
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Reconfiguring k-Path Vertex Covers

HOANG, Duc A.; SUZUKI, Akira; YAGITA, Tsuyoshi

HOANG, Duc A. ...[et al]. Reconfiguring k-Path Vertex Covers. IEICE
Transactions on Information and Systems 2022, E105.D(7): 1258-1272

2022-07-01

http://hdl.handle.net/2433/277557

© 2022 The Institute of Electronics, Information and Communication
Engineers

1258
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

PAPER

Reconfiguring k-Path Vertex Covers∗

Duc A. HOANG†a), Nonmember, Akira SUZUKI††b), Member, and Tsuyoshi YAGITA†††c), Nonmember

SUMMARY A vertex subset I of a graph G is called a k-path vertex
cover if every path on k vertices in G contains at least one vertex from I.
The k-Path Vertex Cover Reconfiguration (k-PVCR) problem asks if one
can transform one k-path vertex cover into another via a sequence of k-
path vertex covers where each intermediate member is obtained from its
predecessor by applying a given reconfiguration rule exactly once. We
investigate the computational complexity of k-PVCR from the viewpoint
of graph classes under the well-known reconfiguration rules: TS, TJ, and
TAR. The problem for k = 2, known as the Vertex Cover Reconfigura-
tion (VCR) problem, has been well-studied in the literature. We show that
certain known hardness results for VCR on different graph classes can be
extended for k-PVCR. In particular, we prove a complexity dichotomy for
k-PVCR on general graphs: on those whose maximum degree is three (and
even planar), the problem is PSPACE-complete, while on those whose max-
imum degree is two (i.e., paths and cycles), the problem can be solved in
polynomial time. Additionally, we also design polynomial-time algorithms
for k-PVCR on trees under each of TJ and TAR. Moreover, on paths, cycles,
and trees, we describe how one can construct a reconfiguration sequence
between two given k-path vertex covers in a yes-instance. In particular, on
paths, our constructed reconfiguration sequence is shortest.
key words: combinatorial reconfiguration, computational complexity, k-
path vertex cover, PSPACE-completeness, polynomial-time algorithms

1. Introduction

Recently, a collection of problems called Combinatorial Re-
configuration has been extensively studied. Work in this re-
search area specifically aims to model dynamic situations
where one needs to transform one feasible solution of a
computational problem into another by locally changing a
solution while keeping its feasibility along the way. In a
reconfiguration setting, two feasible solutions of a computa-
tional problem (e.g., Satisfiability, Independent Set, Ver-
tex Cover, Dominating Set, etc.) are given, along with a
reconfiguration rule that describes an adjacency relation be-
tween solutions. A reconfiguration problem asks whether
one feasible solution can be transformed into the other via

Manuscript received August 22, 2021.
Manuscript revised December 24, 2021.
Manuscript publicized April 12, 2022.
†The author is with Kyoto University, Kyoto-shi, 606–8501

Japan.
††The author is with Tohoku University, Sendai-shi, 980–8579

Japan.
†††The author was with Kyushu Institute of Technology, Iizuka-

shi, 820–8502 Japan.
∗A preliminary version of this paper appears in the Proceedings

of WALCOM 2020 [1].
a) E-mail: hoang.duc.8r@kyoto-u.ac.jp
b) E-mail: akira@tohoku.ac.jp
c) E-mail: yagita.tsuyoshi307@mail.kyutech.jp

DOI: 10.1587/transinf.2021EDP7177

a sequence of adjacent feasible solutions where each inter-
mediate member is obtained from its predecessor by ap-
plying the given reconfiguration rule exactly once. Such
a sequence, if exists, is called a reconfiguration sequence.
One may recall the classic Rubik’s cube puzzle as an exam-
ple of a reconfiguration problem, where each configuration
of the Rubik’s cube corresponds to a feasible solution, and
two configurations (solutions) are adjacent if one can be ob-
tained from the other by rotating a face of the cube by either
90, 180, or 270 degrees. The question is whether one can
transform an arbitrary configuration to the one where each
face of the cube has only one color. For an overview of this
research area, readers are referred to the recent surveys [2]–
[4].

1.1 k-Path Vertex Cover Reconfiguration

Let G = (V, E) be a simple graph. A vertex cover of G is
a subset I of V where each edge contains at least one ver-
tex from I. The Vertex Cover (VC) problem, which asks
whether there is a vertex cover of G whose size is at most
some positive integer s, is one of the classic NP-complete
problems in the computational complexity theory [5].

Let k ≥ 2 be a fixed positive integer. A subset I of V
is called a k-path vertex cover if every path on k vertices
in G contains at least one vertex from I. The k-Path Ver-
tex Cover (k-PVC) problem asks if there is a k-path vertex
cover of G whose size is at most some positive integer s.
Motivated by the importance of a problem related to secure
communication in wireless sensor networks, Brešar et al.
initiated the study of k-PVC in [6] (as a generalized concept
of vertex cover). It is known that k-PVC is NP-complete
for every k ≥ 2 [6], [7]. Subsequent work regarding the
maximum variant [8] and weighted variant [9] of k-PVC has
also been considered in the literature. Recently, the study
of k-PVC and related problems has gained a lot of attention
from both theoretical aspect [10]–[12] and practical applica-
tion [13], [14].

In this paper, we initiate the study of k-PVC from the
viewpoint of combinatorial reconfiguration. Given two dis-
tinct k-path vertex covers I and J of a graph G and a single
reconfiguration rule, the k-Path Vertex Cover Reconfigu-
ration (k-PVCR) problem asks whether there is a reconfig-
uration sequence between I and J. We study the computa-
tional complexity of k-PVCR with respect to different graph
classes under the well-known reconfiguration rules: Token
Sliding, Token Jumping, and Token Addition or Removal.

Copyright c⃝ 2022 The Institute of Electronics, Information and Communication Engineers

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HOANG et al.: RECONFIGURING K-PATH VERTEX COVERS
1259

They are informally defined as follows. Imagine that a token
is placed at each vertex of a k-path vertex cover in G. For
each of the following rules, a common requirement is that
the resulting token-set forms a k-path vertex cover of G.

• Token Sliding (TS): A TS-step involves moving a to-
ken on some vertex v to one of its unoccupied neigh-
bors.

• Token Jumping (TJ): A TJ-step involves moving a to-
ken on v to any unoccupied vertex.

• Token Addition or Removal (TAR): A TAR-step in-
volves either adding or removing a single token such
that the resulting token-set is of size at most given pos-
itive integer u. We sometimes write “TAR(u)” instead
of “TAR” to emphasize the upper bound u on the size
of each token-set in a reconfiguration sequence under
TAR.

1.2 Related Work

The reoptimization framework is closely related to recon-
figuration. Roughly speaking, given an optimal solution of
a problem instance I, and some perturbations that change
I into a new instance I′, a reoptimization problem aims
to find an optimal solution for the changed instance I′. Re-
cently, Kumar et al. [10] initiated the study of reoptimization
problems for (both weighted and unweighted) k-PVC with
k ≥ 3, extending some known reoptimization paradigms
for the well-known VC problem [15]. The perturbation they
considered in [10] is changing the input graph of the current
instance by inserting new vertices.

The Vertex Cover Reconfiguration (VCR) problem
is one of the most well-studied reconfiguration problems,
from both classical and parameterized complexity view-
points (e.g., see [3] for a quick summary of known re-
sults). It is well-known that if I is a vertex cover of a graph
G = (V, E) then V \ I is an independent set of G, i.e., a ver-
tex subset whose members are pairwise non-adjacent. Con-
sequently, from classical complexity viewpoint, results of
Independent Set Reconfiguration (ISR) and Vertex Cover
Reconfiguration are interchangeable.

We now mention some known complexity results
of VCR (which are mostly interchanged with ISR) for
some graph classes. It is well-known that VCR is
PSPACE-complete under each of TS, TJ, and TAR for
general graphs [16], planar graphs of maximum degree
three [17], [18], perfect graphs [19], and bounded band-
width graphs [20]. Even on bipartite graphs, VCR remains
PSPACE-complete under TS, and NP-complete under each
of TJ and TAR [21]. On chordal graphs (and even on
split graphs), VCR is known to be PSPACE-complete un-
der TS [22]. On the positive side, polynomial-time al-
gorithms have been designed for VCR on even-hole-free
graphs (and therefore chordal graphs) under each of TJ
and TAR [19], on bipartite permutation graphs and bipartite
distance-hereditary graphs [23] under TS, on cographs [19],
[24], claw-free graphs [25], interval graphs [19], [26], [27],

Fig. 1 Computational complexity of k-PVCR on some graph classes, un-
der each of TS, TJ, and TAR(u). Each arrow from A to B means B is a
subclass of A.

and trees [19], [28] under each of TS, TJ, and TAR.

1.3 Our Results

In this paper, we investigate the complexity of k-PVCR with
respect to different input graphs (see Fig. 1). More precisely,
we show that:

• Several hardness results for VCR remain true for
k-PVCR. More precisely, we show the PSPACE-
completeness of k-PVCR on general graphs under each
rule TS, TJ, and TAR using a reduction from a vari-
ant of VCR. As our reduction preserves some nice
graph properties, we claim (as a consequence of our
reduction) that the hardness results for VCR on sev-
eral graphs (namely planar graphs, bounded bandwidth
graphs, chordal graphs) can be converted into those
for k-PVCR. Using a reduction from the Nondeter-
ministic Constraint Logic [17], [29], we also show
that k-PVCR remains PSPACE-complete even on pla-
nar graphs of bounded bandwidth and maximum de-
gree three. (Our reduction from VCR does not preserve
the maximum degree.)

• On the positive side, we design polynomial-time algo-
rithms for k-PVCR on some restricted graph classes:
trees (under each of TJ and TAR), paths and cycles (un-
der each of TS, TJ, and TAR). Our algorithms are con-
structive, i.e., we explicitly show how a reconfigura-
tion sequence can be constructed in a yes-instance. On
paths, we claim that our algorithm constructs a short-
est reconfiguration sequence. As a result, we obtain a
complexity dichotomy for k-PVCR on (planar) graphs
with respect to their maximum degree.

2. Preliminaries

In this section, we define some useful notation and termi-

TJ/TAR(u)

[Thm. 10, 11, and 13]

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1260
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

nology. For standard concepts on graphs, we refer readers
to [30].

Let G be a simple graph with vertex-set V(G) and edge-
set E(G). For two vertices u, v, we denote by distG(u, v) the
distance between u and v in G, i.e., the number of edges in
a shortest path between them. For a vertex v ∈ V(G), we
denote by G − v the graph obtained from G by removing
the vertex v and all incident edges. For two vertex subsets
I and J, we denote by G[I∆J] the subgraph of G induced
by their symmetric difference I∆J = (I \ J) ∪ (J \ I). For a
fixed integer k ≥ 2, we say that a vertex v covers a k-path
(i.e., a path on k vertices) Pk in G if v ∈ V(Pk). A vertex
subset I is called a k-path vertex cover if every k-path in G
contains at least one vertex from I. In other words, vertices
of I cover all k-paths in G. We denote by ψk(G) the size of a
minimum k-path vertex cover of G. Trivially, for n ≥ k ≥ 2,
ψk(Pn) = ⌊n/k⌋ and ψk(Cn) = ⌈n/k⌉ for a path Pn and a cycle
Cn on n vertices.

Throughout this paper, we denote by (G, I, J,R) an
instance of k-PVCR under a reconfiguration rule R ∈
{TJ,TS,TAR}, where I and J are two k-path vertex cov-
ers of G. We shall respectively call a reconfiguration se-
quence under each of TS, TJ, and TAR by a TS-sequence,
TJ-sequence, and TAR(u)-sequence. Formally, let S =

⟨I0, I1, . . . , Iℓ⟩ be an ordered sequence of k-path vertex cov-
ers of G. The length of S is defined as ℓ, i.e., if S is a
reconfiguration sequence then its length is exactly the num-
ber of steps it performs under the given reconfiguration rule.
Imagine that a token is placed at each vertex of a k-path ver-
tex cover of G. We may sometimes identify a token with
the vertex where it is placed and say “a token in a k-path
vertex cover”, and therefore use the terms “token-set” and
“k-path vertex cover” interchangeably. We say that S is a
TS-sequence between two k-path vertex covers I0 and Iℓ if
for each i ∈ {0, . . . , ℓ − 1}, there exist two vertices xi and yi

such that Ii \ Ii+1 = {xi}, Ii+1 \ Ii = {yi}, and xiyi ∈ E(G).
Roughly speaking, Ii+1 is obtained from Ii by sliding the
token placed on xi to yi along an edge xiyi. Similarly, we
say that S is a TJ-sequence between I0 and Iℓ if for each
i ∈ {0, . . . , ℓ − 1}, there exist two vertices xi and yi such that
Ii \ Ii+1 = {xi}, Ii+1 \ Ii = {yi}. Intuitively, Ii+1 is obtained
from Ii by jumping the token placed on xi to yi. Now, if
max{|Ii| : 0 ≤ i ≤ ℓ} ≤ u for some positive integer u, and
for each i ∈ {0, . . . , ℓ − 1}, there exists a vertex xi such that
Ii∆Ii+1 = {xi} then we say that S is a TAR(u)-sequence be-
tween I0 and Iℓ. Roughly speaking, Ii+1 is obtained from Ii

by either adding a token to xi or removing a token from xi. If
a TS-, TJ-, or TAR(u)-sequence between two k-path vertex
covers I and J exists, we say that I and J are reconfigurable
under TS, TJ, or TAR, respectively.

Using a similar argument as in [19, Theorem 1], we can
prove the following useful lemma.

Lemma 1. There exists a TJ-sequence of length ℓ between
two k-path vertex covers I, J of a graph G with |I| = |J| = s
if and only if there exists a TAR(s+1)-sequence of length 2ℓ
between them.

A reconfiguration sequence of minimum length is
called a shortest reconfiguration sequence. For a recon-
figuration sequence S = ⟨I0, I1, . . . , Ip⟩, we denote by
rev(S) the reverse of S , i.e., the reconfiguration sequence
⟨Ip, . . . , I1, I0⟩. For two reconfiguration sequences S =

⟨I0, I1, . . . , Ip⟩ and S ′ = ⟨I′0, I′1, . . . , I′q⟩ under the same re-
configuration rule, if Ip = I′0 then we say that they can be
concatenated and define their concatenation S ⊕ S ′ as the
reconfiguration sequence ⟨I0, I1, . . . , Ip, I′1, . . . , I

′
q⟩. We as-

sume for convenience that if S ′ is empty then S ⊕ S ′ =
S ′ ⊕ S = S .

3. Hardness Results

3.1 Reduction from Vertex Cover Reconfiguration

In this section, we prove the following theorem using a
polynomial-time reduction from VCR.

Theorem 2. k-PVCR is PSPACE-complete under each of
TS, TJ, and TAR even when the input graph is a planar
graph of maximum degree four, or a bounded bandwidth
graph. Additionally, k-PVCR is PSPACE-complete under TS
on chordal graphs.

The outline of our proof is as follows:

(1) In Lemma 3, using a reduction similar to that in [6], we
show the PSPACE-completeness of k-PVCR under TJ.

(2) In Lemma 4, we combine (1), the known results for
VCR, and Lemma 1 to show the hardness results on
several graphs under each of TJ and TAR as mentioned
in Theorem 2.

(3) Finally, in Lemma 5, we show that the hardness results
under TS hold via the same reduction.

Lemma 3. k-PVCR is PSPACE-complete under TJ.

Proof. Given two distinct minimum k-path vertex covers I
and J of a graph G and a single reconfiguration rule, the
Minimum k-Path Vertex Cover Reconfiguration (Min-k-
PVCR) problem asks whether there is a reconfiguration se-
quence between I and J. For k = 2, the Min-k-PVCR prob-
lem is also known as Minimum Vertex Cover Reconfigura-
tion (Min-VCR).

Clearly, since k-Path Vertex Cover is in NP [6], it
follows from [16] that k-PVCR is in PSPACE. Since k-
PVCR is more general than Min-k-PVCR, in order to show
the PSPACE-completeness of k-PVCR, it suffices to reduce
from the Min-VCR problem (which is known to be PSPACE-
complete [16]) to the Min-k-PVCR problem. More pre-
cisely, given an instance (G, I, J,TJ) of Min-VCR, we con-
struct a corresponding instance (G′, I′, J′,TJ) of Min-k-
PVCR as follows. Let G′ be the graph obtained from G
by joining each vertex x of G to an endpoint of a new path
Px on ⌊(k − 1)/2⌋ vertices. We choose I′ = I and J′ = J.
Note that each vertex cover of G is also a k-path vertex cover
of G′, Moreover, for any minimum k-path vertex cover I′ of
G′, if I′ contains a new vertex y in a path Px for some vertex

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HOANG et al.: RECONFIGURING K-PATH VERTEX COVERS
1261

x of G then (I′ \ {y}) ∪ {x} is also a minimum k-path vertex
cover of G′, because any k-path covered by y must also be
covered by x. Consequently, (G′, I′, J′,TJ) is an instance of
Min-k-PVCR.

It is clear that this construction can be done in poly-
nomial time. It remains to show that (G, I, J,TJ) is a yes-
instance of Min-VCR if and only if (G′, I′, J′,TJ) is a yes-
instance of Min-k-PVCR.

Assume that (G, I, J,TJ) is a yes-instance of Min-VCR,
that is, there exists a TJ-sequence ⟨I = I0, I1, . . . , Ip = J⟩
between I and J in G. Clearly, for any i ∈ {0, 1, . . . , p}, the
set Ii is also a minimum k-path vertex cover of G′. Then,
⟨I = I0, I1, . . . , Ip = J⟩ is also a TJ-sequence between I′ = I
and J′ = J in G′.

Now, assume that (G′, I′, J′,TJ) is a yes-instance of
Min-k-PVCR in G′, that is, there exists a TJ-sequence S =
⟨I′ = I′0, I

′
1, . . . , I

′
q = J′⟩ between I′ = I and J′ = J in G′. We

claim that (G, I, J,TJ) is also a yes-instance by constructing
a TJ-sequence between I and J in G. For i ∈ {0, 1, . . . , q}, let
Ii = I′i \

∪
x∈V(G) V(Px) ∩∪x∈V(G){x : I′i ∩ V(Px) , ∅}. Intu-

itively, Ii is obtained from I′i by moving each token placed at
some new vertex in Px to x itself. Since any k-path covered
by some vertex in Px is also covered by x, and each I′i is
minimum, such moves are well-defined. Clearly, each Ii is a
minimum vertex cover of G. For i ∈ {0, 1, . . . , q − 1}, let x′i
and y′i be two distinct vertices of G′ such that I′i \ I′i+1 = {x′i }
and I′i+1 \ I′i = {y′i}. Next, we will show that Ii+1 can be
obtained from Ii by performing at most one TJ-step in G.

• Case 1: x′i ∈ V(G) and y′i ∈ V(G). By definition,
Ii \ Ii+1 = {x′i } and Ii+1 \ Ii = {y′i}.

• Case 2: x′i ∈ V(G) and y′i ∈ V(G′) \ V(G). Then,
y′i must belong to a new path Py joined to some vertex
y ∈ V(G). By definition, Ii\Ii+1 = {x′i } and Ii+1\Ii = {y}.
Note that if x′i = y, then Ii = Ii+1, and we are done.
Moreover, as we consider minimum k-path vertex cov-
ers, y < I′i \ {x′i } and therefore y < Ii; otherwise, we
cannot move the token on x′i to y′i .

• Case 3: x′i ∈ V(G′) \ V(G) and y′i ∈ V(G). As before,
x′i must belong to a new path Px joined to some vertex
x ∈ V(G). By definition, Ii\Ii+1 = {x} and Ii+1\Ii = {y′i}.
Note that if x = y′i , then Ii = Ii+1.

• Case 4: x′i ∈ V(G′) \ V(G) and y′i ∈ V(G′) \ V(G). As
before, x′i (resp. y′i) must belong to a new path Px (resp.
Py) joined to some vertex x ∈ V(G) (resp. y ∈ V(G)).
By definition, Ii \ Ii+1 = {x} and Ii+1 \ Ii = {y}. Note that
if x = y, then Ii = Ii+1.

Clearly, the sequence obtained from ⟨I0, I1, . . . , Iq⟩ by re-
moving redundant vertex covers (i.e., those equal to their
predecessors) is a TJ-sequence in G that reconfigures I = I0

to J = Iq.

Lemma 4. k-PVCR is PSPACE-complete under each of TJ
and TAR on planar graphs of maximum degree four and
bounded bandwidth.

Proof. As we mention in Sect. 1.2, it is known that VCR
is PSPACE-complete under each of TJ, and TAR for planar

graphs of maximum degree three [18], and bounded band-
width graphs [20]. In fact, these results are also hold in
the case MIN-VCR [18], [20]. It is not hard to see that in
the reduction presented in the proof of Lemma 3, if the in-
put graph G is one of the mentioned graphs, then so is the
constructed graph G′. (In fact the bandwidth of G′ is O(k).
However, since we defined that k is a fixed integer, G′ is of
bounded bandwidth.) The hardness results under TAR are
followed by combining the known results for Vertex Cover
Reconfiguration, the above results, and Lemma 1.

Lemma 5. k-PVCR is PSPACE-complete under TS on pla-
nar graphs of maximum degree four and bounded band-
width, and chordal graphs.

Proof. It is not hard to see that in the reduction presented
in the proof of Lemma 3, if the input graph G is one of the
mentioned graphs, then so is the constructed graph G′.

It is sufficient to show that any TJ-sequence S =

⟨I0, I1, . . . , Iq⟩ between two minimum k-path vertex covers
I = I0 and J = Iq of the constructed graph G′ can be con-
verted into a TS-sequence between them in G′.

First of all, if Ii ⊆ V(G) for all i ∈ {0, 1, . . . , q} then we
claim that S itself is indeed a TS-sequence. More precisely,
we show that for each i ∈ {0, 1, . . . , q−1}, if xi and yi are two
distinct vertices of G such that Ii \ Ii+1 = {xi} and Ii+1 \ Ii =

{yi} then xiyi ∈ E(G) ⊆ E(G′). Suppose to the contrary that
yi is not adjacent to xi. We note that each Ii (i ∈ {0, 1, . . . , q})
is also a minimum vertex cover of G. Now, in order to move
the token on xi to yi for obtaining a new vertex cover Ii+1 of
G, each edge of G incident with xi must already be covered
by its other endpoint; otherwise, moving xi to yi left some
non-covered edge. However, this means that one can obtain
a vertex cover of smaller size by simply removing xi from
Ii, which contradicts the fact that Ii is minimum. Therefore,
yi must be a neighbor of xi.

Now, from the above reduction, we know that there is
always a TJ-sequence S ′ between two k-path vertex covers
I′ = I \ ∪x∈V(G) V(Px) ∩ ∪x∈V(G){x : I ∩ V(Px) , ∅} and
J′ = J \∪x∈V(G) V(Px) ∩∪x∈V(G){x : J ∩ V(Px) , ∅}, where
all members of S ′ are subsets of V(G). Here Px denotes
the new path joined to the vertex x ∈ V(G). As a result, S ′

is also a TS-sequence in G′. To construct a TS-sequence
between I and J, it suffices to show that one can construct a
TS-sequence S ′′ between I and I′ in G′. In a similar manner,
we will be able to construct a TS-sequence between J and
J′, and a TS-sequence between I and J can be formed by
simply reconfiguring I to I′, then I′ to J′, and finally J′ to
J. Let x ∈ V(G) be such that I ∩ V(Px) = {x′}. Since I
is a minimum k-path vertex cover of G′, we have x < I.
We claim that I can be reconfigured to I \ {x′} ∪ {x} using
TS-steps. Let P = v0v1 . . . vℓ (0 ≤ ℓ ≤ ⌊(k − 1)/2⌋) be
the unique path in G′ joining v0 = x and vℓ = x′. Note
that for each j ∈ {1, . . . , ℓ}, any k-path covered by v j is also
covered by each vertex in {v0, . . . , v j−1}. Moreover, as we
consider minimum k-path vertex covers, exactly one of v j

(j ∈ {0, 1, . . . , ℓ}) contains a token. Hence, one can obtain
I \ {x′}∪ {x} from I by simply sliding the token on x′ ∈ I to x

□

□

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1262
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

along the path P. Applying this process repeatedly for each
x ∈ V(G) where I ∩ V(Px) , ∅, we obtain a TS-sequence in
G′ between I and I′.

Our proof of Theorem 2 is complete.

3.2 Reduction from Nondeterministic Constraint Logic

In Theorem 2, we show the PSPACE-completeness for planar
graphs of maximum degree four. Furthermore, using a re-
duction from the Nondeterministic Constraint Logic [17],
[29] (NCL, for short), we can improve this result as follows.

Theorem 6. k-PVCR remains PSPACE-complete under each
of TS, TJ, and TAR even on planar graphs of bounded band-
width and maximum degree three.

In this section, we briefly define NCL and show the
cases for TS and TJ, because the case for TAR can be shown
similar to the proof of Lemma 1. This result can be obtained
by constructing polynomial-time reductions from NCL—a
well-known PSPACE-complete problem first introduced by
Hearn and Demaine [17]. This problem is often used to
prove the computational hardness of puzzles and games, be-
cause a reduction from this problem requires to construct
only two types of gadgets, called and and or gadgets.

3.2.1 Nondeterministic Constraint Logic

Now we define NCL problem [17]. An NCL “machine” is
an undirected graph together with an assignment of weights
from {1, 2} to each edge of the graph. An (NCL) configura-
tion of this machine is an orientation (direction) of the edges
such that the sum of weights of in-coming arcs at each ver-
tex is at least two. Figure 2(a) illustrates a configuration of
an NCL machine, where each weight-2 edge is depicted by
a thick (blue) line and each weight-1 edge by a thin (red)
line. Then, two NCL configurations are adjacent if they dif-
fer in a single edge direction. Given an NCL machine and
its two configurations, it is known to be PSPACE-complete to
determine whether there exists a sequence of adjacent NCL
configurations which transforms one into the other [17].

An NCL machine is called an and/or constraint graph
if it consists of only two types of vertices, called “NCL and
vertices” and “NCL or vertices” defined as follows:

• A vertex of degree three is called an NCL and vertex if
its three incident edges have weights 1, 1 and 2. (See
Fig. 2(b).) An NCL and vertex u behaves as a logical

Fig. 2 (a) A configuration of an NCL machine, (b) NCL and vertex, and
(c) NCL or vertex.

and, in the following sense: the weight-2 edge can be
directed outward for u if and only if both two weight-1
edges are directed inward for u. Note that, however, the
weight-2 edge is not necessarily directed outward even
when both weight-1 edges are directed inward.

• A vertex of degree three is called an NCL or vertex if
its three incident edges have weights 2, 2 and 2. (See
Fig. 2(c).) An NCL or vertex v behaves as a logical
or: one of the three edges can be directed outward for
v if and only if at least one of the other two edges is
directed inward for v.

It should be noted that, although it is natural to think of NCL
and/or vertices as having inputs and outputs, there is noth-
ing enforcing this interpretation; especially for NCL or ver-
tices, the choice of input and output is entirely arbitrary be-
cause an NCL or vertex is symmetric.

For example, the NCL machine in Fig. 2(a) is an and/or
constraint graph. From now on, we call an and/or constraint
graph simply an NCL machine, and call an edge in an NCL
machine an NCL edge. NCL remains PSPACE-complete
even if an input NCL machine is planar and bounded band-
width [29].

3.2.2 Constructing Gadgets

In our reduction, we construct two types of gadgets named
and/or gadgets, which correspond to NCL and/or vertices,
respectively. Both and/or gadgets consist of one main part
and three connecting parts. Each connecting part corre-
sponds to each incident NCL edge of the corresponding ver-
tex. Then we replace each of vertices in the NCL machine
with its corresponding gadget so that each pair of adjacent
vertices sharing their connecting parts.

Each connecting part is formed P2k−2. Note that if we
want to cover this path with only one vertex, we must choose
one of the two center vertices. In our reduction, choosing
one of the two vertices corresponds to inward direction, and
the other one corresponds to outward direction.

Now we explain the construction of the and gadget.
Consider an NCL and vertex. Figure 4(a) illustrates all valid
orientations of the edges incident to an NCL and vertex.
Two boxes are joined by an edge if their orientations are
adjacent. We construct our and gadget so that it correctly
simulates this reconfiguration graph in Fig. 4(a).

Figure 3(a) illustrates our and gadget for the case where
k = 3. The main part of and gadget forms Pk. Note that we
must choose at least one of the vertices on this part to obtain
k-PVC. Then we connect one endpoint to two connecting
parts which corresponds to weight-1 edges, and connect the
other endpoint to a connecting part which corresponds to
weight-2 edge. If at least one of the weight-1 edges is di-
rected outward, we must choose the endpoint of main part
next to the connecting part corresponding to the weight-1
edge to obtain k-PVC. On the other hand, if the weight-
2 edge is directed outward, we must choose the endpoint
of main part next to the connecting part corresponding to

□

(a) (b) (c)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HOANG et al.: RECONFIGURING K-PATH VERTEX COVERS
1263

the weight-2 edge to obtain k-PVC. Figure 4(b) illustrates
the reconfiguration graph for all 3-PVCs of the and gadget
where we allow to choose at most four vertices as 3-PVC.
Each large dashed box surrounds all 3-PVCs choosing the
same vertices from their connecting part. Then we can see
that these 3-PVCs are “internally connected,” that is, any
two 3-PVCs in the same dashed box are reconfigurable with
each other without changing the vertices in connecting parts.

Fig. 3 Gadgets for 3-PVCR. (a) The and gadget. (b) The or gadget.
Each dashed rectangle represents a connecting part. For each connecting
part, choosing the black vertex corresponds to inward direction, and the
gray vertex corresponds to outward direction.

Fig. 4 (a) All vaild orientations of the edges incident to an NCL and vertex, and (b) all 3-PVCs of
the and gadget. The 3-PVCs connected by an edge are adjacent by TJ/TS rules, while the 3-PVCs
connected by dashed edge are adjacent only by TJ rule.

Furthermore, this gadget preserves the “external adjacency”
in the following sense: if we contract the 3-PVCs in the
same dashed box in Fig. 4(b) into a single vertex, then the
resulting graph is exactly the graph depicted in Fig. 4(a).
Therefore, we can conclude that our and gadget correctly
works as an NCL and vertex.

Next we explain the construction of or gadget. Figure
3(b) illustrates our or gadget for the case where k = 3. The
main part of or gadget forms Ck+1 (cycle consists of k + 1
vertices). Note that we must choose at least two of the ver-
tices on this part to obtain k-PVC. Then we arbitrary choose
three distinct vertices from this cycle and connect them to
three connecting parts one by one.

If a weight-2 edge is directed outward, we must choose
the vertex in main part next to the connecting part corre-
sponding to the edge to obtain k-PVC. To verify that this or
gadget correctly simulates an NCL or vertex, it suffices to
show that this gadget satisfies both the internal connected-
ness and the external adjacency. Since this gadget has only
18 3-PVCs where we allow to choose at most five vertices
as 3-PVC. Therefore, by same way to and gadget, we can
easily check these sufficient conditions. (See Fig. 5.)

(a)

' '' ,..,

•-------------·

' '

Jc
'
' ' ' ...:..+-
' ' ' ' '
' ' -------------

(b)

Jc
I

' ' '

Jc -

(a)

Jc
(b)

' r,

. -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -, - - - - - - - - - - - -

' ' ·- - - - - - - - - - - - -· ·- - - - - - - - - - - -

Jc
' ------------ -
.-------------- ------------I

I

Jc
I

Jc
I
I
I

~
I

-.--,--
' ' ' ' ' '

I_ - - - - - - - - - - - _I I_ - - - - - - - - - - -

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1264
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

Fig. 5 (a) All vaild orientations of the edges incident to an NCL or vertex, and (b) all 3-PVCs of the
or gadget. The 3-PVCs connected by an edge are adjacent by TJ/TS rules, while the 3-PVCs connected
by dashed edge are adjacent only by TJ rule.

3.2.3 Reduction

As we have explained before, we replace each of NCL
and/or vertices with its corresponding gadget; let G be the
resulting graph. Recall that NCL remains PSPACE-complete

even if an input NCL machine is planar and bounded band-
width [29]. Since both our gadgets are planar, consist of
only a constant number of edges, and of maximum degree
three, the resulting graph G is also planar, bounded band-
width and of maximum degree three. (In fact the number of

(a)

:r◊,::: A ------------------------------ A
·-------------- -------------- .. ~----~~ : ;-'------~ :

A

k

.---------------- ..
' ' ' ' .A
•~-----~
I_ - - - - - - - - - - - - - - - _I

(b)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HOANG et al.: RECONFIGURING K-PATH VERTEX COVERS
1265

edges in our gadget is O(k). However, since we defined that
k is a fixed integer, it becomes constant.)

In addition, we construct two k-PVCs of G which cor-
respond to two given NCL configurations of the NCL ma-
chine. Note that there are (in general, exponentially) many
k-PVCs which correspond to the same NCL configuration.
However, by the construction of the gadgets, no two dis-
tinct NCL configurations correspond to the same k-PVC of
G. Therefore, we arbitrarily choose two k-PVCs of G which
correspond to two given NCL configurations.

This completes the construction of our corresponding
instance of k-PVCR. Clearly the construction can be done
in polynomial time.

3.2.4 Correctness

Let CI and CJ be two given NCL configurations of the NCL
machine. Let I and J be two k-PVCs of G which correspond
to CI and CJ , respectively. We now prove that there exists
a desired sequence of NCL configurations between CI and
CJ if and only if there exists a reconfiguration sequence be-
tween I and J.

We first prove the only-if direction. Suppose that there
exists a desired sequence S = ⟨C0,C1, . . . ,Cℓ⟩ of NCL con-
figurations between C0 = CI and Cℓ = CJ . Consider any two
adjacent NCL configurations Ci−1 and Ci in the sequence.
Then only one NCL edge vw changes its orientation be-
tween Ci−1 and Ci. Notice that, since both Ci−1 and Ci are
valid NCL configurations, the NCL and/or vertices v and w
have enough in-coming NCL edges even without vw. Recall
that both and/or gadgets are internally connected and pre-
serve the external adjacency. Therefore, any reversal of an
NCL edge can be simulated by a reconfiguration sequence
of k-PVCs of G, and hence there exists a reconfiguration
sequence between I and J.

We now prove the if direction. Suppose that there exists
a reconfiguration sequence S = ⟨I0, I1, . . . , Iℓ⟩ (I0 = I and
Iℓ = J). Notice that, by the construction of gadgets, any k-
PVC of G corresponds to a valid NCL configuration. Let Ci

be an NCL configuration corresponds to Ii, for i ∈ {0, . . . , ℓ}.
By deleting redundant orientations from C0,C1, . . . ,Cℓ if
needed, we can obtain a sequence of valid adjacent orien-
tations between CI and CJ .

This completes the proof of Theorem 6.

4. Polynomial-Time Algorithms

4.1 Trees

In this section, we show polynomial-time algorithms for k-
PVCR on trees under each of TJ and TAR. We first show a
polynomial-time algorithm for the problem under TJ. Then,
using Lemma 1 and the above result, we show a polynomial-
time algorithm for the problem under TAR.

First, in order to solve the problem under TJ, we claim
that for an instance (T, I, J,TJ) of k-PVCR on a tree T , if
|I| = |J|, one can construct in polynomial time a TJ-sequence

Algorithm 1: Partition(T, k, r).
Input: A tree T on n vertices rooted at r and a positive integer k;
Output: A partition P(T) of T into ψk(T) subtrees;

1 i := 1;
2 while T contains a properly rooted subtree Tv do
3 if T − Tv contains a properly rooted subtree then
4 Ti(r) := Tv;
5 i := i + 1;
6 else
7 Ti(r) := T ;
8 T := T − Tv;
9 P(T) = {T1(r), . . . , Ti(r)};

10 return P(T);

between I and J. The idea is to construct a canonical k-path
vertex cover I⋆ such that both I and J can be reconfigured
to I⋆ under TJ.

Before constructing I⋆, we prove the following lemma,
which describes an useful algorithm for partitioning a tree
into subtrees satisfying certain conditions.

Lemma 7. Let T be a tree on n vertices rooted at a vertex
r. Assume that ψk(T) ≥ 1. Then, in O(n) time, one can
partition T into ψk(T) subtrees T1(r), . . . , Tψk(T)(r) such that
for each i ∈ {1, . . . , ψk(T)},

(i) Each k-path vertex cover I satisfies I ∩ V(Ti(r)) , ∅.
(ii) There is a vertex that covers all k-paths in Ti(r).

Proof. To construct a partition P(T) = {T1(r), . . . , Tψk(T)(r)}
of T satisfying the described conditions, we slightly modify
the algorithm PVCPTree(T, k) in [6] as follows. A prop-
erly rooted subtree Tv of T is a subtree of T induced by the
vertex v and all its descendants (with respect to the root r)
satisfying the following conditions

1. Tv contains a k-path;
2. Tv − v does not contain a k-path.

The modified algorithm Partition(T, k, r) systematically
searches for a properly rooted tree Tv, decides whether Tv
belongs to a solution P(T), and if so, adds Tv to P(T), and
removes Tv from the input tree T . To check if T contains a
properly rooted subtree Tv, one can start by assigning v to
a vertex of largest depth (i.e., distance from r) and verify if
Tv is properly rooted. If so, we return “yes”. Otherwise, we
assign v to its parent and repeat, until a Tv is found (returning
“yes”) or there is nothing to check (returning “no”).

From [6], it follows that Partition(T, k, r) runs in
O(n) time. From the construction of P(T), it is clear that
(i) always holds. We show (ii) by induction on ψk(T).

For a tree T with ψk(T) = 1, let Tv be a properly rooted
subtree of T . Since any k-path vertex cover of T contains a
vertex from Tv, it follows that ψk(T − Tv) = ψk(T) − 1 = 0,
which implies that T − Tv does not contain any properly
rooted subtree, and therefore P(T) = {T }. To see that (ii)
holds, note that v must cover all k-paths in Tv, and therefore
it also covers all k-paths in T ; otherwise, T − Tv contains
a k-path that is not covered by v, and then must contain a

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1266
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

properly rooted subtree, which is a contradiction.
Assume that (ii) holds for any tree T with ψk(T) < c,

for some constant c > 1. For a tree T rooted at some
vertex r with ψk(T) = c, let Tv be a properly rooted sub-
tree of T , where v is some vertex of T . From the algo-
rithm Partition, it follows that v must cover all k-paths
in Tv = T1(r). Since c > 1, the tree T − Tv contains a
properly rooted subtree. By inductive hypothesis, for each
i ∈ {2, 3, . . . , ψk(T)}, there is a vertex that covers all k-
paths in Ti(r). Therefore, (ii) holds for any tree T with
ψk(T) ≥ 1.

We are now ready to show the following theorem.

Theorem 8. For any instance (T, I, J,TJ) of k-PVCR on a
tree T , I and J are reconfigurable if and only if |I| = |J|.
Moreover, a reconfiguration sequence between them, if ex-
ists, can be constructed in O(n) time. Consequently, k-
PVCR under TJ can be solved in linear time on trees.

Proof. Clearly, if I and J are reconfigurable under TJ, they
must be of the same size. To prove this theorem, it suffices
to show that for an instance (T, I, J,TJ) of k-PVCR on a
tree T , one can construct in polynomial time a TJ-sequence
between I and J.

A minimum k-path vertex cover Ir can be easily con-
structed in linear time by modifying Partition as follows:
Initially, Ir = ∅. In each iteration of the while loop, add to
Ir the vertex v of the properly rooted subtree Tv that is cur-
rently considering. Such a vertex v can be obtained from the
process of checking if T contains a properly rooted subtree
described in the proof of Lemma 7. Let I⋆ be any k-path
vertex cover of size |I| = |J| such that Ir ⊆ I⋆. We claim
that both I and J can be reconfigured to I⋆ under TJ. As a
result, a TJ-sequence between I and J can be constructed by
reconfiguring I to I⋆, and then I⋆ to J.

We now show how to construct a TJ-sequence between
I and I⋆. Let P(T) = {T1(r), . . . , Tψk(T)(r)} be a partition
of T resulting from the algorithm Partition and let I0 =

I. Intuitively, we will first “settle” the tokens in Ir ⊆ I⋆

(Step 1), and then, as the tokens in Ir already cover all k-
paths in T , the remaining tokens in I⋆ \ Ir can be easily
“settled” by jumping tokens one-by-one in arbitrary order
(Step 2).

• Step 1: For each i from 1 to ψk(T), let vi ∈ Ir∩V(Ti(r)).
If vi does not contain a token in Ii−1, we jump a token
from some vertex xi ∈ Ii−1 ∩ V(Ti(r)) to vi. Otherwise,
we do nothing. Let Ii be the resulting set. Note that
any k-path in T covered by xi must also be covered by
some v j with j ≤ i. A simple induction shows that
Ii = Ii−1 \ {xi} ∪ {vi} forms a k-path vertex cover of T .

• Step 2: For x ∈ Iψk(T) \ I⋆ and y ∈ I⋆ \ Iψk(T), we sim-
ply jump the token on x to y, and repeat the process
with Iψk(T) \ {x} and I⋆ \ {y} instead of Iψk(T) and I⋆,
respectively. Since Ir ⊆ Iψk(T) ∩ I⋆ is already a mini-
mum k-path vertex cover, any TJ-step described above
results a k-path vertex cover of T .

Since each token in I is jumped at most once, the above con-
struction can be done in linear time. We have described how
to construct a TJ-sequence from J to I⋆. In a similar man-
ner, a TJ-sequence between J and I⋆ can be constructed.
Our proof of Theorem 8 is complete.

Consequently, combining Theorem 8 and Lemma 1, we
have the following theorem.

Theorem 9. For any instance (T, I, J,TAR(u)) of k-PVCR
on a tree T , one can decide if I and J are reconfigurable in
polynomial time.

Proof. Clearly, if u < max{|I|, |J|} or u = ψk(T) then
(T, I, J,TAR(u)) is a no-instance, because either I or J can-
not be modified by adding/removing tokens. We now con-
sider the case u ≥ max{|I|, |J|} and u > ψk(T). Note that if
|I| < |J| then we can add tokens to I until the resulting k-path
vertex cover is of size |J|, simply because u ≥ max{|I|, |J|}.
As a result, we can assume without loss of generality that
|I| = |J| = s for some constant s. By Theorem 8 and
Lemma 1, it follows that there always exists a TAR(s + 1)-
sequence between I and J. If s + 1 ≤ u then clearly a
TAR(s + 1)-sequence is also a TAR(u)-sequence, and we are
done. Assume that s + 1 > u. Since u ≥ s and u > ψk(T),
it follows that u = s and both I and J are not minimum.
Now, we need to check if we can remove at least one to-
ken from I (resp. J), which can be done in polynomial time
by checking each token one by one and verifying whether
its removal results a k-path vertex cover. If this is possible
for both I and J, we remove exactly one token from I (resp.
J) to obtain a new k-path vertex cover I′ (resp. J′) of size
s−1. By Lemma 1, there exists a TAR(u)-sequence between
I′ and J′, and combining this sequence with the previous re-
moval steps gives us a TAR(u)-sequence between I and J.
Otherwise, we can conclude that the given instance is a no-
instance, because the first step of reconfiguring (either from
I to J or vice versa) is to remove some token (since u = s,
adding a token is not possible).

4.2 Paths and Cycles

Here, we describe polynomial-time algorithms for k-PVCR
on paths and cycles. As paths and cycles are the only (pla-
nar) graphs of maximum degree two, by combining Theo-
rem 6 and our results, we have a complexity dichotomy of k-
PVCR on (planar) graphs. Additionally, on paths, we claim
that one can construct a shortest reconfiguration sequence
between any two given k-path vertex covers (if exists) under
each reconfiguration rule TS, TJ, and TAR.

4.2.1 k-PVCR on Paths

By Theorems 8 and 9, clearly k-PVCR on paths can be
solved in polynomial time under each of TJ and TAR. In this
section, we slightly improve this result by showing that one
can construct a shortest reconfiguration sequence between

□

□

□

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HOANG et al.: RECONFIGURING K-PATH VERTEX COVERS
1267

two k-path vertex covers on a path not only under each of
TJ and TAR but also under TS.

Given an instance (P, I, J,TJ) of k-PVCR where |I| =
|J| = s, one can construct a shortest TJ-sequence between
I and J. Suppose that vertices in I = {vi1 , . . . , vis } and J =
{v j1 , . . . , v js } are ordered such that 1 ≤ i1 < · · · < is ≤ n
and 1 ≤ j1 < · · · < js ≤ n. In each step of the algorithm,
we move a token on the “rightmost” vertex vip ∈ I \ J to
the “rightmost” vertex v jp ∈ J \ I if ip > jp or vice-versa
otherwise, for p ∈ {1, . . . , s}. As a reconfiguration sequence
is reversible, one can easily form a TJ-sequence between I
and J. Note that each step of the algorithm reduces |I∆J|/2
by exactly one. Finally, we obtain a shortest TJ-sequence
between I and J of length exactly |I∆J|/2.

Theorem 10. Given an instance (P, I, J,TJ) of k-PVCR on
a path P, the k-path vertex covers I and J are reconfigurable
if and only if |I| = |J|. Moreover, we can compute a shortest
reconfiguration sequence in O(n) time.

Proof. Let P = v1v2 . . . vn be a given path. In the fol-
lowing, we use the expression rightmost instead of using
“with the largest index”. Algorithm 2 describes an algo-
rithm PVCRPathTJ(P, I, J) for k-PVCR on paths under TJ.

Algorithm 2: PVCRPathTJ(P, I, J)
Input: A path P of n vertices, initial token-set I, and target

token-set J;
Output: A reconfiguration sequence S ;

1 Let S , S I , S J be reconfiguration sequences, and initialize them
by ∅;

2 while I∆J , ∅ do
3 vi ← the rightmost vertex in P[I∆J];
4 if vi ∈ I then
5 Find the rightmost token v j in J \ I (here j < i);
6 S I := S I ⊕ ⟨I, I \ {vi} ∪ {v j}⟩;
7 I := I \ {vi} ∪ {v j};
8 if vi ∈ J then
9 Find the rightmost token v j in I \ J (here j < i);

10 S J := S J ⊕ ⟨J, J \ {vi} ∪ {v j}⟩;
11 J := J \ {vi} ∪ {v j};
12 S := S I ⊕ rev(S J);
13 return S ;

Clearly, if I and J are reconfigurable under TJ then
they are of the same size. It remains to show the if direc-
tion. To this end, we show that PVCRPathTJ(P, I, J) cor-
rectly constructs a TJ-sequence between two k-path vertex
covers I, J of the same size. In each iteration of the while
loop, when vi ∈ I, we confirm that if we move a token from
vi to v j, the resulting token-set still keeps k-path vertex cover
property. In other words, the constructed sequence S I is
indeed a TJ-sequence. Suppose to the contrary that mov-
ing the token on vi to the left (i.e., to the direction in which
the indices get smaller) results in some non-covered k-path,
say Q = vℓvℓ+1 . . . vℓ+k−1, where ℓ ≤ i ≤ ℓ + k − 1 and
j + 1 ≤ ℓ ≤ n − k + 1. Since J is a k-path vertex cover,
there must be some vertex vℓ′ ∈ J for ℓ ≤ ℓ′ ≤ ℓ + k − 1.

Also, since vi ∈ I \ J, ℓ′ , i. If ℓ′ < i, then vℓ′ ∈ I; otherwise,
v j ∈ J \ I is not rightmost. If ℓ′ > i, then vℓ′ ∈ I; otherwise,
vi is not rightmost in P[I∆J]. Therefore vℓ′ ∈ J ∩ I always
covers P, a contradiction. In a similar manner, one can also
verify that S J is indeed a TJ-sequence. Let I′ be the k-path
vertex cover obtained when the condition of the while loop
is violated. Clearly, S I (resp. S J) reconfigures I (resp. J) to
I′. Therefore, S = S I ⊕ rev(S J) reconfigures I to J.

Next, we claim that S is shortest. Note that any TJ-
sequence between I and J uses at least |I∆J|/2 TJ-steps.
Moreover, in PVCRPathTJ(P, I, J), we move tokens exactly
|I∆J|/2 times: in each iteration, exactly one token (either
from I \ J or J \ I) is moved, and then the size of I∆J de-
creases by 2. Therefore, S is shortest. Consequently, the
running time is O(n).

By Theorem 10 and Lemma 1, we obtain the following
result on k-PVCR on a path P under TAR.

Theorem 11. For any instance (P, I, J,TAR(u)) of k-PVCR
on a path P on n vertices, one can decide if I and J are
reconfigurable in linear time.

Proof. A similar approach as in the proof of Theorem 9 can
be applied. Note that in the case s = u, where s = |I| = |J|,
we have to check if we can remove at least one token from I
(resp. J) is as follows. Given a path P = v1v2 . . . vn, let us as-
sume that I = {vi1 , vi2 , . . . , vis } where 1 ≤ i1 < i2 < · · · < is ≤
n. In order to check if a token on u can be removed, assum-
ing u = vi j for some j such that 1 ≤ j ≤ s, we do as follows.
(1) If j ∈ {2, . . . , s − 1}, then check if distG(vi j−1 , vi j+1) ≤ k,
and (2) if j = 1, then check if distG(v1, vi j) ≤ k−1, and (3) if
j = s, then check if distG(vi j , vn) ≤ k − 1. Indeed, this can be
done in O(n) time: for each token, one needs O(1) time for
checking if the resulting set obtained by removing u is still a
k-path vertex cover. The correctness of this checking easily
follows from the definition of k-path vertex cover. One can
see that similar things can be done for J.

Now we sketch the idea for solving the problem under
TS in polynomial time. Given an instance (P, I, J,TS) of
k-PVCR where |I| = |J| = s, one can construct a short-
est TS-sequence between I and J. Suppose that vertices
in I = {vi1 , . . . , vis } and J = {v j1 , . . . , v js } are ordered such
that 1 ≤ i1 < · · · < is ≤ n and 1 ≤ j1 < · · · < js ≤ n.
Our goal is to construct a shortest TS-sequence (of length∑s

p=1 distP(vip , v jp)) that repeatedly slides the token on the
“leftmost” vertex vip ∈ I to the “leftmost” vertex v jp ∈ J if
ip < jp or vice-versa otherwise, for p ∈ {1, . . . , s}.

The key point is, in certain conditions, one can con-
struct in polynomial time a function Push(P, I, i, j) (Func-
tion 3) whose task is to output a TS-sequence that moves the
token placed at some vertex vi of the k-path vertex cover I to
vertex v j in a given path P = v1v2 . . . vn, where 1 ≤ i < j ≤
i + k ≤ n. Roughly speaking, Push(P, I, i, j) slides the token
t on vi toward v j along the path Pi j = vivi+1 . . . v j until either t
ends up at v j or there is some index p ∈ {i, . . . , j−1} where t
is already placed at vp but cannot immediately move to vp+1

□

□

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1268
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

Function 3: Push(P, I, i, j)
Input: A path P = v1 . . . vn, a k-path vertex cover I, and two

indices i and j with 1 ≤ i < j ≤ i + k ≤ n;
Output: A sequence S of TS-steps that moves the token on vi to

v j;
1 S = ∅;
2 while i , j do
3 if vi+1 ∈ I then
4 S := S ⊕ Push(P, I, i + 1, i + 2); // Both S and I

are updated

5 S := S ⊕ ⟨I, I \ {vi} ∪ {vi+1}⟩;
6 I := I \ {vi} ∪ {vi+1};
7 i := i + 1;
8 return S ;

because there is already some token t′ placed there. In the
latter case, one can recursively call Push to slide t′ from vp+1

to vp+2 and therefore enabling t (which is currently placed at
vp) to slide to vp+1. Now, the same situation happens again
with t and t′, and the resolving procedure can be done in the
same manner as before. This process stops when t is finally
placed at v j.

The following lemma says that if certain conditions
are satisfied, the output of Push(P, I, i, j) is indeed a TS-
sequence that reconfigures the k-path vertex cover I to some
other k-path vertex cover of P.

Lemma 12. Let P = v1v2 . . . vn be a path on n vertices,
and let I be a k-path vertex cover of P. Let i ∈ {1, . . . , n}
be such that either i ≤ k + 1 or {vi−1, . . . , vi−k} ∩ I , ∅. If
{vi, vi+1, . . . , vi+p} ⊆ I and vi+p+1 < I for some integer p satis-
fying 0 ≤ p ≤ n− i− 1, then there exists a TS-sequence in P
that reconfigures I to I \{vi, vi+1, . . . , vi+p}∪{vi+1, . . . , vi+p+1}.
Consequently, if the assumption is satisfied, the output of
Push(P, I, i, j) is indeed a TS-sequence in P that reconfig-
ures I to some k-path vertex cover of P.

Proof. We prove the lemma by induction on p. If p = 0,
then by the assumption, the lemma clearly holds because the
token on vi can indeed be moved to vi+1 without leaving any
non-covered k-path. Assume that if {vi, vi+1, . . . , vi+p−1} ⊆ I
and vi+p < I for some integer p satisfying 0 ≤ p ≤ n − i − 1,
then there exists a TS-sequence S ′ in P that reconfigures I
to I \ {vi, vi+1, . . . , vi+p−1} ∪ {vi+1, . . . , vi+p}. We claim that if
{vi, vi+1, . . . , vi+p} ⊆ I and vi+p+1 < I for some integer p satis-
fying 0 ≤ p ≤ n−i−1, then there exists a TS-sequence S in P
that reconfigures I to I \{vi, vi+1, . . . , vi+p}∪{vi+1, . . . , vi+p+1}.
Note that the k-path vi+p−k+1 . . . vi+p is (at least) covered
by both vi+p−1 and vi+p. Therefore, the token on vi+p can
be slid to vi+p+1 without leaving any non-covered k-path.
More formally, I′ = I \ {vi+p} ∪ {vi+p+1} is a k-path vertex
cover in P. By the inductive hypothesis, there exists a TS-
sequence S ′ that reconfigures I′ to I′ \ {vi, vi+1, . . . , vi+p−1} ∪
{vi+1, . . . , vi+p} = I \ {vi, vi+1, . . . , vi+p} ∪ {vi+1, . . . , vi+p+1}.
Thus, S = ⟨I, I′⟩ ⊕ S ′ is our desired TS-sequence. It
is not hard to see that each iteration of the while loop in
Push(P, I, i, j) performs exactly the procedure we have just
described (the case p = 0 corresponds to the steps outside

the if condition, the case p ≥ 0 corresponds to the recur-
sive call inside the if condition). As a result, if the assump-
tion of this lemma is satisfied, Push(P, I, i, j) is indeed a TS-
sequence.

Clearly, the function Push(P, I, ip, jp) can be used to
slide a token on vip to v jp for p ∈ {1, . . . , s} and ip < jp.
Thus, we have the following theorem.

Theorem 13. Given an instance (P, I, J,TS) of k-PVCR on
a path P, the k-path vertex covers I and J are reconfigurable
if and only if |I| = |J|. Moreover, we can compute a shortest
reconfiguration sequence in O(n2) time.

Proof. Before proving Theorem 13, we describe the algo-
rithm PVCRPathTS(P, I, J) (Algorithm 4) that takes two k-
path vertex covers I and J of P with |I| = |J| as the input,
and returns a TS-sequence between them. In the following,
we use the expression leftmost instead of using “with the
smallest index”.

Suppose that vertices in I = {vi1 , . . . , vis } and J =
{v j1 , . . . , v js } are ordered such that 1 ≤ i1 < · · · < is ≤ n
and 1 ≤ j1 < · · · < js ≤ n, where s = |I| = |J|. Intuitively,
PVCRPathTS(P, I, J) outputs a TS-sequence that slides the
token on vip to v jp for p ∈ {1, . . . , s}. Since P is a path, this
is the only way of sliding tokens, and thus any TS-sequence
between I and J uses at least

∑s
p=1 distP(vip , v jp) TS-steps.

Now we prove Theorem 13. As before, the only-if di-
rection is trivial. We show that PVCRPathTS(P, I, J) con-
structs a shortest TS-sequence between two k-path vertex
covers I, J of P with |I| = |J| in O(n2) time.

We first verify that the output of PVCRPathTS(P, I, J) is
a TS-sequence between I and J in P. Note that if in the cur-
rent iteration of the while loop in PVCRPathTS, the token on
vi is moved to v j (i.e., i < j), then the distance between v j and
the two untouched vertices considered in the next iteration
must be at most k; otherwise, some non-covered k-path ap-
pears. Then, the assumption of Lemma 12 is satisfied in the
next iteration. A similar argument holds for i > j. As a re-
sult, the function Push always returns a TS-sequence. Let I′

Algorithm 4: PVCRPathTS(P, I, J)
Input: A path P = v1v2 . . . vn, two k-path vertex covers I, J;
Output: A TS-sequence S between I and J in P;

1 Let S , S I , S J be reconfiguration sequences, and initialize them
by ∅;

2 while I , J do
3 Mark all vertices in I and J as untouched;
4 Find the leftmost untouched vertex vi ∈ I and the leftmost

untouched vertex v j ∈ J;
5 if i < j then
6 S I := S I ⊕ Push(P, I, i, j) ; // I is updated in

Push

7 else
8 S J := S J ⊕ Push(P, J, j, i) ; // J is updated in

Push

9 Mark vi and v j as touched;
10 S := S I ⊕ rev(S J);
11 return S ;

□

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HOANG et al.: RECONFIGURING K-PATH VERTEX COVERS
1269

be the k-path vertex cover of P obtained when the condition
of the while loop of PVCRPathTS(P, I, J) is violated. Then,
it is not hard to see that S I (resp. S J) is a TS-sequence that
reconfigures I (resp. J) to I′, and therefore S = S I ⊕ rev(S J)
reconfigures I to J.

Note that in the function Push(P, I, i, j) (and also
Push(P, J, j, i)), Push is called at most once for each ver-
tex of P, which implies Push(P, I, i, j) runs in O(n) time.
Moreover, PVCRPathTS marks each vertex in I and J ex-
actly twice. Thus, in total, PVCRPathTS runs in O(n2) time.

To conclude the proof of Theorem 13, we show that
the TS-sequence S between I and J in P obtained from
PVCRPathTS(P, I, J) is shortest. To see this, note that for
each p ∈ {1, . . . , s}, either the token t on vip ∈ I is slid to
v jp ∈ J or the token t′ on v jp ∈ J is slid to vip ∈ I in some
iteration of the while loop in PVCRPathTS(P, I, J), and ei-
ther S I or S J is then updated accordingly. Suppose that the
algorithm slides t to v jp . Note that if there is any token t′′

placed at some vertex viq (iq ∈ {ip + 1, . . . , jp} in the path
vipvip+1 . . . v jp , then even when t′′ is moved by some Push
calls, by the time t ends up at v j, t′′ cannot be placed at any
vertex whose index is larger than jq. (We always have ip <
iq ≤ jp < jq for all such iq.) Clearly, if no such viq exists,
sliding t has no effect on sliding any other token in the next
iterations. A similar argument holds in case the algorithm
slides t′. Thus, we can conclude that PVCRPathTS(P, I, J)
performs exactly

∑s
p=1 distP(vip , v jp) TS-steps, and therefore

outputs a shortest TS-sequence.

4.2.2 k-PVCR on Cycles

Let C = v0v1 . . . vn−1v0 be a given n-vertex cycle, and let
(C, I, J,R) be a k-PVCR instance on C under a reconfig-
uration rule R ∈ {TJ,TS,TAR(u)}. We remark that if
|I| = |J| = ⌈n/k⌉ and n = c · k for some c, then (C, I, J,R)
where R ∈ {TS,TJ} is a no-instance. This is because no
tokens can be moved in such instances.

Here we assume that the indices of vertices on the cycle
increase in the clockwise manner. We claim that it is possi-
ble to apply the algorithms for paths to cycles, by cutting a
cycle into a path with a vertex in I∩ J, if it exists. Moreover,
if I ∩ J = ∅, we claim that one can always move tokens to
reach an instance where I ∩ J , ∅. Our algorithms do not
always achieve the shortest reconfiguration sequence. How-
ever, we later show that achieving the shortest sequence even
on cycles under TJ might not be trivially easy, since we can
systematically create the instances such that the length of the
shortest reconfiguration sequence is not equal to |I∆J|/2.

Now, we describe the sketch how to cut C under TJ,
TS, and TAR. In the TS case, without loss of generality, we
can assume that either |I| , ⌈n/k⌉ or n , c · k holds. If v
is already in I ∩ J, we cut C by removing v. The following
lemma ensures that if I and J are reconfigurable in C − v,
then I ∪ {v} and J ∪ {v} are reconfigurable in C.

Lemma 14. Let C be an n-vertex cycle and v be a token in
I ∩ J of C. Then, for any k-path vertex cover I′ of C − v,

I′ ∪ {v} is a k-path vertex cover of C.

Proof. Let us assume v to be v0. Consider the path P =
C − v = v1v2 . . . vn−2vn−1 and a k-path vertex cover I′ on P.
Since I′ covers all the k-paths on P, I′ has at least one token
on the k-path P′ = v1v2 . . . vk and also at least one token on
the k-path P′′ = vn−kvn−k+1 . . . vn−1. Now v is a token in I∩ J,
if we connect two endpoints v1 and vn−1 with v and create a
cycle, all new k-paths include v and those paths are covered
by v. This completes the proof.

If I ∩ J = ∅, there exists at least one token movable in
the clockwise or counterclockwise direction. Here, we say
a token u is movable if and only if (i) there exists a neighbor
v of u such that no token is placed on v, and (ii) moving a
token on u to v results a k-path vertex cover.

Lemma 15. If either |I| , ⌈n/k⌉ or n , c ·k holds, then there
exists at least one token movable by at least one step in the
clockwise or counterclockwise direction. Furthermore, we
can find such a token in linear time.

Proof. If |I| , ⌈n/k⌉, since ⌈n/k⌉ is a minimum size of k-
path vertex cover on n-vertex cycle, we can assume |I| ≥
⌈n/k⌉+1. This implies that there exists some k-path that has
at least two tokens on it. We can find such a path (and thus
such tokens) in linear time, since there are at most n distinct
k-paths on an n-vertex cycle. Once we find such tokens, e.g.,
u and v, at least one of them can move at least one step in
clockwise or counterclockwise direction, since the k-path is
now covered by u and v and if we move v, either u or v still
covers the k-path. Hence, if |I| , ⌈n/k⌉, this lemma holds.

Consider the case |I| = ⌈n/k⌉ and n is not divisible by
k. Since I is a k-path vertex cover, I covers all k-paths in C.
Clearly, C is a cycle of size n if and only if the number of
edges of C is n. Suppose to the contrary that each k-path in
C has exactly one token of I. Then, the length of the cycle is
|I| · (k − 1) + |I| = |I| · k, which contradicts to the assumption
that n is not divisible by k. By this argument, similarly to
the above |I| , ⌈n/k⌉ case, there exists at least one k-path
which has two tokens of I, and we can find them in linear
time. This completes the proof.

After finding such a movable token, we can use rotate
operation repeatedly until we obtain at least one vertex in
I∩ J. Here, the rotate operation takes a token-set, a movable
token u which can be slid at least one step towards direction
d ∈ {clockwise, counterclockwise} as input, and outputs a
TS-sequence that slides all tokens one step towards d. In-
tuitively, moving u one step towards d enables its successor
(with respect to direction d) to move one step towards d, and
so on. After obtaining at least one vertex in I ∩ J, we can
perform the cutting operation as before.

Next, we consider the TJ case. Since any TS-sequence
is also a TJ-sequence, we can perform the same cutting op-
eration as in the TS case. Then, using this cutting operation,
we can show the following theorem.

Theorem 16. Given an instance (C, I, J,R) of k-PVCR on a

□

□

□

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1270
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

cycle C where R ∈ {TS,TJ}, if |I| = |J| = ⌈n/k⌉ and n = c · k
for some c, then (C, I, J,R) is a no-instance. Otherwise, the
k-path vertex covers I and J are reconfigurable if and only
if |I| = |J|. Moreover, we can compute a reconfiguration
sequence for TJ rule in O(n) time, and for TS rule in O(n2)
time.

Proof. We describe an algorithm (Algorithm 6) that takes
C = v0v1 . . . vn−1v0, initial token-set I, and target token-set J
and outputs a reconfiguration sequence S if exists, and oth-
erwise says no-instance. Lemma 14 shows that it is possible
to cut the cycle C with a vertex v ∈ I ∩ J; in other words, it
is equivalent to consider problems on a path P = C − v.

Lemma 15 allows us to find at least one movable token
if either |I| , ⌈n/k⌉ or n , c · k holds. After finding such a
movable token, we can use the rotate operation described in
Function 5 and obtain at least one vertex v ∈ I ∩ J. Let us
assume that I = {vi0 , vi1 , . . . , vis−1 } where 0 ≤ i0 < i1 < · · · <
is−1 ≤ n−1. Here, let vi j be a token that is movable to at least
one step in the direction d ∈ {clockwise, counterclockwise},
where j ∈ {0, . . . , s − 1}.

One can observe that, by Lemma 15, the reconfigu-
ration sequence obtained by rot(I, i j, d) is a TS-sequence.
This is indeed true, since it moves each token in I by exactly
one step keeping the k-path vertex cover property, by start-
ing to move tokens from vi j along the cycle until we meet vi j

again.
By Lemma 14 and Lemma 15, PVCRCycleTS(C, I, J)

is shown to be correct. Note here that, for k-PVCR on
cycles under TJ, one can use PVCRPathTJ(C − v, I, J) in-
stead of applying PVCRPathTS(C − v, I, J) in the algo-
rithm. For the computation time, since (i) while loop
takes O(kn) time and (ii) PVCRPathTS(C − v, I, J) runs in
O(n2) time, PVCRCycleTS(C, I, J) runs in O(n2) time. For
TJ case, since PVCRPathTJ(C − v, I, J) runs in O(n) time,
PVCRCycleTJ(C, I, J) runs in O(n) time.

For the TAR case, we can use the result for the TJ case

Function 5: rot(I, i j, d)
Input: A token-set I, a token on vi j ∈ I,

d ∈ {clockwise, counterclockwise}.
Output: A TS-sequence S that slides all tokens one step

towards d, starting from vi j .
1 S := ∅;
2 c := j;
3 if d is clockwise then
4 repeat
5 S := S ⊕ ⟨I, I \ {vic } ∪ {v(ic+1) mod n}⟩;
6 I := I \ {vic } ∪ {v(ic+1) mod n};
7 c := (c + 1) mod |I|;
8 until c = j;
9 else

10 repeat
11 S := S ⊕ ⟨I, I \ {vic } ∪ {v(ic−1) mod n}⟩;
12 I := I \ {vic } ∪ {v(ic−1) mod n};
13 c := (c − 1) mod |I|;
14 until c = j;
15 return S ;

Algorithm 6: PVCRCycleTS(C, I, J)
Input: A cycle C = v0v1 . . . vn−1v0, initial token-set I, and target

token-set J;
Output: A reconfiguration sequence S if it exists; otherwise

says no-instance;
1 S := ∅;
2 if I ∩ J = ∅ and |I| = ⌈n/k⌉ and n is divisible by k then
3 return (C, I, J) is a no-instance;
4 Find a token vi ∈ I such that it can move at least one step in

clockwise or counterclockwise direction, and let d be such a
direction;

5 while I ∩ J = ∅ do
6 S := S ⊕ rot(I, i, d) ; // I is updated in rot(I, i, d)
7 if d is clockwise then
8 i := (i + 1) mod n;
9 else

10 i := (i − 1) mod n;
11 Pick one token v ∈ I ∩ J;
12 S ′ = PVCRPathTS(C − v, I, J);
13 Update S ′ by adding v to each of its members;
14 S := S ⊕ S ′;
15 return S ;

and Lemma 1 to show the following theorem.

Theorem 17. For any instance (C, I, J,TAR(u)) of k-PVCR
on a cycle C, one can decide if I and J are reconfigurable in
linear time.

Proof. Clearly, if u < max{|I|, |J|} or u = ψk(C) then
(C, I, J,TAR) is a no-instance, because either I or J cannot
be modified by adding/removing tokens. We now consider
the case u ≥ max{|I|, |J|} and u > ψk(C). Note that if |I| < |J|
then we can add tokens to I until the resulting k-path ver-
tex cover is of size |J|, simply because u ≥ max{|I|, |J|}.
As a result, we can assume without loss of generality that
|I| = |J| = s for some constant s. Now we have |I| = |J| = s
and u > ψk(C), we divide into two cases: u ≥ s + 2 or
u = s + 1.

Consider the case u ≥ s + 2. If I ∩ J = ∅, then we add
one token v < I∪ J. Then we can cut C by v and consider the
instance (C−v, I \{v}, J \{v}) on the path C−v under TAR(u′)
where u′ ≥ s + 1. Then, by Theorem 10 and Lemma 1,
I is always reconfigurable to J under TAR(u). Otherwise,
i.e., I ∩ J , ∅, we can use the similar argument as before
with |I| = |J| = s − 1 and u ≥ s + 1, therefore I is always
reconfigurable to J under TAR(u).

Next, consider the case u = s+1. If I∩ J , ∅, also sim-
ilar argument can be applied as before with |I| = |J| = s − 1
and u = s. Hence, in this case, I is always reconfigurable to
J under TAR(u). Otherwise, we first find a token of I which
is movable in direction d ∈ {clockwise, counterclockwise}.
Recall that a token u is movable to some vertex v if the re-
sulting set still keeps a k-path vertex cover property. If we
can find such a token, we can rotate I in d until I ∩ J , ∅ as
in the algorithm PVCRCycleTS. We note that though such
rotation forms a TS-sequence (which is also a TJ-sequence),
by Lemma 1, it can be converted to a TAR(u)-sequence. If
we finish the rotation, then we can also cut C by v ∈ I ∩ J
and similar argument can be applied as before. Else, assume

□

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HOANG et al.: RECONFIGURING K-PATH VERTEX COVERS
1271

without loss of generality that no token in I can move. Then,
by Lemma 15, it follows that I is minimum and n = c · k.
Now we have u = s + 1, and we can add exactly one to-
ken. However, even when adding a new token v, one cannot
remove any other token u while keeping the k-path vertex
cover property. Suppose to the contrary, let I′ = I \ {u} ∪ {v}.
This implies that I′ can be obtained from I by jumping the
token on u to v. However, since n = c · k and I and I′ are
token sets of minimum size, then I cannot be reconfigured
to I′ under TJ, a contradiction.

So far, we have shown that k-PVCR on cycles under
each of TJ and TAR(u) can be solved in O(n) time, and under
TS can be solved in O(n2) time (Theorems 16 and 17). To
conclude this section, we give an example showing that even
in a yes-instance (C, I, J,TJ) of k-PVCR (k ≥ 3) under TJ
on a cycle C, one may need to use more than |I∆J|/2 TJ-
steps even in a shortest TJ-sequence. Intuitively, the lower
bound |I∆J|/2 seems to be easy to achieve under TJ, simply
by jumping tokens one by one from I\J to J\I. However, as
we show in the following lemma, to keep the k-path vertex
cover property, sometimes a token in I may need to jump to
some vertex not in J \ I beforehand. This implies the non-
triviality of finding a shortest reconfiguration sequence even
under TJ.

Lemma 18. For k-PVCR (k ≥ 3) yes-instances (C, I, J,TJ)
on cycles where C = v0v1 . . . v3k−2v0, I = {v0, vk, v2k} and J =
{v3k−2, v2k−2, vk−1}, the length of a shortest reconfiguration
sequence from I to J is greater than |I∆J|/2.

Proof. We illustrate such instances in Fig. 6. In Fig. 6,
black tokens are in I, and white tokens are in J. Note that
distC(v2k−2, v2k) = 2 and distC(v3k−2, v0) = distC(vk−1, vk) =
1.

First, v0 is the only vertex that covers the path P =
v0v1 . . . vk−1, which means v0 cannot move to some vertex
outside P, such as v3k−2. Therefore, v0 has no choice but to
move to vk−1. However then, the path v2k . . . v3k−2v0 . . . vk−1 is
of length 2k − 2 ≥ k. By these arguments, v0 cannot directly

Fig. 6 An instance (C, I, J,TJ) that requires more than |I∆J|/2 steps to
reconfigure

move to vk−1. Similarly, since v2k is the only vertex that
covers the path P′ = vk+1 . . . v2k, the possible way is only
to move v2k to v2k−2, which also results in an non-covered
path v2k−1 . . . v3k−2 of length k − 1. It is clear that vk cannot
move directly to either v2k−2 or vk−1. Therefore, every token
in I cannot move directly to one of the tokens in J, which
means it requires at least one step to put some token on some
vertex v < I∆J. This also holds for the case moving tokens
in J to I. Hence, the length of the reconfiguration sequence
is greater than |I \ J| = |J \ I| = |I∆J|/2.

Finally, we confirm that the created instance is a yes-
instance. First, for example, one can move v2k to v2k−1,
since after such a move the k-vertex path v2k . . . v0 is cov-
ered by the token v0 and another k-vertex path v2k−1 . . . v3k−2

is covered by the token v2k−1. Then, now the length of
path v2k−1 . . . vk is k, hence vk can be moved to vk−1 by the
similar argument. Therefore, by the reconfiguration se-
quence S = ⟨I = {v0, vk, v2k}, {v0, vk, v2k−1}, {v0, vk−1, v2k−1},
{v3k−2, vk−1, v2k−1}, {v3k−2, vk−1, v2k−2} = J⟩, one can reconfig-
ure I to J.

5. Concluding Remarks

In this paper, we have investigated the complexity of k-
PVCR under each of TS, TJ, and TAR for several graph
classes. In particular, several known hardness results for
VCR (i.e., k = 2) can be generalized for k-PVCR when
k ≥ 3. Additionally, we proved a complexity dichotomy
for k-PVCR by showing that it remains PSPACE-complete
even if the input (planar) graph is of maximum degree three
(using a reduction from NCL) and can be solved in poly-
nomial time when the input (planar) graph is of maximum
degree two (i.e., it is either a path or a cycle). On the positive
side, we designed polynomial-time algorithms for k-PVCR
on trees under each of TJ and TAR. We also showed how
to construct a shortest reconfiguration sequence on paths,
and presented an example showing the nontriviality of find-
ing shortest reconfiguration sequences on cycles even under
TJ. The question of whether one can solve k-PVCR on trees
under TS in polynomial time remains open. Another tar-
get graphs may be chordal graphs (under each of TJ and
TAR), cographs, and graphs of treewidth at most 2. Even on
graphs of treewidth at most 2 (and moreover, on outerplanar
graphs), the complexity of VCR remains open.

Acknowledgements

We would like to thank the anonymous reviewers for their
insightful and valuable comments that help improving the
preliminary versions of this paper. This work is partially
supported by JSPS KAKENHI Grant Numbers JP20H05964
(D.A. Hoang), JP18H04091, JP20K11666 and JP20H05794
(A. Suzuki), Japan.

References

[1] D.A. Hoang, A. Suzuki, and T. Yagita, “Reconfiguring k-path vertex

□

□

distance

k-

distance

k

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://dx.doi.org/10.1007/978-3-030-39881-1_12

1272
IEICE TRANS. INF. & SYST., VOL.E105–D, NO.7 JULY 2022

covers,” Proc. WALCOM 2020, ed. M. Rahman, K. Sadakane, and
W.K. Sung, LNCS, vol.12049, pp.133–145, Springer, 2020.

[2] J. van den Heuvel, “The complexity of change,” in Surveys in Com-
binatorics, London Math. Soc. Lecture Note Ser., vol.409, pp.127–
160, Cambridge University Press, 2013.

[3] N. Nishimura, “Introduction to reconfiguration,” Algorithms, vol.11,
no.4, 2018. (article 52).

[4] C. Mynhardt and S. Nasserasr, “Reconfiguration of colourings and
dominating sets in graphs,” in 50 years of Combinatorics, Graph
Theory, and Computing, ed. F. Chung, R. Graham, F. Hoffman, R.C.
Mullin, L. Hogben, and D.B. West, pp.171–191, CRC Press, 1st ed.,
2019.

[5] M.R. Garey and D.S. Johnson, Computers and Intractability; A
Guide to the Theory of NP-Completeness, W. H. Freeman & Co.,
New York, NY, USA, 1990.

[6] B. Brešar, F. Kardoš, J. Katrenič, and G. Semanišin, “Minimum k-
path vertex cover,” Discrete Appl. Math., vol.159, no.12, pp.1189–
1195, 2011.

[7] H.B. Acharya, T. Choi, R.A. Bazzi, and M.G. Gouda, “The k-
observer problem in computer networks,” Netw. Sci., vol.1, no.1-4,
pp.15–22, 2012.

[8] E. Miyano, T. Saitoh, R. Uehara, T. Yagita, and T.C. van der Zanden,
“Complexity of the maximum k-path vertex cover problem,” Proc.
WALCOM 2018, pp.240–251, Springer, 2018.

[9] B. Brešar, R. Krivoš-Belluš, G. Semanišin, and P. Šparl, “On
the weighted k-path vertex cover problem,” Discrete Appl. Math.,
vol.177, pp.14–18, 2014.

[10] M. Kumar, A. Kumar, and C.P. Rangan, “Reoptimization of path
vertex cover problem,” Proc. COCOON 2019, LNCS, vol.11653,
pp.363–374, Springer, 2019.

[11] Y. Ran, Z. Zhang, X. Huang, X. Li, and D.Z. Du, “Approximation al-
gorithms for minimum weight connected 3-path vertex cover,” Appl.
Math. Comput., vol.347, pp.723–733, 2019.

[12] D. Tsur, “Parameterized algorithm for 3-path vertex cover,” Theor.
Comput. Sci., vol.783, pp.1–8, 2019.

[13] M. Beck, K.Y. Lam, J.K.Y. Ng, S. Storandt, and C.J. Zhu, “Concate-
nated k-path covers,” Proc. ALENEX 2019, pp.81–91, 2019.

[14] S. Funke, A. Nusser, and S. Storandt, “On k-path covers and their
applications,” Proc. VLDB Endow., vol.7, no.10, pp.893–902, 2014.

[15] G. Ausiello, V. Bonifaci, and B. Escoffier, “Complexity and approx-
imation in reoptimization,” in Computability in Context: Compu-
tation and Logic in the Real World, pp.101–129, World Scientific,
2011.

[16] T. Ito, E.D. Demaine, N.J.A. Harvey, C.H. Papadimitriou, M. Sideri,
R. Uehara, and Y. Uno, “On the complexity of reconfiguration prob-
lems,” Theor. Comput. Sci., vol.412, no.12-14, pp.1054–1065, 2011.

[17] R.A. Hearn and E.D. Demaine, “PSPACE-completeness of sliding-
block puzzles and other problems through the nondeterministic con-
straint logic model of computation,” Theor. Comput. Sci., vol.343,
no.1-2, pp.72–96, 2005.

[18] T. Ito, M. Kamiński, H. Ono, A. Suzuki, R. Uehara, and K.
Yamanaka, “Parameterized complexity of independent set reconfig-
uration problems,” Discrete Applied Mathematics, vol.283,, pp.336-
345, 2020.

[19] M. Kamiński, P. Medvedev, and M. Milanič, “Complexity of in-
dependent set reconfigurability problems,” Theor. Comput. Sci.,
vol.439, pp.9–15, 2012.

[20] M. Wrochna, “Reconfiguration in bounded bandwidth and tree-
depth,” J. Comput. Syst. Sci., vol.93, pp.1–10, 2018.

[21] D. Lokshtanov and A.E. Mouawad, “The complexity of independent
set reconfiguration on bipartite graphs,” ACM Trans. Algorithms.,
vol.15, no.1, pp.7:1–7:19, 2019.

[22] R. Belmonte, E.J. Kim, M. Lampis, V. Mitsou, Y. Otachi, and F.
Sikora, “Token sliding on split graphs,” Proc. STACS 2019, ed. R.
Niedermeier and C. Paul, LIPIcs, vol.126, pp.13:1–13:7, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[23] E. Fox-Epstein, D.A. Hoang, Y. Otachi, and R. Uehara, “Sliding

token on bipartite permutation graphs,” Proc. ISAAC 2015, LNCS,
vol.9472, pp.237–247, Springer, 2015.

[24] P. Bonsma, “Independent set reconfiguration in cographs and their
generalizations,” J. Graph Theory, vol.83, no.2, pp.164–195, 2016.

[25] P. Bonsma, M. Kamiński, and M. Wrochna, “Reconfiguring in-
dependent sets in claw-free graphs,” Proc. SWAT 2014, LNCS,
vol.8503, pp.86–97, Springer, 2014.

[26] M. Bonamy and N. Bousquet, “Token sliding on chordal graphs,”
Proc. WG 2017, LNCS, vol.10520, pp.127–139, Springer, 2017.

[27] M. Briański, S. Felsner, J. Hodor, and P. Micek, “Reconfiguring in-
dependent sets on interval graphs,” Proc. MFCS 2021, LIPIcs,
vol.202, pp.23:1–23:14, 2021.

[28] E.D. Demaine, M.L. Demaine, E. Fox-Epstein, D.A. Hoang, T. Ito,
H. Ono, Y. Otachi, R. Uehara, and T. Yamada, “Linear-time algo-
rithm for sliding tokens on trees,” Theor. Comput. Sci., vol.600,
pp.132–142, 2015.

[29] T.C. van der Zanden, “Parameterized complexity of graph constraint
logic,” Proc. IPEC 2015, LIPIcs, vol.43, pp.282–293, 2015.

[30] R. Diestel, Graph Theory, 5th ed., Graduate Texts in Mathematics,
vol.173, Springer, 2010.

Duc A. Hoang received the B.Math de-
gree from VNU University of Science (Hanoi,
Vietnam) in 2013, and M.S. and Ph.D. degrees
(Information Science) from Japan Advanced In-
stitute of Science and Technology (Ishikawa,
Japan) in 2015 and 2018, respectively. He is
currently a postdoc researcher at the Graduate
School of Informatics, Kyoto University. His
research interests include graph algorithms and
combinatorial reconfiguration.

Akira Suzuki received his B.E., M.S. and
Ph.D. degrees from Tohoku University, Japan,
in 2010, 2011 and 2013, respectively. He is cur-
rently associate professor at Graduate School of
Information Sciences, Tohoku University. His
research interests include combinatorial recon-
figuration, computational complexity, graph al-
gorithms and neural networks.

Tsuyoshi Yagita received the B.Eng.,
M.Eng., and D.Eng. degrees from Kyushu In-
stitute of Technology in 2016, 2018, and 2021,
respectively.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://dx.doi.org/10.1007/978-3-030-39881-1_12
http://dx.doi.org/10.1007/978-3-030-39881-1_12
http://dx.doi.org/10.1007/978-3-030-39881-1_12
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.1017/CBO9781139506748.005
http://dx.doi.org/10.3390/a11040052
http://dx.doi.org/10.3390/a11040052
http://dx.doi.org/10.1201/9780429280092-10
http://dx.doi.org/10.1201/9780429280092-10
http://dx.doi.org/10.1201/9780429280092-10
http://dx.doi.org/10.1201/9780429280092-10
http://dx.doi.org/10.1201/9780429280092-10
http://dx.doi.org/10.1137/1024022
http://dx.doi.org/10.1137/1024022
http://dx.doi.org/10.1137/1024022
http://dx.doi.org/10.1016/j.dam.2011.04.008
http://dx.doi.org/10.1016/j.dam.2011.04.008
http://dx.doi.org/10.1016/j.dam.2011.04.008
http://dx.doi.org/10.1007/s13119-011-0002-7
http://dx.doi.org/10.1007/s13119-011-0002-7
http://dx.doi.org/10.1007/s13119-011-0002-7
http://dx.doi.org/10.1007/978-3-319-75172-6_21
http://dx.doi.org/10.1007/978-3-319-75172-6_21
http://dx.doi.org/10.1007/978-3-319-75172-6_21
http://dx.doi.org/10.1016/j.dam.2014.05.042
http://dx.doi.org/10.1016/j.dam.2014.05.042
http://dx.doi.org/10.1016/j.dam.2014.05.042
http://dx.doi.org/10.1007/978-3-030-26176-4_30
http://dx.doi.org/10.1007/978-3-030-26176-4_30
http://dx.doi.org/10.1007/978-3-030-26176-4_30
http://dx.doi.org/10.1016/j.amc.2018.11.045
http://dx.doi.org/10.1016/j.amc.2018.11.045
http://dx.doi.org/10.1016/j.amc.2018.11.045
http://dx.doi.org/10.1016/j.tcs.2019.03.013
http://dx.doi.org/10.1016/j.tcs.2019.03.013
http://dx.doi.org/10.1137/1.9781611975499.7
http://dx.doi.org/10.1137/1.9781611975499.7
http://dx.doi.org/10.14778/2732951.2732963
http://dx.doi.org/10.14778/2732951.2732963
http://dx.doi.org/10.1142/9781848162778_0004
http://dx.doi.org/10.1142/9781848162778_0004
http://dx.doi.org/10.1142/9781848162778_0004
http://dx.doi.org/10.1142/9781848162778_0004
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.tcs.2005.05.008
http://dx.doi.org/10.1016/j.dam.2020.01.022
http://dx.doi.org/10.1016/j.dam.2020.01.022
http://dx.doi.org/10.1016/j.dam.2020.01.022
http://dx.doi.org/10.1016/j.dam.2020.01.022
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1016/j.tcs.2012.03.004
http://dx.doi.org/10.1016/j.jcss.2017.11.003
http://dx.doi.org/10.1016/j.jcss.2017.11.003
http://dx.doi.org/10.1145/3280825
http://dx.doi.org/10.1145/3280825
http://dx.doi.org/10.1145/3280825
http://dx.doi.org/10.1007/s00224-020-09967-8
http://dx.doi.org/10.1007/s00224-020-09967-8
http://dx.doi.org/10.1007/s00224-020-09967-8
http://dx.doi.org/10.1007/s00224-020-09967-8
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1002/jgt.21992
http://dx.doi.org/10.1002/jgt.21992
http://dx.doi.org/10.1007/978-3-319-08404-6_8
http://dx.doi.org/10.1007/978-3-319-08404-6_8
http://dx.doi.org/10.1007/978-3-319-08404-6_8
http://dx.doi.org/10.1007/978-3-319-68705-6_10
http://dx.doi.org/10.1007/978-3-319-68705-6_10
http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.23
http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.23
http://dx.doi.org/10.4230/LIPIcs.MFCS.2021.23
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.282
http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.282
http://dx.doi.org/10.1007/978-3-662-53622-3
http://dx.doi.org/10.1007/978-3-662-53622-3

