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Abstract
Because radiation is essential in high‐frequency circuits, such as those used in meta-
materials and plasmonics, the investigation of radiation loss is important. This study
describes the characteristics of radiation loss, which is a radiation reaction in circuits
with retarded electromagnetic couplings. The structure of wired metallic spheres is used
to demonstrate metamaterial equivalent circuits, where charges and current exist on the
spheres and wires, respectively. An inductance matrix and a potential coefficient matrix
with retarded electromagnetic couplings are defined to address the radiation reaction.
Subsequently, based on the topology of the wires and spheres, an equivalent circuit
equation with retardation is formulated to discuss the losses in the resonant circuit
caused by the inductive and capacitive elements. Thereafter, the relationship between
the resonant frequency and radiation loss caused by the retarded couplings is
demonstrated and the difference between the retarded couplings and couplings with
transmission lines is clarified. Furthermore, we indicate that retarded coupling generates
singularity on a dispersion curve for a one‐dimensional array of resonant circuits. Thus,
the circuit with retarded couplings generates novel characteristics of radiation reactions
that are not represented by the circuit without retardation. This circuit analysis is ex-
pected to afford new aspects in studies on topics, such as metamaterials and
plasmonics.
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1 | INTRODUCTION

Equivalent circuit models are powerful tools for analysis and
design of electromagnetic phenomena. Recently, the design and
synthesis of electromagnetic properties in complex metallic
structures were conducted for metamaterials and plasmonics.
The effectiveness of the equivalent circuit models was reported
[1–3]. Such equivalent circuit models can provide physical
insight into resonance [4, 5], coupling [6], and propagation [7]
in electromagnetic phenomena. However, the radiation loss
caused by the radiation reaction is not easily described because
the mechanism of the radiation loss is different from the ohmic
loss [8–10], despite radiation being an important factor in high‐
frequency circuits.

To represent the radiation loss in the equivalent circuit, it is
important to include the delay caused by the retarded poten-
tials [11–13]. Hence, the radiation reaction is represented as
feedback using retarded electromagnetic couplings. The partial
element equivalent circuit (PEEC) is a full‐wave circuit model
with meshes of metallic structures [14–16], representing the
radiation loss as the retardations between the meshes [17, 18].
Recently, the topic of the passivity of PEEC [19] and the
discussion on its validity as a model of radiation has been re-
ported in [20, 21]. Another method has been proposed to
derive a simple circuit by specified structures, consisting of
capacitive spheres and inductive wires [22]. In this structure,
the topology of the wires corresponds to the topology of the
circuit, which simplifies the design of the topology and the
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radiation loss is modelled by retarded couplings [23]. Thus,
lumped element circuits with retardation are essential for
modelling the electromagnetic radiation losses.

The radiation reaction caused by the retarded electromag-
netic couplings provides not only the radiation loss in the
lumped circuit model but it also identifies other properties in
the circuits. For example, the resonant frequencies are affected
by the radiation reactions and the retarded couplings
contribute to the relationship between the radiation loss and
the resonant frequency [23]. Furthermore, the radiation reac-
tion can alter the dispersion curves in the metamaterials
[7, 24, 25]. Thus, it is important to clarify these properties of
the radiation reaction using the equivalent circuit models with
retarded couplings.

This study proposes the circuit analysis of the radiation
reaction using a lumped element circuit with retarded cou-
plings. To clarify the effects of the retardation, we use the
wired metallic sphere structure [22] and consider the
retarded inductive and capacitive couplings [23]. The validity
of the models with retardation was confirmed in [23]
through the comparison with electromagnetic simulations.
However, because the derivation of the circuit equation was
based on Green's function and the boundary condition on
conductors, its relationship with Kirchhoff's law in ordinary
circuit analysis is unclear. Therefore, in this study, we pre-
sent the derivation of the circuit equation using Kirchhoff's
law after the circuit elements are given. We used the po-
tential coefficient matrix instead of the capacitance matrix to
describe capacitive couplings because the charges generate
the potential as given by Maxwell's equation. Based on the
wire and sphere topologies, we formulate the circuit equa-
tion and the relationship with energy using Tellegen's
theorem.

Next, we demonstrate the advantages of the circuit analysis
with retardations over the conventional circuit without retar-
dation. We discuss the losses caused by the retardation of the
inductance and potential matrices using a simple resonator.
The losses are explained by the rotation of impedance in a
complex plane caused by the retardation. We show the rela-
tionship between the radiation loss and resonant frequency in
coupled resonators and clarify the difference between the
retarded coupling and transmission line couplings, which also
provide coupling delays. Furthermore, we show the generation
of the singularity on the dispersion curve with the one‐
dimensional (1‐D) periodic array of resonators and explain
the radiation loss discontinuity on the light line analytically.

In the circuit analysis of the radiation reaction, the main
contributions of this work are fourfold: (1) proposing a power
balance according to Tellegen's theorem in Section 2; (2)
depicting the difference in the contribution of capacitive and
inductive elements to radiation in Section 3; (3) describing the
essential difference between the retarded coupling and delays
in transmission line in Section 4; and (4) proving the singularity
on a dispersion curve created by the retarded coupling in
Section 5. Since this circuit analysis clearly describes the power
balance including radiation reaction, the potential applications
include the design of antennas with complex structures,

wireless power transfer, and transmission lines that do not have
explicit return paths.

2 | CIRCUIT EQUATION WITH
RETARDED COUPLING

2.1 | Inductance matrix with retarded
coupling

Inductances with retardation are represented by complex
numbers in the frequency domain. We review an example of
self‐inductance with retardation using the metallic structure in
Figure 1 [23]. Here, D is the length between the centres of the
two spheres and the radii of the wire and spheres are denoted
by a and b, respectively. Assuming that the current in the wire
is uniform and a ≪ b ≪ D, the inductance of the wire is
approximated as

LsðωÞ ¼
μ0
4π

∫ D−b

b
∫ D

0

cos

0

@ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz − z0Þ2 þ a2
q

c

1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz − z0Þ2 þ a2
q dz0dz

−j
μ0
4π

∫ D

0
∫ D

0

sin

0

@ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz − z0Þ2 þ a2
q

c

1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz − z0Þ2 þ a2
q dz0dz;

ð1Þ

where c is the light speed. The details of the derivation using
Green's function in 3D with retardation is shown in [23]. The
complex inductance is caused by the phase shift of

e−jω
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz−z0 Þ2þa2
p

c ; ð2Þ

between the position z0 of the current on the central axis of the
wire and the position z of the estimated electric field on the
surface of the wire. We consider this property of retardation in
this study.

F I GURE 1 Structure of a resonator of a single meta‐atom. The wires
indicate the inductance and spheres indicate the potential coefficients. We
use parameters a = 0.01 mm, b = 1 mm and D = 7 mm in this study
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Mutual inductance with retardation, of the structure in
Figure 2, can be approximated as

L12 ¼
μ0
4π

∫ D

0
∫ D

0

exp −jω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz−z0Þ2þh2
p

c

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz − z0Þ2 þ h2
q dz0dz ð3Þ

≃
μ0D
2π

 

lnðηþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η2

p
Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1
η2

r

þ
1
η

!

e−jω
h
c; ð4Þ

where η = D/h and the derivation is presented in [23]. The
phase shift is caused by the distance h between the wires. If
η ≪ 1 is satisfied, the mutual inductance can be approxi-
mated as

L12 ∼
μ0
4π

D2

h
e−jω

h
c : ð5Þ

and the mutual inductance has the factor 1
he

−jωh
c , which corre-

sponds to the Green’s function in 3D with retardation. We
present a circuit analysis of the properties of elements with this
type of retarded coupling. If there are N inductive elements,
such as wires, we can define N � N inductance matrix L by the
retarded inductances.

2.2 | Potential coefficient matrix with
retarded coupling

Because the charge contributes to the potential in Maxwell
equations, we introduce potential coefficients instead of ca-
pacitances. First, the self‐potential coefficient of a metallic
sphere, shown in Figure 1, is represented as

P11 ≃
exp −jω b

c

� �

4πε0b
; ð6Þ

[23]. Thus, the self‐potential coefficient has a factor 1
be

−jωb
c ,

which corresponds to the Green's function in 3D with
retardation.

If b ≪ D is satisfied in Figure 1, the mutual potential
coefficient P12 is represented as

P12 ≃
exp
�
−jω D

c

�

4πε0D
: ð7Þ

and has the factor 1
De

−jωD
c . If there are M capacitive elements

such as spheres, we can define the M � M potential coefficient
matrix P by the retarded potential coefficients.

Although we consider examples of the wired metallic
spheres, an inductance matrix L and a potential coefficient
matrix P can be defined for inductive elements of thin wire
structures with uniform currents and capacitive elements of
massive structures with uniform voltages based on the method
in [23]. In this study, we present the circuit analysis by
Kirchhoff's laws after such circuit elements with retardations
are given.

2.3 | Circuit equation by Kirchhoff's laws

The circuit equation with the inductance matrix L and potential
coefficient matrix P of N inductive elements and M capacitive
elements, respectively is formulated as follows: We assume that
each inductive element is terminated by the capacitive elements,
as shown in Figure 3. Then, we set nodes on the capacitive
elements and define M � (N + M) incidence matrix U as

U ¼ ½U l; 1t�; ð8Þ

where Ul is the incidence matrix of the inductive elements and
1t is the unit matrix which corresponds to the capacitive ele-
ments. For example, the incidence matrix of the structure in
Figure 2 is

U ¼

2

6
6
4

1 0 1 0 0 0
−1 0 0 1 0 0
0 1 0 0 1 0
0 −1 0 0 0 1

3

7
7
5 ð9Þ

We define the N + M branch voltages V by the N branch
voltages Vl of the wires and M node potentials bV of the
spheres as

V ≡

"
V l
bV

#

ð10Þ

F I GURE 2 Structure of coupled two meta‐atoms in parallel position,
which has two resonators with retarded coupling. We use parameters of
wire radii a = 0.01 mm, b = 1 mm and D = 7 mm in this study

F I GURE 3 Resonator structures with all wires terminated by spheres
[22]

NAKATA ET AL. - 313
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We assume that the external excitation V E
l is applied to the

wires and define the N + M voltage source vector VE as

V E ≡

"
V E

l

0

#

ð11Þ

Then, we use the Kirchhoff's voltage law to show the
existence of the node voltages represented as

U T bV ¼ V þ V E; ð12Þ

where ‘T’ indicates the transpose matrix. We define the N + M
branch currents I by the N branch currents Il of wires and M
branch currents It = jωQ of spheres as

I ≡
�

I l
jωQ

�

ð13Þ

Then, the Kirchhoff's current law can be represented as

UI ¼ 0: ð14Þ

The relationship between the branch voltages V and cur-
rents I is given as

V ¼

�
jωL 0
0 P=jω

�

I : ð15Þ

From Equations (12), (14), and (15), the equation of the
wire currents Il is given as

 

jωL þ
U T

l PU l

jω

!

I l ¼ −V E
l : ð16Þ

Since the coefficient matrix of Il is an impedance matrix
and describes the properties of the circuits, we can derive
the characteristics of the circuits using the impedance
matrix.

2.4 | Power balance by Tellegen's theorem

Because the circuit equation are formulated by Kirchhoff's law,
the power balances of complex powers in circuits are given by
Tellegen's theorem [26], which are derived using Kirchhoff's
laws Equations (12) and (14) as follows.

ðV þ V EÞ
T�I ¼ ðU T bV ÞT�I ¼ bV

T
UI ¼ 0: ð17Þ

where bar represents the complex conjugate. If we use the
inductive currents Il and capacitive currents It = jωQ, the
relation is

jωITl L�I l þ
1
jω

ITt P�I t þ ðV
E
l Þ

T�I l ¼ 0: ð18Þ

This equation defines the contribution of each element in
the power balance. The imaginary parts of L and P generate the
real parts of the complex powers which correspond to the
radiation loss. The coefficients jω and 1/jω of the first and
second terms, respectively, give the essential difference
contributing to the loss.

3 | RADIATION LOSS

To clarify the property of the radiation loss in circuits, we re-
view the behaviour of the resonator in Figure 1 by the circuit
approach. The equivalent circuit Equation (16) of the resonator
is given as:

ZsI ¼ −V E ð19Þ

ZsðωÞ ≡ jωLsðωÞ þ
1
jω
PsðωÞ ð20Þ

PsðωÞ ≡ Ps1ðωÞ − Ps2ðωÞ; ð21Þ

Ps1ðωÞ ≡
exp
�

−jω b
c

�

2πε0b
; Ps2ðωÞ ≡

exp
�

−jω D
c

�

2πε0D
: ð22Þ

If we set a = 0.01 mm, b = 1 mm and D = 7 mm in
Figure 1, the real and imaginary parts of the frequency char-
acteristics of the impedance Zs are shown in Figures 4 and 5,
respectively. Because the loss is caused by retardation, the Re
[Zs] without retardation (dotted line) equals 0 in Figure 4,
where Re[⋅] denotes the real part of ‘⋅’. The ω* satisfying Im
[Zs(ω*)] = 0 in Figure 5 is the resonant angular frequency since
the real impedance Zs means resonance, where Im[⋅] is the
imaginary part of ‘⋅’.

To clarify the meaning of the loss caused by the impedance
Zs with the retardation, we show the phase relation of the

F I GURE 4 Frequency characteristics of impedance Zs (real part) with
and without retardation. Since the loss is caused by retardation, the real part
without retardation is equal to 0

314 - NAKATA ET AL.
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impedances in a complex plane at the resonant frequency ω* in
Figure 6. Although the impedance has only the imaginary
components in the case without retardation, jω*Ls and Ps1/
jω*, Ps2/jω* rotate on a complex plane because of the retar-
dation factors and they become complex numbers. The real
parts of the capacitive elements are negative; however, the total
real part Re[jω*Ls + (Ps1 − Ps2)/jω*] becomes positive because
of the inductive element.

The second order Taylor polynomials of the impedances
[23] are

Re
�
jωLsðωÞ

�
¼
μ0
4π

D2

c
ω2 ð23Þ

Re

"
1
jω
PsðωÞ

#

¼ −
1
3

 
μ0
4π

D2 þ b2

c
ω2

!

ð24Þ

The real part of the capacitive impedance Equation (24)
is negative. When b ≪ D is satisfied, one‐third of the real
part by the inductive elements is cancelled by the capacitive
elements. The total real parts of the impedance agrees with

the radiation resistance by a small dipole [7]. Figure 7 shows
the frequency characteristics of the current |I| when
VE = 1. Although the frequency characteristics without
retardation approach infinity at the resonant frequency, the
case with retardation is finite and the value of the current is
confirmed based on the electromagnetic analysis in [23].
Thus, the total contributions of the positive [Equation (23)]
and negative [Equation (24)] real parts give the radiation loss
in the circuits. The power balance [Equation (18)] in this case
is written by

jωLsjI j2 þ
Ps1 − Ps2

jω
jI j2 þ V E�I ¼ 0:

At the resonant angular frequency ω*, the VE and I are
in phase, and the supplied complex power V E�I is real. The
real part of the inductive and capacitive parts is 41.5 |I|2

and (− 60.0 + 46.6)|I|2 in Figure 6, respectively. If we
substitute the current value I = 0.0356 in Figure 7, we can
confirm that the balance is satisfied.

4 | RETARDED COUPLING

4.1 | Resonant angular frequencies of two
modes

To clarify the property of the retarded coupling, we review
the behaviour of the coupled resonators in Figure 2 by
circuit analysis. The circuit Equation (16) of the structure is
given as

�

jωLðωÞ þ
1
jω

U T
l PU lðωÞ

��
I1
I2

�

¼ −
�
0
0

�

ð25Þ

LðωÞ ¼
�
Ls Lm
Lm Ls

�

; U T
l PU lðωÞ ¼

�
Ps Pm
Pm Ps

�

; ð26Þ

where Lm ≡ L12 in Equation (4) and Pm is defined as

F I GURE 5 Frequency characteristics of impedance Zs (imaginary part)
with and without retardation

F I GURE 6 Phase relation among impedances. W/O retardation: Ls, Ps
are real numbers; hence, Zs is an imaginary number. W/ retardation: Ls, Ps
are complex numbers; hence, Zs is a complex number

F I GURE 7 Frequency characteristics of current I in Figure 1 with
VE = 1

NAKATA ET AL. - 315

 17518598, 2022, 4, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cds2.12104 by C

ochrane Japan, W
iley O

nline L
ibrary on [24/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp



PmðωÞ ≡
1

2πε0

0

B
B
B
@

exp
�

−jω h
c

�

h
−
exp

 

− jω
ffiffiffiffiffiffiffiffiffiffi
D2þh2
p

c

!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ h2

p P

1

C
C
C
A

ð27Þ

Using the symmetry in Equation (25), we decompose the
equation into even and odd modes as

�
Zs þ Zm 0

0 Zs − Zm

��
I1 þ I2
I1 − I2

�

¼

�
0
0

�

; ð28Þ

where

ZsðωÞ ≡ jωLsðωÞ þ
PsðωÞ
jω

; ð29Þ

ZmðωÞ ≡ jωLmðωÞ þ
PmðωÞ
jω

: ð30Þ

If we define mode‐impedances of even and odd modes as

~ZeðωÞ ≡ Zs þ Zm;
~ZoðωÞ ≡ Zs − Zm; ð31Þ

then the resonant angular frequencies ω�e and ω�o are given by
the imaginary part of the impedances

Im½~ZeðωÞ� ¼ 0; Im½~ZoðωÞ� ¼ 0; ð32Þ

respectively.
The distance h dependencies of ω�e and ω�o are shown in

Figure 8. The period of the cross points of the ω�e and ω�o
is approximately half of the wavelength λ = 2πc/
ω* = 36.7 mm. In contrast, the radiation losses Re½~Zeðω�eÞ�
and Re½~Zoðω�oÞ� shown in Figure 9 also have a similar
period, and the cross points in Figure 8 correspond to the
maximal or minimum points in Figure 9. That is, the cross
points in Figure 8 satisfy Im½Zmðω�eÞ� = Im½Zmðω�oÞ� = 0 as
in Equation (31) and at these points the real parts
Re½Zmðω�eÞ� and Re½Zmðω�o Þ� become maximum or mini-
mum, as shown in Figure 9. Such a relation was also
confirmed by the electromagnetic simulations and natural
frequencies in [23].

4.2 | Resonant frequency and loss by
retarded coupling

To understand the relation between the resonant angular fre-
quency and loss, we estimate the mutual impedance Zm in
Equation (30) under the condition of D ≪ h. The mutual
inductance Lm = L12 in Equation (4) is approximated by L12 in
Equation (5) and has the factor 1

he
−jωh

c . Similarly, Pm in Equa-
tion (27) is approximated by

Pm ∼ j
ωD2

4πε0ch2
exp
�

−jω
h
c

�

; ð33Þ

and has the factor 1
h2
e−jωh

c . Because the inductive elements are
dominant, Zm defined by Equation (30) is approximated as

ZmðωÞ ∼ jω
μ0
4π

D2

h
exp
�

−jω
h
c

�

ð34Þ

Thus, the circuit Equation (28) is expressed as the
following approximation,

"

Zs þ jω
μ0
4π

D2

h
exp
�

−jω
h
c

�#

~Ie ¼ 0 ð35Þ

"

Zs − jω
μ0
4π

D2

h
exp
�

−jω
h
c

�#

~Io ¼ 0; ð36Þ

where ~Ie ≡ I1 þ I2 and ~Io ≡ I1 − I2.
Figure 10 shows the original Equation (30) and approxi-

mated Equation (34) and Zm on a complex plane with the
parameter h. Thus, the phase of the retarded factor rotates the
mutual impedance depending on the distance between meta‐
atoms h and contributes to the relationship between the reso-
nant frequency and loss in Figures 8 and 9. That is, when Im

F I GURE 8 Distance h dependencies of resonant angular frequencies
ω�e and ω�o

F I GURE 9 Distance h dependencies of the radiation losses Re
[~Zeðω�e Þ] and Re[~Zoðω�oÞ] on the resonant angular frequency
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½Zmðω�Þ� ¼ 0 is satisfied because Equations (35) and (36), ω�e is
equal to ω�o in Figure 8 and the large real parts jRe½Zmðω�eÞ�j and
jRe½Zmðω�oÞ�j causes themaximumor minimum radiation loss in
Figure 9.

4.3 | Comparison with delay in transmission
line

To clarify the property of the retarded coupling, we compare
the retarded coupling of resonators in Figure 2 with coupling
through conducting wires of a transmission line shown in
Figure 11. The difference between the retarded coupling and
the coupling through the conducting wire is well known in the
discussion of electromagnetic fields. However, it is important
to clarify the essential difference of circuit elements that
contain delays. In this discussion, we assume that the trans-
mission line has no losses and its characteristic impedance,
propagation constant, and length are Z0, jβ, and h, respectively.
We define the lumped circuit parameters as follows:

L¼ Re½Lsðω�Þ�; C ¼ Re
�

1
Psðω�Þ

�

; R¼ Re½Zsðω�Þ�; ð37Þ

where ω* is the resonant angular frequency of Figure 1.
The lumped circuit equation of each resonator is

expressed as
�

jωLþ
1

jωC
þ R

�

I1 ¼ −V 1 ð38Þ

�

jωLþ
1

jωC
þ R

�

I2 ¼ V 2: ð39Þ

The coupling by the transmission line is

�
V 1
I1

�

¼ F

�
V 2
I2

�

; F ≡

2

6
4

cos βh jZ0sin βh
j
Z0

sin βh cos βh

3

7
5 ð40Þ

If we decompose Equations (38) and (39) into two current
modes in the same way as the retarded couplings,

~Ie ¼ I1 þ ð−I2Þ; ~Io ¼ I1 − ð−I2Þ; ð41Þ

the circuit equation of each eigenmode is expressed by

0

B
B
@Zs0 − j

Z0

sin ω h
c

� �

1

C
C
A

~Ie ¼ 0; ð42Þ

0

B
B
@Zs0 þ j

Z0

sin ω h
c

� �

1

C
C
A

~Io ¼ 0; ð43Þ

where we set β¼ ω
c and

Zs0 ¼ jωLþ
1

jωC
þ R − j

Z0

tanðω h
cÞ
: ð44Þ

Because Equations (42) and (43) correspond to Equa-
tions (35) and (36), respectively, the impedance Zm in Equa-
tion (34) is replaced by

Zm0 ¼ −j
Z0

sin ω h
c

� �: ð45Þ

Although the mutual impedance Zm rotates in the complex
plane, depending on h (shown in Figure 10), Zm0 for the
transmission line is always a pure imaginary number depending
on h (shown in Figure 12) and does not exhibit coupling loss.
Thus, the couplings in Figures 2 and 11 are essentially different
with regard to the energy loss and the retarded coupling
provides new elements in the circuit analysis.

5 | RADIATION REACTIONS IN ARRAY
OF META‐ATOMS

5.1 | Dispersion characteristics with
retardation

As an example of where the retarded coupling plays an essential
role, this section addresses the radiation reactions in the 1D array
structure of meta‐atoms shown in Figure 13. Relationships

F I GURE 1 0 Comparison of mutual impedance Zm between
Equations (30) and (34): changing h at ω* = 5.14 � 1010 rad/s. The mutual
impedance rotates in a complex plane depending on h and generates the
relation between the resonant frequency and radiation loss

F I GURE 1 1 Two resonators coupled by a lossless transmission line
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between the propagation modes and resonant frequencies are
represented by the dispersion characteristics, and these proper-
ties are often used in the design of metamaterials. We show the
singularity on a dispersion curve [7] created by the retarded
coupling theoretically using circuit analysis.

To derive the dispersion curve, we introduce the periodic
boundary condition, such that L and U T

l PU l become circulant
matrices. Then, the impedance matrix Z is also a circulant
matrix,

Z ðωÞ ¼

2

6
6
6
4

Z0 Z1 þ ZN−1 ⋯ Z1 þ ZN−1

Z1 þ ZN−1 Z0 ⋱ Z2 þ ZN−2

⋮ ⋱ ⋱ ⋮
Z1 þ ZN−1 Z2 þ ZN−2 ⋯ Z0

3

7
7
7
5
;

ð46Þ

where Z0 = Zs and Zn (n = 1, 2, … , N − 1) is defined by

Zn ¼ jωLn þ
Pn
jω
; ð47Þ

Ln ≡
μ0D
2π

 

ln

 
η
n
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
η2

n2

r !

−

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
n2

η2

s

þ
n
η

!

e−jω
nh
c ;

Pn ≡
1

2πε0

0

B
B
B
B
@

exp
�

−jω
nh
c

�

nh
−

exp

0

@ − jω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ ðnhÞ2
q

c

1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ ðnhÞ2
q ;

1

C
C
C
C
A

ð48Þ

The circulant matrix (46) is diagonalised by a discrete
Fourier transform (DFT) matrix, whose column vectors are
written by

h
1; ej2π

m
N ; ej2π

2m
N ;…; ej2π

ðN−1Þm
N

iT

ðm¼ 0; 1; 2; …; N − 1Þ:
ð49Þ

The mth eigenvector corresponds to the wave number of
mth eigenmode and is expressed as km ¼ 2πm

Nh . Using the ei-
genvectors in Equation (49), we derive the eigenvalue, that is,
the mth mode impedance as

~Zðω; kmÞ ¼ Z0 þ
XN−1

n¼1
ðZn þ ZN−nÞej2π

nm
N : ð50Þ

Solving the equation of ω yields the resonant condition of
the mth mode,

Im½~Zðω; kmÞ� ¼ 0; ð51Þ

we obtain the resonant angular frequencyω�m and real part of the
impedance, which represent the radiation loss in the resonant
angular frequency of each wave number km. The dispersion

F I GURE 1 2 Mutual impedance Zm0 in the circuit by transmission line.
The mutual impedance is a pure imaginary number dependent on h. Although
the coupling caused by a lossless transmission line has retardation, the coupling
does not generate loss

F I GURE 1 3 1D array structure of the meta‐atoms. Each meta‐atom is
a resonator in Figure 1

F I GURE 1 4 Dispersion characteristics of 1D array structure
(Figure 13). The curve has a singularity on the light line. ‘Single’ is the
resonant frequency of the single meta‐atom
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characteristics ðkm; ω�mÞ and real parts ðkm; Re½~Zðω�m; kmÞ�Þ
are shown in Figures 14 and 15. The dispersion curve has a
singularity on the light line and the real part of mode impedances
changes discontinuously on the light line. This property is well
known as the fact that the Bloch mode is no longer fully guided
after crossing the light line [27]; however, the property is not
described by circuit analysis without retardation.

To discuss the relation between Figures 14 and 15, we
show the real and imaginary parts of the mode impedance
~Zðω; kmÞ in Figures 16 and 17, respectively. The cross point of
the plane Im½~Z� ¼ 0 in Figure 17 corresponds to the dispersion
curve in Figure 14, while the real parts Re½~Zðω�m; kmÞ� on the
curve in Figure 16 represent the curves in Figure 15. The
discontinuity in Figure 15 corresponds to the discontinuity on
the light line in Figure 16. Thus, the radiation loss and resonant
frequency are represented by the real and imaginary parts of
the mode impedance ~Zðω; kmÞ.

5.2 | Analytical estimation of radiation loss

To derive the analytical estimation of the radiation loss by
circuit analysis, we divide the contributions of the inductances
and potential coefficients in the real part of the mode
impedance as follows:

Re½~Zðω; kmÞ� ¼ Re½~ZLðω; kmÞ� þ Re½~ZPðω; kmÞ�: ð52Þ

Furthermore, approximating Equation (5), we define the
imaginary part of the inductance Lin ðn¼ 0; 1;…;N − 1Þ as

Lin ≡ −
μ0D

2ω
4πc

sin ω nh
c

� �

ω nh
c

ð53Þ

which is a Sinc function and is caused by retarded couplings.
Then, the contribution of the inductance Re½~ZLðω; kmÞ� can be
written by

Re½~ZLðω; kmÞ� ¼ −ωLi0 þ
XN−1

n¼1
−ωðLin þ L

i
N−nÞe

2πnmN ; ð54Þ

¼
μ0D

2ω2

4πc

XN−1

n¼−ðN−1Þ

sin
�

ω
nh
c

�

ω
nh
c

cos
�
2π
nm
N
�

≃

8
>>>>>><

>>>>>>:

μ0D
2ω

4h
ðckm < ωÞ

μ0D
2ω

8h
ðckm ¼ ωÞ

0 ðckm > ωÞ

; ð55Þ

F I GURE 1 5 Real part of mode impedance on the resonant angular
frequency. The curve has a discontinuity where the dispersion curve crosses
the light line. ‘Single’ is the real part of the single meta‐atom

F I GURE 1 6 Real part of mode impedance (Re
[~Zðω; kmÞ]). The impedance has a discontinuity on
the light line
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which is a window function when N is significantly large. Thus,
the discontinuity of Re½~ZLðω; kmÞ� on the light line is shown
analytically by the circuit model.

The potential coefficient Equation (48) also consists of the
Sinc function; however, the second term has irregular samp
ling. The contributions of Re½~Zðω; kmÞ�; Re½~ZLðω; kmÞ�;
Re½~ZPðω; kmÞ� at ω = 5.14 � 1010 are shown in Figure 18. We
can confirm that Re½~ZLðω; kmÞ� is approximated by the
Sinc function and discontinuity in Re½~Zðω; kmÞ� is caused by
inductive couplings. The retarded inductive couplings generate
the radiation loss discontinuity on the light line which is an
important characteristic of radiation by leaky‐waves [28].

6 | CONCLUSION

We introduced a circuit with retarded couplings to describe the
radiation loss resulting from a radiation reaction.

The potential coefficient matrix was used instead of the
capacitance matrix because of the retardation. The circuit
equations were formulated such that the real parts of the
complex power with the retarded couplings describe the ra-
diation loss. Using the simple resonant circuit, we initially
demonstrated the radiation loss mechanism by the retardation
of the inductance and potential coefficients to clarify the
contribution of the inductive and capacitive elements. We
then clarified the radiation reaction in the coupled resonant
circuit. The relation between radiation loss and resonant
frequency was shown by the phase rotation of the retarded
coupling. We discussed the essential difference between the
retarded coupling and the coupling with the transmission line.
We then analysed the 1D array of resonators with all retarded
couplings. The radiation loss was discontinuously changed on
the light line and the dispersion curve has singularity on the
light line. Thus, the circuit with the retarded coupling de-
scribes the radiation reaction and generates novel character-
istics that are not described by the circuit without retardation.
The circuit analysis of the radiation reaction will afford new
aspects in studies on topics such as metamaterials and
plasmonics.
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F I GURE 1 7 Imaginary part of mode
impedance (Im[~Zðω; kmÞ]): the cross point of the
plane Im½~Z� ¼ 0 corresponds to the dispersion curve in
Figure 14

F I GURE 1 8 Components in Equation (52) at ω = 5.14� 1010 (rad/s).
The inductance loss is approximated as a Sinc function and generates
radiation loss discontinuity
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