bandwidth (BW), spreading 
factor (SF), and coding rate (CR). The transmitted power can be up to 22 dBm, 
and the sensitivity can be up to -125 dBm, offering a data rate of up to 27 kbps. 
LoRa technology can be used with several different MAC layer protocols, being 
LoRaWAN the most established. There are several manufacturers offering both 
LoRa modules and gateways as COTS components. Therefore, it is entirely 
feasible to propose a satellite gateway solution based on LoRa technology. In 
fact, multiple studies and experiments have been carried out demonstrating the 
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great features of LoRa technology in space communications. Below is a summary 
table of the properties of each of the above LPWAN technologies. 
 
 
Table 2.1: Main LPWAN technologies comparison [Source:16] 
 

 
 
 

Looking at the above table and considering the above mentioned for each of the 
LPWAN technologies, the technology with the highest compatibility for satellite 
communications is LoRa modulation. In addition, there are several manufacturers 
which offer LoRa modules, making it much easier to deploy gateways compared 
to NB-IoT and Sigfox.  For these reasons, LoRa is the technology studied and 
used in this project. In the following section, we will go into more detail about 
LoRa technology. 
 
 

2.2. LoRa 

 
LoRa defines a physical layer technology developed by Cycleo in 2010, a 
company that two years later was acquired by Semtech. This technology is 
suitable for applications that transmit little data at low bit rates. One of the 
properties of LoRa is that data can be transmitted over longer distances 
compared to technologies such as Wi-Fi, Bluetooth, or ZigBee. The figure below 
shows some access technologies that can be used for wireless data transmission 
and their transmission ranges versus bandwidth. 
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Fig. 2.1: Expected transmission ranges versus Bandwidth of LoRa and other 
technologies 

 
 

LoRa, is a modulation technique based on spread spectrum techniques and a 
variation of chirp spread spectrum (CSS).  The LoRa chirp spread spectrum 
(CSS) modulation uses frequency chirps with a linear variation of frequency over 
time in order to encode information. Because it uses spread spectrum modulation 
techniques, it uses the entire channel bandwidth to transmit a signal. This makes 
the signal robust to channel noise. 
 
Other key features that make LoRa stand out from other IoT technologies [18] 
are the following. First, LoRa modulation is bandwidth and frequency scalable. 
Frequency hopping can be used in narrow band and wideband direct sequence 
applications. Second, it has a low power consumption. Third, has low noise 
levels, making it highly resistant to interference, and difficult to detect or jam. 
Fourth, LoRa is doppler resistant. Frequency offsets between the transmitter and 
the receiver are equal to the timing offsets due to the linearity of the chirp. Fifth, 
LoRa enhanced network capacity. LoRa allows multiple spread signals to be 
transmitted at the same time and on the same channel without any degradation. 
This is due to the use of orthogonal spreading factors. Finally, LoRa can be used 
for ranging and localization. LoRa has the ability to linearly discriminate frequency 
and time errors. It is an ideal modulation for radar applications and is therefore 
suitable for ranging and location applications such as real-time location services. 
 
 

2.2.1. LoRa Network Architecture 

 
A typical LoRa network includes three types of devices: End-devices (IoT 
Devices), Gateway/Base Station and Network Server, as shown in the figure 2.2. 
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Fig. 2.2: LoRa Network architecture [Source: 16] 

 
 

Communication is bidirectional, defining the uplink and the downlink as follows. 
The uplink messages are messages sent by the end devices (IoT devices) to the 
Network Server relayed by one or more gateways. On the other hand, the 
downlink messages are messages sent by the Network Server to a single end 
device, which are relayed by a single gateway. 
 
 

2.2.2. LoRa Physical Layer Parameters 

 
In order to achieve the best performance in a given scenario, different parameters 
can be configured: Bandwidth (BW), Spreading Factor (SF), Code Rate (CR), 
Transmission Power (TP), and Carrier Frequency (CF). 
 
With the aim of improve the spectral efficiency and the network capacity, the 
LoRa modulation presents six orthogonal spreading factors (SF7, SF8, ..., SF12), 
that result in six different data rates.  For an available bandwidth, a higher 
spreading factor reduces the bit rate and reduces the battery life by increasing 
the transmission time. A given propagation factor (SF) and bandwidth (BW) gives 
a bit rate defined by (2.1): 
 
 
 

𝐵𝑖𝑡𝑅𝑎𝑡𝑒 = 𝑆𝐹 ·
𝐵𝑊

2𝑆𝐹
 (2.1) 

 
 
In LoRa modulation the BW is configurable, and it can be set to 125, 250, or 500 
kHz. Higher BW gives a higher data rate, but a lower sensitivity because of 
integration of additional noise. In the other hand, a lower BW gives a higher 
sensitivity, but a lower data rate. 
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CR is the Forward Error Correction (FEC) rate used by the LoRa modem that 
offers protection against bursts of interference, and can be set to either 4/5, 4/6, 
4/7 or 4/8. A higher CR offers more protection but increases time on air. This CR 
provides a code gain that for the LoRa modulation is not specified. In fact, the 
sensitivity depends only on the SF and the BW. Therefore, since CR does not 
influence sensitivity, CR will not be considered in the link budget discussed in the 
following sections.   
 
These three modulation parameters determine the capacity (C) in bps of the 
channel, which is computed as shown in (2.2): 
 
 
 

𝐶 = 𝑆𝐹 ·
𝐶𝑅

[
2𝑆𝐹

𝐵𝑊]
 

(2.2) 

 
 
As can be seen in (2.2), the capacity increases with an increase in BW, a 
decrease in SF and a decrease in redundancy. The transmitted power can be up 
to 22 dBm, however, depending on the implemented hardware it can be 
significantly improved. Finally, the carrier frequency (CF) is the center frequency 
that can be programmed in 61 Hz steps between 137 MHz and 1020 MHz [17]. 
Depending on the LoRa chip, this range may be limited to 860 MHz and 1020 
MHz. 
 
 

2.2.3. Physical Layer Frame Format 

 
Although arbitrary frames can be transmitted in LoRa modulation, Semtech has 
specified a physical frame format in which the bandwidth and spreading factor 
are constant for a frame [19] as can be seen in the figure 2.3: 
 

 
 

Fig. 2.3: LoRa frame structure [19] 

 
 

The LoRa frame starts with a preamble. The preamble begins with a sequence 
of upchirps (signal at which the frequency increases) covering the entire 
frequency band. The last two upchirps encode the sync word, which is a value 
used to differentiate LoRa networks using the same frequency bands. After the 
preamble comes an optional header indicating the size of the payload, the code 
rate used for the end of the transmission and if there is a cyclic redundancy check 
(CRC) at the end of the payload. It also contains a CRC so that the receiver can 
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discard packages with non-valid headers. After the header the payload is sent. 
Finally, in the end of the frame payload, an optional CRC is sent.  
 
The transmission time of a signal varies depending on the different parameters 
of the LoRa modulation. This time is called time on air (ToA). The ToA is the time 
it takes for a signal to be transmitted, so it is the time during which the channel is 
busy.The formula used to calculate the ToA of the packet is as follows. 
 
 𝑇𝑝𝑎𝑐𝑘𝑒𝑡 = 𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑 (2.3) 

 
  

 𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 = (𝑛𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 + 4,25) · 𝑇𝑠𝑦𝑚 (2.4) 

 
 

𝑇𝑠𝑦𝑚 =
2𝑆𝐹

𝐵𝑊
 (2.5) 

 
  

 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑 = 𝑛𝑝𝑎𝑦𝑙𝑎𝑜𝑑 · 𝑇𝑠𝑦𝑚 (2.6) 

 
  

                𝑛𝑝𝑎𝑦𝑙𝑎𝑜𝑑 = 8 + max (𝑐𝑒𝑖𝑙 (
8·𝑃𝐿−4𝑆𝐹+28+16·𝐶𝑅𝐶−20𝐼𝐻

4·(𝑆𝐹−2𝐷𝐸)
) · (𝐶𝑅 + 4), 0)        (2.7) 

 
 
Where 𝑇𝑠𝑦𝑚 indicates symbol duration in ms; PL indicates Payload size in bytes;  

SF indicates spreading factor; BW indicates bandwidth; CRC indicates Cyclic 
Redundancy Check used for error detection of LoRaWAN packet, it can be either 
enabled (1 - default) or disabled (0); Header ('H') can be implicit or explicit; Low 
Data Rate Optimize (DE) can be enabled (1) or disabled (0); CR indicates Coding 
Rate; 𝑇𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 is the preamble duration; 𝑛𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒 is the number of symbols in 

the preamble; 𝑇𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is the payload and header duration; and 𝑛𝑝𝑎𝑦𝑙𝑜𝑎𝑑 is the 

number of symbols in the payload period.  
 
In this work, ToA is calculated using a tool provided by The Things Network [20], 
which measures ToA as a function of payload bytes, spreading factor (SF), region 
and bandwidth. 
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2.3. Media Access Control layer 

 

In a scenario where multiple nodes try to access the physical medium 
simultaneously, it may cause several packets to collide, losing the information 
they contain. To avoid corruption or destruction of information transmitted through 
IoT nodes, access to the shared media in an orderly and equitably way will be 
managed through the Media Access Control protocols and the Logical Link 
Control (LLC), which constitute the 2nd layer of the Open Systems 
Interconnection model (OSI).  

 

Many MAC protocols have been devised to handle access to a shared link, there 
are categorized into three groups, as shown in Figure 2.4:  

 

 

 

Fig. 2.4: Taxonomy of multiple-access protocols [21] 

 

Based on the strategy adopted to distribute the channel among the nodes, they 
can be divided into three groups: Random Access, Controlled Access, and 
Channelization. 

 

❖ Random Access 

In random access or contention methods, no node is superior to others and has 
no control over others. Access to the medium in these types of protocols is 
completely random, so any node can access the media without any preference. 
In this group, we can find the protocols ALOHA, CSMA, CSMA/CD and 
CSMA/CA. The last protocols will be explained the section 2.4, and specifically 
the first and the last will be explained in more detail because they have been 
selected to perform the experiment. 
 
❖ Controlled Access 
In these protocols, a node can only transmit when it has been permitted by the 
other nodes of the network. The devices rotate a testimony that indicates who 
has permission to transmit. In this group we can find the following protocols: 
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• Reservation: in this type of method a station needs to make a reservation 
before sending any data. The time is divided into intervals and in each 
interval a reservation frame precedes the data frames sent in that interval. 
 

• Polling: this type of method works with topologies in which one device is 
designated as a primary station and the other devices are secondary 
stations. All data exchanges must be made through the primary device 
which controls the link while the secondary devices follow its instructions.  

 

• Token passing: in this type of method the nodes of a network are 
organized in a logical ring where there is a predecessor and a successor. 
The predecessor is the node that is logically before the node in the ring 
while the successor is the node that is after the node in the ring. The 
transmission permission is passed between the different nodes logically 
between the predecessor node, the current node, and the successor node 
when the current node has no more data to send.  

 
❖ Channelization 
Channelization or channel partition is a multiple-access method in which the 
available bandwidth of a link is shared in different ways (frequency, time, and 
code) among different nodes. Depending on the channel partition we can find 
three different protocols: 
 

• FDMA: the protocol that divides the available bandwidth into frequencies 
is called frequency-division multiple access (FDMA), where each band is 
reserved for a specific node, and it belongs to the node all the time. In 
FDMA, the available bandwidth of the common channel is divided into 
bands that are separated by guard bands.   
 

• TDMA: the protocol that divides the channel into time is called time-
division multiple access (TDMA), where each node is allocated a time slot 
during which it can send data. In TDMA, the bandwidth is just one channel 
that is time-shared between different stations. 

 

• CDMA: the protocol that divides the channel using the properties of 
orthogonal codes is code-division multiple access (CDMA), where each 
node is assigned a code and communicates with other nodes without 
timesharing through a unique channel that carries all transmissions 
simultaneously and occupies the entire bandwidth of the link.  

 

Previously, three groups on how to share access to the physical medium along 
with the characteristics and protocols of each have been explained. However, 
when we take into account the IoT scenario and a scenario where the satellites 
are CubeSat, we must consider certain limitations of the performance of MAC 
protocols that are not present in traditional satellite communications. Some 
CubeSat limitations are related to the processing capabilities of the hardware and 
available storage. Other limitations due to the IoT scenario are a large number of 
devices (IoT nodes) trying to communicate with the nanosatellite or constellation 
of nanosatellites in motion. 
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First, given the hardware limitations of CubeSats, it is not possible to consider 
using MAC protocols that perform complex processes and saturate the hardware. 
The optimal and ideal for the IoT scenario is the use of a MAC protocol that 
performs simple processes. One of the protocols that fit these characteristics is 
the ALOHA-based protocols due to its simplicity in terms of implementation and 
the low hardware requirements [29]. 

 

Second, the IoT scenario is different from a traditional satellite communication 
scenario due to channel congestion. In a satellite communications scenario, the 
patterns are usually one-to-one or one-to-lots. In the IoT scenario, the CubeSat 
will behave as a getaway, so it will receive, process, and send different packets 
to the different IoT nodes around the Earth’s surface (lots-to-one). In addition, the 
CubeSat does not always know the location of these nodes and the moment in 
which they want to communicate with it. As an added complexity, these metrics 
will be changing continuously due to the movement of the satellite around an 
orbit. 

 

Therefore, due to the different limitations presented in the IoT scenarios, the 
protocols traditionally used for satellite communications based on fixed 
assignments cannot be considered for our scenario. That is why we must choose 
among the protocols that best fit an IoT scenario. The existing MAC protocols 
usually used for IoT satellite communications can be categorized as follows [30]: 

 

❖ Random access asynchronized protocols 

Random access asynchronized protocols are protocols where access to media 
is performed randomly and require an acknowledgment (ACK) to confirm the 
correct reception of the transmitted data.  The four protocols that receive this 
categorization are the followings:  

 

• Aloha: this protocol is the base of the following ones and the simplest. The 
network devices can always send the packets without any additional 
complexity added to them. If the transmitted data packet has been 
correctly received, the satellite responds with an ACK. In case the node 
does not receive any ACK, it re-transmits the packet after a random time-
out. 
 

• Enhanced Aloha (E-Aloha): this protocol proposes a solution to packets 
that are transmitted with the same periodicity with a contention window 
larger than the transmission time of the packets. Nodes can select 
randomly the time at which they transmit within that time window. With the 
help of this time window, nodes that have the same periodicity to send 
packets, vary the instant at which they transmit. 
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• Spread Spectrum Aloha (SS-Aloha): the SS-Aloha protocol uses 
spread-spectrum techniques to separate the channels in which each of the 
packets are sent and increase the amount of information sent.  
 

• Enhanced Spread Spectrum Aloha (E-SSA): this protocol uses the 
same technique as SS-Aloha, but it also uses a Recursive Successive 
Interference Cancelation algorithm, thanks to it there is no need for ACK. 

 

❖ Random access synchronized protocols 

Random access synchronized protocols are protocols where the channel is 
divided into slots of equal duration of the packet transmission time. The nodes 
can only transmit at the beginning of one of these slots. One of the keys of this 
protocol is the synchronization among the nodes of the network and ACK to 
confirm the correct reception. The five protocols that receive this categorization 
are the followings:  

 

• Slotted Aloha (S-Aloha): this protocol is like Aloha and is the base of the 
following ones. The medium of S-Aloha is slotted, so the devices that want 
to transmit must wait until one slot begins and then start the transmission.  
 

• Contention Resolution Diversity Slotted Aloha (CRDSA): this protocol 
uses the same technique as S-Aloha and adds a Successive Interference 
Cancelation (SIC) mechanism in the receiver, so it can cancel 
interferences cancellation with the packets. 
 

• Irregular Repetition Slotted Aloha (IRSA): this protocol has many 
similarities with protocol CRDSA; however, protocol IRSA has multiple 
transmissions of the packet. 
 

• Coded Slotted Aloha (CSA): in this protocol, the packets are divided into 
sub-packets of the same length which include error correction codes that 
allow an ACK to not be needed. Then, the receiver applies a maximum-a-
posteriori (MAP) decoder, to be able to recover subpackets that are lost. 
Additionally, the receiver also implements an interference cancellation 
scheme to receive from multiple senders. 
 

• Multi-slots Coded Aloha (MuSCA): this protocol implements a 1/4 Turbo 
code as an error correction code that does not need ACK. 

 

❖ Medium sensing protocols 

Medium sensing protocols are protocols where the nodes sense the medium 
before transmitting. In the case where the medium is busy, it performs a random 
back-off and senses the medium again. Otherwise, if the medium is available, the 
packet is transmitted. Only Carrier Sense Multiple Access with Collision 
Avoidance (CSMA/CA) is in this category. This protocol will be explained in the 
following sections.  
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❖ Reservation protocols  

Reservation protocols divide the medium into different slots and reserve certain 
slots of the medium for certain nodes. In these protocols, nodes must be aware 
of which slots are reserved and which ones are free. Also, this protocol requires 
precise time synchronization. Only R-Aloha is in this category: 

 

• R-Aloha: this protocol defines frames, which are further divided into 
several slots. Nodes can transmit randomly in any of these slots within a 
frame. If an ACK is received, the slot is reserved for the node due to the 
success of the communication. 

 

❖ Hybrid protocols  

Hybrid protocols are a mix of different protocols that cannot be classified in 
previous categories. The two protocols that receive this categorization are the 
followings:  

 

• Fixed Competitive Time Division Multiple Access (FC-TDMA): in this 
protocol, the channel is divided into frames and each of these frames 
contains a configurable number of slots. The satellite predicts how many 
slots are necessary for the next communication based on the collisions 
that occurred in the previous one.  
 

• Random Frequency Time Division Multiple Access (FTDMA): in this 
protocol packets are transmitted with a random carrier frequency within a 
range. They require ACK to confirm the correct reception of the packet. 

 

Previously, the five categories in which MAC protocols oriented to satellite 
communications in IoT scenarios can be divided have been explained. All these 
protocols consider a high density of nodes around the Earth’s surface as is the 
case presented for this project [21]. Among all the possible protocols presented, 
only two have been chosen to be implemented and tested in the LoRa 
communications experiment proof-of-concept. Pure Aloha and CSMA/CA have 
been the protocols selected because they trade-off between complexity and 
performance. Both protocols have been explained in detail in the following 
section.  

 

 

2.4. Random-Access protocols 

 
In random-access or contention methods, no station is superior to another station, 
and none is assigned control over another. In each instance, a station that has 
data to send uses a procedure defined by the protocol to decide on whether to 
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send or not. This decision depends on the state of the medium after sensing it. 
The medium can be busy (if there is another communication in the process) or 
idle (if the medium is free).  
 
In random-access protocols, there is no scheduled time for a station to transmit 
and the transmissions are random among the stations. Another feature of this 
protocol is that no rules specify which station should send next, so each station 
has the right to the medium without being controlled by any other station. 
However, if more than one station tries to send a packet there will be an access 
conflict, which will cause a collision destroying or modifying the information. To 
avoid an access conflict each station follows a defined protocol which dictates the 
steps to follow to avoid this collision or what to do if it has it. 
 
The random-access methods below are the protocols used for the LoRa 
communications experiment proof-of-concept. The first to be explained in detail 
will be the oldest of all, pure Aloha. This method uses a procedure called multiple 
access (MA). This method was improved by adding a procedure that forced the 
station to sense the medium before transmitting. This is how the Carrier Sense 
Multiple Access (CSMA) method came about. This method later evolved into two 
parallel methods: carrier sense multiple access with collision detection 
(CSMA/CD), which tells the station what to do when a collision is detected, and 
carrier sense multiple access with collision avoidance (CSMA/CA), which tries to 
avoid the collision. This second variant will be explained in detail in the following 
sections. 
 
 

2.4.1. Pure ALOHA 

 

Pure ALOHA is the earliest random-access method, was developed at the 
University of Hawaii in early 1970. The original ALOHA protocol is called pure 
ALOHA and is the simplest of the MAC protocols. In pure ALOHA when a node 
has a packet to send access the media and sends the information without any 
restriction. However, since there is only one channel to share, there is the 
possibility of collision between frames from different stations. 

 

To minimize the probability of collision, pure ALOHA proposes an algorithm 
based on the retransmission and use of an extra confirmation packet, this packet 
is the Acknowledgment (ACK). This packet confirms the correct reception of the 
packet information sent by the node that must transmit information to the 
receiving station. In the case of our study, the satellite. When the transmitting 
node sends a packet, it then starts a counter known as "Wait Time". Wait time is 
a timer that ends after a predetermined time. During this time, the node that has 
transmitted the information packet is waiting to receive the ACK, thus confirming 
that the transmitted packet has been received correctly. If the ACK is received 
before this time reaches zero it would be considered a success. If the ACK does 
not arrive after a time-out period, the station assumes that the frame (or the 
acknowledgment) has been destroyed and resends the packet. The waiting time 
is calculated as the maximum possible round-trip propagation delay, which is 
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twice the amount of time required to send a frame between the two most widely 
separated stations. Is calculates as follows (2.8):  

 𝑇𝑤𝑎𝑖𝑡 = 2 ∙ 𝑇𝑝 (2.8) 

The wait time calculation is directly related to the vulnerable time calculation, 
which is the length of time in which there is a possibility of collision. For this 
calculation, we assume that nodes send fixed-length frames with each frame 
taking 𝑇𝑓𝑟 seconds to send. In the figure 2.5, we can find a graphic representation 

of vulnerable time. 

 

 

Fig. 2.5: Vulnerable time for pure ALOHA protocol [21] 

 

As we can see in Figure 2.5, there are three fictitious nodes (A, B and C) that 
transmit information during a given and equal frame time for all (𝑇𝑓𝑟). If node A 

transmits after 𝑡 − 𝑇𝑓𝑟 there will be a collision with the transmitted packet of node 

B and both packets will be modified or destroyed. The same happens if node C 
transmits before 𝑡 + 𝑇𝑓𝑟. Therefore, the vulnerable time during which a collision 

may occur in pure ALOHA is two times the frame transmission time. Since in our 
scenario each package has a different frame time due to its size, we will calculate 
the wait time as twice the maximum propagation time. 

Since a collision is due to two or more stations trying to transmit at the same time, 
it would not make sense for them to re-transmit at once. This would again cause 
the same collision uninterruptedly. To solve this problem, pure ALOHA sets a 
random time where the node must wait before re-transmitting its frame. This 
random time is known as backoff time (𝑇𝐵) and this randomness will help avoid 
more collisions. The backoff time (𝑇𝐵)  is a random value that normally depends 
on 𝐾 (the number of attempted unsuccessful transmissions). The determination 
of backoff time depends on the implementation, for this project it is selected a 
Binary Exponential Backoff formula which consists of taking a random number 
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between 𝑅 =  [0, 2𝐾 − 1] (where 𝐾 is the number of retransmission attempts) 
multiplied by the maximum propagation time (𝑇𝑝).  

Pure ALOHA has a second method to prevent congesting the channel with 
retransmitted frames. If after the packet has been retransmitted a certain number 
of times (𝐾𝑚𝑎𝑥) the ACK has not been received, the communication is given as 
failed and the node stops trying to transmit the packet to try later. 

 

 

 

Fig. 2.6: Procedure for pure ALOHA protocol 

 

In the Figure 2.6 we can find the procedure for pure ALOHA protocol, where:  

- 𝐾: the number of attempted unsuccessful transmissions 
- 𝐾𝑚𝑎𝑥: maximum number of retransmission attempts 

- 𝑇𝑝: Maximum propagation time 

- 𝑇𝑊(𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒)  = 2 · 𝑇𝑝 

- 𝑇𝐵(𝐵𝑎𝑐𝑘𝑜𝑓𝑓 𝑡𝑖𝑚𝑒) = 𝑅 · 𝑇𝑃 
- 𝑅(𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟) = [0,2𝐾 − 1] 
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2.4.2. Carrier Sense Multiple Access 

 

Carrier Sense Multiple Access (CSMA) is a MAC protocol that improves the 
performance of ALOHA protocol by adding the limitation of sensing the channel 
to know if it is busy or idle before transmitting. The chance of collision can be 
reduced if a station senses the medium before trying to use it. That’s why CSMA 
is based on the "listen before talk" principle.  

 

Despite the addition of this new strategy, a collision-free channel is not possible. 
This is due to propagation delay. When a node sends a frame there is a certain 
time until the first bit of the packet reaches another node and senses it. In other 
words, there may be the casuistry that a node senses the medium as idle when 
there is actually another node that has already transmitted the frame, 
nevertheless that frame has not yet reached the node. In the figure 2.7 we can 
see a representation of this casuistry: 

 

,  

 

Fig. 2.7: Space/time model of a collision in CSMA [21] 

 

As we can see in the figure 2.7, both the frame of node B and the frame of node 
C collide and both packets are destroyed. This has happened given that node B 
has transmitted in the instant 𝑡1 when it has sensed the medium as free. However, 

node C in instant 𝑡2 has also sensed the free medium when it is not because the 
frame of node B has not yet reached node C due to the propagation delay. 

 

Vulnerable time 

Therefore, the vulnerable time in CSMA is conditioned by the propagation time 
(𝑇𝑝). This is the time needed for a signal to propagate from one end of the medium 

to the other. When a station sends a frame and any other station tries to send a 
frame during this time, a collision will occur. The figure 2.8 show this scenario: 
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Fig. 2.8: Vulnerable time in CSMA [21] 

 

In the above image the worst case is proposed, where a node receives the frame 
of the farthest node. The leftmost node (A) sends a frame at time 𝑡1, which 

reaches the rightmost node (D) at time 𝑡1 + 𝑇𝑝. The gray area shows the 

vulnerable area in time and space. 

 

Persistence Methods 

The implementation of a new sensing technique in CSMA protocols is an elegant 
technique that prevents collisions. In this subsection, the different methods used 
to sense the channel and the method used in our case will be explained.  

In total there are three different methods to sense the channel. Each uses a 
different technique and defines what to do in case the channel is idle or busy. 
These three methods are the 1-persistent method, the nonpersistent method, and 
the p-persistent method. 

 

• 1-Persistent: in this method, after the station finds the medium idle, it 
sends its frame immediately. This method has the highest chance of 
collision because two or more stations may find the line idle and send their 
frames at the same time. In the figure 2.9 we can find a visual 
representation of the method and its flow diagram. 
 

 
 

Fig. 2.9: Behavior of 1-persistent method [21] 

 

• Nonpersistent:  in the nonpersistent method, a node that has a frame to 
send senses the line. If by sensing the medium it finds the free channel, 
then it will send the package immediately. However, if the channel is not 
free it will wait a random time to re-sense the channel and determine its 
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status. A positive point of this method is the reduction of collision 
possibilities. This is because it is unlikely that two nodes will wait the same 
amount of time after the channel is busy and retransmit at the same time. 
However, a negative point has the reduction of the efficiency of the 
network. This is because at certain times the channel remains idle when 
there are nodes that have packets to send.  
 

 

 

Fig. 2.10: Behavior of nonpersistent method [21] 

 

• p-Persistent: this method is used if the channel has time slots with a slot 
duration equal to or greater than the maximum propagation time. The p-
persistent approach combines the advantages of the other two methods. 
It reduces the chance of collision and improves efficiency. After the station 
finds the line idle, with probability 𝑝, the station sends its frame. With 
probability 𝑞 =  1 −  𝑝, the station waits for the beginning of the next time 
slot and checks the state of the medium again. In case the line is idle, it 
goes to step 1. However, if the line is busy, it acts as though a collision 
has occurred and uses the backoff procedure. 

 

 

Fig. 2.11: Behavior of p-persistent method [21] 
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2.4.2.1. Carrier Sense Multiple Access with Collision Avoidance 

Carrier sense multiple access with collision avoidance (CSMA/CA) relays on two 
extra packets: Request To Send (RTS) and Clear To Send (CTS). Moreover, two 
interframe wait are established to solve the vulnerable time: DFC InterFrame 
Space (DIFS) and Short InterFrame Space (SIFS). 

 

Before explaining in detail the algorithm of the CSMA/CA protocol, its different 
and new components will be explained: RTS, CTS, SIFS and DIFS. 

 

• Request To Send (RTS): it is a control packet which requests access to 
the medium in order to start transmission. Once this packet is sent, the 
node waits for the CTS. The information contained in the RTS packet is 
the identifier of the node and the duration the channel will be occupied, 
known as Network Allocation Vector (NAV).  

• Clear To Send (CTS): is a control packet which is sent by the receiving 
station (the satellite in our case) after having received an RTS from a node. 
When the node receives the CTS, the channel is reserved, and the 
transmission of useful information begins. The information contained in the 
CTS packet is the identifier of the node who sent the RTS and the duration 
the channel will be occupied (NAV).  

• Short InterFrame Space (SIFS): is set by the maximum delay of a 
transmitted packet to reach the most distant node and it is performed 
before the transmission of each packet once started the process. 

• DFC InterFrame Space (DIFS): is the sum of this delay time plus an extra 
time defined by the binary exponential formula already explained and it is 
only performed at the beginning of the process. 

 

The flow chart describing the CSMA/CA algorithm can be seen in Figure 2.12: 
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Fig. 2.12: Procedure for CSMA/CA protocol 

 

At the beginning of the transmission, the node senses the channel to know its 
status. If the channel is busy, it will sense the medium again once a random time 
has passed. If while sensing the channel the node receives an RTS or CTS, it 
must wait a certain time specified in the NAV of each packet. If instead, the 
channel is idle, then wait a DIFS time to avoid possible collisions within the 
vulnerability time. Once the DIFS time has passed, the node transmits an RTS, 
and the timeout begins.  

 

The RTS packet sent by the node is received at the receiving station (the satellite 
in our case) if there has been no collision. The satellite waits for a SIFS time and 
then transmits a CTS which contains the node identifier. If the CTS packet is 
received by the node before the wait time ends, it means the reservation of the 
channel is correctly achieved and the communication process can start. If it is 
not, the transmitting node initiates a backoff process already explained at pure 
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ALOHA. Once the backoff process is done, the node returns to sense the medium 
again. 

 

Therefore, if the CTS has been received correctly, the data packet is transmitted 
after waiting for a SIFS time and a waiting time starts again. When the satellite 
receives the data packet, it waits for a SIFS and sends the ACK which contains 
the identifier of the node with which it is communicating. If the node receives the 
ACK before the wait time is finished, the communication is given as successful. 
However, if the ACK is not received after the wait time, a reception attempt must 
be added and the backoff process initiated. If the number of receiving attempts is 
greater than the allowed number (𝐾𝑚𝑎𝑥), the communication is considered a 
failure and the node stops trying. 

 
 
Network Allocation Vector 
 
The network allocation vector (NAV) is an essential time of this protocol to avoid 
collisions. The NAV is a time that determines how much time the channel will be 
occupied by the node that is communicating with the reception station. The NAV 
time is within the content of the RTS and CTS packets, being the largest NAV 
time for the RTS. 
 
During the communication process in CSMA/CA, nodes exchange different type 
of packets. The RTS is the first of them, which is sent once the channel has been 
sensed and detected as free. The other nodes that are sensing the channel detect 
this RTS packet and make the reading of its NAV. This information allows them 
to identify how long the channel will be occupied, so they are disabled until the 
NAV counter has expired. The same happens when a CTS is received while the 
nodes sense the channel. These will detect the NAV containing the package and 
wait a stipulated time until the channel is sensed again, where it should 
supposedly be idle given that the previous communication process has finished. 
 
The way to calculate NAV times are defined by the following equations (2.9 and 
2.10): 
 
 𝑁𝐴𝑉(𝑅𝑇𝑆) = 3 · 𝑆𝐼𝐹𝑆 + 𝑇𝑝𝐶𝑇𝑆

+ 𝑇𝑝𝐷𝑃
+ 𝑇𝑝𝐴𝐶𝐾

 (2.9) 

 𝑁𝐴𝑉(𝐶𝑇𝑆) = 2 · 𝑆𝐼𝐹𝑆 + 𝑇𝑝𝐷𝑃
+ 𝑇𝑝𝐴𝐶𝐾

 (2.10) 

 
  

 
Where:  

- 𝑇𝑝𝐶𝑇𝑆
 : Clear To Send propagation time  

- 𝑇𝑝𝐷𝑃
: Data Packet propagation time 

- 𝑇𝑝𝐴𝐶𝐾
: ACK propagation time 
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The justification for the above formulations is drawn from the figure 2.13, where 
the necessary time-out of the NAV RTS and the NAV CTS can be observed [22]: 
 
 

 
 

Fig. 2.13: RTS/CTS Communication with NAV [22] 

 
 

Collision During Handshaking 
 
This phenomenon called "collision during handshaking" occurs when there is a 
collision during the sending of RTS or CTS. Two nodes may detect the medium 
as idle and transmit at the same time. If this happens, these two packets will likely 
collide. However, since no mechanism in CSMA/CA detects collisions, the 
transmitter will assume that there has been a collision if after a wait time it has 
not received the CTS from the receiving station. In this case, the backoff process 
starts to retransmit the packet again if it detects the channel free. 
 
When the receiving station sends a CTS, it sends the confirmation that the node 
can start to transmit since the channel has been reserved for this communication. 
If after a certain time the receiving station does not receive the data packet of the 
node it listens again new RTS of other nodes to send new CTS and reserve the 
channel to new communications. 
 
Hidden-Station Problem 
 
One of the reasons why NAV is found in both the RTS and CTS packages is 
because of the Hidden-Station Problem. This casuistry can be seen in Figure 
2.14, where the frame exchange timeline of the communication between different 
nodes and the receiving station is shown. 
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Fig. 2.14: CSMA/CA and NAV  

 
 
As can be seen, the RTS sent by node A is received by the receiving station (B) 
but not by the stations farther away from A (C, D, etc.). However, the receiving 
station (B) is within reach of the other nodes, and therefore the CTS packet sent 
to node A is received by the other nodes. In this way, nodes that are out of reach 
of this node are aware that communication is in process and starts a timeout 
defined by the NAV of the CTS. 
 
In IoT satellite communications often encounter this problem. This is because the 
nodes are located around the Earth’s surface and not all are within reach of each 
other. But the satellite is within range of all nodes. Then, when the satellite sends 
the CTS the rest of nodes are aware that a communication is in process. 
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CHAPTER 3: Applied methodology for software and 

hardware development 

 

In this chapter, the methodology applied to perform the experiment will be 
explained. This chapter is divided into three parts where the general architecture 
of the experiment is first explained, followed by the software-related part, and 
finally the hardware-related part. 
 
Section 3.1 provides an overview of the experiment where the equipment used is 
introduced and how they work simultaneously using the implemented software. 
 
Section 3.2 explains the implementation of the pure ALOHA and CSMA/CA 
protocols. The control method using commands to manage the different 
experiments will be explained. Finally, the different adjustable parameters of the 
protocols will be calculated. 
 
Finally, the section 3.3 explains the hardware used as well as the methodology 
followed to make modifications, calibrations, and connections that the hardware 
requires to perform the proof-of-concept. 
 

3.1. General architecture of the LoRa communications proof-
of-concept experiment  

 
To perform the LoRa communications proof-of-concept experiment has required 
the use of several devices working simultaneously, as well as a correct 
implementation of the protocols to be tested in them. The main outline of the 
communication between the different devices can be seen in Figure 3.1. 
 

 

Fig. 3.1: Main outline of the communication between the different devices 
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First, performing the proof of concept required various IoT ground nodes and a 
drone-based payload that functioned as a receiving station.  
 
The IoT ground nodes are formed by the connection between various devices, 
being the heart of all of them the HelTec CubeCell Dev-Board HTCC-AB01 
transceiver. The other devices forming the ground nodes are the moisture sensor 
(Soil Moisture sensor v1.2); the temperature sensor (HDC1080); a Raspberry Pi 
which is used to read the data received from the CubeCell through the UART; 
and finally, a regulator next to a lithium battery to power the different equipment. 
In addition, it was necessary to add an integrated stripboard to the CubeCell for 
ADC dynamic range adjustment. To take advantage of the space and the direct 
connection to the CubeCell, the HDC1080 has been inserted into the stripboard. 
A total of 20 nodes were planned for the measurement campaign, however due 
to hardware limitations 13 IoT nodes were finally used. The equipment used is 
shown below in the Figure 3.2. 
 
 

 
 

Fig. 3.2: Devices used in ground nodes. 

 
 
The payload that will be assembled in the drone is formed by various devices, 
the CubeCell being again the main equipment. In the payload of the drone, there 
is also a Raspberry Pi which is responsible for saving the data captured through 
the UART, and a DC-DC converter which feeds the Raspberry Pi through the 
voltage provided by the drone batteries using a XT60 cable. It should be noted 
that the design of the drone-based payload for the LoRa communications proof-
of-concept experiment has been made to be used simultaneously with the GNSS-
R experiment. Therefore, the payload that we will see in the following sections 
brings together different equipment for both experiments. Figure 3.3 shows the 
equipment used for the LoRa communications proof-of-concept experiment. 
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Fig. 3.3: Devices used in miniaturized drone-based payload 
 
 
Secondly, both the software implemented at IoT ground nodes and the 
implemented in the drone has been carried out through CubeCells. These 
transceivers can communicate using LoRa and are compatible with Arduino, so 
all the code for both protocols has been programmed using C++. For the 
experiment, it was necessary to program the algorithm followed by the pure 
ALOHA and CSMA/CA protocols at the ground nodes and at the receiving station. 
For both cases, a single code has been flashed on the CubeCell, so both 
protocols are in the same code. The choice of which protocol to use along with 
its different features is controlled through a third CubeCell which sends a 
command to the ground nodes and the drone payload. This command marks the 
start of a new experiment using the currently chosen protocol along with different 
protocol attributes. Both the ground nodes and the payload of the drone are 
initiated by listening to the medium, once they receive the command of which 
protocol to execute the communications begin. Given the nature of the IoT 
satellite communications scenario, the principle of all communications begins 
with the transmission of a beacon from the drone to the rest of the ground nodes, 
which will be listening the medium until it is received.  
 
 

3.2. Methodology applied in the software design  

 
One of the key points of the experiment has been the correct implementation of 
MAC protocols. In the first section, the working environment will be explained in 
addition to the facilities it offers. In the second section, we will explain in detail 
the steps taken to implement the code in both the ground nodes and the CubeCell 
of the drone payload. Finally, the third section will explain how the different 
adjustable parameters of both protocols have been calculated. 
 

3.2.1. Arduino Software IDE  

 
As explained in previous sections, the CubeCell HTCC-AB01 transceiver is an 
suitable module for LoRa/LoRaWAN node applications. This module is also 
perfectly compatible with Arduino, so it can be programmed from the Arduino IDE 
in a language similar to C++. 
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In addition to downloading the Arduino IDE, it is also necessary to download the 
SiLabs CP2104 Driver to establish a serial connection between the computer and 
the CubeCell board [23]. Once you have installed the Arduino IDE, you need to 
finish configuring certain additional preferences. In the section "Additional Boards 
Manager URLs" it is necessary to enter the three JSON files for the CubeCell and 
the Arduino IDE to operate correctly [23]. 
 
Once the working environment has been adjusted, we see below the facilities 
provided by the downloaded libraries on which we base the software of the 
experiment. Since the Arduino IDE has been compatible with CubeCell, several 
examples have been downloaded which can be loaded on the HTCC-AB01 
board. Among these examples, we find a section related to LoRa 
communications. These basic LoRa examples include: LoRaReceiver, 
LoRaSender, LoRaSender_ReadBattery, pingpong and TxPowerTest. 
 
Considering the scenario of the experiment, where the nodes and the satellite 
perform both sender and receiver actions, the communication architecture that 
best fits our case is a "pingpong" architecture. Within this architecture are various 
functions to perform reception and transmission functions using LoRa. Within this 
example, the software of the experiment has been developed. 
 
In the architecture of the example "pingpong" the first thing we find is the 
adjustable parameters of the LoRa physical layer. See Figure 3.4: 
 
 

 

Fig. 3.4: Adjustable parameters of the LoRa physical layer 

 
Among the 5 most important adjustable parameters we have: 
  

• RF_FREQUENCY: The frequency is determined by the region and by the 
working frequency of the module to be used. In the case of this work, the 
module used is the Semtech SX1261. It operates between the ISM bands 
allowed in Europe, which are 433 MHz and 868 MHz. Particularly, in this 
work, it operates at 868 MHz. 
 

• TX_OUTPUT_POWER: The maximum transmission power can be set to 
14 dBm at 868 MHz and 22 dBm at 915 MHz, these values are the 
maximum according to the data sheet of the Semtech SX1261 modules, 
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which is used in the HelTec CubeCell Dev-Board HTCC-AB01 transceiver 
of this project. Nevertheless, the chosen transmission power is determined 
by the working environment in which we are. In our case, the experiment 
is carried out in an environment where the distances between nodes do 
not exceed 800 meters. So, it has been decided to adjust the transmission 
power to 0 dBm.  
 

 

• LORA_BANDWIDTH: The bandwidth in LoRa modulation is configurable 
between different values, the most typical being 125 kHz, 250 kHz and 
500 kHz. According to the Semtech SX1261 module datasheet, this 
parameter determines the maximum center frequency offset that the 
modules are capable of compensating. The modules can compensate up 
to 25% of the BW, so the larger the BW the greater the Doppler frequency 
shift compensation. However, the larger the BW the higher the noise 
power. In [16] it is determined that the best BW that compensates the 
Doppler effect in LEO orbits, reduces the noise power and reduces the 
transmission time is 125 KHz. 
 

• LORA_SPREADING_FACTOR: To improve bit rate and capacity, it is 
preferable to use a small SF. In [16] a link budget analysis is performed 
using different attributes of the LoRa. In this study it is determined that with 
the use of the radiofrequency Front End of the RITA payload, the lowest 
SF to have communications at practically any LEO orbit elevation is a SF 
of 8. 
 

• LORA_CODINGRATE: The CR is also configurable, and can be set to 
4/5, 4/6, 4/7 or 4/8, having 1, 2, 3 or 4 bytes of redundancy respectively. 
In [16] it is determined that the best CR in terms of capacity corresponds 
to a CR of 4/5. 

 
After adjusting the different LoRa parameters, the four callback functions 
belonging to the RadioEvents constructor are presented. These functions are 
shown in the Figure 3.5:  
 
 

 
 

Fig. 3.5: Callback functions 

 
 
In the first instance the creation of the Driver for the SX1272 RF Transceiver is 
shown. Below, there are the callback functions (defined in the “radio.h” file) which 
have the following functionalities. 
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• Void OnTxDone (void): is the function in which the program is directed 
after any packet sent. 
 

• Void OnTxTimeOut (void): is the function to which the program is 
directed if there is no connection between the micro-controller and the 
radio.  
 

• Void OnRxDone (…): is the function in which the program is directed 
when a packet is received. As we can see in figure 3.4, the function 
initializes various variables which will be used later. First there is the 
uint8_t *payload, which saves the information of the captured packet at the 
reception. Second, the uint16_t size, which determines the number of byes 
of the package received. Third, the int16_t rssi, which shows us the 
received signal strength. Finally, the int8_t snr, which indicates the signal 
to noise ratio.  
 

• Void OnRxTimeout (void): It is the function to which the program is 
directed if it has not detected any packets after a certain time of reception. 

 
Apart from these four functions, two other basic and mandatory functions of any 
Arduino program are used. These are the "void setup()" and "void loop()" 
functions. With the help of the void loop() and void setup() functions in our sketch, 
we give the instructions to the Arduino microcontroller. Everything inside the 
configuration “void setup()” will run once. The contents of the “void loop()” will run 
in the loop while the Arduino controller remains on. 
 

• Void setup(): the first function is the first to be executed and initializes the 
program. First, there is the baud with which a serial connection is 
established between the PC and the Arduino (Serial.begin(115200)). In 
addition, various functions of RadioEvents are also declared and the Radio 
is configured with the various variables of LoRa. 
 
 

 

Fig. 3.6: “void setup” configuration 
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• Void loop(): this function loops the program. In the next section the details 
of the algorithm programmed to run in a loop will be explained. 

 
During all communications, having a time reference is important, either to 
compare different timestamps or to control the time elapsed since an event. To 
do this, Arduino has its own function (millis()) which returns the number of 
milliseconds passed since the Arduino board began running the program.  
 
 

3.2.2. General design of the code developed for the experiment 

 
In this section, it is first explained how the experiment is controlled through 
commands. Subsequently, the general design of the code is analyzed where it is 
seen how it is structured in the Arduino IDE. Subsequently, the design and 
implementation of the pure ALOHA algorithm is detailed along with the different 
types of packets that are part of the protocol. Finally, the design and 
implementation of the CSMA/CA algorithm with its different packets and 
characteristics are explained. 
 
 

3.2.2.1. Control commands for the experiment  

 
In the scenario of the experiment, we encountered a situation in which we want 
to test the performance of the pure ALOHA and CSMA/CA protocols with different 
IoT ground nodes and a receiving station which is in the drone payload. To control 
both sides, both the ground nodes and the drone, it has been necessary to 
program a third code that sends a command to decide the type of experiment to 
be performed. Figure 3.1. shows the communication scheme that is carried out 
to start any experiment. 
 
When all the devices are powered, both the drone payload and all the IoT ground 
nodes remain in listening mode, waiting to receive the command that tells them 
which protocol to execute and with which parameters. The different types of 
packets are defined as a union between an array of uint8_t, and a struct 
containing an attribute for each of the packet fields. These are organized in such 
a way that alignment problems are avoided, and useful information is separated. 
The structures of the pure ALOHA and CSMA/CA command packets will be 
explained below. 
 
In the following image, we can see the structure of the packet that is transmitted 
to activate the pure ALOHA protocol. The first component is the flag (uint16_t) of 
the package so that the devices know how to identify the type of package they 
are receiving. TimeNextPacket (uint16_t) is used to determine the rate of packet 
submission. ExperimentTime (uint32_t) is used to determine the duration of the 
experiment. The WAIT_TIME_ALOHA (uint16_t) and TRY_ACK_MAX (uint16_t) 
are adjustable parameters of the pure ALOHA protocol itself. The 
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WAIT_TIME_ALOHA determines the waiting time to receive an ACK after 
sending the Data Packet. The TRY_ACK_MAX is used to determine the 
maximum number of retries to receive the ACK. Finally, T_BEACON (uint32_t) is 
used to determine the sending rate of the beacon. This information reaches both 
the ground nodes and the drone, which processes the packet and readjusts its 
variables. Below is how the structure is filled with the different attributes. It is then 
sent using the "Radio.Send" function, which sends the full byteArray of the 
package. The numerical value of the other paragraphs will be explained later in 
section 3.2.3.  
 
  

 
 

Fig. 3.7: Pure ALOHA command architecture and values of the different 
variables and sending structure of the package 

 
 
The CSMA/CA command maintains the same structure. However, it occupies a 
total of 24 bytes since it includes 6 adjustable parameters of the CSMA/CA 
protocol in addition to the flag, TimeNextPacket, ExperimentTime and 
T_BEACON, which are basic in both command packages. 
 

 
 

Fig. 3.8: CSMA/CA command structure 
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Once the command is received by the different devices, the execution of the 
protocol begins and the exchange of packets between devices does not stop until 
the time of the given experiment elapses. 
 

3.2.2.2. Overall code design  

 
In this section, the types of packets used in both protocols will be detailed. 
Subsequently, an overview of the code implemented in both the CubeCell of the 
ground nodes and the payload of the drone will be observed. 
 
In the previous section, the type of structure that packages follow has been 
detailed. These are formed by the union between an array of uint8_t and a struct 
containing the attributes of each of the packets. These are organized in a 
structured way to avoid alignment problems. Below are introduced the different 
types of packages used with the attributes of each. 
 
▪ Beacon: this packet type is used in both protocols. It has a dimension of 8 

bytes and consists of the following attributes. The flag, which determines the 
type of packet. The satellite_id, which determines the identifier of the satellite. 
The timestamp, which indicates the relative time. 
 

 
 

Fig. 3.9: Beacon packet structure  

 
 

▪ Data Packet: this type of packet is used in both protocols. It has a size of 30 
bytes and consists of the following attributes. The flag, which determines the 
type of packet it is. The satellite_id, which is obtained once the beacon is 
received from the satellite. The packet_type, which is 0 if it is a pure ALOHA 
protocol packet, or 1 if it is from the CSMA/CA protocol. The node_id, which 
determines the identification of the node. The packet_id, which determines 
the number of packets sent. The timestamp, which indicates the relative time 
of the node. The pos_x, pos_y, and pos_z, which determine the position of 
the node. The temperature and soilmoisture attributes are the values obtained 
from the measurements of the sensors. 
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Fig. 3.10: Data Packet structure  

 
 

▪ ACK: this type of packet is used in both protocols. It has a size of 18 bytes 
and consists of the following attributes. The flag, which determines the type 
of packet it is. The satellite_id, which determines the identifier of the satellite. 
The packet_type, which is 0 if it is a pure ALOHA protocol packet, or 1 if it is 
from the CSMA/CA protocol. The node_id, which determines which node the 
ACK packet is being sent to. The packet_id, which determines the number of 
packets sent. The timestamp, which indicates the relative time of the drone. 
Finally, the free_slots, which are not really used in this protocol but are added 
for later integrations. 
 

 
 

Fig. 3.11: ACK packet structure  

 
 

▪ RTS: this type of packet is only used in the CSMA/CA protocol. It has a size 
of 18 bytes and consists of the following attributes. The flag, which determines 
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the type of packet it is. The satellite_id, which is obtained once the beacon is 
received from the satellite. The packet_type, which is 0 if it is a pure ALOHA 
protocol packet, or 1 if it is from the CSMA/CA protocol. The node_id which 
determines the identification of the node. The packet_id, which determines 
the number of packets sent. The timestamp, which indicates the relative time 
of the node. Finally, the NAV_RTS, which determines the waiting time 
necessary to re-sense the medium in the CSMA/CA protocol. 
 

 

Fig. 3.12: RTS packet structure  

 
▪ CTS: this type of packet is only used in the CSMA/CA protocol. It has a size 

of 18 bytes and consists of the following attributes. The flag, which determines 
the type of packet it is. The satellite_id, which determines the identifier of the 
satellite. The packet_type, which is 0 if it is a pure ALOHA protocol packet, or 
1 if it is from the CSMA/CA protocol. The node_id, which determines which 
node the ACK packet is being sent to. The packet_id, which determines the 
number of packets sent. The timestamp, which indicates the relative time of 
the drone. Finally, the NAV_CTS, which determines the waiting time 
necessary to re-sense the medium in the CSMA/CA protocol. 
 

 
 

Fig. 3.13: CTS packet structure  
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One of the essential attributes of all packages is the flag. Once a packet is 
received and addressed to the void OnRxDone() the packet type is determined 
from the flag. To categorize these packages a "typedef enum" list has been 
created with the different types. Categorizing them in this way serves to then use 
a state machine. In the same way, the diverse types of transmission or reception 
status have also been categorized, as well as the distinct types of protocols. The 
Figure 3.14 shows the different categorizations of states, packets, and protocols 
in the code of the ground nodes (red) and the drone payload (blue). As can be 
seen, different states are used and in the case of the drone code only a list is 
created with two types of packets (RTS and Data Packet), which are expected to 
be received during communications using the protocols. The different states of 
the protocols are detailed below. 
 

  
 

Fig. 3.14: Different categorizations of states, packets, and protocols of the 
ground nodes code (red) and the drone payload code (blue). 

 
As detailed in previous sections, each code works with 6 different functions: void 
setup(), void loop(), void OnRxDone(), void OnTxDone(), void OnRxTimeout() 
and void OnTxTimeout(). The following lines and figures detail the architecture of 
each of these functions. 
 
Overall code design – Ground nodes: In this section, the structure that follows 
each of these functions in the ground nodes will be explained. 
 
▪ void setup(): In addition to the configuration of the adjustable parameters of 

the LoRa physical layer, certain variables are also configured that are specific 
to each node, such as the identifier and the position. Finally, the state with 
which the loop will start is configured. Within the different states mentioned 
above in Figure 3.14, the starting state is the "RX" state. 
 

▪ void loop(): this function varies between states with a switch. The first state 
to which switches is the "RX". This is because the setup has been configured 
to always be the first to run. Thus, the node remains in listening mode 
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whenever it is switched on for the first time. This allows a correct reception of 
the protocol command. The figure 3.15 shows a self-explanatory diagram. 
The code for each case will be explained below. 

 

 
 

Fig. 3.15: Simplified structure of the “void loop()” function of the ground nodes 
code 

 
▪ void OnRxDone(…): the following function is executed when some kind of 

package has been received. The first step is to determine the type of package 
with the "Flag Determination". This previous step is necessary as it 
categorizes the package type and decides the protocol to run. The first packet 
that all devices receive is the command packet, which determines the protocol 
that the user specifies along with other attributes of the protocol itself. The 
type of protocol to run is saved in the "protocol" variable. It is then determined 
whether the beacon sending the drone payload has been received. Since a 
command packet has been received and "min_one_beacon_received" is set 
as false at first, it goes to the "RX" state again to wait for the beacon that will 
send the drone payload.  
 
After receiving the next package, which should be the beacon, the program 
executes again the "void OnRxDone()" function and the "Flag Determination" 
determines what type of package it is. If it is a Beacon, the boolean 
"min_one_beacon_received" becomes true and the Packet variable equals 
P_BEACON. This variable will then be used to switch between the distinct 
types of packages on the state machine. 
 
Next, it is determined which type of protocol must be executed based on the 
"protocol" variable, which has been determined earlier with the command 
packet. Once either protocol is initiated, the next step is the same for both. In 
this step, it is determined whether the time of the experiment configured in the 
command packet has elapsed. This is achieved by comparing the current time 
of the node (millis()), with the time in which the command was received 
(t_envio_com)  plus the time set for the duration of the experiment. If the 
elapsed time is less than the sum of these variables, the switch(Packet) is 
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executed, which varies between the different packets depending on which has 
been received. After the switch, it is checked if the "wrong_packet" boolean 
has been activated in any of the above cases. This happens in pure ALOHA 
when for example an ACK is expected and a DataPacket is received. In 
CSMA/CA it can occur when an RTS is received when a CTS is expected. 
How this process works will be detailed later along with the explanation of the 
protocols. 
 
On the other hand, if the elapsed time exceeds the sum of the two variables, 
the experiment ends. At the end of the experiment, two Booleans become 
false. "ProtocolAloha" is a boolean used later, and 
"min_one_beacon_received" is set to false to return to the initial state. All 
nodes wait 10 seconds before re-listening the channel to receive the next 
command. This is done to avoid receiving any packets sent from another 
unsynchronized node after the experiment time has finished. 
 
Figure 3.16 below shows the simplified structure of the “void OnRxDone()” 
function. In addition, Figure 3.17 has been added, which shows in more detail 
the functions performed by the "Flag Determination". 
 

 

Fig. 3.16: Simplified structure of the “void OnRxDone()” function of the ground 
nodes code 
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Fig. 3.17: Structure of the “Flag Determination” on the “void OnRxDone()” 
function of the ground nodes code 

 
 
▪ void OnTxDone(): the following function is executed once a package has 

been sent. As can be seen in the figure 3.18, it is determined which type of 
protocol is running based on the boolean "ProtocolAloha". When the 
command is received with the protocol type to execute, this boolean becomes 
true if it is pure ALOHA and false if it is CSMA/CA. 

 

Fig. 3.18: Structure of the “void OnTxDone()” function of the ground nodes code 
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▪ void OnRxTimeout(): the following function is executed when a certain time 

has passed in reception and no packets have been received. In these cases, 
this function is directed towards the case of the protocol being executed. Each 
case will be detailed later when the protocols are explained. 
 

 

Fig. 3.19: Simplified structure of the “void OnRxTimeout()” function of the 
ground nodes code 

 
▪ OnTxTimeout(): the following function is executed if there is no connection 

between the micro-controller and the radio. This function should not be 
executed at any time if there is no problem. 

 

 

Fig. 3.20: Structure of the “void OnTxTimeout()” function of the ground nodes 
code 

 
Overall code design – Drone payload: In this section, the structure that follows 
each of these functions in the drone payload will be explained. 
 
▪ void setup(): in addition to the configuration of the adjustable parameters of 

the LoRa physical layer, the identifier of the satellite is also configured. Finally, 
the state with which the loop will start is configured. Within the different states 
mentioned above in Figure 3.14, the starting state is the "RX_START" state. 

 
▪ void loop(): this function varies between states with a switch. The first state 

to which switches is the "RX_START". This is because the setup has been 
configured to always be the first to run. Thus, the node remains in listening 
mode whenever it is switched on for the first time. This allows a correct 
reception of the protocol command. The figure 3.21 shows a self-explanatory 
diagram. The code for each case will be explained below. 
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Fig. 3.21: Simplified structure of the “void loop()” function of the drone payload 
code 

 
▪ void OnRxDone(): the following function is executed when some kind of 

package has been received. The first step is to determine the type of package 
with the "Flag Determination". This previous step is necessary as it 
categorizes the package type and decides the protocol to run. The first packet 
that all devices receive is the command packet, which determines the protocol 
that the user specifies along with other attributes of the protocol itself. The 
type of protocol to run is saved in the "protocol" variable. After selecting the 
protocol with the switch, it is determined whether the beacon has been sent 
to the ground nodes to initiate communications. Since a command packet has 
been received and "min_one_beacon_sended" is set as false at first, it goes 
to the "TX_ALOHA" or “TX_CSMA_CA” state to send the beacon. Figure 3.22 
also shows how before executing the different transmission states, the 
"beacon_sended" boolean is configured as false. Later, it is detailed how this 
boolean intervenes in the different states. 
 
After sending the beacon, the program listens to the channel until it receives 
the next packet. Once it receives the next packet, the program executes again 
the "void OnRxDone()" function and the "Flag Determination" determines what 
type of package it is (saved in Packet). Remaining in the same protocol, now 
the "min_one_beacon_sended" boolean is true, so the next step is taken. 
 
In this step, it is determined whether the time of the experiment configured in 
the command packet has elapsed. This is achieved by comparing the current 
time of the node (millis()), with the time in which the command was received 
(t_envio_com)  plus the time set for the duration of the experiment. If the 
elapsed time is less than the sum of these variables, the switch (Packet) is 
executed, which varies between the different packets depending on which has 
been received. After the switch, it is checked if the "wrong_packet" boolean 
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has been activated in any of the above cases. This happens in pure ALOHA 
when for example an ACK is expected and a Data Packet is received. In 
CSMA/CA it can occur when an RTS is received when a CTS is expected. 
How this process works will be detailed later along with the explanation of the 
protocols. 
 
On the other hand, if the elapsed time exceeds the sum of the two variables, 
the experiment ends. At the end of the experiment, the different Booleans of 
each protocol become false to set everything up as in a startup. Then, the 
drone payload waits 10 seconds before re-listening the channel to receive the 
next command. This is done to avoid receiving any packets sent from another 
unsynchronized node after the experiment time has finished. 
 
Figure 3.22 below shows the simplified structure of the “void OnRxDone()” 
function of the drone payload code. In addition, Figure 3.23 has been added, 
which shows in more detail the functions performed by the "Flag 
Determination". 
 

 
 

Fig. 3.22: Simplified structure of the “void OnRxDone()” function of the drone 
payload code 
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Fig. 3.23: Structure of the “Flag Determination” on the “void OnRxDone()” 
function of the drone payload code 

 
▪ void OnTxDone(): the following function is executed once a package has 

been sent. As can be seen in the figure 3.24, the protocol is changed through 
the switch. In case it is the pure ALOHA protocol, after transmitting any packet 
it always listens to the channel permanently. However, if the protocol is 
CSMA/CA, it listens to the channel permanently only if the Boolean CTS is 
false. If it is true, it listens to the channel for a certain time (wait time). 

 
 

Fig. 3.24: Structure of the “void OnTxDone()” function of the drone payload 
code 
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▪ void OnRxTimeout(): the following function is executed when a certain time 

has passed in reception and no packets have been received. In this case, this 
function is only used for responses in the CSMA/CA protocol. When a CTS is 
sent, the receiving station waits for a certain time to receive the Data Packet 
from the node to which the CTS has been sent. This mechanism is 
implemented to prevent the receiving station from waiting for an infinite 
amount of time for a package that never arrives. During this waiting time, RTS 
packets may be received from other nodes. These are recorded and 
continued with the listening until the waiting time ends or the Data Packet is 
received. 
 
As can be seen in the figure 3.25, the first step is to determine whether the 
elapsed time is longer than the duration proposed for the experiment. If the 
entire time of the experiment has not yet passed, a message is printed which 
says that the Data Packet has not been received after the waiting time. 
Subsequently, three Booleans are configured as false. The first of these, 
waiting_data_packet is set as false since the waiting time to receive the data 
packet has elapsed. Secondly, the CTS is configured as false to configure the 
program as in the initial state. Finally, new_waiting_time is set to false. This 
term will be explained in the following sections where the processes followed 
by the CSMA/CA protocol are detailed. 
 

 

Fig. 3.25: Simplified structure of the “void OnRxTimeout()” function of the drone 
payload code 

 
 
▪ OnTxTimeout(): the following function is executed if there is no connection 

between the micro-controller and the radio. This function should not be 
executed at any time if there is no problem.  
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Fig. 3.26: Structure of the “void OnTxTimeout()” function of the drone payload 
code 

 
Before explaining the design of each protocol, it will be explained how each 
packet that is sent or received has been recorded. Also, it is explained how it has 
been done to synchronize the times of all nodes with the relative time of the drone 
payload. 
 
First, all messages that are printed are recorded with a particular label as the first 
component. Subsequently, the data are sorted by separating them with a ";" in an 
orderly manner. This makes processing easier and permits to separate data into 
columns and apply filters. 
 
Secondly, to synchronize all nodes with the relative time of the drone payload the 
variable "Dif_t" has been used. This variable indicates the time difference 
between the ground node and the drone payload. It is calculated on the ground 
nodes when the beacon is received using the following formula (3.1): 
 

𝐷𝑖𝑓_𝑡 = 𝑡𝑖𝑒𝑚𝑝𝑜_𝑒𝑥𝑝 − (𝐿𝑜𝑟𝑎𝐵. 𝐿𝑜𝑟𝑎_𝐵𝑆. 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 + 𝑡_𝑝𝑟𝑜𝑝_𝑏𝑒𝑎) (3.1) 

 
In the experiment, all ground nodes are switched on before the drone, so they all 
have a larger relative time. These times are calculated at the moment the beacon 
is received using the millis() function, which returns in milliseconds the time the 
program loaded on the computer has been running. The received beacon 
contains the relative time in which it was sent from the drone. To this is added 
the propagation time since it does not propagate immediately. With the 
subtraction indicated in the formula, the temporal difference between the node 
and the drone is obtained. Having the value of this variable, for each message 
that is registered as sent or received, the timestamp calculated as the relative 
time of the node (millis()) minus Dif_t will be printed. In this way, a temporary 
control of the flow of packets between all nodes is achieved. 
 
 

3.2.2.3. Pure ALOHA design 

 
The following section will explain in detail how the pure ALOHA protocol has been 
implemented. Throughout this section you will see two different codes, the code 
of the algorithm implemented on the ground nodes, and the code of the receiving 
station, in our case the drone. To explain the implementation of the algorithm of 
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the pure ALOHA protocol, an ideal case will be presented where the event line is 
fulfilled in an orderly manner. During the explanation, the different casuistics will 
be explained for the different cases.  
 
Communications are initiated when the beacon is received. Figure 3.27 shows 
the procedure used to send the beacon from the drone. The TX_ALOHA state is 
configured after receiving the pure ALOHA protocol command, at this moment 
the nodes will be listening to the channel waiting to receive the beacon. As can 
be seen in the figure 3.27, the first step is to check that the experiment time is not 
finished, then a variable called "time_lapse" is calculated. The result of this 
variable is determined by the subtraction of the current time (t_actual = millis()) 
minus the time in which the last beacon was sent (t_send_beacon). This is done 
to then compare if the elapsed time (time_lapse) is greater than the beacon 
sending periodicity time (t_beacon). If this happens (which is not the case for the 
first send), the boolean beacon_sended and ACK are set to false. Then, the 
boolean beacon_sended is detected to be false and the beacon is sent. With this 
sending, two booleans are activated (min_one beacon_sended and 
beacon_sended) and the relative time in which it was sent is saved in the 
t_send_beacon variable. Once the beacon is sent, the program is directed to the 
“void OnTxDone()” function shown in Figure 3.24. This function sets the next state 
of the loop to RX_START. In this state, the drone remains listening to the channel 
until it receives the next package. 
 

 

Fig. 3.27: Structure of the different states of the pure ALOHA protocol in the 
void loop() function of the drone payload. 

 
 



Final degree project   67 

The nodes are listening to the channel until they receive the beacon. Once it is 
received, the “void OnRxDone()” function is executed. Since a Beacon has been 
received, the Packet equals P_BEACON in the Flag Determination and the switch 
selects this case. Figure 3.28 explains in detail what happens when a beacon is 
received at the ground nodes. First, it is recorded that a beacon has been 
received, then the relative time of the node is saved in the time variable 
tiempo_exp, which is then used to calculate Dif_t. Finally, the Boolean 
min_one_beacon_received is set to true as the first beacon has been received. 
The status is then changed to TX_ALOHA to send the Data Packet.  
 
 

 
 

Fig. 3.28: Case where a beacon is received in the “void OnRxDone()” function 
in the ground nodes code.  

 
 

Once the nodes have received the beacon, the next step is to send the Data 
Packet. This action is carried out in the "void loop()", specifically in the 
TX_ALOHA state. The Figure 3.29 shows the procedure used to send the data 
package in the TX_ALOHA case. After sending it, the send is recorded. Finally, 
the relative time of the node is saved using "tiempo_envio". This variable 
indicates the moment in which the data packet was sent. Once the data packet 
has been sent, the program execute the “void OnTxDone()” function (Figure 
3.18), the state changes to RX_ALOHA and the loop is executed again.  
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Fig. 3.29: Structure of the different states of the pure ALOHA protocol in the 
“void loop()” function in the ground nodes code. 

 
 
The data packet sent by the node reaches the drone if there has been no collision. 
In that case, the “void OnRxDone()” function of the drone payload code is 
executed as shown in Figure 3.30. First, the received packet type is detected 
using the Flag Determination. Subsequently, the ALOHA protocol is switched. 
Then, since at least one beacon has already been sent, 
min_one_beacon_sended is true. In the next step, it is checked that the 
experiment time is not finished. Finally, it is switched to the case where a packet 
of data has been received. First, it is checked that the data package corresponds 
to the satellite/drone by comparing the satellite_id contained in the data package 
with the SAT_ID. If they match, the data packet is logged and the ACK boolean 
is set to true.  



Final degree project   69 

 

 

Fig. 3.30: Structure of the processes of the pure ALOHA protocol in the void 
OnRxDone() function of the drone payload. 

 
State changes to TX_ALOHA and “void loop()” function of the drone payload is 
executed again (Figure 3.27). In the TX_ALOHA state, the ACK boolean is 
detected to be true and the ACK is sent. The packet is logged and the boolean is 
set as false again. 
 
After sending the data packet, the ground nodes begin to listen to the channel 
waiting to receive the ACK sent by the drone. The medium is heard for a time 
determined by the variable t_wait_time_ALOHA. The value of this variable is sent 
through the command, and its numeric value will be calculated in section 3.2.3. 
When the medium is heard for a certain time, four things can happen. The first is 
to receive the expected ACK. The second, receive an ACK directed to another 
node. The third, receive a data packet from another node. The fourth is that the 
waiting time elapses, and no package is received. In the first three cases, the 
program goes to the “void OnRxDone()” function as a packet has been received. 
In the latter case, the program executes the “void OnRxTimeout()” function. 
Figures 3.16 and 3.19, previously seen, gave an overview of the architecture of 
the functions “void OnRxDone()” and “void OnRxTimeout()” of the code of the 
ground nodes. Each of the individual cases that may occur depending on the 
package received is explained below. 
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The first case corresponds to the process of receiving the correct ACK. As can 
be seen in Figure 3.31, when an ACK is received, the first thing that is checked 
is if there is a bug related to the reception of the beacon, since it could be that 
the ACK is received without the first beacon having arrived. Next, check whether 
the node_id contained in the ACK package corresponds to the node. If so, the 
ACK package has been received and the communication is considered as 
successful. After recording the ACK, two variables used in the BackOff process 
are configured (try_rec_ACK and T_b). Both are set to zero, configuring them as 
well as the initial state for the next communication attempt. Finally, the node has 
a waiting time equal to the t_wait_time_ALOHA before transmitting again. This is 
done to prevent the same node from occupying the channel just after receiving 
the ACK. Also, it is added the time determined by the user that indicates the 
periodicity of sending Data Packets. 
 
The second case corresponds to the process of receiving the wrong ACK. This 
occurs when an ACK packet is received where the node identifier does not 
correspond to the node. In these cases, the erroneous ACK packet is recorded 
and the wrong_packet Boolean is configured as true. 
 
 

 
 

Fig 3.31: Case where a ACK packet is received in the “void OnRxDone()” 
function in the ground nodes code.  

 
 
The third case corresponds to receiving a data packet from another node during 
the waiting time. In these cases, the data packet is recorded and the 
wrong_packet Boolean is set as true. Figure 3.32 shows the outline of the 
procedure to be followed in these cases. 
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Fig. 3.32: Case where a Data Packet is received in the “void OnRxDone()” 
function in the ground nodes code 

 
 
The fourth case occurs when the waiting time is exceeded, and no package is 
received. In such cases, the program executes the function "void 
OnRxTimeout()". As can be seen in Figure 3.33, the first step is to check whether 
the experiment time has not finished. The X11 message is then recorded, 
indicating that the ACK packet has not been received after the waiting time. The 
back-off process of the pure ALOHA protocol is then performed. First a reception 
attempt is added, then it is verified that the ACK reception attempts have not been 
exceeded. If the reception attempts have been exceeded, the message X09 is 
recorded, and the variables try_rec_ACK and T_b are configured. Both are set to 
zero, configuring them as well as the initial state for the next communication 
attempt. If the reception attempts have not been exceeded, the back-off time is 
calculated as the multiplication of the waiting time by a random number R. The 
program then waits for a time T_b until the state is changed to TX_ALOHA. In 
this way, the communication process is restarted by sending the Data Packet and 
then trying to receive the ACK. 
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Fig. 3.33: “void OnRxTimeout()” function of the ground nodes code 

 
Finally, it remains to clarify what happens when a wrong packet is received and 
the Boolean wrong_packet is activated after passing through the Switch. This 
process is controlled by an "if", so it is only executed if the wrong_packet Boolean 
is true. First, the Boolean wrong_packet is set as false again. Next, the timer 
variable is calculated. This variable is calculated as the subtraction between the 
node’s current time minus the time the data packet was sent. If this result is not 
equal to or greater than the waiting time, calculate it again until it is. Once the 
waiting time has been exceeded, and the ACK has not been received the 
communication cannot be given as successful. In this case, the Back-off process 
explained above is performed again. Finally, the TX_ALOHA state is 
reconfigured. In this way, the communication process is restarted by sending the 
Data Packet and then trying to receive the ACK. 
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Fig. 3.34: Wrong packet case on the ground nodes code 

 
 

3.2.2.4. CSMA/CA design  

 
The following section will explain in detail how the CSMA/CA protocol has been 
implemented. Throughout this section you will see two different codes, the code 
of the algorithm implemented on the ground nodes, and the code of the receiving 
station, in our case the drone. To explain the implementation of the algorithm of 
the CSMA/CA protocol, an ideal case will be presented where the event line is 
fulfilled in an orderly manner. During the explanation, the different casuistic will 
be explained for the different cases.  
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Communications are initiated when the beacon is received. Figure 3.35 shows 
the procedure used to send the beacon from the drone. The TX_CSMA_CA state 
is configured after receiving the CSMA/CA protocol command, at this moment the 
nodes will be listening to the channel waiting to receive the beacon. As can be 
seen in the figure 3.35, the first step is to check that the experiment time is not 
finished, then a variable called "time_lapse" is calculated. The result of this 
variable is determined by the subtraction of the current time (t_actual = millis()) 
minus the time in which the last beacon was sent (t_send_beacon). This is done 
to then compare if the elapsed time (time_lapse) is greater than the beacon 
sending periodicity time (t_beacon). If this happens (which is not the case for the 
first send), the boolean beacon_sended, CTS and ACK are set to false. Then, 
the boolean beacon_sended is detected to be false and the beacon is sent. With 
this sending, two booleans are activated (min_one beacon_sended and 
beacon_sended) and the relative time in which it was sent is saved in the 
t_send_beacon variable. Once the beacon is sent, the program is directed to the 
“void OnTxDone()” function shown in Figure 3.24. This function sets the next state 
of the loop to RX_START. In this state, the drone remains listening to the channel 
until it receives the next package. 
 

 
 

Fig. 3.35: Structure of the different states of the CSMA/CA protocol in the void 
loop() function of the drone payload. 
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The nodes are listening to the channel until they receive the beacon. Once it is 
received, the “void OnRxDone()” function is executed. Since a Beacon has been 
received, the Packet equals P_BEACON in the Flag Determination and the switch 
selects this case. Figure 3.36 explains in detail what happens when a beacon is 
received at the ground nodes. First, it is recorded that a beacon has been 
received, then the relative time of the node is saved in the time variable 
tiempo_exp, which is then used to calculate Dif_t. Next, the Boolean 
sensing_channel is configured as true to sense the channel. RTS and 
send_datapacket booleans are configured as false. Finally, one of the variables 
used for the backoff is set to 0, thus restarting the number of attempts to receive 
the ACK. The status is then changed to RX_CSMA_CA to sense the channel.  
 

 
 

Fig. 3.36: Case where a beacon is received in the “void OnRxDone()” function 
in the ground nodes code.  

 
 

Once the nodes receive the beacon, the loop state changes to RX_CSMA_CA. 
First, it is checked that the experiment time is not finished. Next, it is checked if 
the Boolean sensing_channel is true to decide which action to execute. Since the 
Boolean is true because it has just been activated previously, the channel is 
sensed for a certain time. The way to sense the channel corresponds to the 
nonpersistent method explained above. If during this time, no packets are 
received, the program executes the “void OnRxTimeout()” function. However, if 
a packet is received, the program executes the “void OnRxDone()” function. If a 
packet is received, it implies that there is communication between some other 
node and the drone, so the node will have to wait for a certain time to sense the 
channel again. Figure 3.37 shows the structure of the "void loop()" function. 
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Fig. 3.37: Structure of the void loop() function of the ground nodes code. 

 
 
If a packet has been detected while sensing the medium, the node acts in the 
following ways depending on the received packet: 
 

• RTS: if the received packet is an RTS packet, the following steps are 
followed. First, the received packet is recorded. Then, a waiting time 
defined by the NAV of the RTS package is configured. After this waiting 
time, the RX_CSMA_CA state is reconfigured to sense the channel again. 

 

 

Fig. 3.38: Case where a RTS is received in the “void OnRxDone()” function in 
the ground nodes code.  
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• CTS: if the received packet is an CTS packet, the following steps are 
followed. First, the received packet is recorded. Then, a waiting time 
defined by the NAV of the CTS package is configured. After this waiting 
time, the RX_CSMA_CA state is reconfigured to sense the channel again. 
 

 
 

Fig. 3.39: Case where a CTS is received in the “void OnRxDone()” function in 
the ground nodes code.  

 

• ACK: if the received packet is an ACK packet, the following steps are 
followed. First, the received packet is recorded. Then, a random waiting 
time defined by the nonpersistent method is configured. The method to 
calculate this value of time will be explained in section 3.2.3. After this 
waiting time, the RX_CSMA_CA state is reconfigured to sense the channel 
again. 
 

 
 

Fig. 3.40: Case where a ACK is received in the “void OnRxDone()” function in 
the ground nodes code.  
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• Data Packet: if the received packet is a Data Packet, the following steps 
are followed. First, the received packet is recorded. Then, a random 
waiting time defined by the nonpersistent method is configured. The 
method to calculate this value of time will be explained in section 3.2.3. 
After this waiting time, the RX_CSMA_CA state is reconfigured to sense 
the channel again 
 
 

 
 

Fig. 3.41: Case where a Data Packet is received in the “void OnRxDone()” 
function in the ground nodes code.  

 
 
If after sense the channel, no packet is received, it means that the channel is free. 
In that case, you can start the communication by sending the first RTS packet. 
Figure 3.42 shows the case where the sensing time has elapsed, and no package 
has been received. In that case, the sensing_channel boolean is set to false and 
the RTS boolean is set to true. The status is then changed to TX_CSMA_CA to 
send the RTS. The procedure for sending the RTS in the TX_CSMA_CA state 
can be seen in Figure 3.37. First, it is checked if the boolean RTS is true, given 
that it is just configured as true the following process is executed. First a waiting 
time determined by the DIFS is performed. Then the RTS packet is sent and the 
sent packet is recorded. Finally, three Booleans are configured and the time in 
which the packet has been sent is saved in the variable tiempo_envio. The first 
Boolean to configure is the RTS. This is set as false given that the package has 
already been sent. The second boolean to be configured is expectingCTS. This 
is set to true since the next packet expected to be received is the CTS. Finally, 
the third boolean that is configured is the sensing_channel. This is set as false 
given that the next step is to listen to the channel to receive the CTS, not to sense 
the medium.  
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Fig. 3.42: “void OnRxTimeout()” function of the ground nodes code 

 
 
In the drone, when an RTS packet is received, the next step is to send the CTS. 
However, several processes are performed before sending it. The schema of 
receiving an RTS packet in the drone can be seen in Figure 3.43. The first step 
is to check that the package is addressed to the drone by comparing the 
identifiers. The received RTS packet is then recorded and the status of the 
waiting_data_packet boolean is checked, which is false in this case. Then the 
CTS boolean is configured as true and the TX_CSMA_CA state is configured.  
 
The program executes the “void loop()” function again as shown in Figure 3.35. 
After checking that the CTS Boolean is true, a waiting time determined by the 
SIFS is performed and then the CTS packet is sent in addition to configuring the 
waiting_data_packet Boolean as true. The program then executes the “void 
OnTxDone()” function as shown in figure 3.24. In this function, since the CTS is 
true, it sets the RX state. Again, figure 3.35 shows how this state is executed in 
the “void loop()” function. First, it is checked whether the boolean new_wait_time 
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is false. If it is false, the time at which the medium is started to listen is saved in 
the variable t_start_wait_time. The waiting time to receive the data packet is done 
given that the channel has been reserved for that communication. So, the drone 
expects to receive the data packet from the node. It will only wait for a time 
defined by the wait_time. It is possible that during this waiting time some RTS 
packet will be received, however the drone should ignore it and continue to wait 
for the data packet for the remaining time of the wait_time.  
 
 

 
 

Fig. 3.43: Structure of the case where a RTS packet is received in the “void 
OnRxDone()” function of the drone payload. 

 
 
In the ground nodes, after sending the RTS package five cases may occur: 
 
The first case is that the RTS package does not reach the drone correctly. It could 
also collide with another RTS packet sent from another node because both nodes 
have detected the free channel. In this case the node timeout ends and the “void 
OnRxTimeout()” function is executed. As can be seen in Figure 3.42, the process 
to follow is as follows. First it is checked that the experiment time is not finished. 
It then checks whether the channel should be sensed (which is not the case). 
Next, the state of the expectingCTS boolean is checked, which has been set to 
true when sending the RTS. Therefore, the X30 message is printed saying that 
the CTS package has not been received after the waiting time. In addition, a 
reception attempt is added to the try_rec_ACK variable. Finally, the backoff 
process is performed if the number of ACK reception attempts has not been 
exceeded. Before setting the state to RX_CSMA_CA, the sensing_channel 
boolean is set to true. 
 
The second case is that an RTS sent from another node is received. The process 
to follow if an RTS is received from another node can be seen in Figure 3.38. In 
this case, the first step is to identify whether the channel should be sensed, which 
is not true. After that, the package received is recorded and a new variable related 
to the waiting time is calculated, new_waiting_time. This variable calculates the 
remaining wait time after receiving a package other than the correct CTS. It is 
calculated using the following formula: 
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𝑛𝑒𝑤_𝑤𝑎𝑖𝑡𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 = 𝑡_𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒 − (𝑚𝑖𝑙𝑙𝑖𝑠( ) − 𝑡_𝑠𝑡𝑎𝑟𝑡_𝑤𝑎𝑖𝑡_𝑡𝑖𝑚𝑒) (3.2) 

 
 

It is calculated as the subtraction between the total waiting time minus a second 
component. This second component is calculated as the time difference between 
the current time and the time when the waiting time was started. By performing 
this subtraction, we obtain the remaining time which we must continue to wait to 
receive the CTS. It is important to wait for the CTS, as it is the package that 
reserves the channel. Next, the new_wait_time boolean is configured as true. The 
result of new_waiting_time is then checked to be not less than zero or zero. If so, 
the new_wait_time boolean is set to false and the wrong_packet boolean to true. 
How this last boolean affects is explained below. If new_waiting_time is greater 
than 0, the state RX_CSMA_CA is set and the “void loop()” function is run again 
and the channel is heard during the time determined by the new_waiting_time.  
 
The third case is that the node receive a CTS directed to another node. The 
process to follow if a CTS is sent to another node can be seen in Figure 3.39. In 
this case, the node ID is simply compared to the node ID contained within the 
CTS package and if they are not equal the X16 message is printed and the 
wrong_packet boolean is set to true. 
 
The fourth case is where the waiting time ends and no packets are received. In 
these cases the program executes the “void OnRxTimeout()” function as shown 
in Figure 3.42. In this case, after checking whether the time of the experiment has 
ended or if the channel should be felt, it is checked if the Boolean expectingCTS 
is true, which is true. In this case, a message is recorded that the CTS has not 
been received after the waiting time and new_wait_time and expectingCTS are 
configured as false. Subsequently, the backoff process is performed in addition 
to configuring the sensing_channel boolean as true. Finally, the RX_CSMA_CA 
state is configured to sense the channel and retry. 
 
The fifth case is where the CTS packet sent by the drone is received correctly 
and corresponds to the node identifier. This case can be seen in Figure 3.39. In 
these cases, the received CTS packet is recorded and the send_datapacket 
boolean is configured as true. Finally, the TX_CSMA_CA state is configured to 
send the data packet to the drone. Figure 3.37 shows the process for sending the 
data packet. The first step is to wait a certain time by SIFS. The data packet is 
then sent and recorded. The time at which the packet was sent is then saved in 
the time variable tiempo_envio. Also, the following booleans are configured as 
false: send_datapacket, expectingCTS, sensing_channel and new_wait_time. 
Finally, the program executes the “void OnTxDone()” function which can be seen 
in Figure 3.18, and reconfigures the RX_CSMA_CA state to listen to the channel 
waiting to receive the ACK. 
 
Again, in the drone, after sending the CTS and initiating the waiting time, three 
different cases can occur. 
 
The first case is that the node receives an RTS sent from another node. The 
procedure can be seen in figure 3.43. In this procedure, the state of the 
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waiting_data_packet boolean is checked. Since it is true, the following process is 
executed. First, new_waiting_time is calculated as explained above. This time is 
then ensured not to be less than or equal to 0. Finally, the new_wait_time boolean 
is set to true and the state is changed to RX. The channel is then heard again 
during the time determined by new_waiting_time. For the remaining time, the data 
packet may be received. 
 
In this function, the first thing to be checked is that the experiment time is not 
finished. Then, the X13 message is printed, which informs that the data packet 
has not been received after the waiting time. The following booleans are 
configured as false: waiting_data_packet, CTS, new_wait_time. Since the data 
packet has not been received after the waiting time, the channel is no longer 
reserved, and the drone listens to the medium again waiting to receive RTS from 
other nodes. 
 
The third case is where the data packet is received before the waiting time ends. 
The procedure to be performed in this case can be seen in the figure 3.44. First, 
it checks that the satellite’s identifier is the same. The received data packet is 
then recorded and the following three Booleans are configured. The 
waiting_data_packet boolean and CTS are configured as false. The ACK boolean 
is configured as true, so that the ACK can be sent. Finally, the state is changed 
to TX_CSMA_CA and the “void loop()” function is executed again. Figure 3.35 
shows the procedure for sending the ACK. As can be seen, before sending the 
ACK a waiting time determined by the t_wait_time is performed.  
 
 

 
 

Fig 3.44: Structure of the case where a Data Packet is received in the void 
OnRxDone() function of the drone payload. 
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After sending the ACK, the ground node receives it. This case can be seen in 
Figure 3.40, where the steps to follow after receiving an ACK are detailed. As can 
be seen, after checking two Booleans (sensing_channel and expecingCTS), the 
identifiers of the ACK packet are compared with that of the node. If they match, 
the X20 message is printed, and various variables are configured. First, 
try_rec_ACK and T_b are set to zero, as it was in an initial state. Second, the 
sensing_channel and wrong_packet booleans are configured as true and false, 
respectively. Finally, the node has a waiting time equal to the SIFS before 
transmitting again. This is done to prevent the same node from occupying the 
channel just after receiving the ACK. Also, it is added the time 
(t_to_next_packetC) determined by the user that indicates the waiting time before 
restarting a communication after receiving the ACK. The RX_CSMA_CA state is 
configured and the “void loop()” function is run again to restart the process. 
 
Finally, it remains to clarify what happens when a wrong packet is received and 
the Boolean wrong_packet is activated after passing through the Switch. This 
process is controlled by an "if", so it is only executed if the wrong_packet Boolean 
is true. This event can be seen when a data packet is received from another node. 
Or, when the node receives an ACK or CTS that doesn’t match the node ID. Also, 
when the node receives an ACK and was expecting a CTS. Finally, it can also be 
given when the new_waiting_time calculation in the case of receiving an RTS 
gives 0 or less. In these cases, the boolean wrong_packet is set to true and the 
procedure in Figure 3.45 is executed. First, the Boolean wrong_packet is set as 
false again. Next, the timer variable is calculated. This variable is calculated as 
the subtraction between the node’s current time minus the time the data packet 
was sent. If this result is not equal to or greater than the waiting time, it is 
calculated again until it is. Once the waiting time has elapsed, it is checked what 
type of package was expected. This is done by looking at the state of the 
expectingCTS boolean. If the boolean is false, it means that an ACK was 
expected. If true, the package expected to be received was a CTS. In both cases, 
the backoff process explained above is performed again. In this process, the 
sensing_channel boolean is configured as true. Finally, the state RX_CSMA_CA 
is configured, and the medium is sensed again. 
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Fig. 3.45: Wrong packet case in the CSMA/CA protocol on the ground nodes 
code 
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3.2.3. Calculation of the adjustable parameters of both protocols 

 
This section details the formulas and numerical values of each of the variables of 
both protocols. To do this, it is necessary to consider the formulas detailed above 
in paragraphs 2.4.1 and 2.4.2, where the pure ALOHA protocol and the CSMA/CA 
protocol were explained. Also, it is necessary to consider the LoRa Time On Air 
of each package sent for certain numerical calculations. 
 
 

3.1.1.1. ALOHA protocol parameters 

 
In the pure ALOHA protocol it is only necessary to calculate two values, the 
waiting time and the backoff time, which also depends on the waiting time. Here 
is how these two times are calculated: 
 
 
 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐) (3.2) 

 𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓 = 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 · 𝑅 (3.3) 

 𝑅 = [0, … , 2𝐾 − 1] (3.4) 

 
 
To calculate the waiting time in the pure ALOHA protocol (𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡), the 

maximum transmission time (𝑇𝑡𝑥), the maximum propagation time (𝑇𝑝𝑟𝑜𝑝) and the 

processing time of the transceiver (𝑇𝑝𝑟𝑜𝑐), in our case the CubeCell, must be 

taken into account. The 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 is multiplied by two to account for the round 

trip of the package. When sending the package, must be considered the 
processing time to send it, the transmission time, and the propagation time. Once 
the packet reaches the destination, must be considered the processing time to 
send the packet back, the transmission time, and the propagation time. 
Therefore, it is multiplied by two, thus obtaining the waiting time once a package 
is sent. 
 
The maximum propagation time (𝑇𝑝𝑟𝑜𝑝) is determined by the distance between 

the furthest node and the drone, divided by the propagation speed. In the case of 
the experiment, the nodes are not more than 400 meters apart from the starting 
point. If the drone raises until the maximum allowable distance (120 meters), the 
distance between the drone and the furthest node is 417,61 meters. The figure 
3.46 shows the scenario. 
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Fig. 3.46: Further location of nodes and drone in the experiment scenario 

 
Considering that the maximum distance is 417,61 meters and the transmission 
speed is the same as the speed of light, the propagation time is 1,39 ms. Making 
approximations we establish that the 𝑇𝑝𝑟𝑜𝑝 is 1,4 ms for the calculation of the 

𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡. 

 
The transmission time of the package is determined by the Time On Air. To 
calculate the time the package is transmitting, the LoraWAN airtime calculator is 
used [20]. To perform this calculation, it is necessary to enter four variables. The 
first variable is the size in bytes of the message to send, the second the spreading 
factor, the third the frequency band used, and finally the fourth is the bandwidth. 
The only variable that changes between the different types of packets to be sent 
is the number of bytes of each packet’s content. The rest of the variables remain 
the same. In the spreading factor, as previously mentioned, an SF8 is used. In 
the frequency band of the region, the European (EU868) must be configured. 
Finally, the bandwidth is set to 125 KHz. In previous sections, we have been able 
to detail the content of the different types of packages. Specifically, the packets 
involved in the pure ALOHA protocol are only the Data Packet and the ACK 
packet. The Data Packet consists of 30 bytes, while the ACK package consists 
of 18 bytes. By inserting these values into the LoraWAN airtime calculator, we 
get that the ToA of the Data Packet is 164,4 ms and the ToA of the ACK is 133,6 
ms. Therefore, the maximum transmission time (𝑇𝑡𝑥) for the pure ALOHA protocol 

is 164,4 ms. 
 
Finally, to calculate the processing time (𝑇𝑝𝑟𝑜𝑐) of the CubeCell, different tests 

were performed to determine how long it takes to switch to the transmission state 
once a packet is received. In the vast majority of tests, the results obtained 
ranged between 5 and 10 ms. Therefore, being the most pessimistic case, the 
processing time of the transceiver is 10 ms. 
 
Taking into account the numerical values of the different variables, the result of 
the 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 is as follows: 
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 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (164,4 𝑚𝑠 + 1,4 𝑚𝑠 + +10 𝑚𝑠) = 351,6 𝑚𝑠 (3.5) 

 
 
On the other hand, the backoff time (𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓) is calculated as the multiplication 

of 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 by R, where R is a random value between 0 and 2𝐾 − 1 (where K is 

the number of retries to receive the ACK). 
 
 

3.1.1.2. CSMA/CA protocol parameters 

 

In the CSMA/CA protocol it is necessary to perform several previous calculations 
before defining the value of the different variables involved. The different 
variables involved and calculated below 
are: 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡, 𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓, 𝑆𝐼𝐹𝑆, 𝐷𝐼𝐹𝑆, 𝑁𝐴𝑉𝑅𝑇𝑆, 𝑁𝐴𝑉𝐶𝑇𝑆, 𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 and 𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔 

 
The waiting time is calculated in practically the same way as in the pure ALOHA 
protocol. The only difference of the waiting time in the CSMA/CA protocol is that 
the SIFS time must be added. The SIFS time is the timeout performed before 
sending any packets. Therefore, the formula for calculating the waiting time in the 
CSMA/CA protocol is as follows: 
 
 𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐) + 𝑆𝐼𝐹𝑆 (3.6) 

 
 
Where the values of 𝑇𝑡𝑥, 𝑇𝑝𝑟𝑜𝑝 and 𝑇𝑝𝑟𝑜𝑐 are calculated in the same way as before. 

The SIFS value is set by the maximum delay of a transmitted packet to reach the 
most distant node. This implies that SIFS is the sum of transmission time, 
propagation time, and processing time. All these variables have been calculated 
previously, so the value of SIFS is as follows: 
 
 
 𝑆𝐼𝐹𝑆 = 𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐   (3.7) 

𝑆𝐼𝐹𝑆 = 1,4 𝑚𝑠 + 164,4 𝑚𝑠 + 10 𝑚𝑠 = 175,8 𝑚𝑠 
 
 
Therefore, the  𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 value in the CSMA/CA protocol is:  

 
 
𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 = 2 · (164,4 𝑚𝑠 + 1,4 𝑚𝑠 + +10 𝑚𝑠) + 175,8 𝑚𝑠 =  527,4 𝑚𝑠          (3.8) 

 
 
The way to calculate the backoff time (𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓) is the same as in the pure ALOHA 

protocol. The backoff time (𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓) is calculated as the multiplication of 

𝑇𝑤𝑎𝑖𝑡𝑝𝑎𝑐𝑘𝑒𝑡 by R, where R is a random value between 0 and 2𝑛 − 1 (where n is 
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the number of retries to receive the ACK). The backoff time is also used to 
calculate the DIFS time value. This value is calculated as the sum of SIFS plus 
the backoff time: 
 
 
 𝐷𝐼𝐹𝑆 = 𝑆𝐼𝐹𝑆 + 𝑇𝑏𝑎𝑐𝑘𝑜𝑓𝑓 (3.9) 

 
 
How the 𝑁𝐴𝑉𝑅𝑇𝑆 and 𝑁𝐴𝑉𝐶𝑇𝑆 values are calculated is detailed below. The 
theoretical formulas of how to calculate these variables are shown in section 
2.4.2.1. However, due to the limitations of the equipment, processing times in 
addition to transmission time should also be considered. 
 
 
𝑁𝐴𝑉𝑅𝑇𝑆 = 3 · (𝑆𝐼𝐹𝑆 + 𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑐) + 𝑇𝑝𝑟𝑜𝑝𝐶𝑇𝑆 + 𝑇𝑝𝑟𝑜𝑝𝐷𝑃 + 𝑇𝑝𝑟𝑜𝑝𝐴𝐶𝐾              (3.10) 

𝑁𝐴𝑉𝐶𝑇𝑆 = 2 · (𝑆𝐼𝐹𝑆 + 𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑐) + 𝑇𝑝𝑟𝑜𝑝𝐷𝑃 + 𝑇𝑝𝑟𝑜𝑝𝐴𝐶𝐾                         (3.11) 

 
 
The different transmission times are calculated again using the LoRaWAN airtime 
calculator. The following table compiles the different times: 
 
 
Table 3.1: Time On Air of the different packets in the CSMA/CA protocol.  
 

Type of packets 

Packet 
Size 

(bytes) 
Time On Air 

(ms) 

Beacon 8 102,9 

ACK 18 133,6 

Data 
Packet  30 164,4 

RTS 18 133,6 

CTS 18 133,6 

 
 

Therefore, the 𝑁𝐴𝑉𝑅𝑇𝑆 and 𝑁𝐴𝑉𝐶𝑇𝑆 values are calculated as follows:  
 
𝑁𝐴𝑉𝑅𝑇𝑆 = 3 · (175,8 + 1,4 + 10) + 133,6 + 164,4 + 133,6 = 993,2 𝑚𝑠            (3.12) 
𝑁𝐴𝑉𝐶𝑇𝑆 = 2 · (175,8 + 1,4 + 10) + 164,4 + 133,6 = 672,4 𝑚𝑠                         (3.13) 
 
 
Finally, it is explained how the time values related to the sense of the channel 
have been calculated (𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 and 𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔). The sensing type used in this 

protocol follows the nonpersistent method scheme. In this method, if the channel 
is busy, wait a random amount of time and sense the channel again. If the channel 
is free, it transmits immediately. This random time between sensing and sensing 
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(𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔) has been defined as a random variable between one and two times 

the SIFS time. This random time is executed when an ACK or data packet is 
received while the channel is being sensed. So, the approximate time for the 
channel to be free again, hovers between one and two times the SIFS time.  
 
 
𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 = [𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐 , … , 2 · (𝑇𝑡𝑥 + 𝑇𝑝𝑟𝑜𝑝 + 𝑇𝑝𝑟𝑜𝑐)]              (3.14) 

𝑇𝑤𝑎𝑖𝑡𝑠𝑒𝑛𝑠𝑖𝑛𝑔 = [𝑆𝐼𝐹𝑆, … , 2 · 𝑆𝐼𝐹𝑆] = [175,8, … , 351,6] 𝑚𝑠                (3.15) 

 
 
The time during which the channel is sensed is determined by the variable 
𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔. If the sense were instantaneous, it is highly likely that the node detected 

the free channel. This is because there are times when nothing is being 
transmitted. This is the cause of SIFS time between transmissions. That is why it 
should be considered a time large enough not to detect the free channel when it 
is not. The figure 3.47 shows the outline of the CSMA/CA communication showing 
the propagation times of each package. 
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Fig. 3.47: Outline of the CSMA/CA communication 

 
As can be seen, if one node senses the channel while another is silent waiting 
for SIFS to transmit, it will detect that the channel is free. To avoid this, it has 
been determined that the channel sensing time will be the same as the wait time. 
This is because the wait time is also the time between transmissions after 
receiving the ACK. Therefore, the sensing time is calculated as:  
 
 
𝑇𝑠𝑒𝑛𝑠𝑖𝑛𝑔 = 2 · (164,4 𝑚𝑠 + 1,4 𝑚𝑠 + 10 𝑚𝑠) + 175,8 𝑚𝑠 =  527,4 𝑚𝑠       (3.16) 
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3.3. Methodology applied in the hardware design 

 
This section explains the methodology applied to develop the whole structure of 
the LoRa communications experiment proof-of-concept. To enable 
communications between IoT nodes and the drone, it has been necessary to 
develop the structure of several ground nodes with different devices. On the other 
hand, it has also been necessary to develop and design a drone-based 
miniaturized payload that hosts the hardware of this experiment and the GNSS-
R experiment developed by other NanoSat Lab members. 
 
 

3.3.1. Ground node design 

 
This section details all the steps taken to realize the structure of IoT ground 
nodes. To carry out the experiment, the design and construction of 22 nodes were 
proposed. This number is determined by the number of CubeCells we have. We 
certainly had a total of 23 CubeCells. However, one of them is required to use for 
the drone payload, so it cannot be counted to generate another node. Due to 
hardware limitations which will be detailed later, only 13 nodes have been used. 
 
The structure of each node is formed by a waterproof IP67 box, and inside are 
distributed the different devices. The main element is the CubeCell, which 
performs all communication. In the node are also two sensors which take 
temperature and humidity data. The data obtained by these sensors are stored 
in the content of the Data Packet and sent to the drone within the different 
communication processes. To record the different types of packets sent and 
received by the Cubecell, a RaspberryPi is used which reads the CubeCell UART. 
In addition, the RaspberryPi is used to power the CubeCell and moisture sensor. 
The other sensor is fed through the CubeCell, later the connections will be 
detailed. Finally, inside the node there is also a battery regulator and a battery to 
power the RaspberryPi. 
 
The humidity and temperature sensors used are the "Capacitive Soil Moisture 
Sensor v1.2" sensor and HDC1080 sensor, respectively. Below are some 
technical details of these sensors: 
 
 
▪ Capacitive Soil Moisture Sensor v1. 2:  

Capacitive Soil Moisture Sensor v1. 2 is an analog capacitive soil moisture sensor 
which measures the volumetric content of water inside the soil. The way to 
measure the different levels of soil moisture is done through the capacitive 
sensing. The capacitive sensing is based on measuring the capacitance between 
two electrodes inserted inside the ground, the capacitance between the 
electrodes will depend on the soil moisture, so for a very wet soil the capacitance 
will be very low and for a very dry soil the capacitance will be very high. To 
measure the differences between different types of terrain, capacitive sensors 
have a timer chip that is used to generate a square wave. This wave is modified 
according to the capacitance obtained. This difference in waves is compared by 
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the sensor, resulting in a small output differential voltage varying between 1.2V- 
3V that can be measured by a microprocessor. The CubeCell has an ADC pin, 
which will read the different voltages recorded and convert them to percentages. 
The "Sensor calibration" section details the procedure. It should be noted that the 
soil moisture sensor has an operating current of 5mA. 
 
One of the advantages of using capacitive sensors is that they are made of a 
material that is resistant to corrosion. This offers superior service life compared 
to other types of sensors, such as resistive soil moisture sensors, which are made 
of corrosive material. Figure 3.48, shows the capacitive soil moisture sensor used 
in the experiment and the different pins it has: 
 
 

 
 

Fig. 3.48: Capacitive Soil Moisture Sensor v1.2 

 

As can be seen in the figure 3.48, the sensor has 3 pins: GND, VCC and AOUT. 
The first two are for feeding the sensor, the last one is the analog output pin. 
Concerning the power, according to the technical specifications, the operating 
voltage is between 3.3 and 5.5 VDC. This power would be sufficient if the original 
sensor chip timer (TLC555C), which has a minimum supply voltage of 2V, was 
used. However, because the manufacturer of the purchased sensors has used a 
different chip timer (NE555) to reduce structural costs, a minimum supply voltage 
of 4.5V is required.  
 
Apart from having another timer chip compared to the original, the capacitive soil 
moisture sensor v1. 2 also have two other structural problems. 
 
The first problem is related to the lack of the 662K voltage regulator. This 
component regulates any input voltage at 3.3V. Since the output voltage of the 
analog signal depends on the supply voltage, sensor measurements can be 
affected if the sensor is not powered by a constant voltage. If the 3.7-volt lithium-
ion battery were used, we would have this problem. This is because the battery 
charge is discharged over time, causing the supply voltage to vary. This changing 
supply voltage would also confuse the output voltage of the sensor and thus the 
humidity readings. To solve this problem, many capacitor soil moisture sensors 
have a 662K voltage regulator on board. But some manufacturers have chosen 
to forget this regulator in order to save a few cents and have simply bridged the 
solder pads instead. The figure 3.49 shows the comparison of two sensors, one 
where the voltage regulator is correctly implemented and another where it is not: 
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Fig. 3.49: Missing voltage regulator in the capacitive soil moisture sensor. 

 
This problem can be solved if the humidity sensor is fed at a constant voltage. 
Therefore, the 5V pin of the Raspberry Pi is used to feed it as will be explained in 
the following sections.   
 
The next problem is related to the lack of grounding connectivity of a 1MΩ 
resistance. The figure 3.50 shows the schematic of the humidity sensor. The 
outline part of the circuit is used to convert the waveform signal from the sensor 
into a constant voltage that can be read by other hardware.  
 

 
 

Fig. 3.50: capacitive soil moisture sensor schematic [24] 

 

As can be seen, there is a 1MΩ resistor that should be connected to the analog 
output on one side and to ground on the other. However, the check with the 
multimeter shows that this is not the case for the ground side. The reason why 
this connection is not being made is to locate a via hole where it should not be 
located. In the figure 3.51 it  can be seen the different locations of the via hole.  
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Fig. 3.51: Comparison of the different locations of the via hole in the capacitive 
soil moisture sensor 

 
The image above corresponds to the sensor whose schematic is correct and 
works correctly. For the working sensor, the multimeter confirms the connection 
of the resistor to ground by the copper path. In the other hand, as can be seen in 
the image below, the same via hole is located a little further outside, which 
interrupts the connection of the 1MΩ resistor to ground. In practice, this means 
that the sensor becomes extremely unresponsive and the measured value 
changes only very slowly. 
 
This problem can be solved quickly by welding a cable between the 1MΩ resistor 
and the ground pin of the connector. The following image shows how this problem 
should be solved: 
 

 
 

Fig. 3.52: Solution to the unresponsive problem in the capacitive soil moisture 
sensor 
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▪ HDC1080 Temperature sensor: 

The HDC1080 is a digital temperature and humidity sensor with excellent 
accuracy and very low consumption. This sensor is compatible with 
Arduino/CubeCell thanks to the I2C communication protocol. 
 
In this sensor, the only measurement that will be taken is the temperature. The 
most important characteristics are the following:  
 
 
Table 3.2: Important characteristics of the HDC1080 sensor [25] 
 

Feature Value 

Temperature accuracy ±0.2ºC 

Temperature resolution 11-bit and 14-bit 

Sleep mode consumption 100nA 

Consumption mode measuring 1.3µA 

Supply voltage 2.7V to 5V 

Communication I2C 

Temperature range -40ºC to 125ºC 

 
 
As can be seen in the above table, the accuracy of the HDC1080 sensor is not 
uniform. So, it can vary by ±0.2ºC. The figure 3.53 shows the accuracy range as 
a function of temperature: 
 
 

 
 

Fig. 3.53: Temperature Accuracy vs. Temperature [25] 
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Depending on the temperature of the region where IoT ground nodes are located, 
the temperature accuracy may vary. However, the experiment to be performed 
will be done in an environment with a standard temperature (25-30 ºC), so the 
accuracy of the measurements will be quite accurate.  
 
One of the most interesting features of the HDC1080 sensor is its low 
consumption. The sensor is able to operate with low energy consumption thanks 
to its two operating modes: sleep mode and measuring mode. When the sensor 
turns on, it automatically enters sleep mode consuming an average of 100nA. In 
this mode, the sensor waits for any command that comes through the I2C protocol 
to wake up. When it receives a command to perform a measurement, it switches 
from sleep mode to measuring mode. Once the measurement is completed, the 
sensor returns to sleep mode. Thanks to all this done automatically, very low 
consumption is achieved. This makes it a very suitable device when low energy 
consumption is required, as is the case with IoT projects. 
 
Related to consumption, it is also important to look at the response times that the 
sensor has. The response time determines how long it takes to take the 
measurement and return to low-power sleep mode. Response times depend on 
the resolution the sensor is working with and the ADC clock cycles. The following 
table shows the response times of the sensor to obtain the temperature 
measurement according to the ADC resolution: 
 
 
Table 3.3: Conversion time in function of the resolution of the HDC1080 sensor 
[25] 
 

Resolution Time (ms) 

11-bit 3,65 ms 

14-bit 6,35 ms 

 
 
The longer the sensor response time, the higher the consumption. When the 
sensor is measuring, the consumption is 1300nA, thirteen times more than in 
sleep mode. So resolution is a parameter to consider in IoT nodes that require 
low power consumption.  
 
Finally, the following image shows the electrical diagram of the HDC1080 sensor: 
 

 
 

Fig. 3.54: HDC1080 sensor 
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As can be seen in the figure 3.54, the sensor consists of 4 pins. The connection 
between the sensor and the CubeCell is explained later in the section 
“Connection between devices”. 
 

- GND: reference to 0V 
- SCL: clock signal I2C 
- SDA: data signal I2C 
- VCC: supply voltage (between 2.7V and 5.5V) 

 
After explaining and detailing some of the technical details of the humidity sensor 
and temperature sensor, below is a picture of the first proposal of the ground 
node. It shows all the elements already integrated: 
 

 

Fig. 3.55: First design proposed for the ground node 

 
 

In the above image, three groups of elements can be seen. The first one is the 
CubeCell with the antenna located outside the box to improve the link budget. 
The CubeCell has an integrated stripboard to make the different connections 
without damaging the pins of the device. In addition, the temperature sensor is 
located on top of the integrated CubeCell stripboard. Secondly, we can see the 
Raspberry Pi with the SD and the various connections. The battery regulator and 
battery are located behind the Raspberry Pi. Finally, the third device seen in 
Figure 3.55 is the capacitive soil moisture sensor. This sensor is designed to be 
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nailed to the ground where the measurement is to be taken. For this reason, it is 
necessary to make a hole in the box to be able to pass the sensor and the wiring.  
 
The final design of the ground node has slight modifications compared to Figure 
3.55. One of the modifications that has most affected the initial design has been 
the way of recording the CubeCell data. Initially, it was designed to be recorded 
in the SD of the Raspberry Pi. However, the reading of the data through the 
Raspberry Pi presented many losses and there were certain limitations with some 
of the models used. Finally, the data is read through the CubeCell-PC connection, 
where they are recorded on the PC by reading the CubeCell UART. The details 
of these changes are explained later in the "connection between devices" section 
and the final model of the ground node is presented. 
 
 

3.3.1.1. CubeCell modifications required  

 
The most important equipment of the ground nodes is the CubeCell HTCC-AB01, 
which is part of the "CubeCell" series. It is a wireless communication card based 
on the ASR605x chip that integrates an MCU with a LoRa module. Without this 
equipment communications would not be possible. However, proper 
communication is not the only objective of the work. The CubeCell must 
communicate with the different sensors and read the data they provide. In order 
to make this possible, CubeCell hardware had to be modified.  
 
First, the CubeCell Pinout Diagram HTCC-AB01 is shown in Figure 3.56:  
 

 
 

Fig. 3.56: CubeCell HTCC-AB01 Pinout Diagram [26] 

  
 
The ASR6501 chip has only one ADC pin input. This pin is used by default for 
battery voltage reading. In the following image we can see the schematic of the 
chip AO7801, which contains the head of the ADC hooked to the D1. 
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Fig. 3.57: Schematic of the AO7801 chip [26] 

 
 

In order to read other analog signals, it is necessary to remove the BR1 
resistance, so the ADC header would be free. The following image shows that 
resistance is the one that must be extracted to enable ADC. 
 
 

 
 

Fig. 3.58: Resistance BR01 to remove [26] 

 
By extracting this resistance, it is possible to make the analog reading from the 
ADC. However, a problem arises with the maximum voltage that can be entered 
by the ADC pin. The CubeCell ADC has an internal reference voltage of 1,2V. 
This means that the ADC input cannot exceed 2,4V due to electrical 
specifications. Previously, we have been able to detail that the analog output of 
the humidity sensor is between 1,2 and 3V. Therefore, it is not possible to connect 
the analog output of the humidity sensor to the CubeCell ADC pin. That is why 
an external voltage divider has been implemented in the integrated stripboard 
into the CubeCell that is seen in the next section. 
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3.3.1.2. Design of the stripboard integrated into the CubeCell 

  
This section explains the design of the stripboard integrated into CubeCell. The 
reason why an additional element was designed to integrate it into the CubeCell 
is to protect the equipment and facilitate the process of connecting the different 
devices between them. In the model design, the HDC1080 sensor is integrated. 
The HDC1080 sensor needs certain connections with the CubeCell, so having it 
fixed and anchored to it prevents further wiring. In addition, it is also necessary 
to include two resistors in order to make a voltage divider that reduces the 
maximum voltage offered by the capacitive soil moisture sensor. The value of 
these two resistors depends on the maximum analog output value. According to 
specifications, the maximum analog output voltage is 3V. However, this value 
depends on the supply voltage. In the final model, the sensors are powered with 
5V via the Raspberry Pi. To determine the maximum analog output voltage 
(𝑉𝐴𝑂𝑚𝑎𝑥

), we used the 13 sensors to be used in the measurement campaign and 

measured their maximum analog output when powered at 5V. The following 
results were obtained:  
 
 
Table 3.4: Maximum analog output voltage (𝑉𝐴𝑂𝑚𝑎𝑥

) of the capacitive soil 

moisture sensors 
 

Number of capacitive soil moisture 
sensor 

Maximum analog output voltage 
(𝑉𝐴𝑂𝑚𝑎𝑥

) 

1 4,11 

2 4,13 

3 4,15 

4 4,08 

5 4,03 

6 4,06 

7 4,12 

8 4,07 

9 4,04 

10 4,05 

11 4,11 

12 4,08 

13 4,15 
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Fig. 3.59: Experimental 𝑉𝐴𝑂𝑚𝑎𝑥
 measurements of the capacitive soil moisture 

sensor  

 

Therefore, the maximum analog output value is 4,15V. The voltage value should 
be reduced using a voltage divider because the maximum input value of the 
CubeCell ADC pin is 2,4V. We use the following expression to find two 
commercial resistances that meet the criteria:  
 
 

𝑉𝑜𝑢𝑡 =
𝑅2

𝑅1 + 𝑅2
· 𝑉𝑖𝑛 (3.17) 

 
 
Whereas 𝑉𝑜𝑢𝑡 = 2,4𝑉 and 𝑉𝑖𝑛 = 4,15V, the expression is as follows: 
  

 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=

𝑅2

𝑅1 + 𝑅2
  →   

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

(𝑅1 + 𝑅2) = 𝑅2 (3.18) 

 
  

 𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
𝑅1 +

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
𝑅2 = 𝑅2   →   

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
𝑅1 = 𝑅2(1 −

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
) (3.19) 

 
  

 

𝑅1 =
𝑅2 (1 −

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
)

𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

=
𝑅2 (1 −

2,4
4,15

)

2,4
4,15

=
35 · 𝑅2

48
= 0,729 · 𝑅2 (3.20) 

 
 

  

So, 𝑅1 = 0,729 · 𝑅2. Considering the commercial resistance values, 𝑅2 = 51𝐾Ω is 
chosen: 
 

 𝑅1 = 0,729 · 51𝐾Ω = 37187,5Ω  (3.21) 
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The closest commercial value is 39KΩ. Taking these two values into account, the 
result of 𝑉𝑜𝑢𝑡 is:  
 

 
𝑉𝑜𝑢𝑡 =

51𝐾Ω

39𝐾Ω + 51𝐾Ω
· 4,15𝑉 = 2,35𝑉 (3.22) 

 
 
Value practically adjusted to the maximum 2,4V that allows the ADC pin. 
Adjusting it to the maximum voltage is necessary to not lose ADC dynamic range 
margin. After determining the values of the resistors to perform the voltage 
divider, the stripboard integrated to the CubeCell is explained below.  
 
The final model of the integrated CubeCell board was designed with a stripboard 
and has all the necessary elements. It has integrated the HDC1080 sensor and 
the two previously determined commercial resistors. To make the required 13 
models, many members of the NanoSat Lab helped the process of welding the 
tracks and welding the different elements and cables. The final result is shown in 
Figure 3.60 below:  
 
 

 
 

Fig. 3.60: Final model of the stripboard integrated into the CubeCell 

 
 
As can be seen in the image above, the HDC1080 sensor remains on the outside 
of the stripboard, while the two resistors of the voltage divider remain on the 
inside. The different connections are as follows: 
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Fig. 3.61: Connections of the stripboard integrated into the CubeCell 

 
 
The HDC1080 sensor is located on the outside of the board, which has 4 pins: 
VDD, GND, SCL and SCA. In image 3.61 it can be seen how the CubeCell pins 
have been written on the edges of the stripboard. To connect the HDC1080 
sensor simply connect these 4 pins to the VDD, GND, SCL and SDA pins of the 
CubeCell. The GND and VIN pins have two cables which are used to power the 
CubeCell via the Raspbery Pi. The serial port TX and RX cables are also directed 
to the Raspberry Pi. On the inside of the stripboard, you can see the voltage 
divider, where 𝑅1 = 39𝐾Ω and 𝑅2 = 51𝐾Ω. The green cable that reaches R1 is 
directly connected to the analog output of the capacitive soil moisture sensor.  
 
 
 

3.3.1.3. Sensor calibration   

 
This section explains the procedure performed to configure the HDC1080 sensor, 
calibrate the capacitive soil moisture sensor, and the code implemented to make 
the sensors read. 
 
The HDC180 sensor does not require calibration as it is a digital sensor and is 
ready to operate when it is connected. However, it is necessary to include a 
library in the code (#include "HDC1080.h") and initialize it in the “void setup()” 
function (hdc1080.begin(0x40)). 
 
To calibrate the capacitive soil moisture sensor, it is necessary to measure the 
CubeCell ADC analog signal in two scenarios. The first scenario is where the 
sensor is in a dry environment. To do this, the measurement is taken while the 
sesnor is in the air without anything being in contact with it. The second scenario 
is where the sensor is in a wet environment. For this, an environment where 
humidity is 100%, such as water, was chosen. The sensor was placed in a glass 
of water, protecting the circuit part. The measurements were taken with the help 
of CubeCell. A program that does the analog reading of the ADC 
(analogRead(ADC)) was loaded. The data obtained by the sensors was then 
recorded. For a dry environment the measurement of the sensor was 3250, while 



Final degree project   104 

 

for a wet environment it was 1900. These two values have been saved within the 
ground node code as two const int: AirValue and WaterValue. However, the result 
we want to obtain is the percentage of soil moisture. For that reason, the following 
code was implemented: 
 
 

 
 

Fig. 3.62: Code for reading soil moisture and temperature sensors 

 
As can be seen in the figure 3.62, the first line is for reading the temperature 
sensor. In the second, simply save this information within the content of the Data 
Packet to send. From the fourth line, the procedure to make the reading of the 
capacitive soil moisture sensor is observed. First, the ADC is read as previously 
discussed. Then, the percentage of the measurement is obtained using the 
"map()" function of Arduino, which Re-maps a number from one range to another. 
The data entered are those from AirValue and WaterValue, which were obtained 
in the calibration process. Finally, the measurement is checked to be within the 
range and saved within the content of the Data Packet.   
 

3.3.1.4. Connections between devices 

 
This section details the different limitations encountered, the connections 
between the different devices, and shows the final model of the IoT ground node. 
Initially, the experiment was intended to have a total of 22 independent nodes, 
each located at a different site. However, due to hardware limitations, it has not 
been possible to perform that number of nodes. The variations or limitations in 
the hardware that have been found are the following three: 
 
Firstly, we have IP67 boxes of different sizes, so it will not be possible to make 
all nodes independent. In some nodes, given the size of the IP67 box, the 
equipment has been located in duplicate to optimize space. On the other hand, 
given the limited number of IP67 boxes available, space was only available for 
18 CubeCells. So, the first limitation leaves us with only 18 ground nodes. 
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Second, the greatest limitation and variation is related to how CubeCell data is 
captured. In an initial scenario, CubeCell data would be captured by Raspberry 
Pi using UART communication. From the CubeCell all this information would be 
sent through the TX serial port and in the Raspberry Pi would be captured through 
the RX serial port. An added limitation is that we only had 15 Raspberry Pi with 
different models. To test the different models of Raspberry Pi that we had different 
tasks were done. The first one was to flash all the SDs that we had using the 
Raspberry Pi Imager program by selecting the RASPBERRY PI OS LITE (32-
BIT) operating system. An OS without Graphical User Interface (GUI) was chosen 
in order to optimize the programming process of each Raspberry Pi. The next 
task was to program a code to read the UART of the Raspberry Pi automatically 
when it was switched on. In this way, it would not be necessary to load the code 
manually on all Raspberry Pi every time the port was read. In this process, it was 
important to enable serial communication of the Raspberry Pi to receive the 
messages and determine on which serial port the data was received (ttyAMA0 or 
ttyS0). It was also important to set the baud rate of communication. The third and 
final task was to test the reading of the 15 Raspberry Pi with the CubeCell 
connected.  
 
The results of this process showed that 8 out of the 13 Raspberry Pi were either 
recording corrupted data on the SD card, losing data or not recording at all. In 
some, corrupted data and significant data loss were obtained. Meanwhile, in 
Raspberry Pi model 3 there were large data losses. This was checked by looking 
at the files where the data was stored. The following image shows the case where 
there is corrupt data:   
 

 
 

Fig. 3.63: Corrupt data and data loss of the SD reading 

 
On devices that failed to make a correct reading of the SD, serial ports were 
changed. After making these changes and re-testing, no changes were obtained. 
The rest of the nodes worked correctly, except for the Raspberry Pi model 3 which 
occasionally had large data losses that were not tolerable. Noting that there were 
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only 5 nodes that saved the data correctly, it was decided to change the structure 
of how the CubeCell data was going to be captured. 
 
The change caused the CubeCells data to be read using serial communication 
between the computer and CubeCell. In this way, simply with a USB to micro-
USB cable, the reading could be done through the program "CoolTerm". In this 
program, it is only necessary to configure the baud rate and the COM port. On 
the other hand, if the reading was done from a computer that had Linux, it was 
only necessary to read the port ttyAMA0 or ttyS0 and save the data in a file to be 
able to process it. With these changes, all 15 nodes were made to work correctly. 
 
Third, there is the limitation of battery regulators available. There are only 13 
battery regulators next to the 3.7V LiPo battery. The following image shows both 
elements joined together with kapton:   
 
 

 
 

Fig. 3.64: Battery regulator with the 3,7 V LiPo battery 

 
Therefore, after all the limitations mentioned above, it was only possible to make 
13 nodes. The process of connecting and mounting between the different devices 
and in the different IP67 boxes is detailed below. 
 
Different types of cables and methods have been used to connect the different 
equipment. Firstly, the connection of the LiPo battery with the battery controller 
was made by welding the cables directly as can be seen in the figure 3.64. This 
has been done since the battery regulator adapter was not the same as the 
battery connector. The connection between the battery controller and the 
Raspberry Pi was then made via a USB to micro-USB cable. Subsequently, the 
Raspberry Pi powers the capcaitive soil moisture sensor at 5V, on the other hand, 
it is connected to the ground of the CubeCell to reference the same ground in the 
system. The analog output of the soil moisture sensor is the input of the "ADC 
Dynamic Range Adjustment" implemented in the stripboard. The output of this 
last module ends in the ADC pin of the CubeCell. On the other hand, there is the 
connection of the temperature sensor HDC1080, which is in the stripboard 
integrated to the CubeCell. Finally, the CubeCell is connected to the computer to 
read the data using a USB to micro-USB cable. The figure 3.65 shows the 
connection scheme between the different devices: 
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Fig. 3.65: Connections between different devices. 

 
 

These connections had to be made for the different nodes in different IP67 boxes. 
Some elements within the IP67 boxes were subject with kapton, the CubeCell 
being one of them. The distribution of the elements was also important due to the 
limited space on the individual nodes. In addition, the CubeCell’s USB micro 
harness was positioned in such a way that it was facing upwards so that the 
micro-USB cable could be easily connected. The following image shows on the 
left all the nodes with the different IP67 boxes that we had. An individual node is 
shown at the top right of the image. At the bottom right is an individual node 
closed and with the USB outbound to connect to the computer. 
  

 
 

Fig. 3.66: Assembly process of the different nodes 
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3.3.2. Drone-based miniaturized payload design for LoRa 

communications  

 

This section explains the drone-based miniaturized payload used for the 
experiment. This payload is designed to be easily integrated into the drone used 
for the experiment. For the measurement campaign experiment, the Drone 
Condor, a drone from the company MDrone, is used. Initially, however, the drone 
to be used was the 3D Robotics Iris+ drone, a drone belonging to NanoSat Lab. 
The reasons why the 3D Robotics Iris+ drone was not used for the measurement 
campaign are explained below. Subsequently, the design of the payload used in 
the Drone Condor is explained. 
 
Initially, the 3D Robotics Iris+ drone was the drone to be used for the LoRa 
communication proof-of-concept experiment. Different payload designs were 
realized and tested. All of these designs included space for the GNSS-R 
experiment and the LoRa communications experiment. However, this drone was 
not used for the measurement campaign. The main reason is that this drone is 
not prepared to carry a payload for long periods. It was purchased in 2014 and 
was only designed to carry a small camera. Several tests showed that it was able 
to lift payloads of 800g for a limited time, but the autonomy was reduced. The 
autonomy of the drone considering the camera and supports is 15 minutes [27]. 
When tested with higher loads, the autonomy was reduced to 8-10 minutes, which 
is insufficient time for LoRa communications tests. In addition, in order to reduce 
the weight of the drone, the supports were replaced by hollow steel bars, which 
reduced the overall weight. Finally, it was tested in June during the GNSS-R 
measurement campaign with a payload reaching 650g in weight. After 8 minutes 
of flight, the drone overheated due to the overload and high temperatures. This 
caused the loss of control and the drone fell, damaging the support structure and 
part of the payload. After this experiment, it was decided to hire the services 
offered by MDrone who fly drones for different tests and experiments. By using a 
drone with better characteristics carried by professionals, the safety of the 
equipment is ensured, and more durable tests are guaranteed. The figure 3.67 
shows the 3D Robotics Iris+ drone with the payload designed for previous 
experiments.  
 

 
 

Fig. 3.67: Drone 3D Robotics Iris+ with the payload design 
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On the other hand, the MDrone Condor Drone is a much more powerful and 
versatile drone, capable of carrying up to 5kg. It has an autonomy of 85 minutes 
of flight without load and 25 minutes with a 5 Kg load. The payload designed for 
this experiment includes equipment from two experiments, the GNSS-R 
experiment and the LoRa communications experiment. Given that in a realistic 
case, both equipment must operate simultaneously in RITA, it is appropriate to 
test them together in the same test and check that there is no interference 
between the two experiments. 
 
The necessary equipment to install on the drone is: a DC-DC converter, a 
CubeCell, a Raspberry Pi and a monopole antenna. The DC-DC converter is 
used to power the Raspberry Pi at 5V from the 12V of the drone batteries with an 
XT60 cable. The CubeCell is the module that handles all communications. This 
uses a monopole antenna with better characteristics than those used in the 
ground nodes in order to improve the downlink properties. Finally, the Raspberry 
Pi is used to capture the data from the CubeCell through the serial port as 
explained in the previous section. In this case, a Raspberry Pi Zero was chosen, 
which has smaller dimensions than those used in the ground nodes. Both the DC-
DC converter and the Raspberry Pi Zero are shared elements of the two 
experiments. The DC-DC is shared because without it it would not be possible to 
power the Raspberry Pi. On the other hand, the Raspberry Pi runs two codes 
separately and stores the data in different files on the same SD. The Raspberry 
Pi runs the code for the GNSS-R experiment and another code to capture the 
data through the TX serial port of the CubeCell. Figure 3.68 shows the connection 
diagram of the different devices involved: 
 
 

 
 

Fig. 3.68: Connection diagram of the different devices in the payload design 
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In addition to the devices discussed above, the GNSS-R experiment requires 
other elements. The final design of the payload using 3D printing with the 
equipment already assembled is shown below: 
 
 

 
 

Fig. 3.69: Miniaturized drone-based payload for LoRa communications and 
GNSS-R 
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CHAPTER 4: First Measurement Campaign 

 
The objectives and results of the first measurement campaign are detailed below. 
In this campaign, LoRa communications were tested using two CubeCell 
modules. In addition, the correct operation of the "Capacitive Soil Moisture V1.2" 
sensor was also tested by taking different measurements of the soil moisture.  

 

4.1. First Measurement Campaign  

 
The first measurement campaign was performed on the 26th of May 2022. In this 
first measurement campaign, there were two objectives. First, to check the 
correct functioning of the LoRa communications using two CubeCell modules. 
Secondly, to take measurements of the capacitive soil moisture sensor and 
analyze the results.  
 
The first objective was successfully achieved. A different code was programmed 
into each device for communications between the two devices. The first CubeCell 
was placed inside an IP67 box powered with 5 V through a power bank. In 
addition, the structure of the IP67 box had two holes. One of them was to extract 
the CubeCell antenna and the other one was to extract the humidity sensor in 
order to take measurements. This first CubeCell was programmed as a 
transmitter. Its function was to collect the measurements from the humidity sensor 
and store them inside the package to be sent. It then sent the packet at a rate of 
1 second. In the scenario of this experiment, there is only one transmitter, so 
there is no collision between the packets sent. The second CubeCell was 
connected to the computer. This CubeCell was programmed as a receiver, so 
ideally it received all the packets sent by the transmitter. Afterward, they were 
stored using the CoolTerm program, which reads the COM port at the indicated 
baud rate. The figure 4.1 shows both the receiver and the transmitter of this 
experiment.  
 

 
 

Fig. 4.1: Receiver and transmitter of the first experiment. 
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Second, to achieve the second objective, several measurements were taken with 
the capacitive soil moisture sensor. As can be seen in Figure 4.1, there are 
several wires covered with insulating tape. Under this material is the voltage 
divider to reduce the voltage of the analog output of the moisture sensor to 2,4V. 
In addition, the USB cable coming from the power bank was bifurcated into two, 
in order to power both the CubeCell and the humidity sensor. In this experiment, 
measurements were taken on different terrains to then check if the results were 
consistent. The following section shows the results obtained.  
 
 

4.2. Analysis of the results of the experiment 

 
In this experiment, different soil moisture measurements were taken in different 
soils. Below are some of the data captured in different soils. Each photo on the 
right represents the soil condition of the measurement. As can be seen in Table 
4.1, the different measurements and soil states are shown gradually, from more 
sandy to more clayey. 
 
 
Table 4.1: Soil moisture measurements  
 

Soil moisture measurement Soil conditions 

 
 
As we can see, the soil moisture is 
approximately 31%. This type of soil is 
sandy. 

 

 
 
As we can see, the soil moisture is about 
40%. This type of soil is sandy loam soil. 
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As we can see, the soil moisture is 
approximately 66%. This type of soil is 
loam soil. 

 

 
 

As we can see, the soil moisture is about 
81%. This type of soil is loam - clay soil. 

 

 
 
As we can see, the soil moisture is 
approximately 91%. This type of soil is 
clayey soil.  

 

 
 
Table 4.1 shows the measurements taken in the different soils. As can be seen, 
the measurements are not accurate since they give values of 30% moisture for 
sandy soil and 90% moisture for clay soil. The lack of precision is due to the way 
the sensors are calibrated. This problem can be solved by recalibrating the 
sensors taking into account the different soils and expected soil moisture values. 
However, the measurements provided are consistent and logical since the 
moisture data match the state of the soil. When the soil is arid and sandy, it shows 
low moisture, while when the soil is wet and clayey, it shows high moisture. The 
table 4.2 shows the available moisture values according to soil texture. 
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Table 4.2: Realistic soil moisture values [28] 
 

Soil moisture values 

Soil texture Soil moisture value 

Sandy 9% 

Sandy - Loam 23% 

Loam 34% 

Loam - Clayey 30% 

Clayey 38% 

Clayey with good structure 50% 

 
 
The values in Table 4.2 show the realistic soil moisture values. If the sensors 
have been properly calibrated and the soil moisture has been correctly measured, 
the values given in Table 4.1 should correspond to these values. However, the 
values obtained in the experiment are far from these values, so that it is 
necessary to re-calibrate the sensors in order to be able to make good 
measurements in the second measurement campaign. 
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CHAPTER 5: Second Measurement Campaign 

 
In Chapter 5, the second measurement campaign is explained. In this 
measurement campaign, the LoRa communications proof-of-concept experiment 
was performed with several IoT ground nodes and the miniaturized drone-based 
payload. In order to show the results, several plots have been elaborated showing 
the performance of each of the experiments in function of their properties. To 
extract these graphs, it has been necessary to process the information collected 
from the individual nodes. Since the data collected are separated by ";" and by 
rows, the data processing has been lighter since Excel has been used to separate 
the data and filters have been used to count the types of packets sent or received.  
 
The first section explains how the measurement campaign was managed. This 
first section explains the site chosen for the experiment, the distribution of the 
nodes, the assembly and flight path of the drone, and the specifications of the 
different experiments performed. The second section analyzes the results 
obtained by the sensors. The third section contains all the results obtained from 
the experiments using the pure ALOHA protocol. On the other hand, the fourth 
section collects all the results obtained from the experiments using the CSMA/CA 
protocol. Finally, the fifth section analyzes and compares both experiments. 
 
 

5.1. Second Measurement Campaign Specifications  

 
The second measurement campaign was conducted on August 4th. In this 
second measurement campaign, the LoRa communications proof-of-concept 
experiment was performed with several IoT ground nodes and the miniaturized 
drone-based payload. In this measurement campaign, communications were 
performed using the different protocols implemented: pure ALOHA and 
CSMA/CA. The objective of this campaign is to capture data from the different 
nodes and the drone payload and then process the performance of each of the 
protocols.  
 
Through the commands sent by a CubeCell, the type of experiment to be 
performed is controlled with the different configurable parameters: 
ExperimentTime, TimeNextPacket and T_BEACON. In addition, the values of the 
different protocol parameters are also sent. However, these are not modified at 
any time since they have been previously calculated.  
 
The ExperimentTime determines the duration of the experiment, in most cases 
the experiments do not last more than 10 min. On the other hand, the 
TimeNextPacket determines the waiting time between each new communication 
attempt after receiving the ACK. 
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5.1.1. Location chosen for the experiment 

 
The place chosen to perform the experiment is a field of vineyards far from the 
center of Barcelona. Specifically, it was carried out in Vilafranca del Penedès, 
near the "La Torreta de Castellví". Different permits were requested to fly the 
drone in this field. Firstly, the permissions managed by the company MDrone to 
raise the drone to a certain height. Secondly, the permission to occupy the 
vineyard field of a known farmer. The location where the experiment is conducted 
is important as there are different terrain textures, so the GNSS-R experiment 
could measure variations. As for the LoRa communications experiment, the 
diversity of ground textures is also interesting to take different measurements with 
the moisture sensors. Since it is performed in a vineyard field, there are certain 
regions that are wetter than others. Below is the map where the measurement 
campaign was carried out:  
 

 
 

Fig. 5.1: Map of the scenario where the measurement campaign is performed 

 
 

5.1.2. Specifications of the different experiments performed  

 

In this section, the different experiments performed are specified. The 
measurement campaign was organized to perform different experiments with 
configurable variables. The first variable of the experiment is the determination of 
the type of MAC protocol to be executed. The second variable to be configured 
is the time of the experiment. Given that we have limited time since the LoRa 
experiment is not the only one performed during the measurement campaign, the 
times of the different experiments were less than 10 minutes. Nevertheless, it is 
enough time to collect information and process it. 
 
A total of 6 experiments were performed, which were executed in three rounds. 
In each round, two different experiments were executed using firstly the pure 
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ALOHA protocol and secondly the CSMA/CA protocol. In all experiments, the 
beacon sending periodicity was set to 80 seconds. Since the experiments were 
not going to last more than 10 minutes, it was decided to reduce the 
retransmission time, previously set to 8 minutes. From the experiments 
performed, data were taken from 4 of them to analyze and compare data. The 
specifications of each experiment can be seen in Figure 5.2. 
 

 
 

Fig. 5.2: Different characteristics of the experiments 

 
As can be seen, the "t_to_next_packet" varies between the different experiments. 
In the first ALOHA experiment the t_to_next_packet is 15 ms. This is a minimum 
wait, so the channel gets saturated. In the second ALOHA experiment, the 
t_to_next_packet is 15 seconds, so the channel is not as saturated as in the 
previous case. The same happens with the CSMA/CA experiments. In the first 
experiment, the t_to_next_packet is 15 seconds, while in the second experiment 
it is 1ms.  
 
 

5.1.3. Distribution and location of the ground nodes 

 
As explained in previous sections, the ground nodes were designed to be 
connected to the computer to capture the data from the CubeCell. Since most 
computers only have 3 USB ports, it was necessary to use several USB HUBs 
for the computers brought for the experiment. During the experiment, 5 NanoSat 
Lab teammates helped to manage the position and control of the nodes. They 
were divided into three groups. Group 1, controlled nodes 2, 5, 6, 8, 9, 10, 12, 14 
and 15 during the first experiment. Group 3 controlled nodes 1 and 7 in addition 
to managing the GNSS-R experiment. Finally, group 2 consisted only of myself. 
In my case, I controlled node 4 and controlled the CubeCell which sent the 
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commands to the rest of the nodes and the drone. Figure 5.2 shows how the 
different groups are separated by approximately 80 meters.  
 
For the rest of the experiments, the distribution of nodes by clusters varied. For 
experiment 3, there were two clusters of nodes. The first cluster was formed by 
nodes 2, 4, 9, 10, 12 and 13. The second cluster was only formed by node 6. 
Finally, for experiments 4 and 6, the same node density and the following node 
clusters were used. The first cluster is formed by nodes 1, 8, 9, 14 and 15. The 
second cluster is formed only by node 4.   
 
To initiate communications the command must be sent from an intermediate point 
in order for the command to be received by all nodes and the drone. For this 
reason, it is necessary to be located in an intermediate point between both 
groups.  The departure point of the drone is where group 3 is located because it 
is necessary to configure the Raspberry Pi for the GNSS-R experiment before 
the beginning of the flight.  
 
The figure 5.3 shows where the different groups were located with their respective 
nodes: 
 
 

 
 

Fig. 5.3: Location of the different groups with the respective nodes 

 
 

5.1.4. Assembly of the payload on the drone and flight path 

 
The Drone Condor has an adaptable and flexible system to place different types 
of payloads of different sizes and weights very easily. The lower design of the 
payload includes different holes through which four M3 screws can be anchored. 
Also has lateral anchors through which flanges can be passed to securely fasten 
the payload. The figure 5.4 shows the drone with the payload assembled. 
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Fig. 5.4: Drone Condor with assembled payload. 

 

Below is one of the flight paths of the experimental drone. The flight path was 
controlled by a pilot authorized by MDrone. The drone was flown at an altitude of 
120 m and performed a flight path defined by the GNSS-R experiment. The flight 
path is based on traversing the vineyard field perpendicularly as shown in Figure 
5.5. For the LoRa communications experiment, the path taken by the drone is not 
significant, since the communication with the different nodes is performed in the 
same way regardless of the path taken.  
 

 

Fig. 5.5: Flight path of the experiment 



Final degree project   120 

 

5.2. Sensor data results 

 
This section analyzes the results obtained by the sensors in the multiple 
experiments. To take the measurements of the sensors, the capacitive soil 
moisture sensor needs to be properly connected to the Raspberry Pi to be 
powered and to be able to extract results once it is placed in the soil. On the other 
hand, the temperature sensor obtains results when the CubeCell is powered, so 
this sensor is always operational. In experiments 1 and 2 measurements of the 
capacitive soil moisture sensors were taken, while in the rest of the experiments 
these devices were not nailed in the soil, so the measurements have no value. 
The following graphs show the values obtained from the capacitive humidity 
sensors and temperature sensors in experiment 1. It should be noted that node 
6 in experiment 1 was not located in the same place because group 2 was moving 
during the experiment. That is why node 6 is not taken into account for the 
following plot.  
 

 
 

Fig. 5.7: Sensor data results  

 
 

Figure 5.7 shows the average of the measurements taken by both sensors at the 
different ground nodes. The measurements are the average of the 
measurements and the bracket is the variance between them. The temperature 
sensors show different results between them considering that all the nodes are 
in the same region. However, it should be considered that due to the high 
temperatures on the day of the measurement campaign, some nodes were 
placed under the shade of trees to protect the computers of the different members 
of the team.  It can be observed that the temperature of nodes 12 and 13 are the 
same, this is due to the fact that both sensors are located inside the same IP67 
box. The same occurs when the temperatures of nodes 14 and 15 are analyzed. 
  



Final degree project   121 

Regarding the values of the capacitive soil moisture sensors, it can be seen that 
after the recalibration of the first measurement campaign, they now show more 
coherent results regarding the soil moisture values in table 4.2 of chapter 4. 
 
 

5.3. Results of the pure ALOHA experiment 

 
In this section, the results obtained in the pure ALOHA experiments are 
discussed. The results are then divided into 3 sections. The first section analyzes 
the success rate of the packets sent. Since the channel is saturated, many of the 
sent packets collide. The second section analyzes the packets received during 
waiting time. The third section analyzes the results obtained from successful 
communications. In this last section, different graphs are shown regarding the 
reception of the ACK after sending the Data Packet and the percentage of 
successful communications obtained according to the characteristics of the 
experiment performed. All the graphs of the results correspond to the average of 
all the nodes involved in the specific experiment. More information on the 
particular behavior of each node can be found in Annex A. 
 
Since two pure ALOHA experiments have been performed, both experiments are 
compared with each other and the differences due to the different properties of 
each one are observed. Experiment 1, has a t_to_next_packet of 15 ms, so the 
channel is more saturated than experiment 3, which has a t_to_next_packet of 
15 s. 
 

5.3.1. Analysis of packages transmitted and received 

 
Given that the pure ALOHA protocol is a MAC protocol that accesses the medium 
randomly, it is normal that the higher the density of nodes and the higher the 
transmission rate, the greater the saturation of the channel and the greater the 
packet loss.  Two subsections are shown below where the percentage of packets 
transmitted and received is analyzed. In the first subsection, the percentage of 
data packets received versus data packets sent by the nodes is analyzed. In the 
second subsection, the percentage of ACK received versus ACK sent by the 
drone is analyzed. 
 
 
 
 
Percentage of Data Packet received versus Data Packet sent by the nodes 
 
The figure 5.8 show the results obtained from experiments 1 and 3. The value 
that can be seen in the following graphs is the average of the values of all the 
nodes of the experiment. 
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Fig. 5.8: Pure ALOHA – Average percentage of Data Packets received versus 
Data Packet sent by the nodes (%). 

 
 
As can be seen, in experiment 1 the average is 18.67%. On the other hand, in 
experiment 3 the average is 64.20%. In experiment 1 there is a higher density of 
nodes. In addition, the packet sending rate after receiving the ACK is 1000 times 
lower than in experiment 3. Since the channel is much more saturated, many of 
the transmitted data packets do not reach the drone because they collide with the 
rest of the packets. In experiment 3, since the node waits 15 seconds before 
restarting a communication after receiving the ACK, the medium is much less 
saturated, allowing a larger number of data packets to be received by the drone. 
After receiving the ACK, the node initiates a wait to restart communications. 
During this wait, other nodes are more likely to be able to receive the ACK since 
the node density is lower. In addition, the nodes remain synchronized, since after 
the 15-second wait of the first node to receive the ACK, it is very likely that the 
rest of the nodes are still in their waiting time (t_to_next_packet) before restarting 
communications. Therefore, the longer the wait between the restart of 
communications after receiving the ACK, the greater the synchronization 
between the different nodes and the higher the percentage of data packets 
received by the drone. 
 
 
Percentage of ACK received versus ACK sent by the drone 
 
The figure 5.9 show the results obtained from experiments 1 and 3. The 
information that is observed is generated with the average in percentage of the 
ACKs received by the nodes versus the ACKs sent by the drone.  
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Fig. 5.9: Pure ALOHA – Percentage of ACK received versus ACK sent by the 
drone (%).  

 
 
In this case, the packet sent is the ACK, which is sent by the drone. And the 
above plots show the percentage of ACK packets received by the different nodes 
compared to the total sent by the drone. In experiment 1, the average percentage 
of ACK packets received is 19.32%. On the other hand, in experiment 3 the 
average percentage of ACK packets received is 92.64%.  Because the 
t_to_next_packet is much larger in experiment 3, the channel is much less 
saturated than in experiment 1, allowing a large number of ACK packets to reach 
the indicated node without colliding with other packets. 
 
 

5.3.2. Analysis of packages received during the waiting time 

 
Since the pure ALOHA protocol is a MAC protocol that accesses the medium 
randomly (RA), it is normal that the higher the density of nodes and the higher 
the transmission rate, the higher the saturation of the channel. This section 
analyzes the packets received during the waiting time to receive the ACK. During 
the waiting time, it is likely that other packets will be received instead of the ACK 
or that nothing is received at all. Four cases are possible. The first case is where 
a data packet is received from another node that has initiated communication with 
the drone. The second case is that an erroneous ACK is received which has been 
transmitted to another node.  The third case is that no packet is received during 
the timeout period. Finally, the fourth case is that the correct ACK is received. 
The figure 5.10 show the average percentage of packets received during the 
waiting time to receive the ACK of the nodes experiment 1 and 3.  
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Fig. 5.10:  Pure ALOHA – Percentage of the average packages received during 
the waiting time. 

 
For experiment 1, it can be seen that 58.34% of the packets received are data 
packets from other nodes which have initiated communications at the time when 
the waiting time was performed. On the other hand, in 32.58% of the cases, no 
packet is received by the node. As a result, the waiting time ends without any 
data being received. In 5.46% of the cases, an erroneous ACK is received which 
is destined for another node. Finally, in only 3.62% of cases is the correct ACK 
received.  
 
In experiment 3, the data are much more favorable. In 59.23% of the cases, the 
correct ACK is received, so the percentage of successful communications in 
experiment 3 is much larger due to a lower node density and a longer wait 
between communication initiations after receiving the ACK. The next dominant 
case is the case where no packet is received. Finally, in 7.95% of the cases, an 
erroneous packet is received and in 3.35% of the cases, an erroneous ACK is 
received.   
 
 

5.3.3. Analysis of successful communications  

 
In this section, the results obtained in experiments 1 and 3 are analyzed. In the 
first experiment, it has been observed in the previous results how the channel 
saturation is evident. On the other hand, the channel saturation in experiment 3 
is lower, allowing the different transmitted packets not to collide and reach their 
destination. Next, three subsections are presented where different graphs of the 
experiments are analyzed. The first subsection shows the percentage of ACKs 
received versus Data Packets sent. The second subsection shows the 
percentage of successful communications versus failed communications after 
𝐾max  attempts. In all experiments, the maximum number of retransmissions to 
receive the ACK is 5. Finally, the third subsection shows the percentage of 
attempts needed for successful communications. 
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Percentage of ACK received versus data packets sent 
 
If there were no collisions and all packets arrived before the end of the waiting 
time, all sent data packets would receive an ACK. However, in a scenario where 
there is a certain density of nodes and the channel is saturated, this does not 
occur. The average percentage of ACK packets received versus data packets 
transmitted is shown below. 
 

 

Fig. 5.11: Pure ALOHA – Average percentage of ACK received versus data 
packets sent. 

As can be seen in the previous figures, the percentage of ACK packets received 
versus Data Packets sent is higher in experiment 3. In experiment 1, on average 
only 3.62% of the cases, the ACK is received. On the other hand, in experiment 
3, the ACK is received in 58.91% of the cases. This is due to the reasons 
discussed above. The lower the density of the nodes and the longer the waiting 
time between retransmissions after receiving the ACK (t_to_next_packet), the 
higher the probability that the packet reaches the destination without collision. 
 
 
Percentage of successful communications versus failed communications 
after Kmax attempts 
 
The following subsection shows the results obtained after analyzing the number 
of times where the communication has been declared successful and the number 
of times where the communication is considered a failure. A communication is 
considered successful if the ACK has been received before exceeding the 
maximum number of attempts allowed to receive it. On the other hand, a 
communication is considered a failure when it exceeds this limit. The figure 5.12 
show the results obtained from both experiments. 
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Fig. 5.12: Pure ALOHA – Average percentage of successful communications 
versus failed communications after Kmax attempts 

 
As can be seen, the percentage of successful communications with 5 
retransmission attempts is higher than the values in the previous subsection. In 
the case of experiment 1, in 16.21% of the cases, successful communication is 
achieved. On the other hand, in experiment 3, in 91.42% of the cases, successful 
communication is achieved.  
 
 
Percentage of attempts needed for successful communications 
 
After sending a Data Packet, it waits for a period until the ACK is received. If after 
this time the ACK has not arrived, an attempt to receive the ACK is added and 
the backoff process is performed. After waiting the backoff time, the Data Packet 
is sent again.  In this subsection the number of attempts required to receive the 
ACK is shown as a percentage. The figure 5.13 show the results obtained in both 
experiments.  
 

 

Fig. 5.13: Pure ALOHA – Average percentage of attempts needed for a 
successful communication. 
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As can be seen in the previous figures, the ACK is usually received on the first 
attempt. In experiment 1, in 40.64% of the cases the ACK is received on the first 
attempt. This is due to the fact that after a successful communication the node 
only waits 15 ms to initiate the next communication, so it is very likely that the 
medium is still free and therefore the next transmission is successful. The 
medium is free because most of the nodes are waiting for the backoff time after 
failing to receive the ACK.  However, when the backoff time of the rest of the 
nodes is over, they retransmit the Data Packet and interrupt the node's 
communications. On the other hand, it can be seen that in 26.52% of the cases 
the ACK is received on the fifth attempt. Since the margin of the backoff time is 
larger the higher the number of attempts, the probability that all nodes calculate 
the same backoff time is reduced. Therefore, the probability of successful 
transmission after the backoff is higher.   
 
In the second experiment, the ACK is received on the first attempt in 81.78% of 
the cases. Since the retransmission waiting time after receiving the ACK is 15 
seconds, the nodes are naturally synchronized. When the first node receives the 
ACK, it waits 15 seconds until it restarts communications. The rest of the nodes 
in these seconds manage to communicate with the drone and receive the ACK, 
so they also wait 15 seconds. Once all the nodes have communicated and are 
waiting, the first node retransmits the Data Packet when the rest of the nodes are 
still waiting. For this reason, there is a high percentage of ACK reception on the 
first attempt.  
 
 

5.4. Results of the CSMA/CA experiment 

 
In this section, the results obtained in the experiments using the CSMA/CA 
protocol are analyzed. The results are then divided into 3 sections. The first 
section analyzes the success rate of the packets sent. The second section 
analyzes the packets received during waiting time. The third section analyzes the 
results obtained from successful communications. In this last section, different 
graphs are shown regarding the reception of the ACK after the communication 
process. All the graphs of the results correspond to the average of all the nodes 
involved in the specific experiment. More information on the particular behavior 
of each node can be found in Annex B. 
 
Since two CSMA/CA experiments have been performed, both experiments are 
compared with each other and the differences due to the different properties of 
each one are observed. Experiment 6, has a t_to_next_packet of 1 ms, so the 
channel is more saturated than experiment 4, which has a t_to_next_packet of 
15 s. In this case, both experiments have the same node density.   
 

5.4.1. Analysis of packages transmitted and received 

 
This section shows the graphs obtained by comparing the number of packets sent 
versus the number of packets received. The CSMA/CA protocol initiates 
communications after sensing the medium. If it detects that the medium is free, 
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then it sends the first RTS packet. Subsequently, this packet reaches the drone, 
which replies with a CTS, thus reserving the channel. Since it is possible for 
different nodes to detect the free medium at the same time, most collisions can 
occur in the process of reserving the channel. Once the channel is reserved by 
the CTS, the rest of the communications are based on sending the Data Packet 
from the node and the drone responds with the ACK. Next, four subsections are 
shown where the percentage of transmitted and received packets is analyzed. A 
column referring to the average generated among all the nodes in the experiment 
is also shown. In the first subsection, the percentage of RTS received versus RTS 
sent by the nodes is analyzed. In the second subsection, the percentage of CTS 
received versus CTS sent by the drone is analyzed. In the third subsection, the 
percentage of Data Packet received versus Data Packet sent by the nodes is 
analyzed. In the fourth subsection, we analyze the percentage of ACK received 
versus ACK sent by the drone. 
 
 
Percentage of RTS received versus RTS sent by the nodes  
 
The figure 5.14 show the results obtained from experiments 4 and 6. The values 
that can be seen are the average of the values of all the nodes of the experiment. 
 

 
 

Fig. 5.14: CSMA/CA – Average percentage of RTS received versus RTS sent 
by the nodes 

 
 
As can be seen in the figures above, the average percentage of RTSs received 
in experiment 6 is 45.64%. This may be due to two reasons. The first reason is 
that the RTS packet does not reach the drone before the waiting time expires. 
The second reason is that the sending of the RTS packet collides with other 
packets. This is the most likely case since it is possible that several nodes detect 
the free medium at the same time and transmit the RTS packet. In addition, it 
should be noted that in experiment 6 the waiting time after receiving the ACK 
(t_to_next_packet) is 1 ms, so the channel is saturated at any moment and the 
probability of collision is higher.  
 
In experiment 4, it can be seen how the average percentage of RTS received is 
82.25%. In experiment 4, the waiting time after receiving the ACK 
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(t_to_next_packet) is 15 s, so the channel is much less saturated and the 
probability of collision between packets is lower.  
 
 
 
Percentage of CTS received versus CTS sent by the drone 
 
The figure 5.15 show the results obtained from experiments 4 and 6. The values 
that can be seen are the average of the values of all the nodes of the experiment. 
 

 

Fig. 5.15: CSMA/CA – Average percentage of CTS received versus CTS sent 
by the drone 

 
 
As can be seen in the figures above, the average percentage of CTS received in 
experiment 6 is 80.65%. Once the drone sends the CTS packet, it is likely to 
collide with some RTS packet sent by some other node. In experiment 4, it can 
be observed how the average percentage of CTS received is 97.31%. The 
probability of collision between packets in this experiment is lower because the 
t_to_next_packet is 15 seconds, so the channel is not as saturated as in 
experiment 6. 
 
 
Percentage of Data Packet received versus Data Packet sent by the nodes 
 
The figure 5.16 show the results obtained from experiments 4 and 6. The values 
that can be seen are the average of the values of all the nodes of the experiment. 
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Fig. 5.16: CSMA/CA – Average percentage of Data Packet received versus 
Data Packet sent by the nodes 

 
As can be seen in the figures above, the average percentage of Data Packets 
received in experiment 6 is 94.51%. On the other hand, the average percentage 
of Data Packets received in experiment 4 is 99.31%. It can be seen that very few 
Data Packets are not received by the drone. This is because once the drone 
sends the CTS to the node, the channel is reserved for this node. If the CTS 
packet is received while the nodes are sensing the channel, they must wait for a 
timeout defined by the NAV_CTS. On the other hand, if the CTS is received by 
other nodes after sending the RTS (since they have detected the free channel), 
the backoff process is initiated and the medium is re-sensed. 
 
 
Percentage of ACK received versus ACK sent by the drone 
 
The figure 5.17 show the results obtained from experiments 4 and 6. The values 
that can be seen are the average of the values of all the nodes of the experiment. 
 

 
 

Fig. 5.17: CSMA/CA– Average percentage of ACK received versus ACK sent 
by the drone 

 
 

As can be seen in the figures above, the average percentage of ACKs received 
in experiment 6 is 95.43%. On the other hand, the average percentage of ACKs 
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received in experiment 4 is 97.13%. The other small percentage corresponds to 
packets that did not arrive before the end of the waiting time.  

 
 

5.4.2. Analysis of packages received during waiting times 

 
This section analyzes the packets received during the waiting time. There are a 
total of three waiting times in the communication process using the CSMA/CA 
protocol. The first one takes place when the RTS packet is sent. The node waits 
for a certain time to receive the CTS. The second timeout is performed on the 
drone after sending the CTS. The drone waits for a certain time to receive the 
Data Packet. If after that time it has not received the Data Packet it returns to 
active listening for other RTS packets from other nodes. Finally, the third timeout 
is performed on the nodes after sending the Data Packet. During the first waiting 
time, other RTS packets are likely to be received instead of the correct CTS. 
However, the node ignores these packets and continues waiting to receive the 
CTS during the remaining waiting time. In the second timeout, it is also possible 
that other RTS packets are received instead of the Data Packet, however, the 
drone ignores them and continues to wait to receive the Data Packet for the 
remaining time. In the third timeout, the node waits for a certain amount of time 
to receive the ACK. If after this waiting time the ACK packet has not been 
received, the backoff process is initiated and the average is re-sensed to restart 
the communication process.  
 
The results obtained in both experiments are shown below, divided into 4 
subsections. The first subsection analyzes the percentage of times the CTS was 
received versus the number of times the waiting time expired. The second 
subsection analyzes the percentage of packets received during the CTS waiting 
time. The third subsection analyzes the percentage of times the Data Packet has 
been received versus the times the waiting time has expired. Finally, the fourth 
subsection analyzes the percentage of times the ACK has been received versus 
the number of times the waiting time has expired. 
 
 
Percentage of times the CTS has been received against times the wait time 
has expired 
 
In the figure 5.18, the results obtained from experiments 4 and 6 are shown. The 
values that can be seen are the average of the values of all the nodes of the 
experiment. 
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Fig. 5.18: CSMA/CA – Average percentage of times the CTS has been 
received against times the wait time has expired 

 
 
For experiment 6 it can be observed that in 29.34% of the cases the CTS has 
been received. On the other hand, for experiment 4, in 76.42% of the cases, the 
CTS is successfully received. In the remaining cases, three things may have 
happened. The first one is that the RTS has not arrived correctly to the drone 
since it has collided with an RTS packet from another node. Second, the CTS 
sent by the drone collided with an RTS packet from another node. The third is 
that the waiting time expires, and the CTS does not arrive on time.  Since in 
experiment 4 the waiting time between sending packets after receiving the ACK 
(t_to_next_packet) is longer than in experiment 6, the channel is less congested 
and there are not so many collisions. For this reason, the data from experiment 
4 are more favorable. 
 
 
Percentage of packages received during the waiting time to receive the CTS 
 
This subsection analyzes the types of packets received during the waiting time of 
the different nodes. Five cases are possible. The first case is where an RTS is 
received from another node that has initiated communication with the drone. The 
second case is where an erroneous CTS is received. The third case is when a 
Data Packet sent by another node is received. The fourth case is that an 
erroneous ACK is received which has been transmitted to another node. Finally, 
the fifth case is that no packet is received during the waiting time. 
 
The figure 5.19 show the average percentage of packets received during the 
waiting time period. These graphs do not take into account the CTS packets 
received, so only the cases discussed above are considered.  
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Fig. 5.19: CSMA/CA – Average percentage of packages received during the 
waiting time to receive the CTS 

 
 
In experiment 6, we have previously seen that in only 29.34% of the cases the 
CTS is received before the waiting time expires. In the remaining 70.66% of 
cases, the following packages are received. On average, in 33.83% of the cases, 
an RTS is received from another node. In 33.08% of the cases, no packet is 
received. In 26.26% of cases, an erroneous CTS is received and addressed to 
another node. In 3.11% of the cases, a Data Packet is received from another 
node which is addressed to the drone. Finally, in 3.69% of the cases, an 
erroneous ACK is received that corresponds to another node.  
 
On the other hand, in experiment 4, we have previously seen that in 76.42% of 
the cases the CTS is received before the waiting time expires. In the remaining 
23.58% of the cases, the next packets are received. On average, in 49.64% of 
the cases, no package is received. In 30.89% of the cases, an RTS is received 
from another node. In 10.30% of the cases, an erroneous CTS is received which 
is addressed to another node. In 3.75% of the cases, a Data Packet is received 
from another node which is addressed to the drone. Finally, in 5.42% of the 
cases, an erroneous ACK is received that corresponds to another node.  
 
 
Percentage of times the Data Packet has been received against times the 
wait time has expired 
 
The figure 5.20 show the results obtained from experiments 4 and 6. The values 
that can be seen are the average of the values of all the nodes of the experiment. 
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Fig. 5.20: CSMA/CA – Average percentage of times the Data Packet has been 
received against times the wait time has expired 

 
 

For experiment 6, it can be observed that in 76.32% of the cases the Data Packet 
has been successfully received by the drone. On the other hand, for experiment 
4, in 96.64% of the cases, the Data Packet is successfully received. In the 
remaining cases, two things may have happened. First, the Data Packet did not 
arrive correctly at the drone because it collided with an RTS packet from another 
node. The second, is that the waiting time expired and the Data Packet did not 
reach the drone in time.  Since in experiment 4 the waiting time between sending 
packets after receiving the ACK (t_to_next_packet) is longer than in experiment 
6, the channel is less congested and there are not so many collisions. For this 
reason, the data from experiment 4 are more favorable.  
 
 
Percentage of times the ACK has been received against times the wait time 
has expired 
 
In the figure 5.21, the results obtained from experiments 4 and 6 are shown. The 
values that can be seen are the average of the values of all the nodes of the 
experiment. 
 

 Fig. 5.21: CSMA/CA – Average percentage of times the ACK has been 
received against times the wait time has expired 
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For experiment 6 it can be observed that in 87.41% of the cases the ACK has 
been successfully received by the drone. On the other hand, for experiment 4, in 
96.46% of the cases, the ACK is successfully received. In the rest of the cases, 
the waiting time ends, and the ACK is not received. For these cases, it is most 
likely that the waiting time has expired without any other packet being received. 
However, there is a possibility that some node after sensing the medium before 
this communication started, and after having had a very long DIFS time, sends 
the RTS just at the time when the ACK is sent and then both packets collide.  
Since in experiment 4 the waiting time between sending packets after receiving 
the ACK (t_to_next_packet) is longer than in experiment 6, the channel is less 
congested and there are not so many collisions. For this reason, the data from 
experiment 4 are more favorable compared to experiment 6.     
 
 

5.4.3. Analysis of successful communications  

 
In this section, the results obtained in experiments 6 and 4 are analyzed. In 
experiment 6, it has been observed in the previous results that the channel 
saturation is higher than in experiment 4. In the following, three subsections are 
presented where different plots of the experiments are analyzed. The first 
subsection shows the percentage of ACKs received versus RTSs sent. The 
second subsection shows the percentage of successful communications versus 
failed communications after Kmax attempts. In all experiments, the maximum 
number of retransmissions to receive the ACK is 5. Finally, the third subsection 
shows the percentage of attempts needed for successful communications.  
 
 
Percentage of ACK received versus RTS sent (%Success) 
 
If there were no collisions and all packets arrived before the end of the waiting 
time, all sent RTSs would receive an ACK after the CSMA/CA protocol 
communication process. However, in a scenario where there is a certain density 
of nodes and the channel is saturated, this does not happen. The value that can 
be seen in the following graphs is the average of the values of all the nodes of 
the experiment. 
 

 
 

Fig. 5.22: CSMA/CA – Average percentage of ACK received versus RTS sent. 
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As can be seen in the figure 5.22, the percentage of ACK packets received versus 
RTS sent is higher in experiment 4. In experiment 6, on average, ACK is received 
in only 24.93% of the cases. On the other hand, in experiment 4, the ACK is 
received in 73.24% of the cases. This is because the longer the waiting time 
between retransmissions after receiving the ACK (t_to_next_packet), the higher 
the probability that the packet reaches the destination without collision. 
 
 
Percentage of successful communications versus failed communications 
after Kmax attempts 
 
The following subsection shows the results obtained after analyzing the number 
of times the communication has been declared successful and the number of 
times the communication is considered a failure. A communication is considered 
successful if the ACK has been received before exceeding the maximum number 
of attempts allowed to receive it. On the other hand, a communication is 
considered a failure when it exceeds this limit. The value that can be seen in the 
following graphs is the average of the values of all the nodes of the experiment. 
 

 
 

Fig. 5.23: CSMA/CA – Average percentage of successful communications 
versus failed communications after Kmax attempts 

 
As can be seen, the percentage of successful communications with 5 
retransmission attempts is higher than the values in the previous subsection. This 
is due to the fact that the greater the number of attempts to receive the ACK, the 
greater the probability of successful communication. In the case of experiment 6, 
successful communication is achieved in 77.46% of the cases. On the other hand, 
in experiment 4, successful communication is achieved in 97.10% of the cases. 
 
 
Attempts needed for a successful communication 
 
After sending an RTS, the nodes wait for a certain period to receive the CTS. If 
after that time the CTS has not been received, a reception attempt is added and 
the backoff process is performed. After waiting the backoff time, the 
communication starts again. If, on the other hand, the CTS is received, the node 
sends the Data Packet and starts a waiting time again. If, after this waiting time, 
the ACK packet has not been received, a reception attempt is added and the 
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backoff process is executed. This subsection shows the number of attempts 
required to receive the ACK in percentage. The value that can be seen in the 
following graphs is the average of the values of all the nodes of the experiment. 
 

 

Fig. 5.24: CSMA/CA – Average percentage of attempts needed for a successful 
communication 

 
As can be seen in the previous figures, the ACK is usually received on the first 
attempt in practically all nodes. In experiment 6, in 40.47% of the cases, the ACK 
is received on the first attempt. This is due to the fact that after a successful 
communication the node waits only 1 ms to initiate the next communication, so it 
is very likely that the medium is still free and therefore the next transmission may 
be successful. The medium may be free because most of the nodes are waiting 
for the backoff time after failing to receive the ACK. Or, they are waiting for a time 
determined by the NAV to re-sense the medium and start the communication 
process. However, when the backoff time or the NAV of the rest of the nodes is 
over, they sense the medium to detect whether it is free or not. If several nodes 
sense the medium at the same time, it is likely that several will detect that it is 
free, which may cause collisions when sending the RTS. As can be seen in the 
graphs, in 19.08% of the cases, the ACK is received on the second attempt. In 
13.18% of the cases, the ACK is received on the third attempt.  In 15.71% of 
cases, the ACK is received on the fourth attempt. And finally, in 11.57% of the 
cases, the ACK is received on the fifth attempt.  
 
In the second experiment, the ACK is received on the first attempt in 85.91% of 
the cases. Since the retransmission time after receiving the ACK is 15 seconds, 
the nodes are naturally synchronized. When the first node receives the ACK, it 
waits 15 seconds to restart communications. The rest of the nodes in these 
seconds manage to communicate with the drone and receive the ACK, so they 
also wait 15 seconds. Once all the nodes have communicated and are waiting, it 
is probable that the first node will sense the free medium and send the RTS when 
the rest of the nodes are still in the waiting process. For this reason, there is a 
high percentage of ACK reception on the first attempt. 
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5.5. Analysis and comparison of the performance of both 
experiments 

 
In the following, the performance of both protocols in the different experiments is 
analyzed. In addition, the experiments whose waiting times after receiving the 
ACK are the same are analyzed together. In other words, experiments 1 and 6 
are analyzed and compared first. And second, experiments 3 and 4 are analyzed 
and compared. 
 
Experiment 1 corresponds to the pure ALOHA protocol with a t_to_next_packet 
of 15 ms. Experiment 6 corresponds to the CSMA/CA protocol with a 
t_to_next_packet of 1 ms. Next, a comparison of the results obtained from the 
different experiments is shown and it is analyzed which protocol performs better 
in the case where the channel is saturated. The figure 5.25 shows the percentage 
of average of all the nodes involved in each experiment. Specifically, it shows the 
percentage of ACK received versus Data Packet / RTS sent. In the same graph, 
also shows the percentage of successful communications versus failed 
communications after Kmax attempts. 
 
 

 

Fig.5.25: Comparison of communication success in experiments 1 and 6  

 
 
In both experiments, the channel is saturated because after each successful 
transmission the node transmits again with practically no delay. In the case of the 
pure ALOHA experiment, it can be seen that in only 3.62% of the cases is it 
possible to receive the ACK after sending the Data Packet. On the other hand, in 
the CSMA/CA experiment, in 24.93% of the cases, the ACK is received after 
sending the RTS. If the maximum number of attempts (Kmax) is taken into 
account, the pure ALOHA experiment has a 16.21% probability of successful 
communication. On the other hand, the CSMA/CA experiment has a 77.46% 
chance of successful communication.  
 
In the pure ALOHA protocol, when the channel is saturated, it is very likely that 
the packets sent collide with others. To have a successful communication, it is 
necessary that the Data Packet is correctly received in the drone and that the 
ACK arrives in time to the node without colliding with any other packet. In the 
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case of the CSMA/CA protocol, the nodes must sense the medium before 
transmitting, which means that there are not so many collisions since many of the 
nodes wait for a NAV to initiate communications if they detect that there is a 
communication taking place. However, a collision-free space is not possible. 
Especially in an environment where the channel is saturated.    
 
The comparison between experiment 3 and experiment 4 is shown below. In both 
experiments the channel is much less saturated because the waiting time 
between the start of a new communication after receiving the ACK is a thousand 
times bigger. In this case, the t_to_next_packet is 15 seconds, so a node stops 
accessing the channel during this time after a successful communication.   
 
 

 
 

Fig. 5.26: Comparison of communication success in experiments 3 and 4  

 
 
As can be seen in the previous figure, in the case of the pure ALOHA experiment, 
58.91% of the cases of receiving the ACK after sending the Data Packet can be 
observed. On the other hand, in the CSMA/CA experiment, in 73.24% of the 
cases it is possible to receive the ACK after sending the RTS. If the maximum 
number of attempts (Kmax) is taken into account, the pure ALOHA experiment 
has a 91.42% probability of successful communication. On the other hand, the 
CSMA/CA experiment has a 97.1% probability of having a successful 
communication. In this case, the probability of successful communication is much 
higher.  
 
Since the retransmission waiting time after receiving the ACK is 15 seconds, the 
nodes are naturally synchronized. When the first node receives the ACK, it waits 
15 seconds until it restarts communications. The rest of the nodes in this time are 
more likely to communicate with the drone and receive the ACK since the node 
density is lower. Once they receive the ACK, they wait 15 seconds, reducing 
again the density of nodes. Once all the nodes have communicated and are in 
the waiting time to restart communications, the first node that started the wait 
retransmits the Data Packet with a high probability of having a free channel. For 
this reason, there is a high percentage of reception of the ACK when sending the 
Data Packet or RTS. For CSMA/CA, there is the added complexity that the nodes 
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sense the medium before transmitting, so the probability of collision is drastically 
reduced. Finally, if we consider the successful communications after 5 attempts, 
it can be seen how both protocols have an excellent performance, highlighting 
the 97.1% provided by the CSMA/CA protocol with a waiting time between 
retransmissions of 15 seconds. 
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CHAPTER 6: Conclusions and future development 

 

In this project, the LoRa communications experiment proof-of-concept has been 
performed using several ground IoT nodes and a miniaturized drone-based 
payload. The communications have been performed using two MAC protocols 
that are compatible with an IoT scenario: pure ALOHA and CSMA/CA with 
RTS/CTS. In both protocols, the useful information to be sent is the data 
contained in the Data Packet. In this packet, the data obtained by the capacitive 
soil moisture sensor and the temperature sensor are stored.  
 
Chapter 1 provides an introduction to the aims and objectives of the project. 
Chapter 2 (SoA) determines the technology used in this experiment. This chapter 
defines the MAC protocols to be used and corroborates why LoRa technology 
has better properties than other LPWAN technologies. Chapter 3 explains the 
methodology applied to develop the experiment, both in the software and 
hardware parts. In chapter 4, the results obtained in the first measurement 
campaign in which data were taken from the capacitive soil moisture sensor are 
analyzed. Finally, Chapter 5 explains how the second measurement campaign 
was performed and details the results obtained. 
 
In this project, all the objectives mentioned in section 1.2 have been achieved 
despite all the inconveniences and setbacks. It should be noted that initially this 
project was only designed to perform the ground nodes design and software 
implementation and test it with the RITA LoRa module. However, since the RITA 
LoRa module was not prepared for the campaign, the gateway code of both 
protocols had to be implemented in the structure designed for the drone. To 
accomplish all these objectives has been necessary to implement the pure 
ALOHA protocol and the CSMA/CA protocol together in the same code controlled 
by a command in the CubeCell transceiver of the IoT devices and the drone. In 
addition, it has been necessary to design the COTS structure of the ground nodes 
and the payload of the drone. Finally, both the software implementation and the 
hardware design have been tested in a measurement campaign where data have 
been stored and subsequently analyzed in order to determine which protocol 
obtains the best performance according to its characteristics. In the following 
paragraphs, some conclusions obtained after this study and possible 
improvements for the future development of the work are presented. 
 
The first conclusion obtained after the measurement campaign is that both the 
LoRa communications experiment and the GNSS-R experiment can be executed 
simultaneously in the same payload with shared equipment without interference 
or problems. 
 
In an IoT environment, it is required that all devices used should be low-power, 
including sensors. The following is an analysis of whether the sensors used in 
the campaign fulfill these objectives. The HDC1080 temperature sensor has a 
power consumption of 1.3µA during measurements, while in the sleeping mode 
it has a minimum power consumption of 100 nA. On the other hand, the capacitive 
soil moisture v1.2. sensor has a power consumption in measurements of 5 mA 
and has no sleeping mode state. Since the ground nodes are designed to be low-
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power IoT devices, the soil moisture sensor is not compliant with the low-power 
requirements, which is why in future implementations this sensor should be 
replaced by a low-power digital sensor. On the other hand, the temperature 
sensor meets the requirements of low power consumption for IoT nodes, 
therefore it is concluded that the temperature sensor HDC1080 is suitable for this 
type of scenario.   
 
In chapter 5 the different data obtained in the experiments performed using the 
pure ALOHA and CSMA/CA protocols have been analyzed. A total of two 
experiments have been performed for each protocol. The first one with a short 
time between packet transmissions after receiving the ACK (t_to_next_packet) 
and the second one where the t_to_next_packet is three orders of magnitude 
bigger.  
 
In conclusion, it has been observed that with a small t_to_next_packet (between 
1 ms and 15 ms in the experiments) the channel is highly saturated, which causes 
a high probability of collision between packets. On the other hand, when the 
t_to_next_packet is larger (15 seconds), the channel is not so saturated, and the 
probability of collision is reduced. In these cases, the nodes are naturally 
synchronized. This is because once a node receives the ACK, it initiates a wait 
determined by the t_to_next_packet, ceasing to occupy the channel and thus 
reducing the density of nodes trying to communicate with the drone. The rest of 
the nodes are more likely to receive the ACK, and as they receive the ACK, they 
also start the waiting time leaving the channel free for the next node to 
communicate with the drone. Therefore, it is concluded that the higher the 
t_to_next_packet and the lower the density of nodes in the scenario, the lower 
the percentage of collisions between packets and the higher the percentage of 
successful communications. In addition, if the possible Kmax attempts are 
considered, the percentage of successful communications increases.  
 
By comparing the results obtained by each protocol, it can be concluded that for 
any type of scenario, the best performance is offered by the CMSA/CA protocol. 
In a scenario where the channel is saturated, the performance of the CSMA/CA 
protocol outperforms that of the pure ALOHA protocol. On the other hand, in a 
scenario where the channel is not highly saturated, the percentages of successful 
communications are similar, but it is still preferable to use the CSMA/CA protocol 
for communications. 
 
As a future development in this project, it would be convenient to make the IoT 
ground nodes independent and achieve remote telemetry recording without the 
nodes being connected to the computer. In addition, a future proof-of-concept 
should be performed where the IoT ground nodes are tested in a more realistic 
case. In this experiment, the nodes should be placed more widely spaced and 
with different densities using other types of low-power sensors for IoT 
environments.  
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CHAPTER 8: Appendices  

 

8.1. Work plan  

8.1.1. Work packages  

 
This work is divided into different work packages that have been performed over 
the last months. A summary of the work done in these work packages is 
presented below, followed by a Gannt diagram showing the time consumed in 
each of the work packages. 
 
▪ WP1: Research. In this first work package research on the technologies to 

be applied in the project and the objectives to be achieved is performed.  
 

▪ WP2: design of the payload of the 3D IRIS+ drone.  

 
▪ WP3: Modifications and calibrations of the sensors. In this work package the 

hardware for the first measurement campaign is unified and the IP67 box for 
the experiment is assembled.  

 
▪ WP4: Code implementation for the first measurement and test campaign 

and tests.  

 
▪ WP5: First measurement campaign and analysis of the results.  

 
▪ WP6: Implementation of the pure ALOHA protocol. 

 
▪ WP7: Implementation of the CSMA/CA protocol. 

 
▪ WP8: Design and assembly of the ground nodes. 

 
▪ WP9: Implementation of the command code to control the experiments to be 

performed.  

 
▪ WP10: Testing with the nodes and the drone payload.  

 
▪ WP11: Second measurement campaign. 

 
▪ WP12: Analysis of the results. In this work package the results obtained in 

both experiments are processed, analyzed and graphed. 

  
▪ WP13: Documentation. Write the different sections of this work. 
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8.1.2. Gantt diagram  
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8.2. Annex A 

 
This appendix shows particular information about the behavior of the nodes in 
experiment 1 and 3 using the pure ALOHA protocol. 
 
 

8.2.1. Analysis of packages transmitted and received 

 
 
 

 
 

Fig. 8.1: Experiment 1 – pure ALOHA – 15 ms: Percentage of Data Packets 
received versus Data Packet sent by the nodes (%). 

 
 
 

 
 

Fig. 8.2: Experiment 3 – pure ALOHA – 15 s: Percentage of Data Packets 
received versus Data Packet sent by the nodes (%). 
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Fig. 8.3: Experiment 1 – pure ALOHA – 15 ms: Percentage of ACK received 

versus ACK sent by the drone (%). 
 
 

 
Fig. 8.4: Experiment 3 – pure ALOHA – 15 s: Percentage of ACK received 

versus ACK sent by the drone (%). 
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8.2.2. Analysis of packages received during the waiting time 

. 
 

 
 

Fig. 8.5: Experiment 1 – pure ALOHA – 15 ms: Percentage of packages 
received during the waiting time. 

 
 
 

 
 
Fig. 8.6: Experiment 3 – pure ALOHA – 15 s: Percentage of packages received 

during the waiting time. 
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8.2.3. Analysis of successful communications  

 
 

 
 

Fig. 8.7: Experiment 1 – pure ALOHA – 15 ms: Percentage of ACK received 
versus data packets sent. 

 
 
 

 
 

Fig. 8.8: Experiment 3 – pure ALOHA – 15 s: Percentage of ACK received 
versus data packets sent. 
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Fig. 8.9:  Experiment 1 – pure ALOHA – 15 ms: Percentage of successful 
communications versus failed communications after Kmax attempts 

 
 

 
 

Fig. 8.10: Experiment 3 – pure ALOHA – 15 s: Percentage of successful 
communications versus failed communications after Kmax attempts 
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Fig. 8.11: Experiment 1 – pure ALOHA – 15 ms: Percentage of attempts 
needed for a successful communication. 

 
 
 

 
 
Fig. 8.12: Experiment 3 – pure ALOHA – 15 s: Percentage of attempts needed 

for a successful communication. 
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8.3. Annex B 

 
This appendix shows particular information about the behavior of the nodes in 
experiment 4 and 6 using the CSMA/CA protocol. 

8.3.1. Analysis of packages transmitted and received 

 
 

 
 

Fig. 8.13:  Experiment 6 – CSMA/CA – 1 ms – Percentage of RTS received 
versus RTS sent by the nodes 

 
 

 
 

Fig. 8.14: Experiment 4 – CSMA/CA – 15 s – Percentage of RTS received 
versus RTS sent by the nodes 
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Fig. 8.15: Experiment 6 – CSMA/CA – 1 ms – Percentage of CTS received 
versus CTS sent by the drone 

 
 

 

 
 

Fig. 8.16: Experiment 4 – CSMA/CA – 15 s – Percentage of CTS received 
versus CTS sent by the drone 
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Fig. 8.17: Experiment 6 – CSMA/CA – 1 ms – Percentage of Data Packet 
received versus Data Packet sent by the nodes 

 
 

 

 
 

Fig. 8.18: Experiment 4 – CSMA/CA – 15 s – Percentage of Data Packet 
received versus Data Packet sent by the nodes 
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Fig. 8.19: Experiment 6 – CSMA/CA – 1 ms – Percentage of ACK received 
versus ACK sent by the drone 

 
 

 
 

Fig. 8.20: Experiment 4 – CSMA/CA – 15 s – Percentage of ACK received 
versus ACK sent by the drone 
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8.3.2. Analysis of packages received during waiting times 

 
 

 
 
Fig. 8.21: Experiment 6 – CSMA/CA – 1 ms – Percentage of packages received 

during the waiting time to receive the CTS 
 
 
 
 

 
 
Fig. 8.22: Experiment 4 – CSMA/CA – 15 s – Percentage of packages received 

during the waiting time to receive the CTS 
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8.3.3. Analysis of successful communications  

 
 
 

 
 

Fig. 8.23: Experiment 6 – CSMA/CA – 1 ms: Percentage of ACK received 
versus RTS sent. 

 
 

 

 
 

Fig. 8.24: Experiment 4 – pure ALOHA – 15 s: Percentage of ACK received 
versus RTS sent. 

 
 



Final degree project   160 

 

 
 

Fig. 8.25: Experiment 6 – CSMA/CA – 1 ms: Percentage of successful 
communications versus failed communications after Kmax attempts 

 
 

 
 

Fig. 8.26: Experiment 4 – CSMA/CA – 15 s: Percentage of successful 
communications versus failed communications after Kmax attempts 

 
 
 
 



Final degree project   161 

 

 
Fig. 8.27: Experiment 6 – CSMA/CA – 1 ms: Percentage of attempts needed for 

a successful communication 
 

 

 
Fig. 8.28:  Experiment 4 – CSMA/CA – 15 s: Percentage of attempts needed for 

a successful communication 
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8.4. Code 

 
The code is uploaded on GitHub. In GitHub you can find 4 files (.ino). 
ALOHA_COM.ino and CSMA_CA_COM.ino are the commands used to initialize 
the experiments with pure ALOHA and CSMA/CA in addition to sending the 
characteristics of each one. CODE_Of_THE_DRONE.ino is the code 
implemented in the CubeCell of the drone. And Ground_Code_Node_1.ino is the 
code implemented in the different nodes of the experiment. Each node is loaded 
with the same code only varying certain attributes of the node, such as the 
identifier and the position. 
 
 

https://github.com/diegoth99/TFG_CODE.git 
 


