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ABSTRACT

This article explores U-Statistics as a tool for testing conditional
correlation between two multivariate sources with respect to a
potential confounder. The proposed approach is effectively an
instance of weighted U-Statistics and does not impose any statisti-
cal model on the processed data, in contrast to other well-known
techniques that assume Gaussianity. By avoiding determinants
and inverses, the method presented displays promising robust-
ness in small-sample regimes. Its performance is evaluated nu-
merically through its MSE and ROC curves.

Index Terms— Conditional Correlation, U-Statistics, Order
Statistics, Data-Driven Signal Processing, Small Sample Regime

1. INTRODUCTION

Statistical graphical models are a fundamental tool in studying the
structure of interrelationships among sets of variables using graphs.
Over the past years, they have found application in a variety of
fields of science and technology, such as sensor networks [1], cyber-
security [2] or image processing [3]. Gaussian Graphical Models
(GGMs) are of particular interest due to several desirable properties,
the most outstanding one being that studying statistical dependence
within them is equivalent to studying correlation [4].

As data acquisition techniques improve, the amount of informa-
tion to be processed grows dramatically. The super-linear rise in
computational complexity of many classical estimation methods can
render them intractable for demanding applications. The prevalence
of high dimensional signals also presents more fundamental chal-
lenges: in practice, data dimensionality increases much faster than
the number of available observations, which is often referred to as
the curse of dimensionality [5]. It violates many statistical assump-
tions of classical methods, making them perform poorly under such
circumstances.

Especially sensitive to high-dimensional data with small sample
sizes [6] is the estimation of precision matrices, i.e. inverse covari-
ance matrices. This problem is very relevant in GGMs, since zero
components in their precision matrices imply conditional indepen-
dence between variables. Many approaches to solving it have been
proposed over the years, one of the most remarkable ones being the
imposition of an ℓ1-norm constraint, known as graphical LASSO [7].

In this paper we deal with a closely related problem: detect-
ing conditional uncorrelatedness between multivariate sources. We
base our test on the well-known RV coefficient [8] computed from
the covariance matrices of the variables conditioned to a potential
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confounder. Classical techniques, which rely on assuming Gaussian
data, estimate these matrices by taking the Schur complement of the
confounder covariance matrix [9], making them model-driven and
vulnerable to limited sample sizes. Instead, we depart from such ap-
proaches and develop a method based on weighted unbiased statis-
tics (U-Statistics) [10]. By letting the statistics of the confounder
dictate the samples to be processed, our approach becomes more
data-driven and agnostic to underlying statistical models. Further-
more, it avoids matrix inversions and effectively bypasses the curse
of dimensionality. Finally, we subject our method to various numer-
ical simulations, to test whether it displays favorable performance
and robustness as a test for conditional correlation.

2. PROBLEM STATEMENT

Consider a set of three sources X ∈ RNx , Y ∈ RNy and Z ∈
RNz . L i.i.d. samples are available from each one of them, de-
noted and grouped as X ≜ [x1, . . .xL], Y ≜ [y1, . . .yL] and
Z ≜ [z1, . . . zL], respectively. We define the statistical mean and
covariance of any given random vectors U and V as µU ≜ E [ul],
µV ≜ E [vl] and CUV ≜ E

[
ulv

T
l

]
− µUµ

T
V .

The problem studied in this article is the detection of correlation
between X and Y conditioned to Z, the potential confounder. Its
related binary hypothesis test can be defined as:

H0 : CXY |Z = 0

H1 : CXY |Z ̸= 0, (1)

where CXY |Z is the average conditional cross-covariance matrix
[11] between sources X and Y with respect to Z, computed as

CXY |Z ≜ EZ

[
CX,Y |Z=z

]
=

∫
RNz

CXY |Z=zdFZ(z). (2)

CXY |Z=z is the conditional covariance matrix between X and Y for
any value z of Z, and FZ(z) is its cumulative distribution function.

In this work we have only considered two variables and a single
confounder for space limitations and ease of notation. However, the
derivations and results obtained are directly valid for any amount of
variables and confounders with arbitrary dimensions.

3. TESTS FOR CORRELATION

Before dealing with (1), consider the same binary hypothesis test
without conditioning on Z. The Generalized Likelihood-Ratio Test
(GLRT) related to it is stated as follows:

maxCWW f(W|CWW )

maxCXX f(X|CXX)maxCY Y f(Y|CY Y )

H1

≷
H0

λ, (3)
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where W ≜ [XT Y T ]T . Assuming jointly Gaussian sources, the
solution to (3) results in the Hadamard Ratio Test (HRT) [12]:

THAD(X,Y) ≜
det[ĈWW ]

det[ĈXX ] det[ĈY Y ]
∈ [0, 1]. (4)

Values close to 1 indicate uncorrelatedness between X and Y . For
two generic sources U and V , µ̂U , µ̂V and ĈUV denote the sample
means and covariance, computed as

µ̂U ≜ 1
L

∑L
l=1ul , µ̂V ≜ 1

L

∑L
l=1vl

ĈUV ≜ 1
L−1

∑L
l=1(ul − µ̂U )(vl − µ̂V )T . (5)

Obtaining the determinants required for THAD may become compu-
tationally problematic for high-dimensional variables and/or small
sample sizes, not only for their complexity but also because of the
potentially large condition number of the matrices involved.

Using various properties of structured matrices, (4) can be
rewritten as THAD(X,Y) = det[INx − ĈĈT ], where Ĉ ≜
Ĉ

−1/2
XX ĈXY Ĉ

−1/2
Y Y is usually referred to as sample coherence ma-

trix [13] between X and Y . Taking the 1st order Taylor approxima-
tion of minus the natural log of this new expression provides a sim-
plified test for the small correlation regime: TFRO(X,Y) ≜ ∥Ĉ∥2F ,
which accepts uncorrelatedness for values close to 0. It can be
shown [13] that TFRO is the locally most powerful invariant test
(LMPIT) for correlation between Gaussian vectors. While it avoids
the computation of determinants, it still requires the inversion of ma-
trices for the sample coherence, which is computationally non-ideal.

The RV coefficient is an alternative test for correlation values
close to 0 which generalizes the squared Pearson coefficient for uni-
variate random variables. It is defined as

TRV(X,Y) ≜
∥ĈXY ∥2F

∥ĈXX∥F ∥ĈY Y ∥F
. (6)

Although it is an ad hoc measure of correlation, it exhibits desirable
properties for the purposes of this paper, such as keeping the scale
invariance of THAD and TFRO without the need of computing neither
determinants nor inverses. This advantage over the other tests allows
its usage in challenging high-dimensional/sample-limited settings.

Considering now the conditional case, let Z be the potential
confounder of the correlation between X and Y . The problem of
detecting this conditional uncorrelatedness can be cast as accepting
H0 for small values of TRV computed with the corresponding condi-
tional versions of the sample covariance matrices: ĈXY |Z , ĈXX|Z

and ĈY Y |Z . The cross-covariance matrix between jointly normally
distributed U and V conditioned to Z is obtained from the Schur
complement of the confounder covariance matrix [9]:

ĈUV |Z ≜ ĈUV − ĈUZĈ
−1
ZZĈZV . (7)

Once again, a matrix inversion is needed, bringing back the same
issues present with THAD and TFRO. In the following sections we
present an alternative method of computing the conditional version
of TRV. Aside from avoiding matrix inversions, it abides by the def-
inition of conditional covariance without assuming jointly Gaussian
variables, making it agnostic to any statistical properties of data.

4. U-STATISTICS TEST FOR CONDITIONAL
CORRELATION

In this section, we present a novel test for conditional correlation.
We introduce well-known ideas about U-Statistics [10] in Section
4.1, and build our contributions upon them in Sections 4.2 and 4.3.

4.1. Covariance estimation using U-Statistics

The covariance matrix between U and V admits an unbiased estima-
tion based on the pairwise differences between samples [14]:

ĈUV = 2
L(L−1)

∑L−1
i=1

∑L
j=i+1ůi,j v̊

T
i,j , (8)

where the normalized sample differences are defined as

ůi,j ≜ (ui − uj)/
√
2 , v̊i,j ≜ (vi − vj)/

√
2. (9)

Notice the estimation with U-Statistics is based on the differences
between i.i.d. pairs of data from U and V for which the sample mean
is not required, unlike in (5). The structure of the double sum in (8)
is an unbiased estimate of CUV ≡ E[̊ul,l′ v̊

T
l,l′ ] by using L(L −

1)/2 instances of ů and v̊, the number of distinct pairs of u and v
samples. This implies that only ⌊L/2⌋ of them are independent (see
Figure 1), allowing to work with an incomplete version of (8):

Ĉ′
UV = 1

⌊L/2⌋
∑⌊L/2⌋

i=1 ůi,i+⌊L/2⌋v̊
T
i,i+⌊L/2⌋. (10)

This expression is simply the mean of i.i.d. terms, so its accuracy be-
comes comparable to that of a standard sample covariance obtained
from half of the available data [15]. The number of unused pairs in
(10) with respect to the complete U-Statistics (8) is

∆L = L(L−1)
2

−
⌊
L
2

⌋
, (11)

which increases with O(L2). Therefore, the higher L is, the higher
the amount of pairs that can be omitted in the computation of the
incomplete U-Statistics, for some specified degradation in estimation
accuracy of Ĉ′

UV . This detail points at a wide operation margin
for discarding redundant data pairs: the amount relevant for the U-
Statistics can grow with O(L) instead of O(L2) with a penalty of
3dB in accuracy, at most. Similar observations can be found in [15].

Fig. 1: Independent pairwise sample selection for L = 6.

4.2. Weighted U-Statistics for conditional uncorrelatedness

In a similar fashion as in (9), let z̊i,j ≜ (zi−zj)/
√
2 be the normal-

ized pairwise differences of data samples of the potential confounder
Z. Instead of working with variables U , V and Z, consider the fol-
lowing virtual random variables:

Ů ≜ U1−U2√
2

, V̊ ≜ V1−V2√
2

, Z̊ ≜ Z1−Z2√
2

, (12)

where Um, Vm and Zm are random variables with the same statis-
tical properties as U , V and Z, respectively, and independent for
different m = 1, 2. ůi,j , v̊i,j and z̊i,j are then realizations of those
virtual variables. Given that CUV ≡ CŮV̊ , let us recall the defini-
tion of the conditional covariance matrix (2). Notice that integrating
over all values of Z is equivalent to doing so over the cases in which
Z̊ = 0 (i.e. Z1 = Z2):

CUV |Z =

∫
RNz

CŮV̊ |Z=zdFZ(z)

=

∫∫
RNz×Nz

CŮV̊ |Z̊(Z1,Z2)=0dFZ1,Z2(z1, z2). (13)



The term inside the integral does not depend on the specific values of
z1 and z2 but rather on them being equal, so it can be taken outside:

CUV |Z = CŮV̊ |Z̊=0

∫∫
RNz×Nz

dFZ1,Z2(z1, z2) = CŮV̊ |Z̊=0, (14)

knowing that
∫∫

dFZ1,Z2(z1, z2) = 1. This result implies that
conditioning the covariance matrix with respect to a potential con-
founder Z is equivalent to using only the set of data pairs such that
Z̊ = 0. Since this is an event of zero probability for continuous
random variables, we relax this criterion by employing the pairs for
which ∥Z̊∥ < ϵ, being ϵ > 0 a design parameter.

Following these ideas, the proposed estimator of the conditional
covariance matrix is derived from (8), by only considering pairs of
ul and vl for which their corresponding pairs of zl fulfill the pre-
sented criterion. It can be calculated with the next expression:

C̆UV |Z ≜

∑L−1
i=1

∑L
j=i+1 ůi,j v̊

T
i,jIϵ(∥zi − zj∥)∑L−1

i=1

∑L
j=i+1 Iϵ(∥zi − zj∥)

, (15)

where Iϵ(λ) is an indicator function that takes the value of 1 when
0 ≤ λ ≤ ϵ and of 0 otherwise. With C̆XY |Z , C̆XX|Z and C̆Y Y |Z
computed as in (15), we can finally obtain an estimate of TRV:

T̆RV(X,Y|Z) =
∥C̆XY |Z∥2F

∥C̆XX|Z∥F ∥C̆Y Y |Z∥F
. (16)

Its computation is free from determinants and inverses, thus fulfilling
the numerical stability, robustness and complexity requirements set
for this paper.

4.3. Order Statistics and efficient computation

While the previous test for conditional correlation displays many de-
sirable properties in algorithmic terms, there is room for improve-
ment. One issue that might arise while configuring it is calibrat-
ing the indicator function threshold. Depending on the data being
processed, the performance of the detector can be very sensitive to
maladjustments of this parameter.

Motivated by the 3dB margin referred to in Section 4.1, we pro-
pose an alternative threshold based on the available data themselves.
In particular, the amount of data pairs considered in (15) can be set
to a fraction of the total number of pairs depending on L:

Lp ≜
∑L−1

i=1

∑L
j=i+1Iϵ(∥zi − zj∥) = ⌈Lα⌉, (17)

such that α ∈ [ 1
L
, L−1

2
] is the hyper-parameter controlling this pro-

portion. It can be finely-tuned to only select an amount of data pairs
linearly proportional to L, thus obtaining the desired trade-off be-
tween estimation bias and variance.

Notice that, for a given α, only the data pairs corresponding to
the Lp smallest norms of z̊i,j will contribute to the computation of
(15). For that reason, it would be very convenient to sort all the
values of ∥̊zi,j∥ in ascending order in a vector of size L(L − 1)/2,
called z̊sort. Let q(l) → (i(l), j(l)) be a function that returns the pair
of indices of z samples that correspond to each entry l of z̊sort. With
this order knowledge, the estimator in (15) can be reduced to:

C̆UV |Z = 1
2Lp

∑Lp

l=1(ui(l) − uj(l))(vi(l) − vj(l))
T . (18)

Using Quicksort [16], the procedure of sorting the confounder sam-
ple pairs adds an extra O(Lp logLp) operations to the computation
of (18), in comparison to (15).

To obtain (16) with the sorted pairs in a more efficient man-
ner, the cyclic property of the trace operator (Tr[·]) can be exploited.
By defining Ů ≜

[[
ui(1) − uj(1)

]
, . . . ,

[
ui(Lp) − uj(Lp)

]]
and its

associated Gram matrix KU ≜ ŮT Ů, the conditional correlation
detector can be rewritten as

T̆RV(X,Y|Z) = Tr[X̊T X̊Y̊T Y̊]√
Tr[X̊T X̊X̊T X̊] Tr[Y̊T Y̊Y̊T Y̊]

(19)

=
∥KXKY∥2F√
∥K2

X∥2F ∥K2
Y∥2F

. (20)

This result is reminiscent of other expressions common in Kernel
Signal Processing [17].

5. NUMERICAL RESULTS

In the final section of this paper, we display some numerical simula-
tions to highlight the strengths of our proposed Weighted U-Statistics
Method (WUSM). We analyze its performance against the Schur
Complement Method (SCM) within two different frameworks: as
an estimator of the conditional TRV and as a detector of conditional
correlation itself.

We deal with two zero-mean data models: one with jointly Gaus-
sian variables and the other in which they are distributed as a Gaus-
sian Copula [18]. They are different enough as to provide a general
sense of the behaviour of our method in arbitrary scenarios. Addi-
tionally, they can be fully characterized from second order moments,
allowing to generate data that matches a specific covariance matrix.

The tests have been configured as follows. Variables X and Y
are scalars (Nx = Ny = 1), while confounder Z can be: one-
dimensional (Nz = 1), to depict the main properties of WUSM
in a controlled environment, low-dimensional (Nz = 3) and high-
dimensional (Nz = 100). In terms of data availability, we have
considered two scenarios: a sample-limited (L = 50) and a regular
one (L = 5000). The former is of special interest when dealing with
the high-dimensional confounder, as expound in Section 1. M =
500 tests have been averaged to obtain the results showcased below.

5.1. Estimation

The metric of choice to assess the estimation capabilities of WUSM
is the Mean Squared Error (MSE) of T̆RV, defined as MSE(T̆RV) ≜
var(T̆RV) + bias2(T̆RV). We consider data with a covariance ma-
trix for which X and Y are uncorrelated once conditioned to Z
(CXY |Z ≈ 0 and TRV(X,Y |Z) ≈ 0) and they all three have unit
power dimension-wise. This matrix has been carefully selected so
that X and Y are noticeably correlated (TRV(X,Y ) ≥ 0.2) when
unconditioned, in order to observe clear trends in the MSE curve,
i.e. whether our method is estimating TRV(X,Y |Z) or TRV(X,Y ).
Figure 2 contains such curves for various Lp values and confounder
dimensions in four different settings, as well as the MSE values ob-
tained with SCM and a 3dB margin above them.

In the small sample regime (Figures 2a and 2b), there are not
noticeable differences between data models. In the Gaussian case,
SCM reaches the optimal MSE for Nz = 1 and Nz = 3. Our
technique does not reach such a value but presents an operation band
of a certain width less than 3dB over the SCM MSE. Notice that, for
Nz = 100, while WUSM displays a similar behaviour as in the other
two cases, the MSE of SCM reaches very high values (outside of the
plot range) due to numerical problems caused by the inversion of
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Fig. 2: MSE curves of WUSM for various values of Lp against the MSE of SCM.

ill-conditioned sample covariance matrices. Robustness against this
situation is one of the main strengths of our method.

In the regular sample size regime (Figures 2c and 2d), there is
a noticeable increase in the span of the operation bands, roughly
proportional to O(L2). Their floors become wider, making the left
side of the bands approach the L pairs threshold. They now include a
larger range of Lp configurations that result in similar performance.
This trend has been conjectured in Section 4.1 due to the redundancy
present in the construction of sample data pairs. In contrast to the
sample-limited regime, there is now a clear distinction between the
two data models. SCM is based on the premise of Gaussian data,
which is not fulfilled by the Copula model. In that case, its MSE is
no longer the optimal one, while WUSM can reach lower values for
a wide set of Lp configurations due to its more data-driven approach.
This phenomenon is especially noticeable for Nz = 1.

5.2. Detection
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(a) ROCs for L = 50.
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Fig. 3: ROC curves and their corresponding AUCs for various Lp.

Due to extension constraints, only a reduced subset of detec-
tion test configurations (Nz = 100, Copula distribution) will be dis-
played since there is important overlapping between their results.
They are presented in terms of Receiver Operation Characteristic
(ROC) curves for various Lp and their corresponding Area Under
Curve (AUC) (Figure 3).

ROC plots in Figures 3a and 3b can be interpreted as follows.

X-Axis is the False Positive Rate (FPR) and Y-Axis is the True Posi-
tive Rate (TPR). When WUSM operates with all available data pairs,
it estimates TRV(X,Y ) and effectively behaves as a correlation de-
tector for the unconditioned case. As commented in Section 5.1, the
covariance matrices of data models have been designed with non-
negligible correlation when not conditioned on the confounder. For
this reason, WUSM behaves as a detector of the opposite hypothesis
when it deals with all sample pairs (LMAX

p = L(L− 1)/2).
As Lp decreases, the ROC curve of WUSM improves until

reaching a near-optimal shape (solid line in the plots). Its detection
quality remains at that level for a range of Lp values. After that,
when the number of considered pairs becomes too low, the perfor-
mance of the detector starts to deteriorate progressively. Finally,
when Lp is minimum, WUSM becomes nonfunctional as a detector.
Unsurprisingly, SCM presents near-optimal detection capabilities
in the regular sample size case but very poor performance in the
small-sample one.

AUC curves in Figure 3c make very apparent that the operation
band of WUSM for detection is very wide in terms of Lp and it
roughly scales with O(L2). This result is very positive for the pur-
poses of this paper since detection is the main functionality of our
test for conditional correlation.

6. CONCLUSIONS

In this paper we have developed a test for conditional correlation
based on weighted U-Statistics that avoids the demanding opera-
tions and Gaussianity requirements of other classical techniques.
The resulting detector displays a very robust performance in small-
sample/high-dimensional scenarios.

We can outline various lines of research that could potentially
stem from this work. In terms of design, there are some aspects of
our approach that can be adjusted, such as the ordering of the pair-
wise differences of samples. We have employed the Euclidean dis-
tance because it is a very natural choice for scalar data, but becomes
an arbitrary one for multivariate data: establishing the difference be-
tween samples can be done following different criteria. Another de-
sign aspect that can be finely tuned is the selection of sample pairs.
Alternative indicator functions can be used to obtain soft selection
thresholds. Additionally, they can become data-adaptive by being
aware of the sample histogram shape.

As for application-specific adjustments, our test could be gener-
alized to detect conditional dependence under arbitrary data models
by applying more advanced information theoretic techniques, such
as the characteristic function mapping [19].
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