

Applying security features to GA4GH
Phenopackets

Master's Thesis

Submitted to the Faculty of the

Escola Tècnica d'Enginyeria de Telecomunicació de

Barcelona

Universitat Politècnica de Catalunya

by

Judit Caballero Moro

In partial fulfilment

of the requirements for the degree of

Master in Cybersecurity

Advisor: Silvia Llorente

Barcelona, July 2022

i

Final work sheet

Title of the thesis: Applying security features to GA4GH

Phenopackets

Author Judit Caballero Moro

Advisor Silvia Llorente Viejo

Delivery date 01/09/2022

Master’s degree Cybersecurity

Language English

Key words data sharing, Phenopackets, phenotype,

privacy, security mechanisms

Abstract

Global Alliance for Genomic and Health has developed a standard file format called

Phenopacket to improve the exchange of phenotypic information over the network.

However, this standard does not implement any security mechanism, which allows an

attacker to obtain sensitive information if he gets hold of it.

This project aims to provide security features within the Phenopacket schema to ensure

a secure exchange. To achieve this objective, it is necessary to understand the structure

of the schema in order to classify which fields need to be protected.

Once the schema has been designed, an investigation is conducted into which

technologies are currently the most secure, leading to the implementation of three

security mechanisms: digital signature, encryption, and hashing.

To conclude, several verification tests are performed to ensure that both the creation of

Phenopacket and the security measures applied have been correctly implemented,

confirming that data exchange is possible without revealing any sensitive data.

ii

Acknowledgements

This Master's thesis would not have been possible without the support of several people

who have been by my side during this long period and whom I would like to express my

deepest gratitude.

On the one hand, I would like to thank my mentor Silvia Llorente not only for her dedication

and patience throughout the semester in the face of all the setbacks encountered, but also

for helping me through times of doubt and misunderstanding. Thank you for allowing me to

freely develop the project and to give me ideas whenever I had none. And lastly, thank

you for your understanding when I decided to extend the presentation date, even if this

meant spending hours during the summer.

On the other hand, I would like to thank my family who have always shown their confidence

in me with all the decisions I have made. To my parents and my brother, thank you for

letting me be me because it brought me to this point.

I would also like to thank my friends Toni and Irene for being there during this period full of

ups and downs, for motivating me and showing me the light at the end of the tunnel,

especially in the last days. Thanks also to my Master’s classmate Enric, together we have

shared the experience of doing the Master’s thesis this summer and I want to thank him for

those dinners tasting burgers that were so good for us.

And finally, to all the people who have shared with me a part of this journey, thank you for

always being there and allowing me to grow both professionally and personally.

iii

Table of Contents

1. Introduction .. 1

1.1. The importance of data sharing in healthcare sector .. 1

1.1.1. Why it is necessary to apply security ... 1

1.2. Objectives .. 2

1.3. Methods and procedures .. 3

1.4. Work Planning .. 3

1.5. Time planning ... 4

1.5.1. Deviations from the initial plan ... 4

1.6. Summary of products obtained ... 4

2. State of the art ... 5

2.1. Standardizing and Exchanging Patient Phenotypic Data 5

2.2. Genomics informatics — Phenopackets: A format for phenotypic data exchange

 5

2.3. A computable representation of clinical data for precision medicine 6

3. Phenopackets .. 7

3.1. Phenopackets schema ... 7

3.2. Data model ... 8

4. Data classification .. 13

4.1. Requirements ... 13

4.2. Type of data ... 14

4.2.1. PII .. 14

4.2.2. PHI .. 14

4.3. Levels of classification .. 15

4.4. Classification of Phenopacket elements ... 15

5. Security Methods ... 17

5.1. Encryption algorithms ... 17

5.1.1. Advanced Encryption Standard (AES) ... 18

5.1.2. Elliptic Curve Cryptography (ECC) .. 19

5.2. Digital Signatures ... 19

5.2.1. Elliptic Curve Digital Signature Algorithm (ECDSA) 20

6. Applying security to GA4GH Phenopackets ... 21

6.1. Definition .. 22

6.1.1. Protocol Buffers ... 22

iv

6.2. Security mechanisms ... 24

6.2.1. Hybrid encryption .. 25

6.2.2. Digital signature ... 26

6.2.3. Hash .. 27

6.3. Development .. 28

6.3.1. Software requirements .. 28

6.3.2. Phenopacket schema classes ... 30

6.3.3. Security Mechanisms classes .. 36

6.3.4. Additional class and files ... 42

7. Evaluation .. 45

7.1. Verification tests ... 45

7.1.1. Phenopacket creation test ... 45

7.1.2. Hybrid encryption tests .. 46

7.1.3. Digital signature tests .. 51

7.1.4. Hashing tests ... 52

7.2. Phenotools-validator ... 53

8. Conclusions and future development ... 55

Bibliography .. 57

Appendices ... 61

v

List of Figures

FIGURE 1 GANTT CHART OF THE PROJECT .. 4
FIGURE 2 SOURCE: MEDRXIV, "THE GA4GH PHENOPACKET SCHEMA: A COMPUTABLE REPRESENTATION OF CLINICAL DATA FOR

PRECISION MEDICINE," 2021. [ONLINE]. AVAILABLE: HTTPS://DOI.ORG/10.1101/2021.11.27.21266944 8
FIGURE 3 HYBRID ENCRYPTION SCHEME ... 18
FIGURE 4 DIGITAL SIGNATURE SCHEME .. 19
FIGURE 5 SCRUM WORKFLOW .. 21
FIGURE 6 SOURCE CODE OF PHENOPACKETS.PROTO .. 23
FIGURE 7 PROTOBUF WORKFLOW ... 24
FIGURE 8 HYBRID ENCRYPTION FLOWCHART .. 26
FIGURE 9 DIGITAL SIGNATURE FLOWCHART ... 27
FIGURE 10 PROTOBUF DEPENDENCY IN POM.XML FILE .. 29
FIGURE 11 PHENOPACKET SCHEMA JAR FILE DEPENDENCY IN POM.XML FILE ... 29
FIGURE 12 SOURCE CODE OF CREATEONTOLOGYCLASS METHOD ... 31
FIGURE 13 SOURCE CODE OF CREATETIMEELEMENTAGE METHOD ... 31
FIGURE 14 SOURCE CODE OF GETAGE METHOD ... 32
FIGURE 15 SOURCE CODE OF GENERATEINDIVIDUALID METHOD .. 33
FIGURE 16 SOURCE CODE OF CREATEMEDICALTREATMENT .. 33
FIGURE 17 SOURCE CODE OF GETMETADATA METHOD ... 34
FIGURE 18 SOURCE CODE OF GENERATEPHENOPACKETID METHOD .. 34
FIGURE 19 SOURCE CODE OF VERIFYPHENOPACKET METHOD .. 35
FIGURE 20 SOURCE CODE OF EXPORTPHENOPACKET METHOD .. 35
FIGURE 21 PRIVATE METHOD TO ENCRYPT AN ELEMENT .. 37
FIGURE 22 SOURCE CODE OF HYBRIDENCRYPTION METHOD ... 38
FIGURE 23 PRIVATE METHOD TO SIGN AN ELEMENT .. 39
FIGURE 24 SOURCE CODE OF PROTECTWITHDS METHOD .. 40
FIGURE 25 SOURCE CODE OF COMPUTEHASH METHOD ... 41
FIGURE 26 SOURCE CODE OF COMPUTEDISEASEHASH METHOD .. 41
FIGURE 27 SOURCE CODE OF CHECKHASH() METHOD ... 42
FIGURE 28 FUNCTION TO GET A JSON OBJECT FROM FILE .. 43
FIGURE 29 EXPECTED ERROR IN PHENOPACKETCREATION() TEST ... 46
FIGURE 30 TESTS CREATED FOR HYBRID ENCRYPTION .. 46
FIGURE 31 TESTS CREATED FOR HASHING ... 52
FIGURE 32 PHENOPACKET HAS BEEN SUCCESSFULLY VALIDATED .. 54
FIGURE 33 PHENOPACKET SCHEMA DIAGRAM ... 61
FIGURE 34 PROJECT FOLDER STRUCTURE .. 62

https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948918
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948919
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948920
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948921
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948922
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948923
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948924
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948925
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948926
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948927
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948928
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948929
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948930
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948931
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948932
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948933
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948934
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948935
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948936
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948941
https://d.docs.live.net/5e2c595e3a5a9d81/MCYBERS/2n%20semestre/TFM/TFM-Applying%20security%20features%20to%20GA4GH%20Phenopackets.docx#_Toc112948942

vi

List of Tables

TABLE 1 ELEMENTS AND FIELDS INCLUDED IN THE PHENOPACKETS SCHEMA ... 11
TABLE 2 MEDICAL ACTIONS AND FIELDS INCLUDED IN THE PHENOPACKETS SCHEMA .. 12
TABLE 3 CRYPTOGRAPHY-BASED MECHANISMS .. 18
TABLE 4 SECURITY TECHNOLOGIES TO BE APPLIED IN THE PHENOPACKET SCHEMA ... 25
TABLE 5 TEST TO VERIFY AGE ENCRYPTION .. 47
TABLE 6 TEST TO VERIFY AGE DECRYPTION .. 47
TABLE 7 TEST TO VERIFY CREATEDBY FIELD ENCRYPTION AND DECRYPTION .. 48
TABLE 8 TEST TO VERIFY METADATA ENCRYPTION AND DECRYPTION .. 49
TABLE 9 TEST TO VERIFY STORAGE AND DECRYPTION OF PHENOPACKET ELEMENTS .. 50
TABLE 10 TEST TO VERIFY DIGITAL SIGNATURE FEATURE... 51
TABLE 11 TEST TO VERIFY THE HASHING PROCESS ... 52
TABLE 12 TEST TO VALIDATE A HASH ... 53

1

1. Introduction

1.1. The importance of data sharing in healthcare sector

On March 11, 2020, the World Health Organization (WHO) declared the coronavirus as a

global pandemic [1] being one of the most relevant events in history, especially in the

healthcare sector. Since the beginning of the pandemic, the lack of knowledge about

COVID-19 has been a problem when it came to treating those affected, leading to the

deaths of millions of people around the world, more than two million in Europe at the time

of writing this project [2]. Despite the fact that WHO published some articles to help

countries face the disease [3], as well as some tools such as WHO academy [4] to provide

knowledge in the process of treating patients, such support was not sufficient to confront

the situation, demonstrating that the health sector was unprepared.

One of the greatest challenges faced by researchers has been to find an efficient way to

share data and results [5]. Healthcare provides a range of data that can help in the

investigation and treatment of illnesses. On the one hand, genomic data is a source of

information in the discovery of new disease and treatments. On the other hand, data

generated in level-patient, known as biomedical data, allows us to analyze research results,

such as how a new treatment affects the patient, and thus improve the response quality

against future diseases. Sharing these two data may be essential for limiting the spread of

the disease and improving healing.

However, data sharing in health services is still having limited resources for their

implementation [6] not only because the cost of maintaining such technologies could be

high because of the different formats and databases they integrate, but also because of

the privacy laws that must be complied with for its use. Nevertheless, the number of

advantages it brings, such as enhancing the development and improvement of research

and treatments, as well as improving patient care, will undoubtedly mean that a growing

number of organizations will invest in this area.

1.1.1. Why it is necessary to apply security

While the benefits of collecting, using, and transmitting medical data are well known,

medical records contain sensitive information that jeopardizes the privacy of individuals.

This implies that, in case it is obtained by third parties, it would violate the rights of the

individual.

When the pandemic was declared, cyber-attacks also increased, taking advantage of the

situation to attack different sectors, including the medical sector [7]. For healthcare, cyber-

attacks have significant consequences not only in terms of privacy breaches, but also as

an obstacle to ongoing investigations. The technologies used in this sector are systems

connected to the network via Wi-Fi, which perform functions such as monitoring a patient's

condition, making these systems more vulnerable to cyber-attacks.

By the end of 2020, according to CheckPoint research [8], there was a 45% increase in the

number of cyber-attacks against healthcare organizations, becoming one of the most

targeted sectors compared to all other industries during the same period.

In the 2021 annual data breach cost report by IBM [9] identified healthcare organizations

as the sector with the highest average data breach, increasing by almost 30% over the

previous year, being the sixth-most targeted industry in 2021 [10]. Specifically, these

2

attacks are mainly carried out via ransomware, where the average ransom payment was

around $322,000 [11]. But a recent report by Verizon [12] shows that attacks through Web

applications and servers are on the rise, as their use is becoming more and more common

within the medical environment.

As for this year, attacks targeting the U.S and Europe have intensified. In the case of the

United States, 43 health data breaches were reported to the U.S. Department of Health

and Human Services in March alone, leading to the exposure or theft of more than 3 million

health records, most of them by hacking activities. However, the total amount of data

exposed appears to be slightly lower than last year as reported in a HIPAA report [13].

Meanwhile, in Europe, the number of attacks on the medical sector remains stable, for

instance in Spain thanks to information reported by AEPD1 [14] in 2022 there have already

been about 100 security breaches involving health data.

It could be concluded that data breaches are one of the most common incidents in this

sector, as Personal Health Information (PHI) is more valuable on the black market than any

other type of data, which makes medical information an interesting target for threat actors.

The 2018 Trustwave Global Security Report [15] showed the different prices on the dark

web according to the stolen data being PHI averages $250 at the time of sale.

Since finding a way to share patient data in a secure manner must be a priority, this project

will use a standardized format for the exchange of health information called Phenopacket,

in which security mechanisms will be applied to ensure a more secure data sharing.

1.2. Objectives

To improve the quality of phenotypic data sharing, this project will aim to study and

implement security mechanisms within the file format called Phenopackets.

General objectives:

• Develop a self-designed Phenopacket schema

• Implement security features in the Phenopacket created

• Check the correct use of these Phenopackets

Specific objectives:

• Study of Phenopackets

• Create a customized data model

• Classify the data to apply security

• Research into technologies which offer greater security

• Implement security mechanism

• Perform verification tests

1 Agencia Española de Protección de Datos

3

1.3. Methods and procedures

The methods and procedures followed in this project will be divided into two parts: one for

research and the other for practical development using an Agile scrum methodology in

order to fulfill the objectives listed in section 1.2.

First of all, the study will be focused on what Phenopackets are, how they are structured

and their purpose, in order to design a customized data model. On the other hand, it is

important to know what data will be treated to apply security measures, therefore, an

analysis and classification of the data will be carried out, differentiating them by security

levels. To conclude the research part, an investigation will be made of the different

available security mechanisms that can then be integrated into the data model.

In parallel, as knowledge of the standard is acquired, the Phenopacket data model to be

used will be designed and implemented. Once the most suitable technologies for this

project have been analyzed and selected, the next step will be the application of such

mechanisms.

Therefore, this second part will be divided into different stages that will include the definition

and design of the Phenopackets together with the selection, development and evaluation

of their security features using Java as the programming language.

Finally, once a secure Phenopacket schema has been created, it will be checked that it is

fully operational through verification tests.

1.4. Work Planning

The methodology described above will be accomplished through a series of tasks that

correspond to each of the steps to be followed for the proper development of the work.

Each of the tasks that are part of the project are detailed below:

a. Study of Phenopackets

The main objective of the study will be to learn about this new standard, from its release

to the different versions provided as well as its workflow. In addition, the data schema

will be analyzed along with the technology used for its application.

b. Design Phenopackets data model

Once the original schema is studied, it will proceed to the implementation of a specific

data model for this project.

c. Classification of data in different security levels

Due to the large number and variety of fields offered by the schema, it is necessary to

conduct a study to classify which data are considered sensitive to apply security.

d. Research of security mechanisms

Since there are different methods for applying data privacy, the best valued at the time

of project development will be analyzed and chosen.

e. Development of Phenopackets schema

The first step will be to define and design the chosen data model, and then apply the

security features only to those fields or elements that have been classified as sensitive

information.

4

f. Create and verify secure Phenopackets

To verify if the Phenopacket schema is correctly created, different tests will be

developed to check both the Phenopacket creation, and the correct use of the security

features applied.

g. Write the final project report

Once all the previous tasks have been completed, the project report will be written,

including procedures and conclusions obtained throughout the process.

h. Prepare the project defense

Finally, a project defense will be prepared to demonstrate the knowledge acquired and

the work applied during the last months.

1.5. Time planning

The Gantt chart shown in Figure 1 is an indicative illustration of how the project is intended

to be developed from March to September.

Figure 1 Gantt chart of the project

1.5.1. Deviations from the initial plan

Initially the project was intended to be delivered in July, but due to the scope of the project

as well as the lack of knowledge of the topic, it was decided to present it in September.

This lack of knowledge also led to changes in the selection of mechanisms to be

implemented, since not all the possible options proposed at the beginning could be finally

implemented. The same case applies to the design of the Phenopackets, since it uses a

technology unknown to me, which led to several errors at the time of understanding its

implementation.

1.6. Summary of products obtained

During the course of this project, a series of deliverables are obtained as the tasks

described in the previous section are completed. These products are the following:

• The report, being the present document where all the work done is written in PDF

format

• The source code developed for the creation of Phenopackets

Tasks description Start Days

Planning

Define objectives and methodology 01/03/2022 15

Introduction and State of Art

Research of healthcare reports 01/04/2022 31

Read relevant approach of

Phenotypic data exchange
16/03/2022 31

Study of Phenopackets

Analyze its structure 16/03/2022 15

Design data model 31/03/2022 31

Data classification

Classify senstive data 01/05/2022 31

Define levels of security 01/06/2022 7

Security method

Study of security mechanism 01/06/2022 15

Development of Phenopackets

schema
62

Define and select the security

mechanism
16/06/2022 15

Implement Phenopacket's creation

and security features
01/07/2022 47

Verification test 01/08/2022 15

Write the final project report 16/08/2022 15

Prepare the project defense 31/08/2022 5

SeptemberMarch April May June July August

5

2. State of the art

2.1. Standardizing and Exchanging Patient Phenotypic Data

Healthcare professionals and scientists seek to understand diseases by analyzing both a

patient’s genome and their phenotype. However, there is currently a great difference when

it comes to the technology and standards created to deal with genomic data and those

created for phenotypic information. While the former treats the genetic information of an

organism with various standardized formats and their own databases that define their use

and exchange. Phenotypic information, understood as information that provides knowledge

about the features, symptoms, and responses of a disease in an individual, suffers from a

lack of resources whose sources are widely dispersed and make it difficult to deal with.

Therefore, an international non-profit alliance called the Global Alliance for Genomics and

Health (GA4GH), known for creating frameworks and the standards formats that provide a

secure way to share genomic data, has developed a new standard they named

Phenopackets [16]. A Phenopacket is a standard file format for the exchange of phenotypic

information across clinical and research environments. The first version was launched in

2019 focused on describing phenotypic characteristics observed in a subject with an

unusual disease, but now has a second version that offers a broader scope where all types

of diseases can be addressed.

The objective of Phenopackets is to provide more homogeneity among researchers,

medical personnel and clinical analysts who want to operate with phenotypic data using

common resources. This new standard provides a better understanding of diseases and

treatments, as its interoperability makes it possible to share and analyze data in a faster

way. Although the project is still under development, there are some tools that can be used

with Phenopackets such as Phenopackets-tools for upgrading from version one to version

two or for validation. However, GA4GH is working towards future implementation into

Electronic Health Records (EHR) using FHIR2 framework to encourage its adoption among

the healthcare system.

2.2. Genomics informatics — Phenopackets: A format for phenotypic data
exchange

The International Organization for Standardization (ISO) has been developed together with

GA4GH, the international standard for Phenopackets. In order to collect large samples of

phenotypic data from all over the world, standardization is necessary, hence the ISO/DIS

4454 corresponds to the description of Phenopacket as a worldwide standard that provides

a computable, machine-readable phenotype data for research and clinical use [17].

On July 7, the document was published [18] in which it defines the entire Phenopackets

schema to facilitate the exchange of data between medical communities around the world.

The documentation provides what this new format consists of, as well as its components

and functionalities, in order to help integrate it within medical systems and thereby, be able

to access information from different cases worldwide to improve patient care.

2 Fast Healthcare Interoperability Resources

6

2.3. A computable representation of clinical data for precision medicine

At present, medical systems and clinical analysis tools do not contain a lot of phenotypic

information. Several approaches have been created over the years to exchange formats

for clinical data such as Variant Call Format (VCF), a standard to store genotype

information which may then be used by analytical technologies [19]. The first standard

dedicated to phenotypic information used rule-based methods in conjunction with clinical

data to determine patient cohorts in a wide range of diseases. But there was no approach

looking for patient-level exchange until the creation of Phenopacket by GA4GH.

From research environments to medical response, the integration of this standard into

medical applications will allow a better response to disease research and provide better

patient care, as it contains the set of phenotypic attributes specific to each individual.

Subsequently, this information can be used and shared in different scenarios such as

clinical management, treatment selection and cohort identification.

In this approach [20], researchers developed the so-called Phenopacket schema to provide

that other developers or researchers could design their own Phenopackets encoded in

protobuf or JSON formats. As it was mentioned, the schema has two versions, the first one

supported two data exchange formats: JSON and YAML, in order to transfer data from

providers such as a medical record to a receiver, including web applications. In addition,

both versions include the Pedigree standard, which represents pedigree information

through PED format to describe a patient’s family relationships. Finally, the second version

incorporates the Variation Representation Specification (VRS) and VRSATILE framework

as well as contains a reference to a VCF file, all together resulting in an improved

differential diagnostic process.

There are currently a number of tools that facilitate the management and export of

Phenopackets for analytical and data sharing purposes, for example PhenoTips [21]. This

software incorporates a user interface that allows the generation of Phenopackets from

patients and relatives records, and also includes additional information such as de-

identified demographic data or pedigree data.

Meanwhile, in this case, researchers implemented a Java library with command-line

applications that validate Phenopackets using a JSON schema. The Phenopacket-

validator tool checks that the required elements are present in the schema as well as

validates the ontological terms used to define the medical data in the schema.

Despite the different approaches created to date are designed under FAIR3 principles,

none of them apply to secure phenotypic data sharing. For that reason, this project has the

main objective to provide security features that allow the Phenopackets schema to be

transferred securely across medical environment systems.

3 Findable, Accessible, Interoperable, and Reusable

7

3. Phenopackets

The widespread adoption of health records, specifically in this case phenotype information,

requires the integration of this data into a secure digital health infrastructure to support

patient care. For this purpose, before implementing the various security features to

Phenopackets, it is necessary to learn how this new standard works. Although an

introduction to this standard has already been given in section 2, it is important to know in

depth how it is composed as well as its functionality within the data exchange.

A Phenopacket [22] is a standard providing a phenotypic description of a subject containing

a set of components for defining and sharing this information that describes atypical as well

as common disease, including cancer. Although the first version was approved at the end

of 2019, a new version was created in 2021 which included a better representation of fields

related to disease and treatment.

The following sections will explain the latest release, Phenopacket v2.0, in which the

structure, functionality and required technology will be described, as well as the data model

selected to implement security.

3.1. Phenopackets schema

As previously mentioned, Phenopackets are an open standard for sharing phenotypic

information in order to improve the diagnostic process either by investigating new diseases

or by providing new treatments for current diseases, resulting in a more efficient and

quicker response. For this purpose, it is created to be interoperable and computable to

validate and exchange medical information across the different scenarios discussed above.

A Phenopacket [23] links the phenotype specifications of the patient along with information

about the patient’s disease, allowing sector workers such as clinicians or disease

researchers to build more complete disease models. Although it is still evolving, thanks to

the personnel in charge of medical data and the different repositories that exist today, the

standard can be developed and adopted in the health and research sectors.

To represent the different types of information mentioned above, the schema is formed by

several elements and subfields, listed in the Data model, which constitute the Phenopacket

structure by means of different levels and multiplicities. The version used has three different

levels: required, recommended and optional.

When it comes to multiplicity, it helps to better understand the level of the field. In case the

field is mandatory, it will be represented with a multiplicity of 1...1. Then, if the element is

recommended or optional it will be represented with 0…1. In other cases, the elements can

be presented as a set of them, then the symbol * indicates this property.

In terms of the technology used to enable its application, the phenotype information is

exchanged with a format known as PXF4 files. This format makes it possible to represent

the information in both human and machine-interpretable format by encoding it in JSON or

YAML to facilitate the transmission of data and its documentation.

For a better understanding of the computational logic of the file format, PXF and in

particular Phenopackets, use ontologies to describe most of their elements and thus ensure

interoperability between different sources. In this scenario, an ontology is a systematic

4 Phenotype Exchange Format

8

formal representation of concepts and categories within the medical area that shows how

they relate to each other.

There are different ontologies to represent biomedical information, an interesting ontology

is the Human Phenotype Ontology (HPO) [24] that defines patients’ phenotypic

characteristics, and it is specifically intended for systems biology applications in the context

of rare diseases. For cancer knowledge representation, there is the National Cancer

institute’s Thesaurus (NCIt) while for unit terms found in medical records there is the Units

of measurement ontology (UO).

In addition, Phenopackets are defined using the protocol buffer schema that allows them

to automatically generate in other languages, including Java, Python and C++. This

schema will be discussed later in section 6.1.1.

Finally, once it has been generated and is ready for use, it can be exchanged within the

medical framework. The Phenopackets workflow starts with the providers, it can be both

medical personnel and researchers as well as laboratories or genomic analysts. The

schema works as a common template for capturing data from multiple sources, from the

most basic such as clinical notes to the most advanced technologies including mHealth.

In the future, it is intended to use Phenopackets along with some other methods such as

FHIR and EHR text-mining, however the second version has already integrated the

variation representation specification (VRS). It thus improves its interpretations and

provides genotype and phenotype information to the multiple’s receivers, including clinical

laboratories, diagnostic services, or Electronic Health Records.

The following figure shows the complete Phenopackets workflow.

Figure 2 Source: medRxiv, "The GA4GH Phenopacket schema: A computable representation of clinical data
for precision medicine," 2021. [Online]. Available: https://doi.org/10.1101/2021.11.27.21266944

3.2. Data model

In section 3.1, it has been defined how the schema created by GA4GH is composed. In

this case, the version to be implemented is the second version released with a few

differences from the original schema. The Phenopacket data model Appendix shows the

set of selected fields that make up the schema and to which security features will be added.

On the one hand, the second version has been chosen due to the addition of elements

such as measurements or medical actions as well as new fields to express time or age.

9

These improvements allow to better narrow down the patient information for all types of

diseases, being more accurate than the first version.

On the other hand, the original schema contains many elements and fields that address

both to track disease progression and the rapid response (treatment) to these diseases.

For this reason, this project has considered to deal only with those fields that make possible

the second approach, i.e., only the elements corresponding to phenotype information will

be included, along with the diagnosis and appropriate medical actions for the subject, the

rest of the elements have been discarded.

Table 1 describes both the primary elements of the Phenopacket schema and the individual

blocks which are subfields that compose the previous ones to provide more information. It

also specifies the type for each field, defining the element with [E], a time element via [TE]

and ontology class using [OC].

Field Type Description

Id str Random ID required to uniquely identify the

Phenopacket

Subject E Recommended element to represent the patient or

proband of the study

• id str Required identifier being a unique random value for an

individual

• time at last

encounter

TE Recommended field to represent the age of an

individual at last encounter using ISO8601

• vital status Enum Optional field that includes the status of an individual

commonly used in cancer. This field can only have one

of the following values: unknown, alive, and deceased

• karyotypic sex Enum Optional field for the chromosomal sex of an individual.

The schema includes 10 chromosome types, but only

one can be assigned per patient.

Phenotypic features E Recommended element listing the phenotypic findings

observed in the study

• type OC Required term describing the phenotypic feature

• severity OC Optional field to describe the severity of the condition

• onset TE Optional field representing the time at which a

phenotypic feature was noticed or diagnosed.

• resolution TE Optional field representing the time when the feature

resolved or disappeared

10

• evidence OC Recommended element to specify how the phenotype

was determined. It includes a code field to represent

the evidence from publication.

Diseases E Optional element listing diagnosed or suspected

conditions

• term OC Required term that denotes the disease

• excluded Bool Boolean value indicating if disease was observed. It is

important to check for correct interpretation

• onset TE Optional field describing the age at which a disease

was noticed or diagnosed

• disease stage OC Optional field describing the development of the

disease

• clinical tnm

finding

OC Optional field to describe cancer progress

• primary site OC Optional field to describe the location where the

disease was observed

Medical actions E Optional element listing different actions performed on

the subject, such as procedures or treatments

• action E Required element being one of the four actions

included in the schema: procedure, treatment,

radiation therapy and therapeutic regime

• treatment

target

OC Optional field representing the condition or disease

that the treatment is for

• treatment

intent

OC Optional field to specify the intention of the treatment

• response to

treatment

OC Optional field describing how the patient is responding

to the treatment

• adverse

events

OC Optional field listing adverse effects experienced

because of the treatment

• treatment

termination

reason

OC Optional field indicating the reason why the actions

were stopped

11

Metadata E Required element to define the resources as well as

ontologies used within the Phenopacket

• created TE Timestamp element representing the time when

Phenopacket was created using ISO8601 UTC

timestamp

• created by str Provides the name of the contributor or program

• submitted by str Represents the individual who submitted the

Phenopacket

• Phenopacket

schema

version

str The version used for its creation

• resources E Required element to list external resources referenced

in Phenopacket. Includes the following required string

subfields:

− id: identification of the resource

− name: name of the ontology used

− namespace prefix: CURIE prefix

− url: link to the ontology URL

− version: resource to make the annotation

− iri: Internalized Resource Identifier

• updates TE Required timestamp element to represent when the

Phenopacket was updated

Table 1 Elements and fields included in the Phenopackets schema

As it was mentioned, MedicalAction element requires a field to represent a specific type

of medical action. The following table defines each of these actions.

Field Type Description

Procedure E Element to describe the clinical procedure

• code OC Required field indicating the clinical procedure

• body site OC Optional field to specify the location of the body

where the procedure was performed

• performed TE Optional field indicating the time of the procedure

Treatment E Agent element being drugs or medicines

• agent OC Required field to indicate the specific agent

12

• route of

administration

OC Recommended field describing how the agent was

administered

• dose interval E
Recommended element listing the dosage of

medication. This element includes the following

required fields:

− quantity via unit and value fields

− schedule frequency

− interval at which the dose was administered

• cumulative dose E Optional element representing the total quantity of

the treatment

Radiation therapy E Element used for cancer cases

• modality OC Required field describing the radiation modality

• body site OC Required field indicating the site where the action

was performed

• dosage int Required field representing the total dose given

• fractions int Required field corresponding to the radiation

dosage divisions

Therapeutic regimen E Specify the set of treatments conducted

• identifier OC Required field to identify the regimen

• start time TE Recommended field to represent the time when the

regimen started

• end time TE Recommended field to represent the time when the

regimen ended

• status str Required field to specify the status. This field

includes four values: unknown, started, completed,

and discontinued

Table 2 Medical actions and fields included in the Phenopackets schema

Finally, a couple of things should be noted. First of all, not all the fields specified in the

original schema for each of these elements are included, only the required, recommended

and those that could be of interest for the proposed scenario have been considered.

Secondly, to start with a more secure schema, it has been decided to use dates for those

elements that allow to choose between age and time, in addition to not including sensitive

data fields such as DOB or gender, which has been replaced by the karyotypic sex field.

13

4. Data classification

In the introduction section some statistics were exposed which showed how attractive PHI

is for the attackers, since they can exchange records for money. This fact remarks on the

importance of implementing advanced security solutions to the medical data, but first it

needs to know what type of data it is going to deal with and classify data into categories

according to the amount of sensitive information it provides.

This section describes the data classification process followed as well as the different levels

of security applied to the data model mentioned in section 3.2 on the basis of which data

would be the most sensitive in a data breach attempt.

4.1. Requirements

To achieve better classification, there are several frameworks and legal regulations which

define some requirements to classify data depending on the type of information that an

individual must recollect or transmit. Considering the context of the project, it is going to

introduce two standards whose aims are to protect sensitive data, including health data.

These two regulations are HIPAA and GDPR.

On one hand, there is the Health Insurance Portability and Accountability (HIPAA) is a

US public law (104-191) [25] designed to provide privacy standards to protect electronic

health care transactions. The law considers as high risk the compromise of data classified

as PHI, so it designed a specific rule called HIPAA Security Rule that demands the

implementation of preventive measures as well as classification procedures to ensure the

integrity, availability, and privacy of this type of data. This rule also restricts the use and

disclosure of all PHI collected, stored, and transmitted by an entity.

On the other hand, the General Data Protection Regulation (GDPR) [26] is a European

level data protection regulation, this means that any entity that collects, transmits, and uses

any information of European citizens must apply its data privacy legislation. Moreover, the

GDPR categorizes as special data those depending on the race, ethnic, biometric data,

and health data. It also requires classification by levels, as will be shown in section 4.3.

Throughout the project, it has gathered information from both standards, however, being a

project carried out within the European Union, it is worth mentioning some of the

regulations provided by the GDPR in order to provide a correct classification of the

composed fields of the Phenopackets.

Article 4 defines personal data as any information that allows to identify directly or indirectly

a natural person such as its name, identification number or information related to their

physical, genetic, and mental conditions. Also, online information that may be used to

create profiles of them, including IP addresses or cookie identifiers.

In terms of physical and mental health conditions of a subject, the Recital 35 specifies that

any number which identifies a patient or information derived from testing or examination of

the body, including genetic data and biological samples as well as disease, clinical

treatment, and biomedical state, will be considered health data.

Finally, the article 9 details the processing of health data where it is described that the use

of this data is allowed as long as it is for diagnostic purposes or in the public interest.

Furthermore, the subject must have given his explicit consent for such purposes.

https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/recitals/no-35
https://gdpr-info.eu/art-9-gdpr/

14

4.2. Type of data

In the previous section it has been differentiated between personal data and health data,

this distinction is due to the fact that each of these data can be associated with a type of

sensitive personal information. Specifically, these two types are: Personally identifiable

Information (PII) and Protected Health Information (PHI).

It should be mentioned that HIPPA considers both types within its framework, while GDPR

talks about personal data to address to PII, including health data, however, as data

concerning health is treated as special data, it could be considered so-called PHI. For a

better understanding, the information included in each type is defined below; Note that in

this project, both types have been differentiated as HIPPA does.

4.2.1. PII

Personally Identifiable Information is those data that alone or in combination with other data

could allow to identify an individual, in this case it is used outside the healthcare context.

The data that uniquely identifies a subject are names, surnames, residence, and identity

number, being the most sensitive one. Then there are other data, commonly available

information, that combined between them can reidentify a subject, such as age, gender,

date of birth as well as country of birth.

4.2.2. PHI

Protected Health Information or electronically Protected Health Information (ePHI),

according to HIPAA law, is any identifiable information used in medical environments as

well as communication between healthcare personnel, including research. This implies that

any information related to the patient's treatment, results or PII recorded in a medical record

will be considered PHI.

The following identifiers are examples of PHI which can allow an individual to be identified:

• Name

• Biometric data

• Medical record numbers

• Medical device serial numbers

• Dates of visits, admission discharge and treatment

• Diagnostic codes

• Entities associates such hospitals, insurance companies, healthcare

clearinghouses

In addition, any other sensitive information not included in the list below but is considered

a unique identifying characteristic will be considered as Protected Health Information.

Although the combination of different fields within the healthcare scenario could also lead

to the re-identification of an individual, it could not be considered as PHI the results of

medical tests such as blood sugar readings or heart rate monitoring.

15

4.3. Levels of classification

To classify data, it is important to consider what is the Phenopacket collecting and what is

its level of sensitivity. The schema involves both types of sensitive information explained

regarding the patient and medical personnel.

In relation with the sensitivity of the data, different sensitivities lead to different levels of

classification, which usually involves four levels: public, internal, confidential, and restricted

data [27] [28]. The first two types of data are not considered within the scope, since either

the schema does not provide such data, or they have not been included in the designed

one. Nevertheless, it is important to know what they are in order to differentiate them.

It is known as public data, information that is available to any individual, being able to

perform actions such as storing or distributing this information without any limitation, so the

data have no security since they are public values. In this category some PII are included,

for example addresses, dates of birth or gender, however, it is not taken into account since

this information has been removed from the schema.

In case of internal data, also known as private, includes data associated with internal

personnel of the company to whom access is given, such as phone numbers or email

addresses. It is also in this category the business information that is required to protect its

integrity, e.g., data stored in files. Although this data may not require a high level of security,

it is advisable to apply some protection such as password protection for corporate web

platforms.

The following two categories are those that include sensitive information about an individual

that cannot be disclosed and, therefore, the categories considered in this project to classify

the schema:

a. Confidential data: a user must be authorized to obtain the data included in this type.

It has a high level of security applied to them since it involves aspects of identity

and permissions. It will consider confidential data: social security numbers,

cardholder, sensitive documents protected by laws like HIPAA or GDPR and

medical and health records as well as biometric identifiers.

b. Restricted data: it is the most sensitive of the data classifications where only a few

users could have access. The intrusion of a third-party is punishable by law, for this

reason, it has strict security controls such as data encryption. Some examples of

restricted data are business proprietary information, protected health information

(PHI) and data protected by the state.

4.4. Classification of Phenopacket elements

The previous sections have been useful to differentiate the level of sensitivity of each type

of data. The next step is to choose which fields of the schema will be protected as well as

the security level to apply. As a result, after analyzing the designed schema, the following

decisions are taken.

On the one hand, since the format is created to provide the minimum of identifiable

information within their schema, it has only been identified the name of individuals involved

in the Phenopacket as well as the age and the karyotypic sex of the subject as PII. On the

other hand, Phenopackets identifiers, individual identifiers, treatments, and the different

dates found, for example Phenopacket creation, will be identified as PHI. In addition, the

16

PhenotypicFeature element will be also considered PHI, since it defines different

aspects of the medical history of the subject.

Nonetheless, the aforementioned elements will be treated in two categories: once for

restricted data being the fields with the highest level of security, and confidential data in

which the elements themselves are not a concern but contain fields that may contain more

sensitive medical information. For this reason, it is recommended to apply a low level of

security to safeguard their integrity. Therefore, the proposed elements for each category

are listed below.

Considering confidential data as the different information found in a medical record,

including sample of disease and medical actions such as treatments, it will be included:

• The PhenotypicFeatures element. Although the element has been categorized

as PHI, not all fields may pose a threat, but rather a factor that may allow re-

identification. Hence, it is considered to be classified within this category

• The Disease element. The information found in this element is commonly stored

in a medical record

• The MedicalAction element. The different actions allowed do not provide

enough information on the treatment to re-identify the patient, therefore it is not

considered a high risk

As for the restricted data, the following fields and elements have been considered as it is

data classified as PHI as well as PII:

• All TimeElement blocks that indicate the age of the subject, such as

TimeAtLeastEncounter from an individual and onset from diseases

• The field named KaryotypicSex from a subject as it is related to the sex of the

patient

• The MetaData element or specifically, the field related to the creator of the

Phenopacket. This element has been proposed because it is the only element

required in the Phenopacket. It includes information about the date of creation and

the names of the creators as well as the resources used to describe the phenotypic

information of the patient

Furthermore, both confidential and restricted data have also been proposed because of the

thought that the union of any of them could lead to a possible re-identification of the patient.

17

5. Security Methods

Once the data is properly classified, the next step is to apply security to them. In the

scenario of data sharing, and most specifically in Phenopackets schema, the best security

features that could be applied to data are technical safeguards. According to the security

Rule defined by HIPAA [29], it talks about technical safeguards as all the mechanisms,

procedures and policies for its use that protects and manages PHI. Some examples of this

mechanism are access control, entity authentication or transmission security. In this case,

what it wants to achieve is the secure transmission of the Phenopacket over the network,

therefore, in accordance with Article 32 of the GDPR, security will be ensured by end-to-

end encryption.

In this section, the current methods for applying security will be explained. The variety of

mechanisms to implement on the data is quite wide, however, the mechanisms that will be

considered are those that provide confidentiality, integrity, and authentication to the data.

Therefore, encryption algorithms will be used to guarantee data confidentiality, while digital

signatures will be used to provide authentication.

5.1. Encryption algorithms

This section talks about encryption mechanisms that protect health information with the

aim to convert the original data into encoded or unreadable text that is eventually decrypted

into plain text.

There are several types of available encryption mechanisms to implement, in this case it

will be explained those relying on cryptographic techniques. Therefore, hashing is also

included in this section along with symmetric cryptography and asymmetric cryptography,

even though a hash is not really an encryption algorithm, it is still useful as a verification

method.

The following table explains each of them, as well as their advantages and disadvantages.

Method Description Advantages Disadvantages

Hash Fixed-length value, numbers,

and letters, based on a

mathematical function obtained

from the contents of a file.

The same input will also provide

the same hash output.

Tamper resistant.

The same hash

value cannot be

found with other

content.

Less flexible than

other methods.

Can be vulnerable

to dictionary

attacks.

Symmetric

Encryption

The same key is used to both

encrypt and decrypt data.

For that reason, it is shared

among all parties involved in the

transmission.

Enables fast data

sharing.

Requires less

resources than

asymmetric

encryption.

It is considered

less secure than

asymmetric

encryption.

https://gdpr-info.eu/art-32-gdpr/

18

Asymmetric

Encryption

Requires two different keys, a

public key where anyone can

know its value, and a private one

that only knows the owner.

Then, the public key is used to

encrypt the data and the secret

key will be used to decrypt it.

More secure than

other methods

Reduce the speed

of the networks

and technologies

as well as the

transactions

involved in

communication.

Table 3 Cryptography-based mechanisms

In relation to hash algorithms, several of them have been considered weak because they

have been broken by brute force attacks, such as MD5. However, there are other functions

that provide secure hash encoding, for example Keccak256, known as a SHA3 hashing

algorithm that provides 32-byte hashes and it is used in several blockchain projects, such

as Monero [30].

As for encryption algorithms, there are many options to consider depending on the number

of keys or the size of the blocks, the most reliable methods to date are explained in the

following sections. However, a better approach is using both encryptions known as hybrid

encryption in which one-time symmetric key is generated to encrypt the message. After

that, the receiver’s public key is used to encrypt the previous key and the message.

For a better understanding, the following image shows the hybrid encryption process.

Figure 3 Hybrid encryption scheme

5.1.1. Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is one of the most used and trusted encryption

algorithms to protect the data. It relies on symmetric key encryption, which encrypts data

in a single block with different blocks of 128 bit-sizes and different key sizes that will

determine the name of each AES type, for example, AES256 has a key size of 256, but

other available AES algorithm are AES128 and AES512.

Another characteristic is that it incorporates different numbers of rounds, which are the

processes of changing a plaintext into encrypted data. In the case of AES128, the number

of rounds is 10, whereas AES256 has four more, giving a total of 14 rounds.

19

It is currently considered secure against almost every known attack, making it the most

widely deployed algorithm in applications such as data tools market or wireless security.

5.1.2. Elliptic Curve Cryptography (ECC)

Elliptic Curve is a more complex algorithm used in asymmetric encryption since it relies on

the representation of a set of points that satisfy a mathematical equation (y2 = x3 + ax + b).

The algorithm includes the elliptic curve parameters and a reference point P as a public

parameter, then both sender and receiver choose a random value to compute the agreed

point resulting in the private parameter K.

It has the advantage of making it easy to process the encryption since it uses a shorter key

length, but also the mathematical formula that implements makes it harder to undo it. As a

comparison, its highest setting with a 512-bit key is comparable to a 15.360-bit RSA key

[31].

5.2. Digital Signatures

To provide authentication it will use a signature scheme, specifically the data to protect

even the one encrypted, will not be able or decrypted until the signature is validated,

providing more security to the schema. According to CISA5 [32] a digital signature is a

mathematical algorithm to sign and verify messages in order to validate the authenticity

and integrity of a message.

The signature is linked to a specific individual or entity, so it also provides non-repudiation

which means that once the signature is created, it is confirmed that it was made by the

owner. Some typical scenarios where this can be applied are payment transactions or

online contracts. However, it can also be seen in other scenarios to provide transparency

and trust over the network. Likewise, if it wants to identify and validate the person who

creates the signature, the signature could be supported by a digital certificate.

This mechanism is used in asymmetric encryption scenarios, so it is necessary a public

and private key. What differentiates digital signature from the asymmetric encryption

explained above is that, in this case, the private key will be used to sign the data. First, the

process requires the calculation of the hash, then it will be encrypted with the private key

and thus, preserve the message’s integrity. Finally, the receiver will use the public key to

verify the signature.

Figure 4 Digital signature scheme

5 Cybersecurity & Infrastructure Security Agency

20

5.2.1. Elliptic Curve Digital Signature Algorithm (ECDSA)

There are several digital signatures schemes to apply, most of them based on RSA and

ECC such as ECDSA, being the most used schemes. As this project will consider those

mechanisms focused on the elliptic curve algorithm, in this section it will detail the

functionality of the ECDSA scheme, in order to have a previous knowledge of what is going

to be implemented later on.

Based on the ECC cryptographic algorithm, ECDSA provides digital signatures from the

mathematics of elliptic curve cyclic groups over finite fields. This method is known as a

variant of the ElGamal signature, in which is formed by an elliptic curve and the private key

and public key, in which the latter is generated from the private key multiplied by the

generator point.

The process to create the signature involves the hashing process, the private key and a

random point computed by a random number. Then, to verify it only requires the hash with

the public key and the signature. However, to make the algorithm more secure, there is a

variant where the random value is changed by the HMAC of the private key.

The highlight of this scheme is that it provides a shorter signature with a higher security

and better performance compared to other commonly used signatures like RSA or DSA.

Hence, it has become one of the most widely used signature algorithms.

21

6. Applying security to GA4GH Phenopackets

This section details the practical part of the project in which the final goal is to implement a

more secure Phenopackets schema through security mechanisms in order to provide

phenotypic data exchange over the network.

As it was mentioned, an Agile scrum methodology was chosen to gradually develop the

project. This decision is due to the fact that it is a completely new technology, so it is

necessary to have a framework that allows to define the final Phenopacket as more

information about the format is known. For this reason, the objectives concerning the use

of the format and the security measures to be implemented have been redefined on the

basis of the experience acquired.

Regarding the process, an iterative approach is followed, consisting of several stages that

allow the development of the software while testing the implemented functions. This also

includes reviewing the work done and deciding on how it can be improved as the project

progresses. Below, the process followed for the development of the software is presented

with three of the steps explained in this section: definition, design of the security

mechanisms and development.

Figure 5 Scrum workflow

As Figure 5 shows, the first step is to define the Phenopacket schema. It is important to

keep in mind that the original schema consisted of more fields than the schema described

in section 3.2, however, it is the latter that will be used in the development process. As

discussed in the next section, the schema is defined using the Protobuf exchange format,

where it will explain how it works and how it was implemented.

Once the schema is generated, the next step is to select the available technology for Java

environments that provides security within the code. The purpose of this step is to design

the security features of the Phenopacket, being a total of three described in section 6.2.

To conclude, section 6.3 will explain the whole development process of this project. This

step is performed along with the testing phase described in section 7; it corresponds to the

sprint shown in the workflow. Each sprint develops a feature of the schema, in this case

three different ones will be distinguished. First, it will describe which classes have been

designed to create and make use of the schema. Next, all those classes created to provide

the required security measures within Phenopacket will be explained and finally, the

additional classes as well as the resulting files generated by the program will be shown.

Once the functionalities are achieved, they are reviewed until it is finally decided that they

are done.

22

6.1. Definition

The objective of this project is to add some security features to the Phenopackets schema

created by GA4GH. To do so, it is necessary to first create the schema, as it has been

defined with fewer fields (see section 3.2), it is decided to modify the original schema in

order to create the designed one, then the technology called Protobuf makes these

changes possible.

6.1.1. Protocol Buffers

Protocol Buffers [33], also known as Protobuf, is a language-neutral exchange format

developed by Google being faster and simpler than other schemas such as XML or JSON

for using automatic generation and validation of data objects.

Its purpose is to provide a serialization format for typed structured data packages that are

up to a few megabytes in size mainly used in inter-server communications as well as for

storing data archives on disk.

The schema is defined by messages which represent the data structure of the objects to

be created. These messages are formed by the different fields that constitute the object

using a unique number to identify those fields in the message binary format.

Related fields can be implemented as several data types, such as integers, strings, or

Booleans. It also includes enumeration and oneof types, in which the latter is applied when

a message has multiple optional fields and no more than one field is defined at the same

time. However, personal message types can also be set, only has to specify a field type,

and import the required definitions.

The version implemented for Phenopackets is proto3 which defines the fields as optional

when it is not necessary to be set, repeated to specify fields that may be present a number

of times, including zero, or singular, when a message can have 0 or 1 of this field but not

more.

An example of a message is shown in Figure 6, in which the element Phenopacket is

described in a file with the extension .proto. As it has the advantage of being readable in

all programming languages, once the developer has selected his/her language, the proto

file will generate a code to later encode or decode the data.

23

Figure 6 Source code of phenopackets.proto

There are two variables defined: java_multiple_files and java_package, since the

programming language selected to develop the project is Java. The first one option

java_package = "org.phenopackets.secure.schema"; is the package declaration

where the generated code will be placed. While option java_multiple_files = true;

is to specify that separate files have to be created according to the message, enumeration

and service identified in the file.

Then to create, import and export protobuf data to Java code, it is necessary to use Protoc,

the protocol buffer compiler created by Google. It can be found on GitHub [34] as well as

the official page of Google developers [33]. So, to generate the Java files associated to

each protobuf the following command must be executed:

$ protoc --proto_path= phenopackets/secure/schema --java_out=.

phenopackets/secure/schema/core/base.proto

− The parameter –proto_path is the source directory with the proto file

− The –java_out option is the destination directory where the java code will be written

24

Finally, the code generated by Protobuf provides a variety of methods that allow retrieving

data from files or serializing data to a file as well as getting specific values from fields or

checking if it exists. The following figure shows the Protobuf workflow provided by Google

but adapted to the characteristics of this project.

Figure 7 Protobuf workflow

6.2. Security mechanisms

In this section, it will be explained the three chosen mechanisms that will provide such

security features. As defined in section 4.4, the data is separated into two categories:

restricted and confidential. This classification is done to provide different levels of security

depending on the data required, therefore, two different mechanisms have been chosen.

In the case of restricted data, a Hybrid encryption will be used, while for confidential data

a Hash function will be applied. In addition, the entire Phenopacket schema will be digitally

signed by its creator to verify that the schema sent is the same from one side of the

transmission to the other.

Based on this, an intensive search was carried out on which Java libraries were currently

available that provide these features, finding Google cryptographic API known as Tink [35]

and Bouncy Castle API [36].

Tink is an open-source library that allows you to apply different algorithms within your code

via cryptographic building blocks that are named as primitives. Each of them offers a

specific API according to the encryption method chosen, hence a specific key type. It has

the advantage of connecting to an external Key Management System (KMS) to store the

generated keys. However, since this project aims to show how the different mechanisms

have been implemented as well as their use, a simpler implementation has been adopted

where the keys will be stored locally in JSON format.

On the other hand, in order to compute the hash of the element, another package was

required, namely Bouncy Castle. This is a lightweight cryptographic API developed in Java

that provides several cryptographic algorithms including hashing. The API was selected

because it allows to implement different strong hashing algorithms without requiring long

lines of code. As in the previous case, the calculated hashes will be stored together in a

file to facilitate the search and verification of each one of them.

It should be noted that the most correct and secure scenario would be through the use of

KMS as well as some other tools or database that allows more secure storage of computed

hashes.

25

Table 4 represents a summary of the methods applied as well as the technologies and

elements to be protected, which will be explained in more detail in the following subsections.

Type of data Security method Technology

Restricted data Hybrid encryption Tink Library

Confidential data Keccak Hash Bouncy Castle API

Phenopacket Digital Signature Tink Library

Table 4 Security technologies to be applied in the Phenopacket schema

6.2.1. Hybrid encryption

The hybrid encryption has the objective of protecting data that wants to be exchanged. In

Encryption algorithms it could be seen that there are two types of encryptions: symmetric

and asymmetric, in which it was also pointed out how a better approach will be the

combination of both algorithms.

In order to work in a hybrid encryption scenario, Tink incorporates two primitives called

HybridEncrypt and HybridDecrypt, that allows sharing encrypted data using the

public key to encrypt and the private key to decrypt. This feature is useful, since it is not

necessary to keep any kind of secret, since only the public key of the receiver is used for

encryption.

Regarding the key type selected, Tink incorporates different types to generate the keyset

depending on their security and project requirements. In this case, the following key

template has been selected:

ECIES_P256_HKDF_HMAC_SHA256_AES128_GCM

The template incorporates three different algorithms:

• First, it uses ECDH over NIST P256 as a Key Encapsulation Mechanism (KEM)

which relays in asymmetric encryption for symmetric key distribution

• Then, the AES128-GCM algorithm is selected as Data Encapsulation Mechanism

(DEM) in charge to encrypt the message via symmetric encryption

• Finally, a HKDF-HMAC-SHA256 as the Key Derivation Function (KDF) that derives

secret encryption material from a shared key using a hash function as a

pseudorandom function

These primitives also included the use of a context being an extra parameter that is linked

to the data to be encrypted and whose information is publicly available. Its application

allows to add integrity to the data since the context will be necessary for the correct

decryption.

Finally, the following figure represents the implementation flowchart, which will be

explained in more detail in section 6.3.3.

26

Figure 8 Hybrid encryption flowchart

6.2.2. Digital signature

The above mechanism provided secrecy to the Phenopackets elements; however, it is also

important to bring authenticity with integrity to the schema in order to verify that the data

has not been corrupted during the exchange. This authenticity also allows us to confirm

that the Phenopacket sender is who he claims to be.

As this feature will be applied for the whole Phenopacket structure, Tink includes a primitive

to implement the digital signature mechanism. Specifically, it will use two primitives:

PublicKeySign and PublicKeyVerify which require another set of keys to carry out

its process. In section 5.2.1, it was mentioned that a good digital signature algorithm is

ECDSA, and since Tink provides it, the keys are generated using the ECDSA_P256 key

template.

In this case, the keys have been generated using the Google tool called tinkey that

automatically creates them using a specific algorithm. This tool is used because it was

considered that these keys represent a security threat if they are created from the code,

due to the characteristics of the mechanism itself.

The following commands have to be executed in order to generate the keyset.

For the private key:

$ tinkey create-keyset --key-template ECDSA_P256 --out-format JSON --
out sk_sign.json

And for the public:

$ tinkey create-public-keyset –in sk_sign.json --in-format JSON --out-
format JSON --out pk_verify.json

As it can be seen, both keys are generated in JSON format with the --out/in-format

parameter. Then, the private key named sk_sign.json is generated using the Elliptic

Curve Digital Signature Algorithm (ECDSA) indicated with the --key-template

parameter. Finally, the public key named pk_verify.json is created from the private

key via create-public-keyset parameter.

27

Once the keys have been obtained, the Phenopacket can be signed. As shown in Figure

9, the process would start with the creator of the Phenopacket who wants to send the

schema to another person. The steps to follow are similar to the previous mechanism, in

this case the creator's private key is used to sign and the signature is stored together with

the serialized Phenopacket in a JSON file. Once this is done, the creator can send the file

that has just been created through a secure channel.

The receiver then obtains the file and uses the sender's public key to verify the signature.

If the verification is correct, then it can confirm that the sender of the Phenopacket is really

its creator and can make use of it, otherwise the format has been corrupted and should be

discarded.

Figure 9 Digital signature flowchart

6.2.3. Hash

It was explained that a cryptographic hash function produces a unique output with the same

size for the same input. Therefore, this mechanism was selected to ensure integrity in those

circumstances where the data sent include confidential information, but still not represent

a threat to the individual.

As previously mentioned, the Bouncy Castle API was used to implement this mechanism.

Among the algorithms included in the API, it was decided to choose Keccak256, since it is

one of the most secure algorithms currently considered. This mechanism is the easiest to

implement and use, it only requires importing the library and calling the methods created

by the class and it will automatically do the hashing.

28

6.3. Development

The development or implementation phase is the most important stage, as its purpose is

to add the aforementioned mechanisms within the structure.

When working with an Agile methodology, changes are made progressively as some of the

main ideas are discovered or changed. Therefore, in this section it will find annotated what

changes have been made as well as the final implementation.

On the other hand, working with Protobuf implies using the classes and methods created

by it with any possible modification and consequently, all new code must be implemented

in different files. Therefore, to have a better schematized project, it was decided to export

a JAR file of the Phenopackets schema project obtained from Protobuf, to later import it

into the final project where the security features will be implemented. This decision has the

advantage of being able to use in the future the original schema created by GA4GH, since

it will only require adding the dependency to the project and modify the package names.

The project can be found on GitHub, but its structure can also be seen in the Project folder

structure. However, in the following pages it will highlight where to find each of the classes

created. All the technologies and libraries used to carry out the whole development process

are mentioned in the following section. Subsequently, the different classes created to

implement each of the elements and blocks that make up the schema will be described, as

well as the three selected mechanisms, specifying the classes and functions designed for

each one of them. Finally, additional functions and files have been created in order to

improve the process of development.

6.3.1. Software requirements

All the software used has been chosen considering the programming language of the

project, in this case Java. In addition, software for project management Apache Maven has

been used, since in the original version it was the selected one to work with the format.

The different technologies and libraries used are listed below with the specific version

added to the project:

• Visual Studio Code

• Java – v11

• Apache Maven

• Protoc compiler

• Java Security package

• Protocol Buffers library – v3.21.5

• Phenopacket secure schema JAR file – v1.0.0

• Tink Cryptography library – v1.6.1

• Bouncy Castle Crypto APIs – v1.7

• Nimbus JOSE + JWT – v9.23

• Junit Jupiter API – v5.7.1

To make use of these libraries, they must be added as dependencies in the file named

pom.xml. As an example, the dependency corresponding to the Buffer Protocol is shown

in Figure 10.

https://github.com/Judit-cab/phenopackets-security-features

29

<dependencies>

 <dependency>

 <!-- Protobuf -->

 <groupId>com.google.protobuf</groupId>

 <artifactId>protobuf-java</artifactId>

 <version>3.21.5</version>

 </dependency>

</dependencies>

JAR file

Before starting to detail each one of the classes created, it is necessary to understand what

the JAR file contains. As mentioned before, this file is composed of the different Java’s

classes generated by the .proto files in the Definition stage that were associated with

each block and element of the proposed schema.

Once those files are generated, each element of the schema has two different Java classes

named as Builder and the main class which cannot be modified. The Builder class is used

to create the instance of the class, so it only has setter methods. Then, the main class of

the element contains accessor methods for each field that composes the element, this

means that getters and setters are defined to set a proper value in the field and finally

construct the element making use of the build() method.

Furthermore, each main class has methods for writing and reading messages of the type

chosen using the protocol buffer binary format such as serializing the message to return a

byte array containing its raw bytes or parses a message from the given byte array.

As it can be seen, the project contains a large number of files, which could make it difficult

to read the new code created. Therefore, it was decided to export the project to a JAR file

and include it in the final project as a dependency, as Figure 11 shows.

Note that the JAR file has to be built in the repository before adding it as a dependency

through the following command:

$ mvn install:install-file -Dfile=[jar_file_path]

 <dependencies>

 <dependency>

 <!-- JAR file -->

 <groupId>org.phenopackets.secure.schema</groupId>

 <artifactId>Phenopackets-secure-schema</artifactId>

 <version>1.0.0</version>

 </dependency>

</dependencies>

This solution provided two important advantages. Firstly, it allows to have a better structure

within the project and secondly, by being treated as a dependency, it allows the possibility

that in the future the original schema can be added where it will only be required to update

the imports within the classes.

Figure 11 Phenopacket schema JAR file dependency in pom.xml file

Figure 10 Protobuf dependency in pom.xml file

30

6.3.2. Phenopacket schema classes

In the JAR file it has been explained that the automatically generated classes cannot be

modified, this implies that in order to work with the different elements of the Phenopacket,

new Java’s classes are required.

In this case, three classes have been designed to create and use the format, which can be

found at: \src\main\java\phenopackets\schema. Each of these classes are

explained below being one for blocks elements, another for the main elements that

compose the Phenopacket and finally, a class to create a secure Phenopacket schema.

A. BlockBuilder

The BlockBuilder class corresponds to the implementation of all the building blocks that

are defined within the main elements. Specifically, these blocks correspond to:

• Ontology Class

• Resource

• Evidence

• Quantity

• Dose Interval

• Time elements: Age, Timestamp, TimeInterval

• Medical actions: Procedure, Treatment ,RadiationTherapy, TherapeuticRegimen

Before starting to explain the different functions created, it has to be noted that the

KaryotypicSex field could not be secured as proposed in section 4.4, since the

implementation of the field does not allow making any kind of change on it. However, it was

finally decided that the field will no longer be categorized as restricted or confidential data,

since not provides the sex of the individual in a currently manner, and thus it provides some

security.

All blocks have been created using the same procedure. First, as input parameters the

fields that compose that element are required. Then, to create a new instance, the methods

used are those implemented by default in the aforementioned Java classes. Specifically,

the following three methods are called:

1. The newBuilder method is the function in charge of creating the new instance of

the object, so it will always be called, whether it is a block or a main element

2. The set[name_field] method is the function that adds the value specified by the

input parameters to each field. Each field has its own set method, and this method

also performs the corresponding input validations to use only the specified types.

This means that if a field corresponds to a String, it can only contain String values

3. The build() method is used to build the object which will be returned as an output

parameter

Figure 12 shows the method to create an OntologyClass object, as it can be observed,

the method has two input values: the ontology identifier and the label.

31

 public static OntologyClass createOntologyClass (String id, String label){

return OntologyClass.newBuilder()

 .setId(id)

 .setLabel(label)

 .build();

 }

In this class there are two methods to highlight related to Age element. First of all, it is the

block that assigns the value of timeAtLeastEncounter field, which was categorized as

restricted data, and therefore to be protected. Thus, the first designed function uses a

hybrid encryption method in its creation, as shown in Figure 13, since it is the one chosen

to ensure the security of this type of data.

public static TimeElement createTimeElementAge(byte[] isoDuration, byte[]

context) throws IOException, GeneralSecurityException, URISyntaxException{

// Encrypt the age and store it in Base64

byte[] cipherBytes = HybridEncryption.hybridEncryption(MODE_ENC,

isoDuration, context);

 String cipherAge = Base64.getEncoder().encodeToString(cipherBytes);

// Create age element

 Age age = Age.newBuilder().setIso8601Duration(cipherAge).build();

 // Create and return TimeElement

 return TimeElement.newBuilder().setAge(age).build();

 }

The second method is a function to recover the original value by means of the decryption

function. As Figure 14 shows, the method gets the Age instance from the TimeElement

object, and then it uses the decryption function to recover the plaintext. The hybrid

encryption will be explained in more detail in section 6.3.3.

Figure 12 Source code of createOntologyClass method

Figure 13 Source code of createTimeElementAge method

32

public static String getAge(TimeElement timeElement, byte[] context)

throws IOException, GeneralSecurityException, URISyntaxException{

// Get age from TimeElement and the corresponding value

 Age ageElement = timeElement.getAge();

 String isoDuration = ageElement.getIso8601Duration();

 // Decrypt age

 byte[] ageBytes = Base64.getDecoder().decode(isoDuration);

byte[] age = HybridEncryption.hybridEncryption(MODE_DEC, ageBytes,

context);

// Return the Age value as String

 return new String(age);

 }

B. MainElements

The MainElements class represents the creation of the five elements that constitute the

Phenopacket being: Individual, PhenotypicFeature, MetaData, Disease and MedicalAction.

The methodology followed to build each element is the same as blocks, but in this case

some elements require an input validation for its own creation. Specifically, those elements

including a time element field either age or a time interval.

Starting with Individual element, only one method has been designed to build the

element. In this element, it is necessary to validate the input parameter named

timeAtLastEncounter since it corresponds to the age of the subject and also, it is one

of the encrypted fields. It is also included the subject identifier , and then another function

was implemented to create them as arbitrary identifiers (see Figure 15). This function called

generateIndividualId() returns an identifier formed by a letter together with six digits,

which are chosen randomly thanks to the cryptographically Java class SecureRandom of

the Security Java package.

The same input validation is required for the Disease element according to its onset

field. It should also be mentioned that the creation of a disease is divided into two methods:

one for rare or common disease and another for cancer, since it may include or not all the

fields depending on the subject’s disease.

The last required input validation is for the PhenotypicFeature element, in which the

fields regarding the time at was first observed as well as was resolved, it is set via a

timestamp.

Figure 14 Source code of getAge method

33

private static String generateIndividualId() throws

NoSuchAlgorithmException, NoSuchProviderException{

SecureRandom secureRandom;

 String randomNumber = new String();

// Get a true random number generator

 try {

secureRandom = SecureRandom.getInstanceStrong();

} catch (NoSuchAlgorithmException ex) {

 secureRandom = new SecureRandom();

 }

// Get a random number of 6 digits

 for (int i=0; i<6; i++) {

randomNumber += String.valueOf(secureRandom.nextInt(9));

}

// Individual identifier begins with P

String id = "P"+randomNumber;

return id;

 }

As for the MedicalAction element, it has been divided into several methods, each one

implementing an allowed action using the same procedure previously described. There are

8 methods available, two for each action, where the first four create the element with all its

fields whereas the last four only build the required action.

Figure 16 represents the function to create a medical action related to treatment.

public static MedicalAction createMedicalTreatment(Treatment treatment,

OntologyClass treatmentTarget, OntologyClass treatmentIntent, OntologyClass

treatmentResponse, List<OntologyClass> adverseEvents, OntologyClass

treatmentTermination){

return MedicalAction.newBuilder()

.setTreatment(treatment)

 .setTreatmentTarget(treatmentTarget)

.setTreatmentIntent(treatmentIntent)

.setResponseToTreatment(treatmentResponse)

.addAllAdverseEvents(adverseEvents)

.setTreatmentTerminationReason(treatmentTermination)

.build();

 }

 Figure 16 Source code of createMedicalTreatment

Figure 15 Source code of generateIndividualId method

34

Finally, the MetaData element involves the development of five functions in order to

implement the security features chosen in the second phase of the project. An explanation

of each of these methods is given below.

The first method called createMetaData() is the same function created for the building

of the rest of elements, where any security mechanism has been implemented. Then, a

second function with the same objective named protectedMetadataCreator() is used

to encrypt the creator of the Phenopacket and construct the element using a hybrid

encryption. The output cipher is used to set the value of the createdBy field.

For those situations where it may be necessary to protect the entire element, two functions

have been developed to allow encryption and decryption. The first method called

protectedMetaData() has as an input the particular element, which is serialized to a byte

array and then encrypted. While the second method getMetaData() uses the decrypt

function to recover the original bytes in order to reconstruct the element using a parse

function provided by the original Java class.

public static MetaData getMetaData(byte[] metaDataBytes, byte[] context)

throws IOException, GeneralSecurityException, URISyntaxException{

// Decrypt MetaData element

byte[] plainMetaData = HybridEncryption.hybridEncryption(MODE_DEC,

metaDataBytes, context);

// Create a new MetaData element using parseFrom function

return MetaData.parseFrom(plainMetaData);

 }

Additionally, an extra function has been created to decrypt and recover the creator called

getMetaDataCreator() which follows the same procedure that the last one mentions,

but in this case gets the corresponding bytes of the createBy field and use it as an input

parameter in the decryption function, to finally return the original value.

C. SecurePhenopacket

Once we have all the elements and blocks defined, the construction of the Phenopacket

can be done. For this purpose, a class called SecurePhenopacket was defined to create a

Phenopacket with all the main elements as well as to implement the security features

regarding it.

As in the previous cases, the first designed method was the one that allows the creation of

a new Phenopacket, which has been named as createPhenopacket(), using the same

procedure as the other elements described above. In addition, a Phenopacket also needs

an identifier, so the function generatePhenopacketId() was implemented to generate a

universal unique identifier (UUID) class as follows:

 public static String generatePhenopacketId() {

return String.valueOf(UUID.randomUUID());

 }

Figure 17 Source code of getMetaData method

Figure 18 Source code of generatePhenopacketId method

35

In relation to the security features added to the Phenopacket element, it was decided to

implement the digital signature to provide authentication. Therefore, within this class there

are two functions: signPhenopacket() and verifyPhenopacket(), that allow signing

and verifying Phenopackets both functions, only requires the element as input parameter.

As an example, Figure 19 shows the function that allows verifying a Phenopacket, the

DigitalSignature class is explained in section 6.3.3.

public static void verifyPhenopacket(Phenopacket phenopacket) throws

IOException, URISyntaxException, ParseException{

// Serialize to byte array

 byte[] phenopacketBytes = phenopacket.toByteArray();

// Get the ID as identifier

String id = phenopacket.getId();

// Verify the element

DigitalSignature.protectWithDS("verify", phenopacketBytes, id);

 }

In the case of wanting to protect the MetaData element, a function has been created to

retrieve the element from the Phenopacket and then encrypt it by means of the function

explained in the previous section. Simultaneously, the element is removed from the

Phenopacket so that no plain data is kept, however it is required to store both elements

together in order to be able to proceed later to its decryption. This function can be found

under the name protectMetaData().

Finally, several additional functions have been designed to retrieve the stored bytes from

files for its future re-building, as well as to import and export a Phenopacket in JSON format.

public static void exportPhenopacket(Phenopacket phenopacket) throws

URISyntaxException {

try{

String jsonString =

JsonFormat.printer().includingDefaultValueFields().print(phenop

acket);

File phenopacketJson = externalResource.createNewFile("P-

"+phenopacket.getId()+".json");

BufferedWriter fileWriter = new BufferedWriter(new

FileWriter(phenopacketJson));

 fileWriter.write(jsonString);

 fileWriter.close();

}catch(IOException ex){

 ex.printStackTrace();

 }

 }

Figure 19 Source code of verifyPhenopacket method

Figure 20 Source code of exportPhenopacket method

36

6.3.3. Security Mechanisms classes

This section explains the different classes designed for the chosen security mechanism,

which can be found at: \src\main\java\phenopackets\securityMechanisms.

First, the HybidEncryption class that allows encrypting the data considered as restricted is

implemented, both the encrypt and decrypt functions are explained. Next, it describes the

DigitalSignature class including the process of signing and verifying an element. Finally,

for those data that require a minimum of security, previously considered as confidential

data, a class named Hashing has been developed and thus, provide integrity to the added

value.

A. HybridEncription

The HybridEncription class is formed by multiple methods that constitute the entire process

of encryption. Specifically, these methods are:

• createKeySet() – it creates the key set

• private hybridEncryption() – it performs the encryption process

• private hybridDecryption() – it performs the decryption process

• public hybridEncryption() – main function that runs the specified encryption

mode

• saveInFile() – it stores the corresponding encrypted bytes in a JSON file

• getCipherBytes() – it retrieves the stored cypher bytes

To proceed with the hybrid encryption, it is necessary to have a key set, for that reason the

function createKeySet() was created. This method generates a pair of keys, private and

public, considering the chosen algorithm and storing each key in a JSON file for ease of

use.

Then, the hybridEncryption() method implements the encryption process using the

HybridEncrypt class of Tink. Likewise, the private method to decrypt called

hybridDecryption() uses the functions defined in HybridDecrypt class.

Both actions follow the same methodology, first the keyset needs to be read and stored

into the KeysetHandle class. Depending on the action to perform, a primitive will be created

getting the object encryptor or decryptor and subsequently, it will call to the encrypt or

decrypt function implemented by Tink. Finally, in order to simplify handling and sending,

both the ciphertext and the plaintext will be serialized to a byte array.

Figure 21 shows the private method related to the encryption step.

37

private static byte[] hybridEncryption(byte[] element, byte[] contextInfo)

throws GeneralSecurityException, URISyntaxException{

// Input validation

if (element == null || element.length == 0){

throw new NullPointerException();

}

if (contextInfo == null || contextInfo.length == 0){

throw new NullPointerException();

}

// Read the keyset into a KeysetHandle

KeysetHandle handle = null;

 try {

handle =

CleartextKeysetHandle.read(JsonKeysetReader.withFile(externalRe

source.getFileFromResource(PK_FILE)));

} catch (GeneralSecurityException | IOException ex) {

System.err.println("Process error: " + ex);

}

// Get primitive related to the encryption

HybridEncrypt encryptor = null;

 try {

encryptor = handle.getPrimitive(HybridEncrypt.class);

} catch (GeneralSecurityException ex) {

System.err.println("Process error: " + ex);

}

// Encrypt and return the ciphertext

byte[] ciphertext = encryptor.encrypt(element, contextInfo);

return ciphertext;

 }

Since both previous methods were designed as private, a main function was created to

perform any of the two functions by passing the required action as a parameter. This

method, also named as hybridEncryption() checks if the corresponding keys exist as

well as the indicated mode is correct. Once the validations were done, the method called

the previous functions depending on whether it wanted to encrypt or decrypt the data.

Figure 22 shows the complete function where a mode, an element and a context are

required as an input parameter. The context parameter was explained in the Hybrid

encryption section and represents the Phenopacket ID associated with the data.

Figure 21 Private method to encrypt an element

38

public static byte[] hybridEncryption(String mode, byte[] element, byte[]
context) throws IOException, GeneralSecurityException, URISyntaxException{

byte[] res;

// Initialize the hybrid configuration

 HybridConfig.register();

// Check if exist the keyset

 File hybridFile = externalResource.getFileFromResource(SK_FILE);

 List<String> lines = Files.readAllLines(hybridFile.toPath());

// If not, create the keyset for the process

if (lines.size()==0) {

 createKeySet();

 }

// Check the mode is correct

 if (!mode.equals("encrypt") && !mode.equals("decrypt")) {

 System.err.println("Incorrect mode.");

 }

// If the mode is “encrypt”, then call function hybridEncryption,

otherwise call hybridDecryption

 if (mode.equals("encrypt")) {

 res = hybridEncryption(element,context);

 return res;

 }else{

 res = hybridDecryption(element, context);

 return res;

 }

 }

B. DigitalSignature

The DigitalSignature class is composed of three methods that carry out the process of

signing and verifying a Phenopacket. This class is also using the Tink cryptographic library

by Google. An additional function was also designed to search for a signature along with

the associated Phenopacket in a JSON file.

The signElement() method has the functionality of signing a Phenopacket using the

PublicKeySign class provided by Tink as well as the private key. It has been designed as

a private method and the only required input parameter is the element bytes, therefore the

returned output is the corresponding signature bytes.

Figure 22 Source code of hybridEncryption method

39

private static byte[] signElement(byte[] element) throws

GeneralSecurityException, IOException, URISyntaxException{

// Input validation

if (element == null || element.length == 0){

throw new NullPointerException();

}

// Read and store the private key to sign

KeysetHandle handle =

CleartextKeysetHandle.read(JsonKeysetReader.withFile(resourceFile.get

FileFromResource(SK_FILE)));

// Create the signer instance and get the associated primitive

 PublicKeySign signer = null;

try{

 signer = handle.getPrimitive(PublicKeySign.class);

 }catch(GeneralSecurityException ex){

 System.err.println("Process error: " + ex);

 }

// Sign and return the signature bytes

byte[] signature = signer.sign(element);

return signature;

 }

To verify the signature, it is required another function that uses the returned bytes together

with the element bytes and proceeds with the verification. The verifyElement() is a

private method that uses the PublicKeyVerify class from Tink to perform this action,

although the steps followed are the same shown in Figure 23, in this case a Boolean value

is returned to validate the process.

As the hybrid encryption class, a main function named protectWithDS() has been

implemented allowing another class to apply this mechanism. This method requires the

element name, its bytes, and the mode to apply as an input parameter.

Regarding the modes, there are two possibilities: sign or verify, any other input will be

rejected, and the procedure will fail. If the mode is “sign”, then the private function is called,

and the returned bytes are stored in a file together with the Phenopacket byte array. Then,

this file will be used to search for the corresponding signature and check via the last

function if the signature is valid.

Figure 23 Private method to sign an element

40

public static void protectWithDS(String mode, byte[] elementBytes, String

elementID) throws IOException, URISyntaxException, ParseException{

//Set variable

Boolean isVerified = false;

try {

// Set the Digital Signature configuration

SignatureConfig.register();

// Check the mode is correct

if (!mode.equals("sign") && !mode.equals("verify")) {

System.err.println("Incorrect mode.");

}

if(mode.equals("sign")){

byte[] signatureBytes = signElement(elementBytes);

// Store the signature in a jsonObj with the signature

String ptSignature = new

String(Base64.getEncoder().encode(signatureBytes),

StandardCharsets.UTF_8);

String ptPhenopacket = new

String(Base64.getEncoder().encode(elementBytes),

StandardCharsets.UTF_8);

externalResource.createJSONFile(SIGNATURES_FILE, ptPhenopacket,

elementID);

externalResource.createJSONFile(SIGNATURES_FILE, ptSignature,

elementID+"-Signature");

} else if(mode.equals("verify")){

isVerified = searchSignatureAndVerify(elementBytes, elementID);

System.out.println("Verified:" + isVerified);

 }

 } catch (java.security.GeneralSecurityException e){

System.out.println("Error protecting with DS");

 }

 }

As Figure 24 shows, the verification process uses a private method named

searchSignatureAndVerify() which corresponds to the search of a signature stored in

a file whose only requirement is to specify the Phenopacket ID used as the filename.

C. Hashing

The Hashing class performs hash computation functions for different elements within the

schema. Specifically, it includes the main function being responsible for hashing and five

more functions that allow to compute, get, and check the hash of the elements classified

as confidential data (see section 4.4).

Figure 24 Source code of protectWithDS method

41

Starting with the function in charge of hash calculation, computeHash() is a private method

that uses the Keccak.Digest256() instance offered by Bouncy Castle and returns the

corresponding hash bytes of the element passed as input parameter.

 private static byte[] computeHash(byte[] element) {

// Input validation

if (element == null || element.length == 0){

throw new NullPointerException();

 }

// Generate a new Keccak instance

Keccak.Digest256 digest256 = new Keccak.Digest256();

// Compute hash of an element

byte[] hashBytes = digest256.digest(element);

return hashBytes;

 }

The rest of functions use this method at the moment to calculate it, so a function was

created for each element with the same procedure. First, it is necessary as input parameter

the element and the Phenopacket ID. Once the hash has been computed, the obtained

bytes are stored in a file linked to the element’s name which will allow for checking if the

hash is still the same or has been manipulated. As a proof of concept, the following figure

shows the function developed for the Disease element.

public static String computeDiseaseHash(Disease disease, String

phenopacketId) throws IOException, URISyntaxException{

// Serialize the Disease element to a byte array

byte[] diseaseBytes = diseaseElement.toByteArray();

// Compute the hash

byte [] hash = computeHash(diseaseBytes);

// Store the hash in a file linked with its name

externalResource.addHashToFile(phenopacketId, hash, diseaseName);

// Return the hash as String

 return new String(Hex.encode(hash));

 }

Next, to retrieve the stored hash, the getHash() function has been created. In this case,

the file and the name of the element is required as an input parameter. Then, the function

searches in the file and returns the hash according to the input name.

Finally, to check if the hash remains the same, a function has been developed that

calculates the hash of an element and then compares it with the stored one. In Figure 27

it is shown how a Boolean variable is returned to validate the hash, so if the hashes match,

the function returns true, otherwise the element is corrupted, and the function returns false.

Figure 26 Source code of computeDiseaseHash method

Figure 25 Source code of computeHash method

42

 public static boolean checkHash(byte[] element, String storedHash){

boolean result = false;

// Input validation

 if (element!=null && !storedHash.isBlank()){

byte [] hash = computeHash(element);

 String computedHash = new String(Hex.encode(hash));

// Compare both values

 result = computedHash.equals(storedHash);

 System.out.println(result);

}else{

 throw new NullPointerException();

 }

return result:

 }

6.3.4. Additional class and files

During the course of the development, certain circumstances have arisen that required

external functions not related to the purpose of the project, but necessary for its

implementation. In addition, for a better management of the project it was algo required to

create different external files.

In this section it is going to explain the class that includes all these external functions named

as ExternalResources and which can be found at:

\src\main\java\ phenopackets\securityMechanisms. Next, the different

external files with those created by the project will be listed. These files are located under

the resources folder.

A. ExternalResource class

This class has been created to implement the different functions needed to develop the

main security features of the project. Basically, the class is composed of several methods

that allow it to work with external files, from the creation of a new file to looking for a specific

one. These methods are:

• getFileFromResource() – it returns a file located in resources folder, otherwise

creates a new one

• createNewFile() – it creates a new file

• addHashToFile() – it adds a new hash to file

• createJSONFile() – it creates a new JSON file and adds a JSON object. In case

the file already exists, then add the new object to the file

• getJSONFromFile() – it returns a JSON object from the file

Figure 27 Source code of CheckHash() method

43

Among the different functions that can be found in the class, it is important to highlight three,

since they are called in the encryption and signing process. The first one is named

addHashToFile() and is used in the Hashing class to save the computed hash in a file.

This function needs the filename to store the hash with its value as an input parameter.

Then, the method gets the file and adds in a new line the hash encoded in hexadecimal.

The next method created was createJSONFile() and as its name suggests, it is designed

to create JSON files. This function is used to store both the different signatures that can be

created, as well as the encrypted elements, since both require to be linked to another factor,

such as the name of the element or directly the Phenopacket serialized in byte array.

It has been contemplated that a file already contains a JSON object and therefore, only

needs to add a new field within it. For example, if the sender wants to send more than one

signed Phenopacket at a time, it will require to sign each of them and save the

corresponding signature in one file. In that case, the previous function calls a third one that

allows retrieval of the stored JSON object, and which will be saved in a variable to be

manipulated later, adding this new field.

This new method is called getJSONFromFile() and Figure 28 shows how it was

implemented.

public JSONObject getJSONFromFile(File jsonFile) throws ParseException,

IOException {

JSONObject js = new JSONObject();

try(FileReader reader = new FileReader(jsonFile)) {

JsonReader jsReader = new JsonReader(reader);

 jsReader.beginObject();

// Save fields and keys

 while (jsReader.hasNext()) {

 js.appendField(jsReader.nextName(), jsReader.nextString());

 }

 jsReader.endObject();

 jsReader.close();

 }catch (FileNotFoundException e) {

 e.printStackTrace();

 }

return js;

 }

B. Files

The previous section showed how additional functions were required to create files. The

files created automatically during the execution of those functions are listed below with a

brief explanation of what each of these files are.

Note that there are two more files within this project that are not explained in this section,

since they were created using the tinkey tool (see Section 6.3.3).

Figure 28 Function to get a JSON object from file

44

The created files are:

• signatures.json. A JSON file where all the signatures created with the

protectWithDS() method linked to the Phenopacket identifier are stored

• sk_hybridEnc.json. The private key generated with the createKeySet()

method of the HybridEncryption class is stored in this file

• pk_hybridEnc.json. Like the previous file, this one has the public key

generated from the private key

• [PhenopacketID].txt. This file stores the different hashes that can be

computed in the Hashing class where [PhenopacketID] is the Phenopacket

identifier that includes the element

• P-[PhenopacketID].json. Same as the above file, but in this case the

different encryptions performed in HybridEncryption are stored along with the

serialized Phenopacket in a byte array

45

7. Evaluation

Once all the security mechanisms have been developed, they must be tested in order to

corroborate that the implementation has been correctly done. Considering the scope of the

project, these verification tests must include both the correct creation of the different

elements and Phenopacket, and also that the previously described functions fulfill each of

their functionalities.

Therefore, this section will explain the several tests designed to evaluate whether the

implementation has been carried out correctly or not. All verification tests created in the

project can be found at: \src\test\java\tfm\phenopackets_schema and

\src\test\java\tfm\securityMechanisms .

Furthermore, in order to perform the test, two java classes have been created, which can

be found in the examples folder. These classes generate the different elements associated

with a medical case, whose values have been obtained from [23]. Specifically, these two

examples correspond to a covid19 case and a cancer case, one example with the values

of these classes could be found at appendix Covid19 example.

7.1. Verification tests

The tests explained in this section have been developed using the JUnit framework that

allows automated tests on Java via @test annotation and check if the obtained results are

the expected ones.

7.1.1. Phenopacket creation test

Before starting to check if security mechanisms are correctly implemented, the creation of

the Phenopacket elements as well as the Phenopacket schema must be tested to ensure

that the following proves could be created without errors. As a result, eight test cases were

developed in SecurePhenopacketTest.java :

• checkIndividualCreation() – it creates an Individual element and

compares it with the original values

• checkPhenotypicFeatureCreation() – it creates a PhenotypicFeatures

element and compares it with the original values

• checkDiseaseCreation() – it creates a Disease element and compares it with

the original values

• checkMedicalActionCreation()– it creates a MedicalAction element and

compares it with the original values

• checkMetaDataCreation() – it creates a MetaData element and compares it

with the original values

• checkPhenopacketCreation() – it creates a Phenopacket element and

compares it with the original values

• checkJsonExportation() – it returns a JSON file with the Phenopacket schema

• checkImportPhenopacketFunction() – it verifies that a Phenopacket can be

retrieved from a JSON file

46

Then, the procedure followed in these tests was as follows:

1. Get the values from the covid19 example

2. Each element has its own creation functions in covid19 class, which was used to

create the element to check

3. Finally, each field of the element is compared with the value defined in the class

4. If the values are equals, the test will be passed, otherwise an error is shown that

indicates which values are not the same

All tests created were passed, however, to test the correct implementation of ID’s it was

changed to the assertion in checkPhenopacketCreation() test since its creation implies

arbitrary identifiers for the subject of the Phenopacket, so the following error is shown.

Figure 29 Expected error in phenopacketCreation() test

As Figure 29 shows, another value differs from the expected Phenopacket, which

corresponds to the age value. This fact occurs because of the security mechanism

implemented in this field. It was explained that it uses hybrid encryption to encrypt the value

and use some randomness to provide more security, so it is correct that both values are

not equal.

7.1.2. Hybrid encryption tests

This class is implemented to test the methods developed in the HybridEncryption class

using the Covid19 case. To avoid unexpected errors, the Phenopacket ID was created by

the generatePhenopacketId() function and defined within the example case. Likewise,

it has five test cases, a summary of them is provided in the following tables.

As a proof of concept, the following figure shows that all tests have been passed correctly:

Figure 30 Tests created for hybrid encryption

47

The tests related to the Age element are:

Test name encryptAge()

Test Objectives Test that will encrypt an iso8601 using the HybridEncription class and

then insert it into the Age block. Specifically:

• Verify the correct implementation of createAge() function

Test expected

result

Expected encrypted age and not the original value provided.

Test and result

obtained

Table 5 Test to verify Age encryption

Test name checkAgeDecryption()

Test

Objectives

Test that will decrypt the Age block using the HybridEncription class.

Specifically:

• Check the decryption through getAge() method

Test expected

result

The age value in iso8601 format being P70Y

Test and result

obtained

Table 6 Test to verify Age decryption

48

A test to check the encryption of Phenopacket creator:

Test name createMetaDataProtectingCreator()

Test Objectives Test that will encrypt and decrypt the createdBy field of MetaData

element using the MainElements class. Specifically:

• Check the correct use of

protectedMetaDataCreator()method which encrypts

the data

• Verify the decryption via getMetaDataCreator() method

Test expected

result

Two results have to be returned in this test:

• The createdBy field has to be different from the original value

provided (Judit C.)

• The value obtained with getMetaDataCreator()has to be

the same as the original

Test and result

obtained

Table 7 Test to verify CreatedBy field encryption and decryption

49

A test to check the encryption of MetaData element:

Test name checkMetaDataEncryption()

Test Objectives Test that will encrypt and decrypt the MetaData element using the

MainElements class. Specifically:

• Check the correct use of protectedMetaData() method

which encrypts the element

• Verify the decryption via getMetaData()

Test expected

result

Two results have to be returned in this test:

• The byte array of the encrypted MetaData has to be different

from the original

• The value obtained with getMetaData()has to be the

original MetaData element, which means that it has to have

the same values for each field as the original.

Test and result

obtained

Table 8 Test to verify MetaData encryption and decryption

50

A test to represent the process of encryption and decryption with a file:

Test name getAndDecryptElementsFromFile()

Test Objectives This test is the most complex one, its objective is to reproduce the

process that would be carried out in case of encrypting the whole

MetaData element. The process is as follows:

1. First, the Phenopacket is serialized to byte array and the

MetaData element is encrypted

2. Both results are stored in a JSON file

3. The receiver would receive the file and extract both byte

arrays, first deserialize the Phenopacket and then, decrypt the

MetaData element

4. Finally, the age is decrypted to check that the internal

encryptions also work correctly once the Phenopacket is

stored in a file.

Test expected

result

Several results have to be returned in this test:

• The correct encryption of both Phenopacket and MetaData

elements

• The JSON file with the byte arrays of both elements stored

• The correct decryption of the retrieved byte array, in this case

it would check the decryption of MetaData element and age

Test and result

obtained

Proof of concept of the JSON file:

Table 9 Test to verify storage and decryption of Phenopacket elements

51

7.1.3. Digital signature tests

This class is implemented to test the methods developed in the DigitalSignature class using

the Covid19 case. Specifically, a function has been created for testing the digital signature

and checking if the stored signature in the file allows to verify the Phenopacket correctly.

Test name checkDigitalSignature()

Test Objectives Test that will check the digital signature implementation. Specifically:

• Sign a Phenopacket

• Store the signature along with the Phenopacket serialized to

byte array in a file

• Retrieve the signature

• Check the verification with the signature and the

Phenopacket

Test expected

result

Two results have to be returned in this test:

1. A new signature has to be added in the files named
signatures.json

2. A true value has to be returned if the verification works

Test passed?

Test and result

obtained

The new signature has successfully been included in the JSON file.

Table 10 Test to verify digital signature feature

52

7.1.4. Hashing tests

This class is implemented to test the methods developed in the Hashing class using the

oncology case. In this case, a test has been created for each selected element to compute

the hash, however just one will be described since the procedure performed is the same in

all tests. In addition, a test to check if the method checkHash() has been implemented

correctly is also included in this class. To demonstrate that tests were successfully passed,

Figure 31 shows the response obtained by the program.

Figure 31 Tests created for hashing

The table below is an example of how it was checked the hashing of the

PhenotypicFeature element. The same test process is created for the other two

elements: Disease and MedicalAction.

Test name checkPhenotypicElementHashFunction()

Test Objectives Test that will check the hash function created using keccak256

without any error. The process is as follows:

1. Create the element, in this case PhenotypicFeature

element

2. Compute the hash using

computePhenotypicFeatureHash() function

3. The aforementioned function will save the hash in a file

4. Retrieve the hash from the file and compares with the last

computed hash to check that the storage is done correctly

Test expected

result

To pass the test a new file with the computed hashes has had to be

created.

Test result

obtained

The hashes values have successfully been included in the file

together with the name of the element.

Table 11 Test to verify the hashing process

53

The last test created is to corroborate that the same element computes the same hash.

Test name checkHashValidation()

Test Objectives Test that will check the function to compare two hashes of the same

element works properly. The process is as follows:

1. Create the element, in this case PhenotypicFeature

element

2. Compute the hash using

computePhenotypicFeatureHash function from Hashing

class

3. Retrieve the hash from the file using the name of the element

4. Compute the hash again via checkHash() function which

will compare both hashes, the new one and the stored hash.

Test expected

result

To pass the test the result has to be true that will mean both hashes

are the same and the element has not had any modification.

Test and result

obtained

A true value was returned:

Table 12 Test to validate a hash

7.2. Phenotools-validator

To finish with the validations, it was decided to use a tool provided by GA4GH called

Phenopacket-tools [37]. This tool provides a validator named Phenotools-validator that

checks if a Phenopacket is correctly created or not by checking for missing elements that

need to be specified in the schema or incorrectly defined fields. The only requirement for

its use is that the schema is provided in JSON format.

54

In this case, the schema obtained by means of the ExportPhenopacket() function was

used, as detailed in section 6.3.2. Then, in order to perform such validation, the following

command must be executed:

 $ pfx-tools validate path_to_jsonFile

where path_to-jsonFile is the location of the Phenopacket JSON file that wants to be

validated.

Finally, as Figure 32 shows, a positive result indicated with an "OK" was obtained. It is

important to note that the tool has a method to check the age field and although the schema

used had this value encrypted, it could be validated correctly.

Figure 32 Phenopacket has been successfully validated

55

8. Conclusions and future development

Over the past few years, medical data sharing has been essential, not only because such

data can help with disease research, but also because it makes it possible to share new

treatments for rare diseases.

Organizations such as Global Alliance for Genomic and Health are working on a daily

basis to improve standardized data sharing around the world. Among the many standards

that they have developed is Phenopackets, a new file format designed to exchange

phenotypic information between researchers and healthcare personnel. However, this

format provides no mechanism to ensure data privacy.

This is a challenge because, as the beginning of this document shows, the healthcare

sector is one of the most popular targets for attacks that lead to a data breach in their

environment. The reason for this is that the data used is treated as protected health

information and can be monetized by attackers after it has been stolen.

All these factors led to the study of the Phenopacket schema in order to add security

features that would allow the information to be exchanged securely, preventing an attacker

from accessing confidential information in the event an attacker takes it.

In the first part of the project, a study and analysis of the schema that defines the

Phenopacket was carried out. Once its structure was known, it was decided to create a

reduced schema with the aim of being a format that would allow the exchange of new

treatments and improve the patient’s quality of life. In addition, when designing the schema,

it was also considered which fields could include sensitive data and were completely

discarded for the project's schema unless they were a requirement of the schema itself.

Moreover, when dealing with so many different fields, a classification was needed to

differentiate which data presented a higher risk in a data leak, differentiating between two

types of data: Personally identifiable Information (PII) and Protected Health Information

(PHI). PII is sensitive information that identifies an individual, being the Age and karyotypic

sex fields the ones included. Regarding PHI, it was found that the data included differed by

countries, however, it was concluded that all data that could be part of a medical record

and whose information could be relevant to a patient's re-identification would be

categorized as PHI.

At the same time, the data were also divided into two categories: restricted and confidential.

This distinction made it possible to apply different levels of security according to the

assigned category, in this case, confidential data did not pose a risk to the individual, yet

the sensitivity of the data required minimal security of application. In contrast, PHI assigned

as restricted data required a higher level of protection. This process was not easy, as many

of the data processed were unknown and there was not enough information about how to

classify them.

To conclude the research part, an investigation was conducted to select the techniques

that will guarantee the confidentiality, integrity, and authentication of the schema. This

research resulted in the three security features applied in the project, consisting of

encryption algorithms to ensure the privacy of the restricted data, a hash function to provide

integrity of the confidential data and, lastly, digital signature to authenticate the creator of

the Phenopacket.

56

However, the choices of algorithm within these techniques are quite extensive, so the use

and reputation of the algorithm in the security community was considered when choosing

a particular algorithm. Based on the information gathered, the best approach for encryption

was to use hybrid encryption that gets the best of both types of encryptions. Meanwhile,

the digital signature chosen was ECDSA, since it provided greater security than others

currently available, and for hashing Keccack256 was the selected one, being the function

used by several blockchain projects.

Based on the exposed, a second phase was performed, which led to the development of

the security mechanism with the objective of providing security to the Phenopackets

schema for its exchange.

The development process was guided by an Agile Scrum methodology, which allowed each

feature to be implemented individually along with the tests and variations that were

necessary as the project progressed. First of all, the Phenopacket was defined using

Protobuf format, which in turn exported the schema into different Java classes that were

later used to build the project. The fact that the classes were created automatically meant

learning the methods involved in those classes as the security features were designed.

Finally, the project of this Master’s thesis was created in a Java environment that includes

the designed schema as well as the security features with the verification tests that allowed

it to check its correct operation.

Despite being a first version with basic features to fulfill the objectives, it has been observed

that it allows the Phenopacket to be exchanged securely, providing privacy and authenticity

to the format. However, it can be said that it lacks certain functionalities such as allowing

the user to design the Phenopacket directly through a terminal.

In the course of developing the project, several obstacles were also encountered, spending

more time on certain tasks than expected. On the one hand, there was a problem in

protecting the karyotypic sex of the individual, which was defined as an enumeration of

fixed values and could not be modified. Consequently, it was not possible to apply the

agreed level of security, in this case encryption, concluding not to protect the field since

the information it provided was not commonly known as gender or sex. On the other hand,

not all the security mechanisms considered in the early stages of the project could be

applied, either because of the structure of the Phenopacket itself or because of the final

scope of the project. However, the schema has been designed in such a way that any other

element not proposed in the classification may also be protected by the mechanisms

developed if requested by the user.

Furthermore, it would have been convenient to improve the storage of files and key sets,

since to facilitate implementation, they were stored in the project’s resource folder, being a

potential threat to the privacy of the user if the project falls into malicious users.

It would also have been interesting to develop a web application that would allow interaction

with the user either to customize the format according to his/her requirements or to choose

more easily the technique he wishes to use to send the data securely. Unfortunately, time

constraints did not allow to investigate this line of work and therefore it remains as a

possible future work to be done.

It can be concluded that this project can be a first step in improving data exchange, where

it has been demonstrated that a variety of security techniques can be used to ensure the

confidentiality, integrity, and authenticity to the exchange of phenotypic information, turning

the Phenopackets into a more secure file format.

57

Bibliography

[1] "World Health Organization," 11 03 2020. [Online]. Available:

https://www.who.int/director-general/speeches/detail/who-director-general-s-

opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. [Accessed

09 August 2022].

[2] WHO, "Coronavirus Disease (COVID-19) pandemic," World Health Organization,

[Online]. Available: https://www.who.int/europe/emergencies/situations/covid-19.

[Accessed 09 August 2022].

[3] World Health Organization, “Laboratory testing strategy recommendations for

COVID-19: interim guidance,” World Health Organization, 21 March 2020. [Online].

Available: https://apps.who.int/iris/handle/10665/331509.

[4] World Health Organization, “Launch of the WHO Academy and the WHO Info

mobile applications,” World Health Organization, 13 May 2020. [Online]. Available:

https://www.who.int/news/item/13-05-2020-launch-of-the-who-academy-and-the-

who-info-mobile-applications.

[5] WHO, “Listings of WHO’s response to COVID-19,” World Health Organization, 29

01 2021. [Online]. Available: https://www.who.int/es/news/item/29-06-2020-

covidtimeline. [Accessed 09 August 2022].

[6] T. Hulsen, “Sharing Is Caring—Data Sharing Initiatives in Healthcare,” International

Journal of Environmental Research and Public Health, vol. 17, p. 3046, 2020.

[7] World Health Organization, “WHO reports fivefold increase in cyber attacks, urges

vigilance,” World Health Organization, 23 April 2020. [Online]. Available:

https://www.who.int/news/item/23-04-2020-who-reports-fivefold-increase-in-cyber-

attacks-urges-vigilance. [Accessed 11 August 2022].

[8] "Attacks targeting healthcare organizations spike globally as COVID-19 cases rise

again," 2021. [Online]. Available: https://blog.checkpoint.com/2021/01/05/attacks-

targeting-healthcare-organizations-spike-globally-as-covid-19-cases-rise-again/.

[Accessed 08 July 2022].

[9] "Cost of a data breach Report," 2021. [Online]. Available:

https://www.ibm.com/downloads/cas/OJDVQGRY. [Accessed 08 July 2022].

[10] "X-Force Threat Intelligence 2022: Healthcare executive summary," 2022. [Online].

Available: https://www.ibm.com/downloads/cas/GLPOVRLP. [Accessed 07 July

2022].

58

[11] “Health Sector Cybersecurity: 2021 Retrospective and 2022 Look Ahead,” [Online].

Available: https://www.hhs.gov/sites/default/files/2021-retrospective-and-2022-

look-ahead-tlpwhite.pdf. [Accessed 07 July 2022].

[12] Verizon, "4 Industries Report," 2022. [Online]. Available:

https://www.verizon.com/business/resources/reports/dbir/2022-data-breach-

investigations-report-dbir-industries.pdf. [Accessed 10 July 2022].

[13] S. Alder, "March 2022 Healthcare Data Breach Report," 2022. [Online]. Available:

https://www.hipaajournal.com/march-2022-healthcare-data-breach-report/.

[Accessed 07 July 2022].

[14] "agencia española protección datos," aepd, [Online]. Available:

https://www.aepd.es/es. [Accessed 03 June 2022].

[15] "Trustwave global security report," 2018. [Online]. Available:

https://trustwave.azureedge.net/media/15350/2018-trustwave-global-security-

report-prt.pdf?rnd=131992184400000000. [Accessed 09 July 2022].

[16] "Phenopackets: Standardizing and Exchanging Patient Phenotypic Data," GA4GH,

2019. [Online]. Available: https://www.ga4gh.org/news/phenopackets-

standardizing-and-exchanging-patient-phenotypic-data/. [Accessed 01 March

2022].

[17] "Genomics informatics — Phenopackets: A format for phenotypic data exchange,"

ISO/DIS 4454(en), 2021. [Online]. Available:

https://www.iso.org/obp/ui/#iso:std:iso:4454:dis:ed-1:v1:en.

[18] ISO, “Genomics informatics — Phenopackets: A format for phenotypic data

exchange,” ISO 4454:2022, 06 July 2022. [Online]. Available:

https://www.iso.org/standard/79991.html. [Accessed 12 August 2022].

[19] A. A. G. A. C. A. A. E. B. M. A. D. R. E. H. G. L. G. T. M. S. T. S. G. M. R. D. 1. G.

P. A. G. Petr Danecek, "The variant call format and VCFtools," in Bioinformatics,

vol. 27, 2021, p. 2156–2158.

[20] medRxiv, "The GA4GH Phenopacket schema: A computable representation of

clinical data for precision medicine," 2021. [Online]. Available:

https://doi.org/10.1101/2021.11.27.21266944 .

[21] "PhenoTips," Gene42 Inc., 2015. [Online]. Available: https://phenotips.com/.

[Accessed 07 July 2022].

[22] "Phenopackets," [Online]. Available: http://phenopackets.org/. [Accessed 09 July

2022].

59

[23] "Phenopacket-schema Documentation," Global Alliance for Genomics and Health,

2021. [Online]. Available: https://phenopacket-schema.readthedocs.io/en/v2/.

[Accessed 03 March 2022].

[24] "Human phenotype ontology," [Online]. Available: https://hpo.jax.org/app/.

[Accessed 07 July 2022].

[25] "Health Insurance Portability and Accountability Act of 1996," PUBLIC LAW 104-

191, 1996.

[26] GDPR, "General Data Protection Regulation," 2018. [Online]. Available:

https://gdpr-info.eu/. [Accessed 07 July 2022].

[27] S. Harvey, "Classifying Data: Why It’s Important and How To Do It,"

KirkpatrickPrice, 2020. [Online]. Available:

https://kirkpatrickprice.com/blog/classifying-data/. [Accessed 07 July 2022].

[28] "5 Types of Data Classification," Indeed, 2021. [Online]. Available:

https://www.indeed.com/career-advice/career-development/data-classification-

types. [Accessed 01 July 2022].

[29] HIPAA Security Series, "4 Security Standards: Technical Safeguards," 2007.

[Online]. Available:

https://www.hhs.gov/sites/default/files/ocr/privacy/hipaa/administrative/securityrule

/techsafeguards.pdf?language=es. [Accessed 09 July 2022].

[30] "Keccak-256 Hash Function," MoneroDocs, 2022. [Online]. Available:

https://monerodocs.org/cryptography/keccak-256/. [Accessed 15 August 2022].

[31] B. I. G. Seroussi, G. Seroussi and N. Smart, Elliptic curves in cryptography, vol.

265, Cambridge university press, 1999.

[32] CISA, "Security Tip (ST04-018)," 2020. [Online]. Available:

https://www.cisa.gov/uscert/ncas/tips/ST04-018. [Accessed 09 July 2022].

[33] "Protocol-buffers," Google, 2008. [Online]. Available:

https://developers.google.com/protocol-buffers/. [Accessed 07 July 2022].

[34] "Protocol Buffers - Google's data interchange format," GitHub, 2019. [Online].

Available: https://github.com/protocolbuffers/protobuf. [Accessed 15 June 2022].

[35] “Tink,” Google Developers, [Online]. Available: https://developers.google.com/tink.

[Accessed 30 August 2022].

[36] "Bouncy Castle Crypto APIs," Legion of the Bouncy Castle, 2013. [Online].

Available: https://bouncycastle.org/. [Accessed 30 August 2022].

60

[37] “Phenopacket-tools,” GitHub, 2022. [Online]. Available:

https://github.com/phenopackets/phenopacket-tools. [Accessed 20 August 2022].

[38] G. N. Colfax, "Confidentiality and Privacy in Healthcare," Department of Health and

Human Services, 2017.

[39] "Phenopackets v2.0 expands utility to provide a more complete medical picture,"

GA4GH, 2022. [Online]. Available: https://www.ga4gh.org/news/phenopackets-v2-

expands-utility-to-provide-a-more-complete-medical-picture/. [Accessed 03 March

2022].

[40] S. W. A. D. Ben Lutkevich, "Protected health information (PHI) or personal health

information," SearchHealthIT, 2021. [Online]. Available:

https://www.techtarget.com/searchhealthit/definition/personal-health-information.

[Accessed 08 July 2022].

[41] "Repository for the GA4GH phenopacket schema," GitHub, 2018. [Online].

Available: https://github.com/phenopackets/phenopacket-schema. [Accessed 03

March 2022].

[42] T. Pornin, "RFC 6979. Deterministic DSA and ECDSA," IETF Trust, August 2013.

[Online]. Available: https://www.rfc-editor.org/rfc/rfc6979.

[43] "Keccak," keccak.team, 2022. [Online]. Available: https://keccak.team/keccak.html.

[Accessed 15 August 2022].

[44] S. Nakov, "Digital Signatures," Practical Cryptography for Developers, 2018.

[Online]. Available: https://cryptobook.nakov.com/digital-signatures. [Accessed 10

August 2022].

61

Appendices

A. Phenopacket data model

Figure 33 Phenopacket schema diagram

62

B. Project folder structure

The project consists of several folders to organize the classes involved in the Phenopacket

implementation of the classes in charge of the security features. Specifically, it can be

differentiated between the src folder and the test folder, the first one is composed of the

different classes implemented during the development phase, while the test folder contains

the different verification tests created to check the features created.

In the src folder it can be found:

• Phenopacket folder – contains the SecurePhenopacket class in which the creation

of the whole Phenopacket is implemented

• Phenopacket/examples folder – includes two Phenopackets cases for use during

testing

• Phenopacket/schema folder – there are all the methods to create the blocks and

elements that make up the Phenopacket

• Phenopacket/securityMechanisms folder – three security mechanisms as well as

the ExternalResources class are included in this folder

Then, the test folder has the same structure to facilitate its understanding. In this case, the

following folders are:

• /Phenopacket/phenopacket_schema folder – tests associated with creating

elements and Phenopacket are located in this folder

• /Phenopacket/securityMechanisms folder – all the created verification test are

implemented here

To help the reader understand this description, the following figure represents the complete

project structure:

Figure 34 Project folder structure

63

C. Covid19 example

{

 "id": "17a1a6ad-2ea1-40ee-9308-1401fa096c0c",

 "subject": {

 "id": "P172062",

 "timeAtLastEncounter": {

 "age": {

 "iso8601duration":

"AQD5SysEPd7+EDI7Cf9vtMJQZyJfjD+LVR6hk72iqHVW/tFS5e325FKwtyjy/Db7rcwABeeSFd8HsF

G/z5HGSAvXtaP3l3vlFpYiFUnH+TJ0iTI0MGPdg9PApKhTALfin2mnuVlZ"

 }

 },

 "vitalStatus": {

 "status": "DECEASED"

 },

 "karyotypicSex": "XY"

 },

 "phenotypicFeatures": [{

 "type": {

 "id": "NCIT:C27009",

 "label": "Myalgia"

 },

 "severity": {

 "id": "HP:0012828",

 "label": "Severe"

 },

 "onset": {

 "timestamp": "2020-03-18T00:00:00Z"

 },

 "resolution": {

 "timestamp": "2020-03-20T00:00:00Z"

 },

 "evidence": [{

 "evidenceCode": {

 "id": "ECO:0006017",

 "label": "author statement from published clinical study used in manual

assertion"

 }

 }]

 }, {

 "type": {

 "id": "NCIT:C2998",

 "label": "Dyspnea"

 },

 "severity": {

 "id": "HP:0012828",

 "label": "Severe"

64

 },

 "onset": {

 "timestamp": "2020-03-18T00:00:00Z"

 },

 "resolution": {

 "timestamp": "2020-03-20T00:00:00Z"

 },

 "evidence": [{

 "evidenceCode": {

 "id": "ECO:0006017",

 "label": "author statement from published clinical study used in manual

assertion"

 }

 }]

 }],

 "diseases": [{

 "term": {

 "id": "NCIT:C2985",

 "label": "Diabetes Mellitus"

 },

 "excluded": true,

 "onset": {

 "age": {

 "iso8601duration":

"AQD5SysECZuvhyYNhbrsxzgSIR8i9C38nXAb3IpU76OhLg8URhW9qyEuJIry5rtwPDQ0qBoDhSqNZ8

M+kEa4D/kOoCz6XLTBjjgu7bqJWZLDhq4xjRC+eky0y1uVsZcgNWMci/LU"

 }

 },

 "diseaseStage": [{

 "id": "NCIT:C27971",

 "label": "Stage IV"

 }],

 "clinicalTnmFinding": [],

 "primarySite": {

 "id": "UBERON:0000948",

 "label": "heart"

 }

 }, {

 "term": {

 "id": "NCIT:C34830",

 "label": "Cardiomyopathy"

 },

 "excluded": false,

 "onset": {

 "age": {

 "iso8601duration":

"AQD5SysECZuvhyYNhbrsxzgSIR8i9C38nXAb3IpU76OhLg8URhW9qyEuJIry5rtwPDQ0qBoDhSqNZ8

M+kEa4D/kOoCz6XLTBjjgu7bqJWZLDhq4xjRC+eky0y1uVsZcgNWMci/LU"

65

 }

 },

 "diseaseStage": [{

 "id": "NCIT:C27971",

 "label": "Stage IV"

 }],

 "clinicalTnmFinding": [],

 "primarySite": {

 "id": "UBERON:0000948",

 "label": "heart"

 }

 }],

 "medicalActions": [{

 "procedure": {

 "code": {

 "id": "NCIT:C80473",

 "label": "Left Ventricular Assist Device"

 },

 "bodySite": {

 "id": "UBERON:0000948",

 "label": "heart"

 },

 "performed": {

 "timestamp": "2016-01-01T00:00:00Z"

 }

 },

 "adverseEvents": []

 }, {

 "treatment": {

 "agent": {

 "id": "NCIT:C722",

 "label": "Oxygen"

 },

 "routeOfAdministration": {

 "id": "NCIT:C38284",

 "label": "Nasal Route of Administration"

 },

 "doseIntervals": [{

 "quantity": {

 "unit": {

 "id": "NCIT:C67388",

 "label": "Liter per Minute"

 },

 "value": 2.0

 },

 "scheduleFrequency": {

 "id": "NCIT:C64597",

 "label": "Immediately"

66

 },

 "interval": {

 "start": "2020-03-20T00:00:00Z",

 "end": "2020-03-22T00:00:00Z"

 }

 }]

 },

 "adverseEvents": []

 }],

 "metaData": {

 "created": "2022-08-08T00:27:16.662Z",

 "createdBy": "Judit C.",

 "submittedBy": "Judit C.",

 "resources": [{

 "id": "ncit",

 "name": "NCI Thesaurus OBO Edition",

 "url": "http://purl.obolibrary.org/obo/ncit.owl",

 "version": "http://purl.obolibrary.org/obo/ncit/releases/2019-11-

26/ncit.owl",

 "namespacePrefix": "NCIT",

 "iriPrefix": "http://purl.obolibrary.org/obo/ncit.owl"

 }],

 "updates": [{

 "timestamp": "2022-08-08T00:27:16.662Z"

 }],

 "phenopacketSchemaVersion": "2.0"

 }

}

