
Edith Cowan University Edith Cowan University 

Research Online Research Online 

Research outputs 2022 to 2026 

1-1-2022 

Assessment of hole quality, thermal analysis, and chip formation Assessment of hole quality, thermal analysis, and chip formation 

during dry drilling process of gray cast iron ASTM A48 during dry drilling process of gray cast iron ASTM A48 

Numan Habib 

Aamer Sharif 

Aqib Hussain 

Muhammad Aamir 
Edith Cowan University, m.aamir@ecu.edu.au 

Khaled Giasin 

See next page for additional authors 

Follow this and additional works at: https://ro.ecu.edu.au/ecuworks2022-2026 

 Part of the Civil and Environmental Engineering Commons 

10.3390/eng3030022 
Habib, N., Sharif, A., Hussain, A., Aamir, M., Giasin, K., & Pimenov, D. Y. (2022). Assessment of hole quality, thermal 
analysis, and chip formation during dry drilling process of gray cast iron ASTM A48. Eng, 3(3), 301-310. 
https://doi.org/10.3390/eng3030022 
This Journal Article is posted at Research Online. 
https://ro.ecu.edu.au/ecuworks2022-2026/1433 

https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworks2022-2026
https://ro.ecu.edu.au/ecuworks2022-2026?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F1433&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/251?utm_source=ro.ecu.edu.au%2Fecuworks2022-2026%2F1433&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.3390/eng3030022
https://doi.org/10.3390/eng3030022


Authors Authors 
Numan Habib, Aamer Sharif, Aqib Hussain, Muhammad Aamir, Khaled Giasin, and Danil Yurievich 
Pimenov 

This journal article is available at Research Online: https://ro.ecu.edu.au/ecuworks2022-2026/1433 

https://ro.ecu.edu.au/ecuworks2022-2026/1433


Citation: Habib, N.; Sharif, A.;

Hussain, A.; Aamir, M.; Giasin, K.;

Pimenov, D.Y. Assessment of Hole

Quality, Thermal Analysis, and Chip

Formation during Dry Drilling

Process of Gray Cast Iron ASTM A48.

Eng 2022, 3, 301–310. https://

doi.org/10.3390/eng3030022

Academic Editor: Manoj Khandelwal

Received: 24 April 2022

Accepted: 23 June 2022

Published: 27 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Assessment of Hole Quality, Thermal Analysis, and Chip
Formation during Dry Drilling Process of Gray Cast Iron
ASTM A48
Numan Habib 1, Aamer Sharif 1 , Aqib Hussain 1, Muhammad Aamir 2 , Khaled Giasin 3

and Danil Yurievich Pimenov 4,*

1 Department of Mechanical Engineering, CECOS University of Information Technology and Emerging
Sciences, Peshawar 25000, Pakistan; numanhabib@cecos.edu.pk (N.H.); aamer@cecos.edu.pk (A.S.);
iamaqibhussain@gmail.com (A.H.)

2 School of Engineering, Edith Cowan University, Joondalup 6027, Australia; m.aamir@ecu.edu.au
3 School of Mechanical and Design Engineering, University of Portsmouth, Portsmouth PO1-3DJ, UK;

khaled.giasin@port.ac.uk
4 Department of Automated Mechanical Engineering, South Ural State University, 454080 Chelyabinsk, Russia
* Correspondence: danil_u@rambler.ru

Abstract: The cutting parameters in drilling operations are important for high-quality holes and
productivity improvement in any manufacturing industry. This study investigates the effects of
spindle speed and feed rate on temperature, surface roughness, hole size, circularity, and chip
formation during dry drilling of gray cast iron ASTM A48. The results showed that the temperature
increased as spindle speed and feed rate increased. The surface roughness had an inverse relationship
with the spindle speed and direct relation with the feed rate. Furthermore, hole size increased with
increased spindle speed and decreased as the feed rate increased, while hole circularity decreased
with increasing both the spindle speed and feed rate. The analysis of variance (ANOVA) indicated
that the spindle speed had the highest percentage contribution of 56.24% on temperature, followed
by the feed rate with 42.35%. The surface roughness was highly influenced by the feed rate and the
spindle speed with 55% and 44.12%, respectively. While the hole size was highly influenced by the
feed rate with a 74.18% percentage contribution, and the contribution of spindle speed was 21.36%.
In addition, the feed rate has a percentage contribution of 70.82% on circularity, which is higher
than the spindle speed of 24.26% percentage contribution. The results also showed that thick and
discontinuous chips were generated at higher feed rates, while long continuous chips were produced
at high spindle speeds.

Keywords: drilling; gray cast iron; thermal analysis; circularity; hole size; surface roughness;
chips formation

1. Introduction

Gray cast iron A48 has unique mechanical properties, including low friction and
wear resistance [1]. It is also used to produce automotive parts such as pistons, cylinder
liners, heads, clutch plates, and brake drums because of its high damping capacity and
high carbon content. Additionally, it is used to manufacture flywheels, gearboxes, pumps,
valves, pipes, ingot molds, and machine-tool parts [2].

The process parameters, such as feed rate, spindle speed, cutting fluid, tool diameter,
and chip formation play a key role in hole quality [3,4]. Similarly, an appropriate selection
of machine setup and cutting tools during drilling operations is essential to avoid rapid
tool wear and low-quality holes [5–7]. In addition, inappropriate process parameters can
produce torque and undesired thermal stresses on the workpiece and cutting tool, which
leads to undesirable distortion and hence reduces tool life and hole quality [8].
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Literature showed various studies on the effect of process parameters to improve the
quality of holes. For instance, Islam et al. [9] analyzed the influence of process variables
such as depth of cut, spindle speed (n), and feed rate (f ) on the material removal rate and
hole quality in the turning operation of gray cast iron A48. The results showed that n has a
higher impact on the material removal rate than the depth of cut and f. Selvan et al. [10]
worked on abrasive water jet cutting of gray cast iron A48 to determine the influence of
abrasive mass flow rate, nozzle traverse speed, and water pressure on the cutting depth
during the cutting process. According to the findings of this study, these operational
parameters directly affect the depth of the cut. Furthermore, a regression analysis was
conducted to evolve an empirical model for measuring the depth of cut through abrasive
materials. Ogedengbe et al. [11] studied the effect of numerous parameters on material
removal rates for the annealed and unannealed gray cast iron under wet and dry cutting
conditions. It was concluded that the best result in terms of machining is achieved with
annealed and wet cutting conditions. Souza et al. [12] concluded that the heat generated in
the primary shear zone was smaller than that created in the secondary shear zone in drilling
gray cast iron A48. Therefore, the tool and the chip must disperse a significant amount
of heat produced in the cutting zone. The result shows that temperature is significantly
affected by n, which has a significant impact on the performance of the tool at higher n.
Moreover, the n raises the cutting temperature by influencing strain rates in the primary
and secondary shear planes. Mills [13] examined that using PCBN tools for machining gray
cast iron significantly increases the n by obtaining high productivity compared to cemented
carbide. However, for the machining of gray cast iron, the PCBN tool can be operated
normally when the n ranges from 500 to 1500 m/min, while in some specific cases, the n
may be over 2000 m/min. Guesser et al. [14] analyzed the surface roughness of the gray
iron by selecting the process parameters such as Ra, Ry, and Rz at different n. The roughness
value is higher at n of 400 m/min than that acquired at a higher n. De Sousa et al. [15]
investigated the cutting forces of EM-245 gray cast iron in turning operating using a silicon
nitride (Si3N4) ceramic tool. They observed that the range of cutting parameters for the
formation of built-up edge is much higher than machining steels.

The above literature reveals limited research on the assessment of hole quality and
thermal analysis during drilling of gray cast iron A48. Therefore, the current work is
focused on the effect of various drilling parameters on thermal analysis, chip formation,
and characteristics of hole quality, including surface roughness, hole size deviation, and
circularity. Additionally, the impact of input parameters on temperature, surface roughness,
hole size, and circularity were evaluated using ANOVA.

2. Materials and Methods
2.1. Workpiece Material

In this study, a gray cast iron ASTM A48 was selected with a length of 150 mm, a
width of 50 mm, and a thickness of 13 mm. The properties of gray cast iron ASTM A48 are
shown in Table 1, while Table 2 depicts its chemical composition.

Table 1. Properties of gray cast iron A48 [16].

Properties Value

Density (g/cm3) 7.15
Hardness (BHN) 174–210

Ultimate tensile strength (MPa) 207
Melting temperature (F) 2050–2120

Table 2. Chemical composition of gray cast iron A48 [16].

Element Composition

Carbon 3.1–3.3
Sulfur 0.05–0.12
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Table 2. Cont.

Element Composition

Phosphorus 0.02–0.1
Silicon 2.1–2.3

Manganese 0.5–0.9

2.2. Machine Setup, Cutting Parameters, and Cutting Tool

The drilling operation was performed on a vertical milling machine (Model: Victoria-
Elliott U2, London, UK) using the cutting parameters as given in Table 3. In addition, a
Dormer high-speed steel (HSS) drill bit was used for the drilling process. The details of
the drill bit are shown in Table 4. Due to environmental concerns, the experiments were
conducted without coolants.

Table 3. Cutting parameters.

Levels Feed Rate (m/min)
Spindle Speed (n) Cutting Speed (Vc)

rpm m/min

1 0.013 43 1.35
2 0.025 77 2.42
3 0.034 141 4.43
4 0.049 308 9.67

Table 4. Details of drill bit.

Drill Bit Material Description

Material High-speed steel
Diameter 10 mm

Point angle 118◦

Helix angle 30◦

2.3. Measurement of Temperature

The temperature was measured using an infrared pyrometer sensor (Model: OS-180-
USB-LSTL OMEGA, London, UK) with the same procedure used by Riaz et al. [17]. First,
the pyrometer was mounted, clamped, and positioned at a point from the desired drilling
hole using magnetic support. Next, the laser beam was accurately focused on the desired
location to record the temperature, as shown in Figure 1.
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2.4. Post-Drilling Experiments

The surface roughness parameter (Ra) was measured using a Mitutoyo (SJ-201) surface
roughness tester at 0◦ and 90◦ of each hole. In addition, a coordinate measuring machine
(CMM, Taichung, Taiwan) was used to measure circularity error and hole deviation from
the nominal size. A ruby probe with a diameter of 2 mm circulated continually around
the hole’s internal wall was used. The measuring probe’s scanning speed was adjusted at
1 mm per second, allowing 400 points to be captured while rotating around the inside circle
of a hole. Moreover, a DSLR camera 5220 was used to analyze the chip formation produced
during the drilling of gray cast iron A48.

2.5. Analysis of Variance

Finally, the effect of input parameters on drilling output parameters was performed
using analysis of variances (ANOVA) with a 95% confidence interval similar to the previous
studies [5].

3. Results and Discussions
3.1. Thermal Analysis

Microstructural changes, tolerance errors and distortions, work material adhesiveness
on the tool’s cutting edges, and residual strains in the subsurface layers can all occur as a
result of an excessive increase in temperature [3,18]. Figure 2 illustrates the impact of n and
f feed rate on temperature during the drilling process of gray cast iron. The results show
an increase in the temperature due to n and f. Therefore, the impact of n was absorbed
to be more on temperature than f, as indicated in Table 5. The percentage contribution
of n was 56.24%, and the f was 42.35%. Therefore, the rise in temperature during the
drilling process depends on machining parameters. According to Chen [19], the higher n
can generate frictional heat on the tool–workpiece interface and significantly affects the
tool performance. Nouari et al. [20] also reported that the f and n increase the temperature.
This is because a high n causes plastic deformation, which leads to increases in temperature.
Moreover, higher f increases the contact length between the chips and tool, which leads
to temperature increases. Additionally, the temperature rise increased the reduction in
tool life.
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Table 5. Analysis of variances for temperature.

Source DF Seq SS Contribution Adj S.S. Adj MS F-Value p-Value

Model 6 119,206 98.59% 119,206 19,867.7 105.07 0.000
Linear 6 119,206 98.59% 119,206 19,867.7 105.07 0.000

Spindle speed 3 67,999 56.24% 67,999 22,666.3 119.87 0.000
Feed rate 3 51,207 42.35% 51,207 17,069.1 90.27 0.000

Error 9 1702 1.41% 1702 189.1 - -
Total 15 120,908 100.00% - - - -

3.2. Assessment of Hole Quality
3.2.1. Surface Roughness

Surface roughness (Ra) refers to the irregularities caused by machining operations
on the surface of a machined part [21]. It is considered vital when evaluating machining
performance and significantly influences manufacturing processes and their cost [22]. This
study obtained Ra under various n and f, as shown in Figure 3. The results showed
that both the n and f affect the surface roughness. This agrees with the results from the
thermal analysis as discussed above that higher n increases the temperature. The Ra value
directly relates to f and has an inverse relation with n. The decrease in Ra value with an
increasing n is explained due to the surface temperature of the workpiece. As n increases,
the workpiece surface temperature rises because resistance supplied by the material against
a tool decreases, which softens the material resulting in a better surface finish at high n [23].
Moreover, the built-up edge formation might have also affected the Ra [24]. Additionally,
the Ra value increased with the increase in f and a likely explanation for this might be
that a high thrust force needed to deform the thick layer of the chip, which induces more
aggressive vibration in the tool and results in a high surface finish [25]. Furthermore, it
is investigated that Ra increased when the chip thickness increased. A short, thick, and
discontinuous chip increases the Ra. However, Ra decreases with long, thin and continuous
chip formation [26]. The effect of f was found to be more significant than the n. This could
be confirmed from ANOVA in Table 6 in which the f has a percentage contribution of
55.00% while n has an impact of 44.12% on the Ra.
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Table 6. Analysis of variances for surface roughness.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 6 4.46877 99.12% 4.46877 0.744794 168.57 0.000
Linear 6 4.46877 99.12% 4.46877 0.744794 168.57 0.000

Spindle speed 3 1.98912 44.12% 1.98912 0.663042 150.06 0.000
Feed rate 3 2.47964 55.00% 2.47964 0.826547 187.07 0.000

Error 9 0.03977 0.88% 0.03977 0.004418 - -
Total 15 4.50853 100.00% - - - -

3.2.2. Hole Size

Any machined product performance is influenced by the nominal hole size variation,
often known as diametric deviation [27]. The holes deviation from the nominal size (10 mm)
under varying n and f is shown in Figure 4. Results showed the oversized holes range
between 10.133 and 10.276 mm. The hole size was observed to decrease significantly with
increasing f. Increasing f from 0.013 m/min to 0.049 m/min, hole size values decreased
from 10.240 mm to 10.133 mm at a constant n of 43 rpm. This could be due to the chip’s high
thickness at a high f, which induced the cutting process to become unsteady and caused
continual jerks. Moreover, small thickness chips are produced at low f, allowing jerk-free
and consistent drilling with little deviation from nominal size [28]. However, the hole
size values increased from 10.240 mm to 10.276 mm with an increase in n from 43 rpm to
308 rpm at a constant f of 0.013 m/min. The increase in hole size with an increase in n is due
to drilling vibration and chatter phenomena. Furthermore, at a higher n, the temperature
considerably impacts drilled hole accuracy [25]. Therefore, the current study shows that
dimensional accuracy improved with an increase in the f at low n. The ANOVA result
from Table 7 shows that the f percentage contribution was 74.18%, while the percentage
contribution of n was 21.36%.
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Table 7. Analysis of variances for hole size.

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 6 0.021121 95.54% 0.021121 0.00704 64.32 0.001
Linear 6 0.021121 95.54% 0.021121 0.00704 64.32 0.001

Spindle speed 3 0.004722 21.36% 0.004722 0.001574 14.38 0.001
Feed rate 3 0.016399 74.18% 0.016399 0.005466 49.94 0.000

Error 9 0.000985 4.46% 0.000985 0.000109 - -
Total 15 0.022105 100.00% - - - -

3.2.3. Circularity

The two-dimensional radial tolerance called circularity or roundness error indicates
how close a component with a diametrical cross-section is to a true circle [7,29]. Figure 5
depicts the circularity varying f and n. In the current study, the circularity error decreased
significantly with increasing both f and n. Circularity values decreased from 0.034 mm
to 0.027 mm by increasing f from 0.013 m/min to 0.049 m/min at a constant n of 43 rpm.
This was possibly due to the discontinuous chips obtained at a high f. However, at a low
f, continuous chips tangled around the cutting tool, disturbing the dynamic balance, and
inducing high vibration. Moreover, increasing n from 43 rpm to 308 rpm also decreases the
circularity value from 0.034 mm to 0.031 mm at a constant feed rate of 0.013 m/min. The
decrease in circularity with increasing n could be due to the low contact duration between
chip and tool [30]. In the current study, the circularity or roundness error for all drilling
holes is less than 0.040 mm. Moreover, from the ANOVA in Table 8, the influence of f in
affecting the circularity was greater with a percentage contribution of 70.82%, while the
percentage contribution of n was 24.26%.
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Table 8. Analysis of variances for circularity error.

Circularity

Source DF Seq SS Contribution Adj SS Adj MS F-Value p-Value

Model 6 0.0000148 95.08% 0.0000148 0.00005 57.79 0.001
Linear 6 0.0000148 95.08% 0.0000148 0.00005 57.79 0.001

Spindle speed 3 0.000038 24.26% 0.000038 0.000013 14.79 0.001
Feed rate 3 0.000110 70.82% 0.000110 0.000037 43.17 0.000

Error 9 0.000008 4.92% 0.000008 0.000001 - -
Total 15 0.000155 100.00% - - - -

3.3. Chip Morphology

Figure 6 shows chips produced during dry drilling of gray cast iron A48. Based on the
ISO 3685-1977 chip classification chart [31], different types of chips are developed during
the machining process, such as tubular chips, spiral chips, helical chips, ribbon chips, arc
chips, elemental, and needle chips. These chips are further divided into long, short, and
snarled chips. This work generated connected-arc chips at n of 43 rpm and a feed rate
of 0.013 m/min. However, as the n increased from 41 rpm to 308 rpm, connected-arc
chips converted into long and snarled-tubular chips. Moreover, when the f increases from
0.013 m/min to 0.049 m/min and the n increases from 43 rpm to 141 rpm, the connected-arc
chips are converted into short-elemental chips. Furthermore, increasing f from 0.013 m/min
to 0.049 m/min at 308 rpm results in the formation of loose-arc chips.
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Figure 6 also shows that varying and n influenced the length of the chips during
drilling of gray cast iron A48. A high temperature caused by a high n resulted in material
ductility, hence producing longer chips [32]. Further, the thickness of the chip is inversely
related to n and directly related to f. The f is more influential in the current study because
the cross-sectional area of the chip increased at a high f [33]. Furthermore, as n increases
from 43 rpm to 308 rpm, more elongated chips are formed, and enhanced surface roughness
is observed. However, an increase in f results in thick and discontinuous chips and leads to
a high surface roughness of the drilled hole.

4. Conclusions

The conclusions drawn from the study are:
The temperature increased with an increase in both spindle speed and feed rate. Based

on ANOVA results, the spindle speed showed the higher percentage contribution of 56.24%
than the feed rate with an impact of 42.35%. The surface roughness was also affected by
the spindle speed and feed rate. However, the high spindle speed decreased the surface
roughness, while high surface roughness was observed at high feed rates. ANOVA results
revealed that the effect of feed rate on surface roughness was 55.00% compared to the spin-
dle speed (44.12%). The hole size had a direct relation to the spindle speed and an inverse
relation with feed rate. From ANOVA results, the feed rate showed the highest percentage
contribution of 74.18%, and spindle speed had a percentage contribution of 21.36%. In
addition, increasing feed rate and spindle speed lowered circularity error. Similarly, the
ANOVA result showed that the feed rate had the highest percentage contribution of 70.82%
compared to spindle speed, with a contribution percentage of 24.26%. Additionally, increas-
ing the feed rate from 0.013 m/min to 0.049 m/min generated thick and discontinuous
chips, while long continuous chips were achieved with a high spindle speed of 308 rpm.
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